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Abstract
This paper shows how to recover a stochastic volatility
model (SVM) from a market model of the VIX futures
term structure. Market models have more flexibility for
fitting of curves than do SVMs, and therefore are bet-
ter suited for pricing VIX futures and VIX derivatives.
But the VIX itself is a derivative of the S&P500 (SPX)
and it is common practice to price SPX derivatives using
an SVM. Therefore, consistent modeling for both SPX
and VIX should involve an SVM that can be obtained by
inverting the market model. This paper’s main result is
a method for the recovery of a stochastic volatility func-
tion by solving an inverse problem where the input is
the VIX function given by a market model. Analysis will
show conditions necessary for there to be a unique solu-
tion to this inverse problem. Themodels are consistent if
the recovered volatility function is non-negative. Exam-
ples are presented to illustrate the theory, to highlight the
issue of negativity in solutions, and to show the potential
for inconsistency in non-Markov settings.
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1 MOTIVATION AND FORMULATION

Volatility trading has increased in the 21st century with the introduction of derivatives on the VIX
index. Two such derivatives are VIX futures, which began trading on the CBOE in 2004, and VIX
(European) options, which began trading on the CBOE in 2006. There are also exchange traded
notes (ETNs) written on these futures, and options written on these ETNs. Pricing of VIX deriva-
tives uses so-called market models, which are stochastic models for the futures term structure.
One thing to keep in mind when using a market model is that the published VIX index is com-
puted fromEuropean S&P500 (SPX) options, whichmeans that theVIX is really an SPXderivative.
Therefore, VIX pricesmay be partially determinable if there are established prices for SPX options.
Moreover, pricing of SPX derivatives uses stochastic volatility models (SVMs) rather than market
models. Hence, there is potential for conflicting prices if market models and SVMs are being used
simultaneously to price VIX and SPX derivatives, respectively.
To understand why such a conflict would be a problem, consider a situation where a single

financial institution has two separate trading floors: one for SPX derivatives and another for VIX
derivatives. Each floor has its own traders who quote prices from their own respective models.
If these models have substantially different assessments on the outcome of 30-day variance, then
there could be inter-desk arbitrage, that is, mispricings that allow for a third party (external to the
institution) to take SPX derivative prices offered by the SPX desk and arbitrage them against VIX
derivative prices offered by the VIX desk. A solution to this problem should provide a criterion
for consistency of the models, and in a practical setting should provide a method for specification
of one model in terms of the other. This paper presents such a solution.

1.1 Problem formulation

Let !" denote the scalar price process for the SPX, and let#" denote a $-dimensional factor process
with $ a positive integer. Consider a model where SPX returns are given by a risk-neutral SVM,

$!"!" = %$" + &(#")$'", (1)

$#" = ((#")$" + )(#")$*", (2)

where % ≥ 0 is the risk-free rate, &(+) is a scalar-valued volatility function, ((+) is a $-dimensional
drift, )(+) is a $ × $ diffusion matrix,*" is a $-dimensional risk-neutral vector-valued Standard
Brownianmotion, and '" is a risk-neutral scalar Brownianmotion, with correlations between*"
and '" denoted with -,

$'"$*." = -.dt for 1 ≤ . ≤ $.
Denote by (")"≥0 the filtration generated by *" and '". The VIX is the square root of the
risk-neutral expected realized 30-day variance, which in the continuous diffusion model of
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Equations (1) and (2) is

VIX" = √√√√/[10 ∫
"+0

" &2(#1)$1|||"] ,
where 0 = 30 days, and with a VIX future being given by

ℎ3−"(#") = /[VIX3|"] for " ≤ 3. (3)

For this SVM, it is clear that the asset price !", the VIX, and all VIX futures are "-adapted
Markov processes.
Separate from SVMs are market models that are designed to describe directly the VIX and VIX

futures. Let 5",3 be a market model’s price for a VIX future with maturity 3 at time " ≤ 3. These
prices come from the following system of SDEs:

$5",35",3 = 6(",3)$*", (4)

where*" is the same Brownian motion from Equation (2), and where the volatility 6(",3) is an"-adapted $-dimensional row vector function that is specific for a given 3. The model is applied
simultaneously formultiple or a continuumof3’s, thereby forming an entire curve of VIX futures.
It is important to keep in mind that Equation (4) is generally a time inhomogeneous and non-
Markovian model, but results in this paper apply to time-homogenousMarkovian market models
that are also driven by the factor process #" of Equation (2). Section 2.1will set forth assumptions
for time homogeneity andMarkovianity along with some explanation, but further discussion will
come in Section 4 where it will be shown how there is essentially a contradiction when trying to
specify a consistent Markovian SVM with a non-Markovian market model. Market models con-
sidered in this paper include: a Bergomi-type market model1 where 6(",3) = 7∗9−:(3−")) with :
and ) being $ × $ positive-definite matrices and 7 a $ × 1 volatility vector; a 3/2 market model
where all futures are an expectation of a VIX given by 5"," = 1∕#" with #" being a Cox–Ingersol–
Ross (CIR) process; a double Nelson (or double mean reverting model) similar to the model in
Bayer et al. (2013); a nonstationary model where #" is Brownian motion.
In practice, it is a good idea to use market models because VIX futures are very liquid with a

richness of information for understanding the state of volatility. Therefore, it is sensible to first
define a market model, and second to build an SVMwith the structure of the market model taken
into consideration. If the market model is Markovian with the same factors as the SVM, then
the instantaneous variance &2(+) is the solution to an inverse problem. The formulation of this
inverse problem is as follows: if the coefficients of the factor process ((+) and )(+) are known for
all +, and the market model has provided the function ℎ0(+), then the inverse problem for &2(+)
is expressed as

ℎ20(+) = /[ 10 ∫
"+0

" &2(#1)$1|||||#" = +]. (5)

In Section 2, it is shown that if the process#" is ergodic and has an invariant law relative to which
its infinitesimal generator is symmetric, making #" reversible, and has also a spectral gap Bakry
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et al. (2013), then under some integrability conditions for ℎ20 there exists a unique &2(+) that is the
solution to Equation (5). If in addition, the solution is non-negative, then the market model has
provided a valid volatility function for Equation (1), leaving the correlation coefficients -1, … , -$
as the only remaining parameters to be determined for the SVM. However, non-negativity of the
solution is difficult to prove; this issue is explored further in the examples of Section 3. Similar
non-negativity issues arise elsewhere in the literature, for example in quantum inverse scattering
theory (Chadan, 2007; Chadan & Sabatier, 2012) and in Fourier analysis Tuck (2006). For the
most part, results in the literature proving positivity are less general than theory for existence
of solutions.

1.2 Background literature

Background for SVMs, including the Heston model, can be found in various books and papers,
including Gatheral (2006) and Heston (1993), and more general models involving jumps in Duffie
et al. (2000). The Bergomi model for future variance is introduced in Bergomi (2005), Bergomi
(2008), Bergomi (2015), and a consistency condition for the drift in futures curves for variance is
given in Buehler (2006). Term structure and the associated Heath–Jarrow–Morton (HJM) frame-
work are discussed in Carmona and Teranchi (2006), Heath et al. (1992), Ritchken and Sankara-
subramanian (1995), Roncoroni and Guiotto (2002). In Jacquier et al. (2018), a market model with
stochastic volatility is used to derive formulae for VIX futures.
In the past decade, there has been a lot of research on joint models for SPX and VIX options,

which includes some re-evaluation of widely used SVMs and a search for new models to fit both
markets. One such example is the so-called 3/2 model, which is analyzed in Baldeaux and Bad-
ran (2014), Drimus and Farkas (2013) and is a popular choice because it is able to reproduce the
increasing right-hand implied-volatility skew inVIX options. The search for amodel to simultane-
ously calibrate an SVM to both SPX and VIX options is done in Bayer et al. (2013), Gatheral (2008)
using a two-factor diffusion model; in Cont and Kokholm (2013), a numerically efficient model
for joint calibration is proposed using affine jump diffusions; in Lin and Chang (2010), there is
an exploration of the Heston model with jumps revealing evidence in VIX options that suggests
there are jumps in the volatility process; in Kokholm and Stisen (2015), there is further explo-
ration of the Heston model with jumps and the role played by the Feller condition; in Pacati et al.
(2018), a displacement or volatility push-up is proposed to improve the joint fit of affinemodels; in
Papanicolaou and Sircar (2014), a model for joint calibration is proposed using a regime-switching
extension of the Heston model Heston (1993); in Fouque and Saporito (2018), it is proposed to use
a Heston vol-of-vol model. A different approach is taken in Guyon (2020) wherein a joint dis-
tribution from a nonparametric family is fit satisfying both the marginal distributions from VIX
and SPX options, and it is shown to be arbitrage free. Non-model-specific analysis of the joint
SPX and VIXmarkets includes Papanicolaou (2018) and the data analysis of future variance-swap
rates in Papanicolaou (2016). The problem of consistency between SVMs and market models is
also studied in the PhD thesis of Alex Badran Badran (2014).
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1.3 Results and organization of this paper

Section 2.1 introduces Definition 2.1, stating formally themeaning of consistency between an SVM
and a market model. Section 2.2 has the main result of this paper, which is a theorem for the solv-
ability of Equation (5). Section 3 has examples of tractable models: Sections 3.1 and 3.2 explore
the scalar and multivariate Bergomi models, respectively, for which the inverse problem has an
explicit eigenfunction expansion; Section 3.3 looks at the market model where VIX2" is a 3/2 pro-
cess, which also has an explicit eigenfunction expansion; Section 3.4 looks at the double Nelson
market model that is tractable with nice statistical features to fit the data but with an inverse
problem that does not have a positive solution for all +; Section 3.5 looks at a nonstationary model
with a Brownian motion factor process for which an application of Bochner’s theorem ensures
non-negativity. Section 4 has further discussion on the issue of non-Markovian market models.

2 DEFINITIONS ANDMAIN RESULT

The value of a future contract with a fixed horizon is referred to as a constant maturity future
(CMF), that is, for a constant < ≥ 0, the CMF price with horizon < given by the SVM is

ℎ<(#") = /[VIX"+<|"], (6)

and the CMF given by the market model is

5","+< = /[5"+<,"+<|"]. (7)

Unlike regular futures, CMFs are not risk-neutral martingales. Instead, their differential has a
nonzero drift, $5","+<5","+< = =<" $" + 6(", " + <)$*" , (8)

where =<" = >>3 log(5",3)|3="+<. In the stationary case, there is the following representation of=<" :
=<" = [−∫

"
−∞ 6(1,3) >>36∗(1,3)$1 + ∫

"
−∞ >>36(1,3)$*1

]

3="+<, (9)

fromwhich it is seen that stationarity requires some integrability of 6(", " + <) and >>3 6(",3)|3="+<.
For example, 6(",3) = 79−@(3−") leads to stationary CMFs. The quantity =<" has a financial signif-
icance because it is the roll yield of a trading strategy to track the CMF’s returns (see Avellaneda
and Papanicolaou (2019)).

2.1 Consistency

It is first necessary to define this paper’s meaning for consistency:
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Definition 2.1 (Consistency). Assume there exists a unique strong solution for the SDE appearing
in Equation (2) of the SVM, and there also exists unique strong solutions for the SDEs for CMFS
given by Equation (8). The SVM and the market model have consistent prices if the CMFs agree,
that is, if

5","+< = ℎ<(#") a.s. ∀" ≥ 0 and ∀< ≥ 0, (10)

where ℎ<(+) is the SVM’s CMF as defined in Equation (6).
Remark 2.2. The essential step in confirming consistency between an SVM and a market model
is to prove the statement expressed by Equation (10). However, the SVM is such that ℎ3−"(#") =/[ℎ0(#3)|"] for all " ≥ 0 and the market model is such that 5",3 = /[53,3|"] for all 3 ≥ ", and
so it is sufficient to show

5"," = ℎ0(#") a.s. ∀" ≥ 0.
That is, the SVM and the market model share the same filtration (")"≥0, and both ℎ3−"(#") and5",3 are martingales by construction, and so all that needs to be checked is that the models have
agreement between their respective VIX processes.

If Definition 2.1 does not hold, then there is potential for arbitrage. For example in Papanicolaou
(2018), it is shownhowprices should respect certain structural bounds, otherwise there are options
portfolios that produce arbitrage. From Definition 2.1, the first thing to notice is that solutions to
Equation (8) are functions of #" and do not depend separately on ". Thus, Markovian SVM future
prices need to be equal to those of themarketmodel, and it stands to reason that themarketmodel
should also be aMarkov process. Therefore, the simplest approach is to assume that both the SVM
and the market model are Markovian and both driven by the factor process #"; discussion and a
counterexample related to this issue will come in Section 4.
The second thing to notice from Definition 2.1 is that time homogeneity in the SVM implies

time homogeneity in the market model. The reason being, that the differential of ℎ<(#") obtained
from Itô’s lemma and the SDE in Equation (2) have time-independent coefficients, and therefore
the differential of 5","+< must also have time-independent coefficients.
Assumption 2.3 (Time-Homogeneous Markovian Market Model driven by #"). The market
model with CMFs given by Equation (8) is a Time-Homogeneous Markov model driven by the
same factor process as the SVM. In particular, the CMF 5","+< has roll-yield functions B<(+) and
volatility row vector functions 6<(+) for each horizon < ≥ 0, such that the CMF dynamics are$5","+<5","+< = B<(#")$" + 6<(#")$*", (11)

where #" is the factor process given by Equation (2). Moreover, there is an initial curve 50,< such
that 50,< = /[5<,<|0] for all < ≥ 0, and there is an initial value #0 such that #0 ∈ ℎ−10 (50,0) a.s.
At this point it is appropriate to formally state sufficient conditions on the SDE coefficients.
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Assumption 2.4. Coefficients ((+) and )(+) are globally Lipschitz continuous so that Equation
(2) has a strong solution. Coefficients B<(+) and 6<(+) are bounded so that Equations (11) and (12)
have unique strong solutions and the futures of Equation (12) are true martingales.

From Assumptions 2.3 and 2.4, it is assured that Definition 2.1 is meaningful. Assumption 2.3
is necessary for the theory in this paper, but Assumption 2.4 is not always needed. Indeed, there
are several important non-Lipschitz examples, such as the Heston SVM, or various other models
where #" is a CIR process (see the 3/2model of Section 3.3). Assumption 2.4 asserts boundedness
of B<(+) and 6<(+), but a less restrictive criterion is for B<(+) to allow a well-defined Riemann
integral ∫ "0 B<(#1)$1 and for 6<(+) to satisfy the Novikov condition,

/ exp(12 ∫
3

0 ‖63−"(#")‖2dt) <∞ for all 0 ≤ 3 <∞.
Assumption 2.3 says that the roll yields fromEquation (8) are now functions of#", namely,=<" =B<(#") for all < ≥ 0. Given Assumption 2.3, the market model’s future dynamics can be rewritten

as $5",35",3 = $5","+<5","+< |||||<=3−" − B3−"(#")$" = 63−"(#")$*", (12)

Under Assumptions 2.3 and 2.4, Itô’s lemma can be applied to check whether or not a model
satisfies the consistency of Definition 2.1 and Equation (10). Indeed, denote the operator ,

 = 12 trace[))∗(+)∇∇∗] + (∗(+)∇, (13)

which is the infinitesimal generator of the factor process#". Ifℎ<(+)has sufficient differentiability,
then $ℎ<(#") is set equal to the right-hand side of Equation (11) to obtain the following pair of
consistency equations,

ℎ<(#") = B<(#")ℎ<(#"), (14)

)∗(#")∇ℎ<(#") = 6∗<(#")ℎ<(#"), (15)

with the initial condition satisfying and #0 ∈ ℎ−10 (50,0).
Remark 2.5 (Buehler’s condition). Equation (14) is Buehler’s condition, which was identified for
expected variance in Buehler (2006).

Remark 2.6 (Initializing Curve Models with market data). Practical use of market models often
involves the insertion of VIX curve data as an initial condition. The advantage to this approach
is that the model is able to directly assimilate futures prices observed in the market. If the initial
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curve 50,< is given, then the solution to Equation (11) is
5","+< = 50,< exp(∫

"
0

(B<(#1) − 12‖6<(#1)‖2)$1 + ∫
"

0 6<(#1)$*1
),

which may not be a time-homogeneous market model driven by #" if the initial conditions stated
in Assumption 2.3 are not satisfied, that is, time inhomogeneity could arise if the initial curve can-
not be written as a function of#0. Within the framework of Assumption 2.3, a time-homogeneous
marketmodel can be initializedwith curve data50,< if50,< = /[5<,<|0] and if there exists#0with#0 ∈ ℎ−10 (50,0). In practice, the dimension of #" should be sufficiently high so that ℎ−10 (50,0) con-
tains #0, that is, so that there exists + in the domain of #0 with + ∈ ℎ−10 (50,0).
2.2 Main result: Markovian inverse problem for EF(G)
Let ℎ(+) = ℎ0(+) denote the VIX. Suppose that ℎ(+) and the market model satisfy Definition 2.1
and Assumption 2.3. A function &2(+) should be found for consistent specification of the SVM. Ifℎ(+) is already known, then finding &2(+) amounts to solving an inverse problem,

ℎ2(+) = /[ 10 ∫
"+0

" &2(#1)$1|||||#" = +], (16)

where a solution is a function &2 ∶ ℝ$ → ℝ that satisfies Equation (16). This solution admits a
valid SVM if it is non-negative.

2.2.1 General solvability

The inverse problem can be solved for a general class of factor processes. Let the factor process#" be a stationary ergodic process with infinitesimal generator  given by Equation (13). Let K
denote #"’s invariant measure. Here and in the sequel, expectation with respect to the invariant
measure for any (integrable) test function L is denoted by

⟨L⟩∶=∫ L(+)$K(+),
and all calculations to come will follow the analytical framework of semigroups for diffusions
defined in Bakry et al. (2013). It will be necessary to assume existence of a unique invariant mea-
sure and that the operator  has a spectral gap.

Assumption 2.7 (Unique invariant measure). There is a unique invariant measure K such that
⟨L⟩ = 0 for any test function L(+).2
Assumption 2.8 (Spectral gap). The operator  is symmetric, that is, ⟨L1L2⟩ = ⟨L2L1⟩ for any
test functions L1(+) and L2(+), with a spectrum that is nonpositive with a gap at zero. In other
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words, there is a constant M > 0 such that
⟨(9"L)2⟩ ≤ 9−M"⟨L2⟩, (17)

for all " ≥ 0 and for any L(+) such that ⟨L⟩ = 0 and ⟨L2⟩ <∞. Here 9"L denotes the contraction
semigroup generated by , and given by

9"L(+) = /[L(#")|#0 = +],
for bounded L(+) as well as for square integrable ones.
Clearly |9"L(+)| ≤ supN |L(N)| and also ⟨(9"L)2⟩ ≤ ⟨L2⟩ for all suitable L(+), " ≥ 0. Conditions

on the symmetric diffusion generator to have a spectral gap are given in Bakry et al. (2008, 2013),
with the Ornstein–Uhlenbeck generator being the canonical case that motivates themore general
theory3. The examples of Section 3 explore further the scope of the theory.

Theorem 2.9 (General solvability of inverse problem). Assume ℎ2(+) is such that ⟨ℎ4⟩ <∞ and
⟨(ℎ2)2⟩ <∞, where is the operator fromEquation (13). Given Assumptions 2.7 and 2.8, a square-
integrable solution to Equation (16) exists.

Proof of Theorem 2.9. By writing the solution as &2(+) = ⟨ℎ2⟩ + O(+), the inverse problem of Equa-
tion (16) can be rewritten as

ℎ2(+) − ⟨ℎ2⟩ = ΦO(+),
where the operator Φ is defined by

Φ = 10 ∫
0

0 91$1. (18)

Using the invariant measure, it is clear the solution O is now centered,

⟨O⟩ = 0,
because 0 = ⟨ℎ2 − ⟨ℎ2⟩⟩ = ⟨ΦO⟩ = ∫ (ΦO)$K = ∫ O$K = ⟨O⟩, and the inverse problem is posed as

ΦO(+) = ℎ2(+) − ⟨ℎ2⟩. (19)

The operatorΦ is an averaging operator, and so it stands to reason that ℎ2(+) is more regular thanO(+). The operator  is applied to both sides of Equation (19), and because by assumption the
quantity ℎ2(+) is well defined, it follows that

ΦO(+) = ℎ2(+) .
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Using the algebraic properties of the semigroup operator (see Bakry et al. (2013); Rudin (1991)),

Φ = 10 ∫
0

0 91$1 = 10 (90 − Q) ,
which can be rearranged to obtain,

−0ℎ2(+) = −0ΦO(+) = (Q − (Q + 0Φ))O = (Q − 90)O(+) , (20)

and due to the spectral gap of Assumption 2.8, the solution can be written with a (convergent)
geometric series,

O(+) = −0 ∞∑
R=0 9R0ℎ2(+).

Note the solvability assumption: given the spectral gap there is a solution if and only if ⟨ℎ2⟩ = 0,
which is the same as Equation (22) after applying consistency equations (14) and (15). In addition,
it is needed to use the fact that

ℎ2(+) = 2ℎ(+)ℎ(+) + ‖)∗(+)∇ℎ(+)‖2.
Uniqueness of a square integrable solution with ⟨O⟩ = 0 also follows from Equation (20): for any
two solutions O(+) and O′(+) having ⟨O2⟩ + ⟨O′2⟩ <∞ it must be that ΦO(+) = ΦO′(+), or (Q −90)O(+) = (Q − 90)O′(+). By inverting the operator Q − 90, it is clear that O(+) = O′(+) for a.e. +.
Multiplying both sides of Equation (20) by O(+) and taking brackets yields,

⟨O2⟩ = −0⟨Oℎ2⟩ + ⟨O90O⟩.
From symmetry of  and the spectral gap in Equation (17), there is the following estimate:

⟨O90O⟩ = ⟨(90∕2O)2⟩ ≤ 9−M0∕2⟨O2⟩,
which is inserted into the previous equation to obtain

⟨O2⟩ ≤ −0⟨Oℎ2⟩ + 9−M0∕2⟨O2⟩.
Rearranging and applying Cauchy–Schwartz yields the estimate,

(1 − 9−M0∕2)⟨O2⟩ ≤ −0⟨Oℎ2⟩ ≤ 0√⟨O2⟩⟨(ℎ2)2⟩,
which for M > 0 is rearranged to obtain an estimate on the norm of the solution,

⟨O2⟩ ≤ ( 01 − 9−M0∕2)2
⟨(ℎ2)2⟩. (21)
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The bound Equation (21) shows that the solution is square integrable against the invariant density,
given our assumptions about ℎ2(+) and the spectral gap. □
Remark 2.10. The implication of Theorem 2.9 is that, if ℎ(+) is given by a market model and
a unique solution to Equation (16) is non-negative for a.e. +, and if Equation (2) has a strong
solution, then there is an SVM that is consistent in the sense of Definition 2.1.

Remark 2.11. It may be the case that Equation (16) is solvable but does not have a solution that
is non-negative for a.e. +, even though it is denoted by &2(+) because that is how the problem is
posed. In this case, for the proposed market model there does not exists an SVM that is consistent
in the sense of Definition 2.1.

Remark 2.12. If a square-integrable solution &2(+) to Equation (16) exists, and if the SVM and
marketmodel are consistent (in the sense ofDefinition 2.1), then from the consistency equations of
(14) and (15), there is the following solvability condition for the inverse problem,

⟨(2B + ‖6‖2)ℎ2⟩ = 0, (22)

where B(+) is the roll yield and 6(+) the volatility in Equation (11) with < = 0.
Remark 2.13. The solvability condition in Equation (22) is analogous to the Fredholm alternative
in finite Euclidean space (see Bakry et al. (2013), Rudin (1991)). It is an integral condition that
involves the roll yield B(+) and volatility of themarketmodel 6(+), the VIX ℎ(+), and the invariant
measure of the factor process K.
Remark 2.14 (Symmetric operators). For #" given by Equation (2), if there is an invariant densityK(+), then the operator  of Equation (13) is symmetric if there are matricesU(+) such that can
be written in self-adjoint form,

L(+) = 12K(+)∇ ⋅ (U(+)∇L(+)),
for any test function L(+). In other words, )(+) and ((+) need to satisfy

U(+) = ))∗(+)K(+),
∇ ⋅ U(+) = 2(∗(+)K(+).

This shows us that the symmetry of Assumption 2.8 is somewhat restrictive. However, symmetry
is not always required to solve the inverse problem, as will be shown in the examples of Section 3.

2.2.2 Solution via eigenseries expansion

If the operator has a complete basis of orthogonal eigenfunctions, then so doesΦ given in Equa-
tion (18), and then the solution to the inverse problem (16) can be found by computing eigencoef-
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ficients in a series expansion of &2(+). For many such cases, there are transition densities for the
factor process #" given #0, and so Equation (16) can be written using a kernel,

ℎ2(+) = ∫ Φ(N,+)&2(N)$N,
where the kernel is

Φ(N,+) = 10 ∫
0

0 >>Nℙ(#1 ≤ N|#0 = +)$1.
Suppose there are eigenfunctions XR ∶ ℝ$ → ℝ such that for an index value R ∈ {0, 1, 2, …},

∫ Φ(N,+)XR(N)$N = MRXR(+) ,
where MR ≠ 0, and suppose there is an invariant densityK(+) > 0 such that any pair is orthogonal,

∫ XR(+)XY(+)K(+)dx = ⟨X2R⟩Z(R − Y).
Suppose additionally that these eigenfunctions form a complete basis in [2(ℝ$;K), that is, if
⟨&4⟩ <∞, then there are coefficients \0,\1,\2 … such that

&2(+) = ∞∑
R=0\RXR(+),

∞∑
R=0 |\R|2 <∞.

If &2 is the solution to the inverse problem, then there is eigenseries expansion,
ℎ2(+) = ∞∑

R=0\RMRXR(+),
∞∑
R=0 |\RMR|2 <∞,

and via orthogonality the \R’s are solved for
\R = 1MR⟨X2R⟩ ∫ ℎ2(+)XR(+)K(+)dx.

This provides a (unique) solution to Equation (16).

Remark 2.15. The eigenfunction expansion presented in this section can be reformulated without
the assumption of a transition density; see Linetsky (2007) for spectral theory of general semi-
group operators.

3 APPLICATION TO TRACTABLEMODELS

This section presents some examples of models that are applicable in practice, that is, simulation,
numerics, data calibration, and so forth, can be done within a reasonable amount of time. All
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models considered are Markov with strong SDE solutions, as per Assumptions 2.3 and 2.4. It will
be assumed that ℎ<(+) = 5","+< for all < ≥ 0, and then the emphasis will be placed on calculations
for finding the solution to the inverse problem of Equation (16).

3.1 The scalar Bergomi model

For $ = 1, the Bergomi market model has the volatility function,
6(",3) = 7)9−](3−") ,

where 7 is a scalar constant, and ) > 0 and ] > 0. Define the factor process to be the Ornstein–
Uhlenbeck (OU) process #" given by

$#" = −]#"$" + )$*",
which has invariant density

K(+) = √ ])2^9−]+2)2 ;
for this model, the drift and diffusion are ((+) = −]+, )(+) = ). Given #", the market model’s
futures price is

5",3 = 5∞ exp(−72)24] 9−2](3−") + 79−](3−")#"),
where 5∞ = lim3→∞ 5",3 and is also a model parameter; it is straightforward to check that this
expression for 5",3 satisfies the market-model equation $5",3 = 5",36(",3)$*" . For this model,
the roll yields of Equation (11) are

B<(#") = >>3 log(5",3)||||3="+< = 72)22 9−2]< − 7]#"9−]<,
and the volatilities take the form 6<(#") = 7)9−]<. The consistency Equation (15) can be solved to
obtain ℎ<(+) = ℎ<(0) exp(79−]<+), and it is easily verified that the solvability condition (22) holds.
The inverse problem in Equation (16) is solved by an eigenfunction expansion. The OU process

has a complete orthogonal basis of eigenfunctions given by the Hermite polynomials. Hence, the
inverse problem is solved with an eigenseries expansion like that of Section 2.2.2.
Consider the process

$_" = −]_"$" +√2]$*",
where $*"$*" = $". The generator of this process is

 = ] >2>`2 − ]` >>` ,
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and the eigenfunctions of  satisfy equations,

XR(+) = −]RXR(+), for R = 0, 1, 2, 3, … ,
where each XR is a Hermite polynomial,

XR(`) = (−1)R exp(`22 ) $R$`R exp(−`22 ),
that is

X0(`) = 1,X1(`) = `,X2(`) = `2 − 1,⋮
Theses polynomials are orthogonal with respect to _"’s invariant measure,

∫
∞

−∞ XR(`)XY(`)K(`)$` = R!Z(R − Y),
where

K(`) = 1√2^ exp(−`22 ).
These eigenfunctions form a complete orthogonal basis in [2(ℝ;K), and are convenient because

/[XR(_")|_0 = `] = 9−]R"XR(`).
The transition density for the _"’s is the following kernel:

Φ`(N, `) = 10 ∫
0

0 >>Nℙ(_" ≤ N|_0 = `)$" ,
and when applied to the Hermite polynomials

∫
∞

−∞ Φ`(N, `)X0(N)$N = X0(`) = 1,
∫

∞
−∞ Φ`(N, `)XR(N)dy = 10 ∫

0
0 9−]ntXR(`)dt = 1 − 9−]R0]R0 XR(`) ∀R ≥ 1,
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which yields the eigenvalues

M0 = 1,
MR = 1 − 9−]0R]0R ∀R ≥ 1.

For the scalar Bergomi model driven by the OU process #" with mean-reversion rate ] and
diffusion parameter ), there is the following weak equivalence with _",

#" =$ )√2]_" .
Define the scaled domain variance function,

&̃2(`) = &2( )√2]`
) ∀` ∈ ℝ ,

and then notice

10 ∫
0

0 /[&2(#")||#0 = +]$" = 10 ∫
0

0 /[ &̃2(_")||_0 = √2]) +]$" .
If the SVM andmarket model are consistent, then VIX2" = ℎ2(#") is given explicitly by the market
model,

ℎ2(+) = ℎ2(0) exp(27+) = ℎ2(0) exp(√27)√] `) .
Then, in terms of ` and the scaled eigenfunction &̃2(`), the solution to the inverse problem has
the expansion,

&̃2(`) = ∞∑
R=0\RXR(`) ,

and the inverse problem (16) can be written in terms of the scaled variable and variance function,

ℎ2(0) exp(√27)√] `) = 10 ∫
0

0 /[ &̃2(_")||_0 = `]$" = ∞∑
R=0\RMRXR(`) ,
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for all ` ∈ ℝ. Then using orthogonality, the coefficients are
\R = (−1)R ℎ2(0)MRR!√2^ ∫

∞
−∞ exp(√27)√] `) $R$`R exp(−`22 )$+

= ℎ2(0)MRR!
(√27)√]

)R exp(72)2] ) .
This is clearly an expansion convergent in [2(ℝ;K) and uniformly on compact sets. Finally, in
terms of + the solution is

&2(+) = &̃2(√2]) +) = ∞∑
R=0\RXR

(√2]) +) .
This expansion is also convergent in [2 and uniformly on compact sets. Numerical calculations
indicate that the solution &2(+) is positive, and therefore, there is an acceptable volatility function.
It is interesting to note that themarket model for the VIX is an exponential function, leading to an
exponential OU VIX futures process. However, the consistent SVM in this case does not have an
exponential OU volatility function. Numerical calculations show that the instantaneous variance&2(+) has exponential-like behavior but is not an exact exponential. Figure 1 shows a numerical
example of the simulated VIX and the recovered volatility function in this scalar OU example.

3.2 The multifactor Bergomi model

VIX futures from the multidimensional Bergomi model are given by

$5",35",3 = 7∗9−:(3−"))$*" ,
where : is a $ × $ matrix with positive eigenvalues, ) is a $ × $ constant matrix, *" is $-
dimensional uncorrelated Brownian motion, and 7 is a $ × 1 vector. Let #" be the multidimen-
sional OU process given by

$#" = −:#"$" + )$*" .
To ensure stationarity of #", it is enough to assume that the eigenvalues of : have positive real
parts and that (−:,)) is a controllable pair, that is

∫
"

0 9−:1))∗9−:∗1du is invertible for all " > 0.
Under these assumptions, the distribution of the OU process#" will converge to a stationary state.
The invariant density of#" is a $-dimensional Gaussian density withmean zero, and $ × $ covari-
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F IGURE 1 For the scalar Bergomi model, the VIX is ℎ(+) = ℎ(0)97+ where ℎ(0) = 0.2, 7 = 1, ] = 3 and) = 0.5. The mean VIX is 20.1% and the model is 20% [Color figure can be viewed at wileyonlinelibrary.com]

ance matrix Σ is
Σ = ∫

∞
0 9−:1))∗9−:∗1$1 , (23)

which is finite and non-singular if the pair is controllable. From the integral formula of Equa-
tion (23), it is seen that Σ satisfies the stationary Lyapunov equation,

:Σ + Σ:∗ = ))∗ . (24)

Thus, the solution to the market model’s SDE for 5",3 is
5",3 = 5∞ exp(−127∗9−:(3−")Σ9−:∗(3−")7 + 7∗9−:(3−")#"),

where 5∞ = lim3→∞ 5",3 . For this multidimensional model, the log-future’s derivative with
respect to 3 is

B<(#") = >>3 log(5",3)||||3="+< = 127∗:9−:<Σ9−:∗<7 + 127∗9−:<Σ9−:∗<:∗7 − 7∗:9−:<#".
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The volatility function of Equation (11) is

6<(#") = 7∗9−:<).
The formula for the VIX is explicit and obtained from Equation (15) (up to the initial value),

ℎ<(+) = ℎ<(0) exp(7∗9−:<+) .
As in the scalar case of Section 3.1, it is easily verified that solvability condition (22) holds here.
When : is diagonalizable with linearly independent eigenvectors, then the generator  has a

discrete set of eigenvalues and a complete bi-orthogonal (in general) basis of eigenfunctions given
bymultivariate Hermite polynomials (see Ismail and Zhang (2017), Liberzon and Brockett (2000),
Withers (2000)), and therefore the method of Section 2.2.2 applies even though the generator is
in general not symmetric in the sense of Assumption 2.8.
As an example, consider the two-dimensionalmodel fromAvellaneda and Papanicolaou (2019),

Bergomi (2005), where the factors are

$#." = −].#."dt + ).$*." for . = 1 and 2,
with ]. > 0 for . = 1 and 2, $*1" $*2" = -$", the VIX being

ℎ(+) = ℎ(0) exp(+1 + +22 ) ,
where it is assumed for simplicity that 7 = 12d with d = (1, 1)∗. The generator of #" is

 = 12 trace[( )21 -)1)2-)1)2 )22
)∇∇∗] − +∗(]1 00 ]2)∇,

and the invariant density is

K(+) = 12^√|Σ| exp
(−12+∗Σ−1+),

where

Σ = ⎛
⎜
⎜
⎜⎝

)212]1 -)1)2]1+]2-)1)2]1+]2 )222]2
⎞
⎟
⎟
⎟⎠
,

so that Equation (24) holds. FollowingWithers (2000), the eigenfunctions eR for the adjoint oper-
ator ∗ are

eR(+) = (− >>+1)R1(− >>+2)R2K(+),
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where R1 and R2 are non-negative integers; notice that ∗K = 0. These eRs are the solutions to
the equations

∗eR = −fReR,
where fR = R1]1 + R2]2. Then, the eigenfunctionsXR for the operator aremultivariate Hermite
polynomials, which are

XR(+) = 1K(+)eR(+),
and satisfy the equation

XR = −fRXR;
each of these XR’s is a polynomial of degree equal to R1 + R2. In this case, the transition-density
kernel is

Φ(N,+) = 10 ∫
0

0 >2>N1>N2ℙ(#" ≤ N|#0 = +)$" ,
where #" ≤ N denotes element-wise inequality, and when applied to the multivariate Hermite
polynomials, similar to the scalar OU example of Section 3.1, there are eigenvalues

M0 = 1,
MR = 1 − 9−fR0fR0 ∀R ≥ 1.

The set of XR’s forms a complete basis in [2(ℝ2;K), which satisfy a bi-orthogonality relation rela-
tive to a second basis. Define this second set of basis functions to be

X̃R(+) = 1K(+)(− >>`1)R1(− >>`2)R2K(Σ`)|||||`=Σ−1+,
which are bi-orthogonal in the sense that

∫ℝ2 X̃R(+)XY(+)K(+)$+ = R1!R2!Z(R − Y) .
Denoting d = (1, 1)∗, the inverse problem is

ℎ2(0) exp(+∗d) = 10 ∫
0

0 /[&2(#")||_0 = `]$" = ∞∑
R=0\RMRXR(+),
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F IGURE 2 For a two-factor Bergomi model, a simulated two-dimensional OU process #" = (#1" ,#2" ) and
VIX" = ℎ(0) exp( 12 (#1" + #2" )), with parameters ℎ(0) = 0.2, ]1 = 1, ]2 = 10, )1 = 0.6, )2 = 0.8, and - = 0.4. The
mean VIX for this realization is 22.2% and the mode is 20.0%. The process #1" is persistent because it has slower
mean reversion [Color figure can be viewed at wileyonlinelibrary.com]

for all + ∈ ℝ2, which via the bi-orthogonality relation has the solution
\R = ℎ2(0)MRR1!R2! ∫ℝ2 exp(+∗d)X̃R(+)K(+)$+

= ℎ2(0)MRR1!R2! ∫ℝ2
[exp(`∗Σd)(− >>`1)R1(− >>`2)R2K(Σ`)]`=Σ−1+$+

= ℎ2(0)(Σ11 + Σ21)R1 (Σ22 + Σ21)R2MRR1!R2! ∫ exp(+∗d)K(+)$+
= ℎ2(0)(Σ11 + Σ21)R1 (Σ22 + Σ21)R2MRR1!R2! exp(12d∗Σd) .

As with the scalar Bergomi, it is not needed to check for solvability, existence, or uniqueness
because the solution has eigencoefficients that are explicit. Figures 2 and 3 show the simulation
of this two-factor Bergomimodel along with the recovered &(+), which appears to be positive, and
Figure 4 looks at the difference h(+) = &(+) − ℎ(+) to gain a sense of the differing factor sensitiv-
ities in &(+) and VIX function ℎ(+). The approximated &(+) uses all multivariate Hermite poly-
nomials up to and including powers of 6, &(+) ≈ √∑

6 \RXR(+) where6 = {R ∶ R1 + R2 ≤ 6}.
Using only 6-degree polynomials is sufficiently accurate, as the average error in approximating is
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F IGURE 3 An approximation of the recovered &(+) from a two-factor Bergomi model, with parametersℎ(0) = 0.2, ]1 = 1, ]2 = 10, )1 = 0.6, )2 = 0.8, and - = .4. The approximated &(+) uses the multivariate Hermite
polynomials up to and including powers of 6 [Color figure can be viewed at wileyonlinelibrary.com]

of order 10−6, that is, √ 1
|x|

∑.,j(√∑
6 \RXR(x.j) − ℎ(x.j))2 = (10−6) where x.j denotes a dis-

crete evaluation point inℝ2 and |x| denotes the total number of discrete points evaluated. Notice
that ∫ &2(+)K(+)$+ = ∫ ℎ2(+)K(+)$+ (to see why multiply both sides of Equation (16) by K(+)
and integrate). From this surface plot, it can be seen that rises in the persistent factor +1 have
more effect on VIX than on &(+) when the fast-mean-reverting factor is low (i.e., when +2 < 0);
this is seen in the corner of the surface plot where h(+1,+2) is most negative. This is an interest-
ing caveat of the solution to the inverse problem, as it says that the VIX can be more persistent
than instantaneous volatility, but this should not be too much of a surprise because VIX is the
square-root of the expectation of a moving average of square instantaneous volatility.

3.3 The k∕Fmodel

Consider a market model constructed upon the squared VIX being a 3/2 process,

VIX2" = l" = 1#" ,
where #" is a CIR process,

$#" = ](+̄ − #")$" + )√#"$*" ,
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F IGURE 4 For the two-factor Bergomi model, h(+) denotes the difference between the stochastic volatility
function and VIX, h(+) = &(+) − ℎ(+) where ℎ(+) = ℎ(0) exp( 12 (+1 + +2)). The model parameters are ℎ(0) = 0.2,]1 = 1, ]2 = 10, )1 = 0.6, )2 = 0.8, and - = 0.4 [Color figure can be viewed at wileyonlinelibrary.com]

with 2]+̄)2 > 2.4 Applying Itô’s lemma yields
$l" = 1#"(] − (]+̄ − )2) 1#")$" − )( 1#")3∕2$*"

= l"(] − (]+̄ − )2)l")$" − )l3∕2" $*",
from which the 3/2 power in the diffusion is seen, thus giving the process l" its name. Note that
this 3/2model is based on Assumption 2.4 because#"’s SDE has non-Lipschitz coefficients. How-
ever, #" does have strong solutions, and the futures are 5",3 = /[√l3|"] for all " ≤ 3, which
are martingales by construction. Therefore, Assumption 2.4 is not needed and Definition 2.1 for
consistency applies to this model.
Consider first the normalizedCIR process, which has a complete orthogonal basis of eigenfunc-

tions for its generator, given by the generalized Laguerre polynomials. Hence, the inverse problem
is again solved with an eigenseries expansion and the method of Section 2.2.2 applies. Consider
the normalized CIR process,

$_" = (1 + f − _")$" +√2_"$*" ,
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where f > 0. The generator of this process is
 = ` >2>`2 + (1 + f − `) >>` ,

and the eigenfunctions of  satisfy equations

XR = −RXR for R = 0, 1, 2, … ,
where each XR is a generalized Laguerre polynomial,

XR(`) = 1R!9``−f $R$`R (9−``R+f) ,
that is

X0(`) = 1,
X1(`) = −` + f + 1,

X2(`) = 12`2 − (f + 2)` + 12(f + 2)(f + 1),
⋮

These polynomials are orthogonal with respect to _’s invariant measure,
∫

∞
0 XR(`)XY(`)K(`)$` = nRZ(R − Y) ,

where

nR = Γ(R + f + 1)R!Γ(f + 1) ,
and

K(`) = 1Γ(f + 1)`f exp(−`) ,
with Γ(f) the Gamma function evaluated at f > 1. These eigenfunctions form a complete orthog-
onal basis in [2(ℝ+;K), and are convenient because

/[XR(_")|_0 = `] = 9−R"XR(`) .
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For the CIR process#" defined above, there is the following weak equivalence with a scaled _",
#" =$ )22]_]" ,

with f = 2+̄])2 − 1. Define also the scaled domain variance or volatility function,
&̃2(`) = &2()22]`) ∀` > 0 ,

and then notice

10 ∫
0

0 /[&2(#")|#0 = +]$" = 10 ∫
0

0 /[ &̃2(_]")||_0 = 2])2 +]$" .
Therefore it is useful to define the kernel for the _"s, Φ`(N, `) = 10 ∫ 00 >>Nℙ(_]" ≤ N|_0 = `)$", and
when applied to the Laguerre polynomials, similar to the scalar OU example,

∫
∞

0 Φ`(N, `)X0(N)$N = 1,
∫

∞
0 Φ`(N, `)XR(N)dy = 10 ∫

0
0 9−]ntXR(`)dt = 1 − 9−]R0]R0 XR(`) ∀R ≥ 1,

there are the eigenvalues,

M0 = 1,
MR = 1−9−]R0]R0 ∀R ≥ 1.

Hence, if the SVM andmarket model are consistent, then VIX2" = ℎ2(#") is given explicitly by the
market model,

ℎ2(+) = 1+ = 2])2` ,
which is in [2(ℝ+;K) if f > 1. Then, in terms of ` and the scaled function &̃2(`), the solution to
the inverse problem has the expansion,

&̃2(`) = ∞∑
R=0\RXR(`) ,
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and therefore

2])2` = 10 ∫
0

0 /[ &̃2(_]")||_0 = `]$" = ∞∑
R=0\RMRXR(`) ,

for all ` > 0. Using orthogonality, the coefficients are
\R = 2])2MRnRR!Γ(1 + f) ∫ ∞

0 1̀ $R$`R (9−``R+f)$`
= 2])2MRnRΓ(1 + f) ∫ ∞

0 9−``f−1$`
= 2])2MRnRΓ(1 + f)Γ(f)
= 2]Γ(f)R!)2MRΓ(R + f + 1) .

For R large there is the behavior \R ≈ R−f+1, which requires f > 2 for square integrability of the
expansion of &̃2(`). Finally, in terms of +, the solution is

&2(+) = ∞∑
R=0\RXR

(2])2 +) .
Figure 5 shows a simulation of the 3/2 process and the two approximations of the recovered
function &(+) using 25 and 30 Laguerre polynomials. In the figure, the simulation is run for 10
years with time step ∆" = 1∕365, and produces empirical statistics 1q ∑q.=1 VIX". = 19.89% and
mode.≤q(VIX". ) = 16.0% (in the summationq = 10 × 365 = 3650). The figure shows a recovered&2(+) from which it is clear that, compared to the VIX, instantaneous volatility is more affected
by low values of #"; that is, stochastic volatility is more sensitive to the left-hand tail distribution
of #". Note also from the figure that the numerical solution is positive.

3.4 The double Nelson model

Consider the two-dimensional mean reverting process #" = (#1" ,#2" ) with dynamics,$#1" = ]1(#2" − #1" )$" + )1#1" $*1" , (25)$#2" = ]2(+̄ − #2" )$" + )2#2" $*2" ,
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F IGURE 5 The simulation of the 3/2 process and the recovered volatility function for the market model
having VIX2" = 1#" , where #" is a CIR process. In the legend of the bottom plot,r = 25 indicates an
approximation using twenty-five Laguerre polynomials,r = 30 using thirty polynomials, and ℎ(+) = 1∕√+ is
the market model’s VIX function. In both plots, the CIR parameters are ] = 4, +̄ = 30, and ) = 6.9282; this yieldsf = 4. For these parameters, the CIR process is between 10 and 50 approximately 95% of the time [Color figure
can be viewed at wileyonlinelibrary.com]

where +̄ > 0, ]1 > 0, ]2 > 0, and $*1" $*2" = -$". This is the double Nelson model, which is the
continuous-time limit of a double GARCHmodel. Defining the VIX to be

VIX" = ℎ(#") = #1" ,
the futures curve 5",3 = /[ℎ(#3)|#"] is

5",3 = #1" 9−]1(3−") + +̄(1 − 9−]1(3−")) + (#2" − +̄)]1(9−]2(3−") − 9−]1(3−"))]1 − ]2 .
This is a market model for which the inverse problem will look to find &2(+) from an SVM driven
by the same factors #1" and #2" .
This model’s infinitesimal generator is not symmetric and so the general theory of Theorem 2.9

does not apply directly. However, the factor process satisfies a linear system of stochastic differen-
tial equations for which there are closed equations formoments of all orders, and so the solvability
condition given by Equation (22) from Section 2.2.1 can be applied.



PAPANICOLAOU 27

The zero-maturity roll yield is

>>3 log(5",3)||||3=" = B(+) = ]1(+2+1 − 1) ,
the volatility is 6(", ") = )1, and so the solvability condition of Equation (22) is

2]1⟨+1(+2 − +1)⟩ = −⟨)21+21⟩. (26)

Invariant moments can be calculated using Itô’s lemma and then taking expectations,

⟨+2⟩ = +̄,
⟨+1⟩ = +̄,

⟨+22⟩ = 2]2+̄22]2−)22 ,
⟨+1+2⟩ = ]2+̄2+]1⟨+22⟩]1+]2−-)1)2 ,

⟨+21⟩ = 2]1⟨+1+2⟩2]1−)21 .
Hence, provided that 2]1 − )21 > 0 and 2]2 − )22 > 0 to ensure that#" has finite (invariant) second
moments, and that ⟨+1+2⟩ is finite,

]1 + ]2 − -)1)2 > 12()1,)2)( 1 −-−- 1 )()1)2) > 0 ,
it follows that Equation (26) holds.
The inverse problem is

ℎ2(+) = /[10 ∫
0

0 &2(#1)$1|||#0 = +] ,
with ℎ2(+) = +21 , and is solved explicitly by looking for the solution in the form&2(+) = \11+21 + \12+1+2 + \22+22 + s1+1 + s2+2 + n .
The coefficients \.j and s. for ., j = 1, 2 are obtained by solving explicitly for the moments111(") = /[(#1" )2|#0 = +], 112(") = /[#1" #2" |#0 = +] , …, which satisfy a linear system of ordinary
differential equations obtained by Ito’s formula from the stochastic differential equations of the
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factor process (25),

$111
dt

= −(2]1 − )21)111 + 2]112, 111(0) = +21
$112
dt

= −(]1 + ]2 − )1)2-)112 + ]1122 + ]2+̄11, 112(0) = +1+2
$122
dt

= −(2]2 − )22)122 + 2]+̄12, 122(0) = +22
$11
dt

= ]1(12 − 11), 11(0) = +1
$12
dt

= ]2(+̄ − 12), 12(0) = +2.
Note that the invariant moments obtained above are simply the limit of these moments as " → ∞,
and this requires that the relations between ]1, ]2,)1,)2, - introduced above hold here too.Hence,

+21 = 10 ∫
0

0 /[&2(#")|#0 = +]$",
= 10 ∫

0
0 (\11111(") + \12112(") + \22122(") + s111(") + s212(") + n)$" ,

and by adjusting the coefficients\11,\12, … the solution is found to be &2(+) = &2(+1,+2) for+1 ≥ 0
and +2 ≥ 0, which is a quadratic polynomial in (+1,+2). However, this solution will not be non-
negative, and therefore, it is not acceptable for an SVM.
To see how the solution &2(+1,+2) can go negative, consider the simplified inverse problem,

+1 = 10 ∫
0

0 /[&2(#")|#0 = +]$",
which requires only a linear expression for its solution

&2(+) = s1+1 + s2+2 + n.
Thus

+1 = 10 ∫
0

0 /[&2(#")|#0 = +]$",
= 10 ∫

0
0 (s111(") + s212(") + n)$" ,
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with

11(") = 9−]1"+1 + ]1(9−]2" − 9−]1")]1 − ]2 +2 + (1 − 9−]1")+̄ − ]1(9−]2" − 9−]1")]1 − ]2 +̄ ,
12(") = 9−]2"+2 + (1 − 9−]2")+̄ .

Inserting these expressions anddoing the time averaging, it is seen that in order to solve the inverse
problem, it must be that

s1 = ]101 − 9−]10 ,
so that the coefficient of +1 on the right is one. Then taking s2 to make the coefficient of +2 equal
to zero, this leads to

s2 = −s1 ]201 − 9−]20 10 ∫
0

0
]1(9−]2" − 9−]1")]1 − ]2 $" .

After solving for s1 and s2, the constant n equals to the remaining terms. Finally, it is seen thats2 is negative for any ]1, ]2, and this makes the solution &2(+) = s1+1 + s2+2 + n, +1 ≥ 0,+2 ≥ 0,
take negative values for +1 near 0 and +2 large. This indicates that there cannot be consistency in
the sense of Definition 2.1.

3.5 Non-negative solutions for Brownian motion factor

Consider another example that does not have the stationarity of Assumptions 2.7 and 2.8, but
instead is a market model driven by Brownian motion _". This is an example that has a general
condition on ℎ2 to ensure non-negativity of the recovered volatility function.
The inverse problem is

ℎ2(`) = 10 ∫
0

0 /&2(` + _")$" ,
where _" is standard Brownian motion. The Fourier transform is used to solve this problem. The
space to consider is [2(ℝ,$`), and the Fourier elements are

X(@, `) = 1√2^9.@` ,
which have generalized orthogonality with the delta function Z(@ − @′) = 12^ ∫ 9.@′`9−.@`$`. The
market model’s VIX function and the SVM function have Fourier transforms

ℎ̂2(@) = 1√2^ ∫ 9−.@`ℎ2(`)$`,
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&̂2(@) = 1√2^ ∫ 9−.@`&2(`)$` .
The Fourier basis is used to transform the inverse problem,

ℎ̂2(@) = 10√2^ ∫
0

0 /9.@_" ∫ 9−.@(`+_")&2(` + _")$`$"
= 2&̂2(@)@20 (1 − 9−0@22 ) .

Hence, the solution to the problem is

&̂2(@) = @202(1 − 9−0@22 ) ℎ̂2(@) .
If @2ℎ̂2(@) is in [2(ℝ,$@), then Parseval’s identity says that the solution &2(`) is in [2(ℝ,$`),

‖&2‖2 = ∫
||||||||||

@20√2^2(1 − 9−0@22 ) ℎ̂2(@)
||||||||||

2
$@ <∞ .

If &̂2(@) is continuous and positive definite, that is, if for any @v ∈ ℝ and nv ∈ ℂ for v =1, 2, 3, … ,r forr any positive integer,

r∑
v,v′=1 nvn̄v′ &̂2(@v − @v′) ≥ 0 ,

then Bochner’s theorem applies Reed (2012) and &2(`) = 1√2^ ∫ 9.@`&̂2(@)$@ is non-negative. This
is a general criterion for the solution to the inverse problem to be non-negative, but this application
of Bochner’s theorem is special to the case of Fourier eigenfunctions.
To further illustrate, consider the specific example

ℎ2(`) = n + 7`2 ,
and with _" a standard Brownian motion. For inverse problem

ℎ2(`) = 10 ∫
0

0 /[&2(` + _")||_0 = 0] ,
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it is easy to check,

n + 7`2 = 10/∫
0

0
(n + 7(` + _")2 − 072 )$" .

Hence, there is non-negative solution if n ≥ 072 .
4 NON-MARKOVIANMARKETMODELS

Let ℎ<(+) denote the CMFs derived from the Markovian SVM. Suppose that Assumption 2.3 does
not hold so that it is possible to have non-Markovian dynamics. Then to check for the consistency
of Definition 2.1, there are the following pair of equations that are the generalization of Equa-
tions (14) and (15),

12 trace[))∗(#")∇∇∗]ℎ<(#") + (∗(#")∇ℎ<(#")ℎ<(#") = =<" (27)

)∗(#")∇ℎ<(#")ℎ<(#") = 6∗<(") , (28)

where =<" is the roll yield as shown in Equation (8). From Equations (27) and (28), it should be
clear that aMarkovian representation of themarketmodelmust be imposed.Namely,=<" = B<(#")
where B<(#") equals the left-hand side of Equation (27), and 6<(") = 6<(#") where 6<(#") equals
the transpose of the left-hand side of Equation (28).

4.1 Scalar consistency with constant xy(z)
Consider the casewhere#" and*" in Equation (2) are scalar processes. Suppose that 6< is a scalar,
constant deterministic function,

6<(") = 6< ∈ ℝ1 ∀".
Then solving Equations (27) and (28) leads to the following VIX futures and roll yields,

B<(+) = 6< ((+) + 12)(+)(6< − $$+)(+)))(+) , (29)

ℎ<(+) = ℎ<(+0) exp(6< ∫ ++0 dy)(N)) ∀< ≥ 0. (30)

It is assumed in this equation that )(+) is strictly positive and its inverse is integrable.



32 PAPANICOLAOU

4.2 An inconsistent example

There are nontrivial cases where there is a violation of the scalar consistency formula of Equation
(29). For example, suppose there is algebraic decay in the market model’s volatility function,

6< = 71 + < .
Then, the SDE for the CMF can be computed via Itô’s lemma,which yields the following roll yield:

=<" = 72(1 + <)2 − ∫
"

−∞ 7(1 + " + < − 1)2 $*1 .
There is no function of the Markov process #" that can equal this process almost surely, as =<"
itself is not a Markov process. Hence, formula (29) cannot hold.

5 SUMMARY AND CONCLUSION

The achievement of this paper is the derivation of a consistent SVM for the SPX given a market
model for the VIX. The main result is Theorem 2.9, which gives conditions for the unique deter-
mination of the volatility function of the SVM from a VIX function given by the market model,
provided both models are driven by the same underlying stationary ergodic factor process. The
theorem’s conditions involve moments of the VIX function, the uniqueness of the invariant mea-
sure of the factor process, and require that the operator semigroups have a spectral gap. At the
time of this article, there are no known structural conditions that will make the resulting volatil-
ity function non-negative, and therefore no theoretical guarantees for consistency can be made.
There are special caseswhere positivity can be guaranteed, such asmodels where#" is a Brownian
motion. Detailed analysis and numerical calculations for several market models indicate that for
the commonly used Bergomi market models (Sections 3.1 and 3.2), the volatility function appears
to be positive. For another market model where square VIX is the reciprocal of a CIR process
(Section 3.3), the volatility is again shown numerically to be positive. The double Nelsonmodel in
Section 3.4 is a counter example, wherein the market model’s factor process is a linear SDE that
is stationary ergodic, but the inverse problem leads to a (unique) volatility function that cannot
be everywhere non-negative. Positivity can be guaranteed for the example in Section 3.5 because
the factor process is Brownianmotion, and therefore, Bochner’s theorem gives general conditions
for non-negativity.
Future problems to consider include general results for non-negativity of recovered volatility

functions under the OU and the CIR processes, and also to generalize this inverse problem formu-
lation to jump-diffusionmodels like that of Duffie et al. (2000). From a computational standpoint,
it would be worth solving the inverse problem not as an exact equality, but instead as a minimiza-
tion subject to the constraint that &2 ≥ 0. Then, under a loosening of conditions for consistency,
it could be possible that this constrained minimization will produce useful SVMs from a broader
class of market models.
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ENDNOTES
1This paper throughout will refer to the “Bergomi model” when perhaps it should say “a Bergomi-type model for
VIX futures,” but this would be unwieldy so instead the name is used in a general sense. The original Bergomi
model is for the curve of future instantaneous variances, not VIX directly.

2Conditions for existence of a unique invariant measure are given in Pardoux and Veretennikov (2001). They
include boundedness and uniform ellipticity of matrices ))∗(+), and also that lim sup‖+‖→∞ +∗((+) ≤ −n‖+‖1+f
for some n > 0 and f ≥ −1.

3The theory of Pardoux and Veretennikov (2001) can also be used for Theorem 2.9.
4Themodel proposed in this section is similar to that used inGoard andMazur (2013), whereinVIX" = 1∕#" , which
could be done here as well but will require 2+̄])2 > 4 to have [2 integrability of the series expansion.
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