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1 Introduction

The statistical power of measurements at the LHC experiments makes possible the ob-
servation and study of rare processes. A remarkable example is the observation and
measurements of the Higgs boson in association with a pair of top quarks by ATLAS [1, 2]
and CMS [3, 4]. This Higgs production channel offers the possibility to analyze directly
the nature of the Higgs and top-quark interaction and to extract its strength. A different
recent example of rare processes becoming accessible experimentally is the observation by
CMS [5] and ATLAS [6, 7] of triboson production (VVV with V=W,Z). Triple electroweak
production processes probe the Standard Model in novel ways, as they are sensitive to
quartic gauge-boson interactions, light-quark Yukawa interactions of the Higgs boson and
to possible novel electroweak states predicted in extensions of the Standard Model [8, 9].
Electroweak diboson production is less rare, and it is copiously associated with high trans-
verse momentum jet radiation (VV+jet) at the LHC. The corresponding cross sections
are measured differentially with high precision [10, 11]. Differential studies of electroweak
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diboson production probe stringently the electroweak sector of the Standard Model and its
extensions (see, for example, [12]).

Measurements of hard scattering hadron collisions with n ≥ 3 electroweak gauge bosons,
heavy quarks or jets in the final state, as in these examples, are an important part of the
LHC physics program. These processes are of a special interest for the high luminosity
phase, during which a twenty-fold increase in the number of events is expected, as well as at
future high energy colliders. Correspondingly, the calculation of perturbative cross sections
for high multiplicity partonic cross sections is important as well.

In the last five years, groundbreaking results towards next-to-next-to-leading-order
(NNLO) cross-sections for 2 → 3 processes, which require two-loop amplitudes, were
derived [13–38]. This spectacular theoretical progress concerns, at the moment, two-loop
processes with no internal massive particles and at most one massive external particle.

The techniques that made these advances possible are analytic or semianalytic. Given
the rapid pace of developments, the same methods have a potential to evolve further and
become suited for more complicated final states. However, it is noted that the introduction of
further kinematic or mass scales in two-loop scattering amplitudes beyond what constitutes
the state of the art will have a daunting computational cost. This observation motivates
the development of methods for computing two-loop amplitudes in 2→ n(≥ 3) scattering
that are less steeply sensitive to the number of masses in internal or external particles.

An appealing idea is to compute multi-loop amplitudes numerically, with a direct
integration over momentum space. Per loop, this approach requires a fixed number of, at
most, four integrations. The number of integrations does not depend on the number of
kinematic scales. The integrand remains a rational function whose size scales with the
number of Feynman diagrams, and that is in principle simple to evaluate. For most practical
purposes in phenomenology, recent work shows [39] that it can be evaluated efficiently with
a well tolerated computational cost.

Methods for a direct integration of one-loop amplitudes in momentum space were
introduced in refs. [40–48]. These works treated two issues that one encounters in direct
momentum space integration: (i) the local subtraction or local cancellation of soft, collinear
and ultraviolet singularities at one loop (ii) the automated deformation of the contour of
integration away from threshold singularities at one loop and, in a visionary publication [47],
beyond. Recently, the prospects of direct numerical integration were widened with the
introduction of a Four Dimensional Regularization approach [49–57] and Loop Tree Duality
methods [58–75]. The latter, in the same spirit as of ref. [40], integrate out elegantly the
energy variable in loop momenta at generic loop orders. In this framework, loop integrations
and phase-space integrations over real particles become very similar.

Indeed, it was recently demonstrated at generic orders in perturbation theory [58, 76]
that the integrands of real and virtual corrections can be combined under a single integration
so that all possible cancelations of infrared singularities that are expected from unitarity
occur locally [77, 78]. This procedure is consistent with a generic method for contour
deformation to treat threshold singularities [60]. The framework of “local unitarity”1 is

1Referred to as “generalized unitarity” in ref. [78], in a discussion based on time-ordered perturbation
theory.
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suitable for differential cross sections where the combination of real and virtual contributions
alone yields well-defined finite cross-sections, as in numerous processes and observables
at e+e− colliders. For cross sections with identified hadrons in the initial or final state,
where partonic cross sections are folded with parton densities or fragmentation functions,
an extension of the method is required. Several techniques have also been developed for the
subtraction of infrared divergences and the numerical evaluation of the process-dependent
finite remainders of real radiation contributions to cross sections (including hadroproduction)
at NNLO [79–144].

In this paper, we continue a complementary development, of a flexible subtraction
method for the numerical computation of two-loop amplitudes for the production of multiple
massive particles, based on the universality properties of infrared singularities in gauge
theories. We build upon refs. [145, 146] and formulate simple infrared and ultraviolet
subtractions that remove locally all singularities from a family of massless QCD two-loop
amplitudes for generic electroweak production in quark scattering qq̄ → V1 . . . Vn, Vi ∈
γ∗,W,Z. Our subtractions permit the direct integration of the finite amplitude remainders
with numerical methods in four spacetime dimensions. To our understanding, this is the
first time that a local subtraction technique for virtual corrections is derived at two loops
for a non-abelian gauge theory.

Our method is inspired by and founded on the factorization of infrared divergences in
QCD amplitudes [78, 147–170]. Divergences originating from integration of loop momenta
over regions with soft and collinear singularities organize themselves into “soft function”
factors (in color space) and “jet function” factors, and multiply a process-dependent hard
scattering function that receives contributions from non-singular regions of loop integration.
Soft and jet functions are universal and can be determined from calculations of scattering
amplitudes of simple processes. After loop integrations for a scattering amplitude are
carried out to a certain perturbative order, one extracts the hard function by multiplying it
with the inverse of the soft and jet functions.

We aim to derive a hard function for scattering amplitudes in the form of an integrand
that is free of infrared and ultraviolet singularities locally, so that it can be amenable to
numerical integration. Factorization theorems do not guarantee, a priori, the existence of a
locally finite representation. While proofs of factorization extract the singular behaviour of
amplitudes in all possible soft and/or collinear configurations of the loop momenta with
intrinsically local methods, such as power-counting and subtractions, in the combination of
these singularities into soft and jet function factors one assumes symmetries and properties
from the fact that the integration over loop momenta can, at least in principle, be carried
out. Our strategy is to remove reliance on the properties of subintegrals, and to make
factorization manifestly local, by constructing an alternative form of the loop integrand,
compared the one derived from the standard application of Feynman rules. In ref. [146] it
was demonstrated that this approach can be succesful for a class of QED processes through
two-loop order. In this article, we achieve a complete local factorization for an analogous
class of processes in QCD, addressing for the first time issues that emerge in non-abelian
gauge theories at two loops.

After a review of the notation and the basic formalism in section 2, the construction of
our amplitude integrand starts in section 3 with the expression derived from a conventional
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application of Feynman rules and a judicious assignment of loop momentum flows. We
review in section 3 how, at one loop, singular contributions of virtual gluons collinear to
external particles are longitudinally polarized manifestly, and, with our momentum flow
assignment, the corresponding collinear singularities are factorized, due to Ward identities
governing the propagation of longitudinal degrees of freedom in loops.

At two loops, virtual collinear gluons can acquire an arbitrary polarization proportional
to a loop momentum not carried by the gluon, which in ref. [146] was termed loop polarization.
Loop polarizations do not contribute to amplitude divergences, as the corresponding regions
integrate to a factorizable form. However, the corresponding terms in the integrand are
singular and spoil factorization locally. In section 4, we remedy this problem by adding terms
to one-loop QCD vertex and self-energy subgraphs adjacent to external partons. On the one
hand, our added terms remove contributions of the original integrand that are responsible
for nonfactorizable loop polarizations in collinear limits. On the other hand, they integrate
to zero, preserving the value of the scattering amplitude. After making manifest locally that
virtual gluons in collinear limits have purely a longitudinal polarization, we can rely, once
again, on Ward identities to factorize collinear singularities. Once loop polarizations are
removed, this factorization is automatic and local in the sum over diagrams in QED [146],
and does not require further counterterms. For two-loop QCD amplitudes, however, Ward
identity cancelations occur only after shifts of loop momenta, and are hence not yet local.
In section 5 we add to the amplitude further terms to solve this problem. Each term is
proportional to the difference of the integrand of a planar diagram evaluated with two
different momentum flows, chosen to remove non-local cancelations in the Ward identity.

The interventions discussed in sections 3–section 5 may be summarized as, (i) to assign
appropriate momentum flows, (ii) to eliminate loop polarizations and (iii) to implement Ward
identity cancelations locally, so that singularities of the integrand factorize algebraically
in all collinear limits. At this stage, we can realize these modifications with counterterms,
as described in sections 4 and 5. Exploiting their universal structure within the class of
massive electroweak gauge boson production, we use the integrand of the simplest 2→ 1
electroweak form factor amplitude to provide infrared counterterms for amplitudes of a
higher multiplicity of massive electroweak bosons in the final state. Finally, in section 6, we
proceed to remove ultraviolet singularities following the method of ref. [146], with ultraviolet
counterterms that respect Ward identities and preserve collinear factorization. We verify
the infrared and ultraviolet finiteness of our subtracted amplitudes in section 7 and conclude
with a brief summary and discussion of prospects for further development of our approach.

2 Framework

We aim to compute amplitudes through two loops in perturbative QCD for quark initiated
processes of the type

q(p1) + q̄(p2)→ massive color neutral particles, (2.1)

where p1 and p2 are the momenta of the incoming partons.
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The perturbative expansion reads

M =M0 +
∫

dDk

(2π)D
M1 (k) +

∫
dDk

(2π)D
∫

dDl

(2π)D
M2 (k, l) , (2.2)

where here, as below, script letters refer to integrands.
Our goal is to extend the analysis of ref. [146] from QED to QCD. We want to show

how to construct two-loop amplitude integrands for the production of massive color-neutral
final state bosons from annihilating quarks, which are both locally integrable and manifestly
convergent at infinity. Such integrands can then be evaluated numerically.

The basic construction, in the notation of ref. [146], is summarised by the pattern

M(1)
finite =M(1)

UV finite −F
(1)
UV finite

[
P1 M̃(0)P1

]
,

M(2)
finite =M(2)

UV finite −F
(1)
UV finite

[
P1 M̃(1)

finiteP1
]

−F (2)
UV finite

[
P1 M̃(0)P1

]
, (2.3)

where M̃(a) is the integrand of the a-loop amplitude with external spinors removed. In
this expression, the subscripts “UV finite” indicate that we also regularize UV divergences
by the introduction of local counterterms that make all integrals manifestly convergent in
the ultraviolet. The factor P1 in eq. (2.3) is a Dirac projector that isolates terms with
singularities at the next loop order [146],

P1 ≡
/p1/p2

2p1 · p2
. (2.4)

In eq. (2.3), infrared singularities, both collinear and soft, are eliminated from amplitudes
M(a) iteratively, and on a local basis, by the subtractions shown, in terms of specific
form factor integrands, F (a)

UVfinite, which we will specify below, multiplying lower-order IR
regulated amplitudes. We note that there are actually fewer IR subtraction terms than
diagrams that contribute to the original amplitude. This is because collinear singularities
of the full amplitude for production of massive electroweak particles factorize into universal
factors that are the same in the full amplitude as in the form factors.

The basis of the procedure we have just described is the universality of infrared singu-
larities associated with annihilation, and more generally wide-angle scattering amplitudes.
In the QCD annihilation amplitudes that we study in this paper, this universality can be
expressed in terms of two factorized “jet” functions, a “soft” function and a perturbative
short-distance function [148, 162]. That is, if we denote by Mew the amplitude for the
process q + q̄ → ew for some explicit electroweak final state “ew”,

Mew = Jq × Jq̄ × Sqq̄ ×Hew , (2.5)

where all information on final state ew is in the function Hew. The jet functions and the
soft function are exactly the same for a form factor as for any hard annihilation process,
and all process-dependence is contained in the hard function. This feature enables us to use
the form factors to organize infrared subtractions, rather than the jet and soft functions
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themselves, and this is the approach we take below. Although straightforward in principle,
when we implement this procedure at the local level, we will find it necessary look closely at
the factorization properties of the form factor amplitudes as well as those of the production
amplitudes in question, at the local level.

As we will review below, the factorization of all collinear singularities into jet functions
Ji is a result of the gauge invariance of the theory, enforced in perturbation theory by its
Ward identities. The jet functions include all collinear singularities, including all double
poles in dimensional regularization. The function Sqq̄ organizes any soft singularities of the
amplitude that are not absorbed into the jet functions, which are themselves ambiguous up
to soft contributions. Indeed, for this set of amplitudes, it is often convenient to absorb
all such contributions into the jet functions, so that S is unity [154]. We shall not need
to make choices like this in our discussion below, because they are shared between the
simple form factors (in which state “ew” is a virtual photon, say) and the much larger
class of electroweak final states involving multiple weak bosons and Higgs particles. To use
this universality, we turn to the specific structures of the diagrams that contribute to the
processes at hand.

3 Momentum flows and leading regions

We now turn to the assignment of momentum flows, and go on to identify relevant regions
in the corresponding integration volume.

3.1 Assigning momenta

As a first step, we generate the Feynman diagrams of M0, M1(k) and M2(k, l) with a
direct application of Feynman rules in the Feynman gauge. In this article, we adopt the
Feynman rule conventions, and in particular the standard sign conventions for the strong
coupling, of refs. [171, 172]. Diagrams with self-energy corrections to the gluon propagator
and fermion loops are treated as in ref. [146] and will not be discussed further. In this
article, we concentrate on the remaining diagrams.

All Feynman diagrams contain a fermion line connecting the antiquark spinor v̄(p2) and
the quark spinor u(p1). At one and two loops, we assign the variable k to the momentum of
the gluon flowing out of the quark-antiquark-gluon vertex which is closest to the incoming
antiquark. At two loops, in diagrams with a triple-gluon vertex we assign a second loop-
momentum variable l−k to the gluon flowing out of the second quark-antiquark-gluon vertex
closest to the incoming antiquark. In “abelian” diagrams (without a triple-gluon vertex) we
assign a second loop-momentum variable l to the gluon flowing out of the second quark-
antiquark-gluon vertex closest to the incoming antiquark. The assignments of loop-momenta
variables are depicted in figure 1. We will sometimes find it convenient to decompose the
loop momenta into components parallel and transverse to the incoming momenta,

k = k · p2
p1 · p2

p1 + k · p1
p1 · p2

p2 + k⊥ , (3.1)

l = l · p2
p1 · p2

p1 + l · p1
p1 · p2

p2 .+ l⊥ . (3.2)
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Figure 1. Assignments of loop-momentum variables in the amplitude through two loops.

As in ref. [146], we will substitute for the two-loop integrand an equivalent expression
before integration,

M2(k, l)→ M2 (k, l) +M2 (l, k)
2 . (3.3)

In ref. [146], a further symmetrization of the amplitude under (k⊥, l⊥)↔ (−k⊥,−l⊥) was
made. We now find that this symmetrization is not needed for the full amplitude. A
transverse momentum symmetrization suffices to be applied more finely in certain one-loop
vertex subdiagrams. We will cast this refined operation in the form of a counterterm, whose
integral vanishes, in section 4.6 below.

3.2 Leading regions and obstacles to local finiteness

Here, we’ll review the list of regions that lead to infrared singularities, and introduce a
convenient notation used to identify them. After that, we will show how Ward identities
are invoked, and how to overcome the obstacles to their local implementation. The regions
in question correspond to configurations in momentum space where one or both of the loop
momenta k and l either become lightlike and collinear to the incoming quark or antiquark,
or are soft.

As in ref. [146], we identify the full list of such regions by the notation (A,B), where by
convention we choose A ∈ {1k, 2k,Hk, Sk}, and similarly B ∈ {1l, 2l,Hl, Sl}. As a reminder
of the implied ordering, in this paper we provide subscripts to identify the loop momenta,
so that, for example, (1k,Sl) labels the region where loop k is lightlike and collinear to p1
and l is soft. We emphasize that these regions refer to specific diagrams with momentum
assignments already made, since in the final expressions we assume the symmetrizations
of eq. (3.3).

The underlying factorization of the quark pair annihilation amplitudes, Mew in eq. (2.5)
makes the subtraction scheme of eq. (2.3) possible. The situation is particularly straight-
forward when both loop momenta, k and l, become either collinear to p1 or p2, or become
soft. In this case, there is a local matching of singular integrands of the amplitude and
the form factor in eq. (2.3). This matching becomes manifest after the sum over diagrams.
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Figure 2. Identity for the double collinear region (1k, 1l). When the short-distance function is at
tree level, this identity is realized for the full singularity locally, with no shifts of loop momentum.

Figure 2 illustrates this result. In the limit that k and l are both collinear to p1, the virtual
gluon polarizations both become longitudinal, and the sum over all connections of these two
gluons to subdiagram Hew, with an arbitrary electroweak final state, gives a universal term,
independent of the final state. In this figure, the double line represents a Wilson (eikonal)
line in the direction opposite to p1. At the order to which we work, this identity requires
only the tree-level Ward identities of the theory, and holds locally in momenta k and l.
Other configurations, where both k and l are lightlike or soft behave in just the same way.

The situation becomes more complicated when one of the two gluon lines is collinear to
either p1 or p2, while the other line is hard. At two loops, these difficulties arise in such
“single-collinear” regions in two ways, illustrated for a gluon of momentum k which is parallel
to p1, in figure 3. In this figure, we consider the regions (1k,Hl) when one of subdiagrams
J µ or Hµ is evaluated at one loop, while the other remains at tree level. Note that we
denote these subdiagrams in script, because we are working at the level of integrands. We
define J µ to be one-particle irreducible, so that it does not include the propagators of the
quark with momentum p1 − k or of the gluon of momentum k, which are common to all
diagrams in the jet.

The first of these obstacles occurs when the jet subdiagram J µ has one loop, and
we encounter the problem of “loop polarizations” [146]. Here, loop polarizations refer to
collinear-singular terms where the collinear gluon carries a polarization that is explicitly
proportional to the loop momentum in the jet function itself. As a vector, the jet function
is simply a linear combination of all vectors that appear in its integrand, and in particular,

J µ(p1, k, l) = Jl(p1, k, l) lµ + Jk(p1, k, l) kµ + Jp1(p1, k, l) pµ1 , (3.4)

where the coefficients Jk,J µl ,J µp1 depend on the scalar products of k, l, p1. When any
component of lµ is finite, straightforward power counting shows that the corresponding
term is collinear singular, even if lµ not proportional to p1. For components of lµ that are
not in the p1 directions, we cannot use the Ward identity of figure 3 to factor their singular
contributions. For components of lµ not in the direction of p1, the gluon k will then not
factor from the hard scattering in the manner illustrated by figure 3. In integrated form,
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Figure 3. Generic diagram and Ward identity for single-collinear regions. At two loops, either
the jet subdiagram J µ or the hard part Hµ is one-loop, while the other is at tree level. Loop
polarizations arise when J µ is one-loop, and shift mismatches when Hµ is one-loop. The subdiagram
J µ is single-particle irreducible.

∫
d4lJ µ(p1, l), the jet function is obviously no longer a function of l, leaving only the vectors

p1 and k. In the full integral over lµ, then, such terms integrate to factorized forms in the
limit of kµ collinear to pµ1 . Nevertheless, this effect is an obstacle to the local realization of
the factorization of eq. (2.5), and hence to the construction of finite integrands in eq. (2.3)
at the integrand level. We discuss how to isolate and to systematically eliminate these loop
polarizations in section 4.

A second obstacle to local factorization at two loops arises when it is the hard-scattering
subdiagram Hµ of figure 3 that has the additional loop, while J µ stays at tree level. In this
case, the Ward identity of figure 2 requires in general a shift of loop momentum within Hµ.
This is the case whenever all lines in the loop carry color charge. Such a shift is again not
consistent with the integrand-level construction of eq. (2.3). We will refer to these below as
shift mismatches.

In addition to overcoming these infrared obstacles, we must also observe that for
our finite integrandsM(1,2)

finite to be accessible to numerical integration, they must also be
ultraviolet regulated.

In ref., [146], we provided a construction to solve these problems in a class of processes
in massless quantum electrodynamics. In the following sections, we provide prescriptions
for reconciling these features of perturbative QCD with the construction of locally infrared
finite and ultraviolet-regulated integrands. We begin with a discussion of the jet loop
diagrams that involve loop polarizations.

4 V and S subdiagrams and loop polarizations

We begin by studying loop polarizations in the one-loop diagrams adjacent to the external
line p1, as illustrated by figure 3. These are the triangles and the self energy diagrams
shown in figure 4. Among these diagrams, the special case when gluon k is emitted at a
vertex adjacent to the external antiquark is shown in figure 5. In this case, the diagram has
a single-collinear divergence in region (2k,Hl) in addition to (1k,Hl).
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Figure 4. V and S diagrams for the jet p1.

Following ref. [146], we refer to the vertex and self-energy diagrams of figure 4 as V and
S type diagrams, respectively. Note that loop polarizations (J µ one-loop and Hµ tree in
figure 3) occur only in these diagrams and from regions (1k,Hl), while (Hk, 1l) corresponds
to a one-loop hard scattering subdiagram (J µ tree and Hµ one-loop in figure 3). As above,
J µ is always a single-particle irreducible diagram. We discuss both regions because we will
need to modify the integrands of certain diagrams to deal with loop polarizations, and we
must check that these modifications do not affect other regions. We begin our discussion
with what we will refer to as the “QED triangle”, the vertex diagram in figure 4 with three
quark-gluon vertices. We then go on to the “QCD triangle”, with a three-gluon vertex, and
finally the relevant self-energy (Type S) diagrams.

To anticipate, in this and subsequent sections, we will detail the three ingredients of our
construction of a locally finite integrand for our amplitudes. First, we will modify Feynman
graphs or subgraphs in order to make infrared factorization manifest locally. Then we will
introduce IR counterterms, and finally we will introduce ultraviolet counterterms.

4.1 Loop polarizations in type V diagrams I: the QED triangle

A Type V QED-type correction is a vertex adjacent to the incoming quark line, corresponding
to integrand factors of the form
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= g3
sT

(q)
c

(
CA
2 − CF

)
V µ (k, l)u (p1) , (4.1)

where T (q)
c is the color generator in fundamental representation. For better readability, the

dependence of V µ (k, l) on pµ1 is implicit. Adopting the convention of eq. (2.2), the factors
of (2π)−D associated with loop momenta are already accounted for. A direct application of
Feynman rules in the conventions of refs. [171, 172] yields

V µ (k, l) =
γν(/k + /l + /p1)γµ(/l + /p1)γν
l2 (l + p1)2 (k + l + p1)2 . (4.2)
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We will study singularities that arise when terms that result from this subdiagram are
inserted into any of the two-loop diagrams in the class under study (quark-antiquark
annihilation to color-neutral final states). Our goal is to identify terms associated with
loop polarizations, which factorize after integration, but for which tree-level Ward identities
do not immediately result in factorized singular integrands that cancel in the subtracted
amplitude, eq. (2.3).

To begin this analysis, we write V µ as an sum of two terms with differing structure of
the collinear singularities,

V µ (k, l) = V µ
k (k, l) + V µ

l (k, l) . (4.3)

Here, term Vl produces a single-collinear divergence for l collinear to p1 and k hard ((Hk, 1l)
region), while term Vk is single-collinear divergent when l is hard, and k is collinear to either
p1 or, in the diagram of figure 5, p2 ((1k,Hl) and (2k,Hl) regions). Explicitly, Vl is given by

V µ
l (k, l) =

γν/kγµ(/l + /p1)γν
l2 (l + p1)2 (k + l + p1)2 , (4.4)

and Vk by

V µ
k (k, l) =

γν(/l + /p1)γµ(/l + /p1)γν
l2 (l + p1)2 (k + l + p1)2 . (4.5)

Let’s see why V µ
l yields a contribution to two-loop diagrams which is singular in only

the l ‖ p1 single-collinear limit. In combination with the Dirac spinor of the incoming quark,
as in eq. (4.1), and also with the numerator factor of the adjacent quark propagator with
momentum p1 + k, we have,

(
/k + /p1

)
V µ
l (k, l) u(p1) =

(
/k + /p1

) −2 (/l + /p1)γµ/k + 2 ε /kγµ/l
l2 (l + p1)2 (k + l + p1)2 u(p1) . (4.6)

When kµ becomes collinear (that is, proportional) to pµ1 , this expression vanishes by the
Dirac equation and /p2

1 = 0. This suppression eliminates any singularity from region (1k,Hl).
In the region (2k,Hl), on the other hand, for the special case of figure 5, the matrix γµ
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is contracted with a vector proportional to pµ2 . Then, because kµ ∝ pµ2 in this region, Vl
vanishes because /p2

2 = 0.
The remaining singularity in Vl(k, l) is from region (Hk, 1l), where l ‖ p1. This singularity

factorizes in the sum of Feynman diagrams in the two-loop amplitude as in figure 3, and
we will cancel it against a two-loop form-factor counterterm. As we shall see in section 5,
however, this analysis will require treatment for a shift mismatch.

In contrast to V µ
l , V

µ
k provides terms that are all finite as l ‖ p1 but singular as k ‖ p1

and, in the special case of figure 5, k ‖ p2. Among these, we will find terms for which
the k ‖ p1 singularity is not factored in the sum of diagrams, due to the presence of loop
polarizations.

For all the diagrams shown in figure 4 and 5, the singular, single-collinear region
(2k,Hl), where k ‖ p2, has no loop polarization, because the vertex loop is adjacent to
the p1 line. Although free of loop polarizations, these contributions suffer from a shift
mismatch, which in dimensional regularization is eliminated by the vanishing of a scale-less
integral, in this case the integral of the renormalized one-loop on-shell self-energy diagram
on the incoming quark line. For any consistent UV regularization, these contributions
cancel upon integration, but they spoil the local cancellation of singularities and hence for
us are problematic. We will see below, however, that the modification that eliminates loop
polarizations in region (1k,Hl) also eliminates shift mismatches in region (2k,Hl).

To study the role of term V µ
k (k, l) in eq. (4.5), we rewrite eq. (4.5), acting on the

external spinor, as

V µ
k (k, l) u(p1) = −2(1− ε) 1

(k + l + p1)2

[
2(lµ + pµ1 )/l
l2(l + p1)2 −

γµ

l2

]
u(p1) . (4.7)

This expression contains explicitly the loop polarization, as anticipated in eq. (3.4). In the
following analysis, we will recall that, as for V µ

l in eq. (4.6), in each full diagram, V µ
k (k, l) is

multiplied from the left by a quark propagator, with numerator /p1 + /k. In single-collinear
region (1k,Hl), this factor gives zero acting on the external Dirac spinor. After a simple
calculation using this result, we find that the only loop polarization in this expression
that is singular in (1k,Hl) is associated with the term in /l , which neither commutes nor
anticommutes with /p1 in general. We can thus isolate the singular loop polarization by
decomposing /l into light-cone components,

V µ
k (k, l) u(p1) = −2(1− ε) 1

(k + l + p1)2

×
[

2(lµ + pµ1 )
l2(l + p1)2

[ 2l · η1
2p1 · η1

p/1 + 2l · p1
2p1 · η1

/η1 + l/⊥(p1,η1)

]
− γµ

l2

]
u(p1)

= −2(1− ε) 1
(k + l + p1)2

×
[
2(lµ + pµ1 )

[( 1
l2
− 1

(l + p1)2

)
/η1

2p1 · η1
+

l/⊥(p1,η1)
l2(l + p1)2

]
− γµ

l2

]
u(p1) .

(4.8)
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For the light-cone decomposition of the loop momentum, we have used a lightlike auxiliary
vector η1, with η1 · p1 6= 0. For two-loop V-type diagrams, which are also singular in the
region (2k,Hl), we shall see that we must set η1 = p2. In other V-type diagrams, which are
not singular in this region, we can choose any lightlike η1 that is not proportional to p1.

To arrive to the second expression in eq. (4.8), we applied the Dirac equation and the
relation, 2p1 · l = (p1 + l)2 − l2. This isolates the singular loop polarization in two terms,
each with two, rather than three, propagator denominators. In our explicit construction
below, we will eliminate these terms of the integrand, replacing them with terms that are
free of loop polarizations, yet leave the result of the integrals unchanged. We can see at
this stage that this is possible, by noting the integral identities,∫

dDl

(2π)D
lµ

l2(p1 + k + l)2 = −1
2

∫
dDl

(2π)D
kµ + pµ1

l2(p1 + k + l)2 ,∫
dDl

(2π)D
lµ

(p1 + l)2(p1 + k + l)2 = −1
2

∫
dDl

(2π)D
2pµ1 + kµ

(p1 + l)2(p1 + k + l)2 , (4.9)

which can be proved using changes of variables, l′ = −(l + k + p1) and l′ = −(l + k + 2p1),
respectively, for D less than four dimensions. Using these results below, in four dimensions,
it will be possible to introduce ultraviolet counterterms to ensure that the resulting integrals
remain convergent, while again leaving the results of the integrals unchanged. Using these
identities, we will cancel loop polarizations locally.

4.2 Loop polarizations in type V diagrams II: the QCD triangle

We identify loop polarizations in the QCD triangle in a similar fashion. The vertex takes
the form
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= g3
sT

(q)
c

CA
2 Wµ (k, l)u (p1) . (4.10)

The momentum dependence of the integrand in the truncated QCD triangle diagram in
figure 4 will be written as

Wµ(k, l) = Wµ
scalar(k, l) + Oµ(k, l) , (4.11)

where, as for the QED vertex, it is convenient to isolate terms on the basis of their behavior
in different regions. As we will describe, the vectors Wµ

scalar and Oµ have different behavior
in region (1k,Hl). They also give, respectively, self-energy and ghost contributions to the
Ward identity for external gluon k, which we will also review below.

The first vector is generated from the “scalar” term of the three-gluon vertex, and is
given by

Wµ
scalar(k, l) =

(2l − k)µ γα
(
/l + /p1

)
γα

l2 (l + p1)2 (k − l)2 . (4.12)
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Acting on the Dirac spinor, this simplifies in D = 4− 2ε dimensions to

Wµ
scalar(k, l)u(p1) = − 2 (1− ε) (2l − k)µ/l

l2 (l + p1)2 (k − l)2 u(p1) , (4.13)

and we see explicit loop polarizations. As in the QED vertex in eq. (4.8), we isolate loop
polarizations that are singular in region (1k,Hl) by expanding the vector lµ in l/, in terms
of its components in the p1, η1 and perpendicular directions. Then, using p2

1 = 0 and the
Dirac equation in eq. (4.13), we find

Wµ
scalar(k, l)u(p1) =− 2(1−ε)(2l−k)µ

(p1+l)2l2(k−l)2

[ 2l·η1
2p1 ·η1

p/1+ 2l·p1
2p1 ·η1

/η1+l/⊥(p1,η1)

]
u(p1)

=− 2(1−ε)(2l−k)µ
(k−l)2

[
/η1

2p1 ·η1

( 1
l2
− 1

(p1+l)2

)
+

l/⊥(p1,η1)
(p1+l)2l2

]
u(p1) .

(4.14)

As in the case of the QED triangle contribution, Vk(k, l) of eq. (4.8), the lµ terms here are
not singular in region (Hk, 1l). A singularity in this region must arise from the simultaneous
vanishing of the denominators l2 and (p1 + l)2, but in the final expression for Wµ

scalar the
only term that has this combination is suppressed by the transverse components l⊥(p1,η1) in
the numerator.

The other vector on the right-hand side of eq. (4.11), Oµ, is given by the remaining
two terms of the three-gluon vertex,

Oµ (k, l) = −

(
ηµα(l − 2k)β + ηβµ(l + k)α

)
γα (l/+ p/1)γβ

l2 (l + p1)2 (k − l)2

= −
γµ
(
/l + /p1

) (
/l − 2/k

)
+
(
/l + /k

) (
/l + /p1

)
γµ

l2 (l + p1)2 (k − l)2 . (4.15)

The contribution of vector Oµ to the vertex is easily seen to be free of loop polarizations for
terms that are singular in region (1k,Hl). When inserted into the diagram in figure 4, all of
its terms are either explicitly proportional to kµ or pµ1 , or can be shown by simple Dirac
algebra to vanish in the limit that k becomes collinear to p1. (The fermion numerator factor
p/1 + k/ in the figure plays a role as for the QED vertex terms above.) Explicitly, we find,

Oµ(k, l) u(p1) = 1
(l + p1)2l2(k − l)2

[
2γµ

[
l2 + p1 · (l − 2k)

]

+ 2pµ1 (l/+ k/) − 2 γµ l/ k/ + k/ l/γµ
]
u(p1) . (4.16)

The Oµ term has a collinear singularity in region (Hk, 1l), and in fact has the entire collinear
singularity in this region. The Wµ

scalar term is suppressed in this region by the factor l/ u(p1)
(see eq. (4.13)).
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4.3 Type S diagrams

The Type S diagram for the p1 line is a quark self energy. Written in standard form,
this diagram also leads to a term with loop polarization, which, of course, integrates to
factorizable form. This contribution is entirely avoided, however, if we use symmetric
integration to reduce the quark self-energy to a scalar integral. To be specific, we introduce
the factors

NS−q(k, l) = (1− ε)
l2 (l + k + p1)2 , (4.17)

and
NS−q̄(k, l) = (1− ε)

l2 (l + k − p2)2 , (4.18)

for quark and antiquark, respectively. We then perform the replacements
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Yickd
× ig2

sCF NS−q(k, l)

= g3
sCF NS−q(k, l)T (q)

c γµ u(p1) (4.19)

and, for a self-energy diagram on the incoming antiquark,

THE
pkamob

e Pa
Pa

=
THE

pkamob
e Pa

Pa

× ig2
sCF NS−q̄(k, l)

= g3
sCF NS−q̄(k, l)T (q)

c v̄(p2) γµ . (4.20)

The above modifications do not alter the integrated value of the amplitude.
In summary, after symmetric integration for type S diagrams, the remaining singular

loop polarization terms are found in eqs. (4.8) and (4.14). Having identified these terms,
we are now ready to show how to rewrite the corresponding contributions to the integrands
in a manner that explicitly removes all singular loop polarizations at the local level. As we
will see, it is possible to do this without changing the results of integration, by the addition
of counterterms, based on the identities in eq. (4.9). The modified integrands will satisfy
the Ward identities of figure 3 locally, making possible the local cancellation of these regions
in the subtracted amplitudes of eq. (2.3). We emphasize, that as for the QED amplitudes
studied in ref. [146], these counterterms are added to both the electroweak amplitude in
question and to the form factor that defines its subtractions.
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4.4 Counterterms for loop polarizations

In this section, we will construct the specific subtractions that remove loop polarizations in
eqs. (4.8) and (4.14). The full set of V and S integrands under consideration appear as a
jet integrand, as in figure 3, and are combined in the full integrand as

J µc (k, l) = g3
sT

(q)
c

[(
CA
2 − CF

)
V µ(k, l) + CA

2 Wµ
scalar(k, l) + CF γ

µNS−q(k, l)

+CA
2 Oµ(k, l)

]
, (4.21)

where the vectors in square brackets are given, in order from the left, by eqs. (4.2), (4.13),
(4.19), and (4.15), respectively. As above, we suppress the external momentum in the
arguments of these functions. These are the integrands in S and V diagrams that contain all
loop polarizations, and that we will modify. We present results for the incoming quark jet;
diagrams associated with the antiquark are found in the same way, and can be generated by
replacing p1 by −p2, just as for the quark and antiquark self-energies, eqs. (4.19) and (4.20).

We begin our analysis of the jet vector integrand by separating terms in the one-loop
jet function, eq. (4.21) that are divergent in the single-collinear regions (1k,Hl), and for
figure 5, (2k,Hl), and those that are collinear in (Hk, 1l),2

J µc (k, l) = g3
sT

(q)
c

[
CF J µk,F (k, l) + CA

2 J
µ
k,A(k, l) + J µl (k, l)

]
. (4.22)

As above, J µc is one-particle irreducible, and is associated with a quark and gluon propagator
in the jet subdiagram. Here, all singularities associated with loop l collinear to the quark
momentum p1 are contained in the vector

J µl (k, l) ≡
(
CA
2 − CF

)
V µ
l (k, l) + CA

2 Oµ(k, l) . (4.23)

We saw above that the vector integrand factor V µ
l (k, l), eq. (4.4) is free of singularities

in regions (1k,Hl) and (2k,Hl), and we shall not modify this term. The Oµ(k, l) term of
eq. (4.15) is singular in these regions, but we shall not need to modify it either bacause its
singularities factor in the sum of diagrams, as we shall discuss in section 5.3.3

As a next step, we examine separately terms associated with loop polarizations that
multiply CF and CA. For the CF terms, we have

Jk,F (k, l) = −V µ
k (k, l) + γµNS−q(k, l) , (4.24)

with V µ
k given by (4.5) and NS−q by (4.19). For integrands that multiply CA/2, we chose

to evaluate the QED vertex integrand at a modified value for loop l, replacing l by −l − p1
in eq. (4.5),

Jk,A(k, l) = V µ
k (k,−l − p1) +Wµ

scalar(k, l) , (4.25)
2Note that these diagrams have no singularities when loop l is collinear to p2.
3We also note that in the double collinear region (2k, 1l), Oµ is singular, but of course is free of loop

polarizations. The Ward identities necessary to factorize this region are all tree-level, and ensure factorization
for the unmodified integrand. In (2k, 1l), V µ

l is finite.
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leaving Wµ
scalar(k, l) in the form defined by eq. (4.12). Clearly, this modification does not

affect the integral over l. Also, because it acts only on the function V µ
k , it does not interfere

with the factorization in the single-collinear region (Hk, 1l). As we now describe, this choice
of argument also helps control the p1 jet function in the region (2k,Hl).

An important feature of the full jet function, J µc is that its entire divergence in the
single-collinear region (2k,Hl) is generated from the unmodified integrand factor Oµ(k, l).
This result is ensured by the Abelian-like Ward identities for the remaining coefficients of
CF and CA,

kµ

∫
dDl

(2π)D
[
J µk,F (k, l)− V µ

l (k, l)
]
u(p1) = 0 , (4.26)

and

kµ

∫
dDl

(2π)D
[
J µk,A(k, l) + V µ

l (k,−l − p1)
]
u(p1) = 0 . (4.27)

These relations can be confirmed in a number of ways. Working them out explicitly, the
integrands add locally to integrals that vanish by symmetric integration and the Dirac
equation. Another approach is to observe that the Ward identity for a scalar-polarized
gluon acting on a one-loop three-point function adjacent to an external line vanishes, except
for ghost contributions, which are given identically by the vector integrand Oµ identified
above. We review the role of ghost terms in the full Ward identity in section 5.3, where we
confirm that they factorize locally, and require no modification. We note that, although we
must include the function V µ

l in these relations to make them exact, the contribution of V µ
l

is integrable in both region (2k,Hl) and (1k,Hl), so that even without this term, contraction
with vector kµ gives a result that is collinear finite in either region.

Our aim, then, is to identify a vector integrand for the one-loop jet function, whose
integral is exactly the same as the integral specified by J µk,F and J µk,A, and which is both
locally free of loop polarizations in region (1k,Hl) and is locally integrable in the region
(2k,Hl). We start with J µk,F . Combining the V µ

k and NS−q terms from eqs. (4.7) and (4.19)
respectively, J µk,F . is given by

J µk,F (k, l) = −V µ
k (k, l) + γµNS−q(k, l)

= 2(1− ε)
(k + p1 + l)2

[
2(lµ + pµ1 ) l/
l2(l + p1)2 −

γµ

2l2

]
. (4.28)

We note that the self energy, γµNS−q simply gives a factor of 1/2 for the coefficient of the γµ
term, relative to the result for V µ

k alone. We seek a subtraction that integrates to zero, yet
cancels all singular loop polarizations in (1k,Hl) and any singularities in (2k,Hl) in (4.28).
To find such a subtraction, we identify singular loop polarizations in region (1k,Hl) and
singular behavior in (2k,Hl). Using the same expansion of l/ as in eq. (4.8), and applying it
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as well to the matrix γµ, we have

[
−V µ

k (k, l) + γµNS−q(k, l)
]
u(p1) = 2(1−ε) 1

(k+l+p1)2

×
[
2(lµ+pµ1 )

({ 1
l2
− 1

(l+p1)2

}
/η1

2p1 ·η1
+

l/⊥(p1,η1)
l2 (l+p1)2

)

− p
µ
1
l2

/η1
2p1 ·η1

−
γµ⊥(p1,η1)

2l2

]
u(p1) . (4.29)

Terms proportional to p/1 have vanished when acting on Dirac spinor u(p1), leaving only
terms proportional to /η1 and transverse γ⊥ functions. In the overall integral, the factors
γ⊥ anticommute with the factor p/1 + k/ from the quark propagator adjacent to J µ, which
eliminates the (1k,Hl) single-collinear divergence. In diagrams with a divergence in the
region (2k,Hl) (figure 5), we can set the reference vector η1 = p2. Then, for k ‖ p2, the
explicit l/⊥ term is odd in l⊥. With this assignment of η1, this term is finite in both regions.

Examining the η1 dependence of eq. (4.29), we realize that we can cancel it by a
counterterm with the same lµ and pµ1 dependence, adding only kµ terms,

δJ µ(k, l) = 2(1− ε)
(p1 + k + l)2

[
2lµ + pµ1 + kµ

l2
− 2(l + p1)µ + kµ

(l + p1)2

]
/η1

2p1 · η1
, (4.30)

where the integrals of both terms indeed vanish by eq. (4.9), so that∫
dDl δJ µ(k, l) = 0 . (4.31)

We next show that a subtraction of the same functional form will remove loop polarizations
for the CA terms in the jet function, J µkA, defined in eq. (4.25), to which we now turn.

Combining the CA parts of the jet function as defined in (4.25) we find

J µk,A(k, l) = −2(1− ε)
(k − l)2l2(p1 + l)2

(
(4l − k)µ l/− l2γµ

)
. (4.32)

The same procedure as for the CF terms results in a counterterm that is identical to (4.30),
but evaluated with a change of variables, l to −l − p1,

2δJ µ (k,−l − p1) = −4(1− ε)
(k − l)2

/η1
2p1 · η1

(
2lµ − kµ

l2
− 2lµ − kµ + pµ1

(p1 + l)2

)
. (4.33)

Combining the jet integrand with these two counterterms, we achieve an integrand that is
locally free of loop polarizations and also of singular behavior in region (2k,Hl) by choosing
η1 = p2 for the diagrams of figure 5. We represent the subtracted jet by

g3
sT

(q)
c J µ (k, l)→ J µc (k, l) . (4.34)
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The modified jet vertex integrand, J µc (k, l) is given by

J µc (k, l) = g3
sT

(q)
c

[
CF

(
J µk,F (k, l)− δJ µ(k, l)

)

+ CA
2
(
J µk,A(k, l)− 2 δJ µ(k,−l − p1)

)
+ J µl (k, l)

]

= g3
sT

(q)
c

[
CF

(
−V µ

k (k, l) + γµNS−q(k, l)− δJ µ(k, l)
)

+ CA
2
(
V µ
k (k,−l − p1) +Wµ

scalar(k, l)− 2 δJ µ(k,−l − p1)
)

+
(
CA
2 − CF

)
V µ
l (k, l) + CA

2 Oµ(k, l)
]
, (4.35)

where in the second equality we have written the integrand out in terms of the functions
introduced in the previous subsection. This is our final form for the jet function integrands.

Let us summarize our considerations so far. To eliminate local loop polarizations in
the p1 jet function, given the momentum flows identified in section 3.1, we have modified
the standard integrand for the jet subdiagram in three ways. First, we have chosen to
evaluate the function V µ

k with a shift in momentum l→ −l− p1, but only in the terms that
multiply color factor CA/2, as in eqs. (4.25) and (4.35). Second, we have identified explicit
counterterms δJµ, in eqs. (4.30) and (4.33). Third, we evaluate the self-energy subdiagram
according to (4.19).

For practical purposes, it is natural to combine the shift of arguments in the (CA/2)V µ
k

terms with δJµ into a single counterterm, which can be added directly to the standard
integrand. This provides a straightforward procedure that is readily implemented algorith-
mically. To be specific, let us define a “canonical” jet function, Jµc,canonical, as the integrand
found directly from standard Feynman rules applied with the momentum flows assigned as
in section 3.1, and shown in eqs. (4.1) and (4.10). The modified jet function of eq. (4.35) that
avoids loop polarizations can then be written equivalently in terms of J µc,canonical(k, l), as

J µc (k, l) = J µc,canonical(k, l) + ∆1J µc (k, l) . (4.36)

The term J µc,canonical(k, l) is naturally produced in a conventional generation of the Feynman
diagrams for the electroweak process, in which S-type diagrams are treated as in eq. (4.19),

J µc,canonical(k, l) ≡ g
3
sT

(q)
c

[
CF γ

µNS−q(k, l)+
(
CA
2 − CF

)
V µ(k, l)+ CA

2 Wµ(k, l)
]
. (4.37)

The counterterm in eq. (4.36) is then

∆1J µc (k, l) ≡
















































































































T T

P

In
Ps

In

= g3
sT

(q)
c

[
CA
2
{
V µ
k (k,−l − p1)− V µ

k (k, l)
}

− CA δJ µ(k,−l − p1)− CF δJ µ(k, l)
]
. (4.38)

This term can be thought of as an additional Feynman rule.
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We eliminate loop polarizations from the jet function of the incoming antiquark by
introducing an analogous additive term, obtained directly from eq. (4.38) by exchanging the
momenta labels, k ↔ l, by substituting p1 → −p2 (as noted after eq. (4.21)), and defining
an appropriate auxiliary vector η1 → η2 with p2 · η2 6= 0. The result is,

∆2J µc (l, k) ≡
















































































































je
Pa

j
Pa

= ∆1J µc (l, k)
∣∣∣∣∣ η1→η2
p1→−p2

. (4.39)

4.5 Single-collinear region (2k, Hl) and its Ward identity

To confirm the arguments after eq. (4.29) concerning the finiteness in (2k,Hl) of the modified
jet diagrams, we examine the subtracted integrands explicitly, acting on u(p1). We start by
combining terms that appear with explicit coefficient CA/2 in the first form of eq. (4.35),
[
J µkA(k, l)−2δJ µ(k,−l−p1)

]
u(p1) = 2(1−ε)

l2 (l+p1)2 (k−l)2

×
{
l2γµ⊥(p1,η1)+(k−4l)µ/l⊥(p1,η1)−

l·p1
p1 ·η1

kµ/η1

}
u(p1) .

(4.40)

This expression does not include the V µ
l and Oµ terms associated with J µl of eq. (4.22),

which require no modifications in region (2k,Hl). Similarly, the terms that contribute to
the CF color factor in the first form of eq. (4.35) are
[
J µkF−δJ

µ (k, l)
]
u(p1) = 2(1−ε)

l2 (l+p1)2 (k+l+p1)2

×
{
−1

2 (l+p1)2 γµ⊥(p1,η1)+2(l+p1)µ /l⊥(p1,η1)−
l·p1
p1 ·η1

kµ/η1

}
u(p1) .

(4.41)

In eqs. (4.40) and (4.41), the subscript ⊥ denotes the projection of vectors on the transverse
space of p1 and η1. Our aim is to study these contributions to the jet function in the region
(2k,Hl) for diagrams where the gluon of momentum k attaches the jet to the incoming
antiquark that carries momentum p2 (figure 5). For these diagrams, we exploit the freedom
to choose the auxiliary vector η1 in δJµ, and set it to

η1 = p2 . (4.42)

With this assignment, the first and third terms in the curly brackets of eqs. (4.40)–(4.41)
vanish when contracted with a vector which is parallel to p2, as in the k ‖ p2 limit. In
contrast, the second term, proportional to /l⊥ still leads to a k ‖ p2 singularity for fixed
l/⊥. In this limit, however the integrand is odd under a reflection of the loop momenta on
the transverse plane. As has been proposed in ref. [146], we could remove this remaining
singularity by performing a global symmetrization of the amplitude under

(k⊥, l⊥)↔ (−k⊥,−l⊥) . (4.43)
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In what follows, we propose a refined approach, which does not require the above sym-
metrization to be applied to the entire amplitude integrand.

4.6 General transverse subtraction

The amplitudes in the class of electroweak production processes that we consider here,
with color neutral final states, exhibit singularities in just two possible collinear directions,
which define a unique transverse space. However, in processes with more than two “jets”
a different symmetrization would be needed for each pair of collinear directions at two
loops. As such, the global amplitude symmetrization of eq. (4.43) needs to be refined. In
anticipation of a future generalization of our method to processes with final-state collinear
singularities, we present here an improved solution, which implements this symmetrization
selectively, on V-type diagrams that generate collinear singularities in jet pairs.

We decompose the l loop momentum into components parallel and transverse to the
incoming momenta

l = l · p2
p1 · p2

p1 + l · p1
p1 · p2

p2 + l⊥, (4.44)

and from l we define a dual loop-momentum l̃ with transverse components reflected,

l̃ = l · p2
p1 · p2

p1 + l · p1
p1 · p2

p2 − l⊥. (4.45)

In the subset of V -type diagrams that are singular in the k ‖ p2 limit, we symmetrize
the term proportional to /l⊥ in eqs. (4.40) and (4.41). For these diagrams, we execute
operationally the transverse momentum symmetrization by adding the following counterterm

∆1⊥J µc (k, l) ≡ g3
sT

(q)
c (1− ε) −2 /l⊥

l2(l + p1)2

{
CF

 (l + p1)µ

(k + l + p1)2 +

(
l̃ + p1

)µ
(
k + l̃ + p1

)2


− CA

 lµ

(k − l)2 + l̃µ(
k − l̃

)2

} . (4.46)

This counterterm is odd under l⊥ → l⊥ and integrates to zero. Due to the overall /l⊥ factor,
it does not produce a singularity in either the l ‖ p1 or the k ‖ p1 limits. Finally, in the
k ‖ p2 limit, the counterterm is contracted with a vector parallel to kµ and the reflected
vector l̃ is equivalent to l. Explicitly, In this limit, we have for the singular behavior,

lim
k‖p2

∆1⊥J µc (k, l) = g3
sT

(q)
c

−4 (1− ε) /l⊥
l2(l + p1)2

{
CF

(l + p1)µ

(k + l + p1)2 − CA
lµ

(k − l)2

}
, (4.47)

matching and cancelling exactly the remaining singularities of eqs. (4.40) and (4.41).

– 21 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
2

In practice, for diagrams of the type in figure 5 we combine ∆1J µc (k, l) and ∆1⊥J µc (k, l)
into a single counterterm which we implement in the form of a Feynman rule

∆̃1J µc (k, l) ≡
















































































































T T

P

In
Ps

In
≡ ∆1J µc (k, l)

∣∣∣∣∣
η1=p2

+ ∆1⊥J µc (k, l). (4.48)

The Feynman rule of eq. (4.48) replaces the rule of eq. (4.38) in the subset of diagrams
where the gluon with momentum k connects to the p2 external leg. For the analogous case
of cancelling the k ‖ p1 singularity in diagrams with loop polarisations in the p2 jet function,
we introduce a counterterm,

∆̃2J µc (l, k) ≡
















































































































je
Pa

j
Pa

≡ ∆2J µc (l, k)
∣∣∣∣∣
η2=p1

+ ∆1⊥J µc (l, k)
∣∣∣∣∣
p1→−p2

. (4.49)

5 Eliminating shift mismatches: local Ward identities for QCD
hard parts

In addition to the V and S diagrams discussed in the previous section, single collinear
regions also occur in two-gluon ladders, and in diagrams where one or both of the gluons
attach to the hard scattering subdiagram through off-shell quark lines. Such configurations
factorize directly in QED, as shown in [146], by the application of the basic Ward identities.
The implementation of Ward identities for QCD is somewhat more complex than in QED
at the two loop level, because of the shift mismatches identified above. In both theories,
Ward identities require shifts in loop momenta whenever all lines in the loop are charged in
the theory. In QED, this problem does not arise at two loops for diagrams like those in
figure 3. For S and V diagrams, an appropriate average over loop momenta compensated
for these shifts, as shown above, to give a local realization of the Ward identities.

For diagrams in which the hard loop momentum is connected to the electroweak
subprocess, we also seek to implement the factorization of collinear configurations locally
in momentum space (without shifting loop momenta) so that form factor subtractions
precisely match the singular behavior of the sums of these diagrams. In this case, there can
be many diagrams, depending on the number of electroweak bosons produced. We provide
a prescription to modify the integrands of a subset of the diagrams, which provides this
desired locality.

5.1 Factorization of single-collinear limits: the form factor

The motivation for our prescription can be made clear by examining the behavior of
diagrams in the simplest case, the vector electroweak form factor itself. What we will see
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Figure 6. Two-loop form factor diagrams singular in region (1k,Hl), along with their color factors
(we suppress the factor −g4

s that multiplies the overall color factors exhibited here and in subsequent
figures.). The special graphical notation applies to this region, and is explained in the text.

is that even in the form factor the factorization of the one-loop collinear region from the
one-loop hard subdiagram requires a momentum shift in the hard loop. This will require
us to redefine integrals for the nonabelian theory for the two-loop “regular” diagrams of
the form factor [146], in addition to the S and V diagrams. Such redefinitions are not
necessary in the case of QED for this class of diagrams, because the Ward identities require
a shift in QED only for diagrams with a fermion loop, Once we have identified the necessary
modification of the form factor integrals, the extension to two-loop diagrams in general
electroweak production will be straightforward.

Employing the same notation as above to identify singular regions, we consider here
the regions (1k,Hl) and (2k,Hl), when the off-shell loop momentum l flows through the
electroweak vertex. The diagrams we treat are shown in figures 6 and 7. In the single-
collinear regions in question, the loop momentum k is either collinear to the quark momentum
p1, in region (1k,Hl), or to the antiquark momentum p2, in (2k,Hl). Both of these regions
are present in diagram (a), shown in both figures. In contrast, diagrams 6b, 6c and 6d have
a single-collinear divergence only in (1k,Hl), and 7b, 7c and 7d only in (2k,Hl).

In the diagrams of figures 6, we have introduced a notation for the gluon propagator
that reflects the behavior of the integrand in the corresponding region. The dot, dashed
line and arrow reflect the following “collinear approximations” [173], on the polarization
tensor of the collinear gluon k:

ηµν

k2 → 1
k2

pµ2 (−k)ν
p2 · (−k) in Region (1k,Hl) ,

ηµν

k2 → 1
k2

pµ1k
ν

p1 · k
in Region (2k,Hl) , (5.1)

where in both of these expressions index µ is summed against the vertex adjacent to the
external line to which k becomes collinear, while ν is summed against the hard subdiagram.
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Figure 7. Two-loop form factor diagrams singular in region (2k,Hl), along with their color factors.

Again notice that diagram (a) contains both singular regions. In figures 6 and 7, we also
exhibit the color factor associated with each diagram.

We can combine the integrands of figures 6 and 7 at fixed values of the loop momenta
k and l by applying the identities,

1
/p (/k) 1

/p+ /k = 1
/p −

1
/p+ /k , (5.2)

and
kν (2lν − kν) 1

l2
1

(l − k)2 = 1
(l − k)2 −

1
l2
. (5.3)

The first of these is the lowest-order QED Ward identity, and the second is the lowest-order
QCD Ward identity in axial gauge. The remaining terms in the lowest-order Feynman
gauge QCD Ward identity, associated with ghost contributions, factorize independently, as
discussed in section 5.3.

Using eqs. (5.2) and (5.3) and the explicit color factors for each diagram, the sums of
the integrands of figures 6 and 7 are shown in figures 8 and 9. The dot followed by a dashed
line represents the factors pµi /[pi · (±k)], which remain after the application of the Ward
identity.4 (We again remind the reader that we suppress the ghost terms in Feynman gauge,
which we discuss below in section 5.3.) In each case, the algebra results in two terms. In
one of these, with color factor C2

F , the k and l loop momenta have manifestly factorized.
The second term, consisting of two contributions, both with color factor CFCA/2, is not
factorized at fixed k and l. The integral of the two terms, however, does vanish after a shift
in loop momentum l, to l′ = l − k.

To make this cancellation local, we add a single infrared counterterm, consisting of the
two-loop ladder times the (nonstandard) color factor CFCA/2. The additive counterterm is
proportional to the difference between the two integrands corresponding to two routings of

4The graphical notation of these figures is inspired by (but not identical to) the notation introduced by
‘t Hooft long ago in an early analysis of perturbative gauge theory [174].
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Figure 8. Sum of the integrands of figure 6, neglecting ghost contributions, which factorize
independently. After integration, the non-factoring CFCA terms cancel.
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Figure 9. Sum of the integrands of figure 7, neglecting ghost contributions. After integration, the
non-factoring CFCA terms cancel.

momentum k through the inner triangle diagram. Explicitly, we define

∆Γ ≡ g4
s

1
2CACF

1
k2 v̄(p2)γβ 1

−p/2 + k/γ
α

[( 1
l2

) 1
−p/2 + k/+ l/ Γ 1

p/1 + k/+ l/

−
( 1

(l − k)2

) 1
−p/2 + l/ Γ 1

p/1 + l/

]
γα

1
p/1 + k/γβ u(p1) , (5.4)

where Γ is the electroweak Dirac matrix of the form factor. We will refer to these as shift
counterterms. After integration over l, these two terms cancel. They also cancel at large
loop momentum l, and hence do not require separate UV counterterms.

Once the ladder diagram has been modified by the addition of the non-standard color
factors in the form of figure 10, with the counterterms of eq. (5.4), the form factor integral
itself factorizes at the level of integrands in the single-collinear regions (1k,Hl) and (2k,Hl).
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Figure 10. Infrared counterterm for both figure 6 and 7, given explicitly in eq. (5.4). When
integrated over loop momentum l, the combination vanishes, and is UV convergent.

In either case, the approximations of eq. (5.1) apply in these regions. The application of
the identity, eq. (5.2) to line k in the integrand of the counterterm, eq. (5.4) after the
application of (5.1) leads to an expression that is the negative of the unwanted terms in
figure 8 and 9, which differ by the same shift of loop l. For example, In region (1k,Hl),
we have

∆Γ
∣∣
(1k,Hl)

= g4
s

1
2CACF

1
k2 v̄(p2) (−k/)

p2 · (−k)
1

−p/2 + k/γ
α

×
[( 1

l2

) 1
−p/2 + k/+ l/ Γ 1

p/1 + k/+ l/

−
( 1

(l − k)2

) 1
−p/2 + l/ Γ 1

p/1 + l/

]
γα

1
p/1 + k/ (p/2) u(p1)

= g4
s

1
2CACF

1
k2 v̄(p2) 1

p2 · k
γα

×
[( 1

l2

) 1
−p/2 + k/+ l/ Γ 1

p/1 + k/+ l/

−
( 1

(l − k)2

) 1
−p/2 + l/ Γ 1

p/1 + l/

]
γα

1
p/1 + k/ (p/2) u(p1) , (5.5)

which cancels the two unfactorized terms of figure 8.
We note that the shift counterterms themselves are also singular in the double collinear

limits (1k, 1l) and (2k, 2l), but it is easy to check that these contributions factor independently.
To show this, we observe that in (1k, 1l) and (2k, 2l) the approximation of eq. (5.1) holds
for the “inner” gluon, carrying momentum l, and for the “outer” gluon, of momentum k in
figure 6. The result then follows by applying the identity of eq. (5.2), first to the vertex
at which outer gluon (k) attaches, which cancels the propagator between the two vertices.
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Figure 11. General two-loop corrections with no fermion loops or self energies that are singular
in region (1k, Hl). Diagrams (a) are uncrossed ladders, (b) crossed ladders, (c) have three-gluon
vertices, and (d) are diagrams without QCD ladder structure.

The Ward identity (5.2) can then be applied to the resulting vertex as well, because in the
region of interest, l and k are parallel. This gives the factorized form. The same procedure
demonstrates factorization in (2k, 2l). Finally, we note that the shift terms are not singular
in the mixed double-collinear regions, (2k, 1l) and (1k, 2l).

5.2 Single-collinear limits: general electroweak amplitudes

We are now ready to study the single collinear limits of two-gluon loops in multi-boson
electroweak production. Our goal is to develop a modification of the integrand that results
in the same local factorization of the collinear gluon at the integrand level that we found
for the form factor above.

For this discussion, we restrict ourselves to diagrams without fermion loops, so that
both loop momenta flow through gluon lines. The set includes “ladder-like” diagrams with
only two gluon lines, which may be crossed or planar, depending on the placement of the
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quark-gluon vertices, and also diagrams with a three-gluon vertex, which have three gluon
lines. Other diagrams, with gluon self-energies or a separate, 4-point or higher fermion loop,
can be treated in just the same way as in QED [146].

In a general electroweak amplitude, such as for WWZ production, diagrams with
single-collinear limits must have at least one of the gluons attached to a quark-gluon vertex
adjacent to the external quark or antiquark line. Denoting the momentum of this gluon as
k, we study here the regions where k becomes collinear to the momentum of the relevant
external line, while the other gluon carries an off-shell loop momentum. In the notation
introduced above, these regions are denoted by (1k,Hl) and (2k,Hl).

Included in these diagrams are vertex and self-energy corrections to one-loop diagrams,
in which a gluon connects one of the incoming fermions to a fermion in the hard scattering.
Also included are box and higher-point diagrams for which an additional gluon is attached
by at least one vertex to an off-shell quark line.

The full set of diagrams is illustrated in figure 11, where figure 11a shows diagrams with
color factors C2

F = ∑
a,b TbTaTaTb, the “uncrossed ladders”. Those in figure 11b are crossed

ladders, all with color factors C2
F − CFCA/2 = ∑

a,b TbTaTbTa and those in figure 11c have
a three-gluon vertex, and color factor CFCA/2. In the figures, the functionsM(0)

2+d(r, qd, rd)
represent the integrands of subdiagrams with an incoming quark line of momentum r, d
external electroweak bosons, whose momenta are denoted collectively by qd, and an outgoing
quark line of momentu rd. Here, d = a or b, and we define

ra = p1 −
∑
a

qa ,

rb = p1 −
∑
a

qa −
∑
b

qb . (5.6)

These diagrams are trees with only electroweak vertices, zeroth order in αs. In the same
spirit, Mβ

3+c(rb, k, qd, p2) is the integrand of an order gs tree subdiagram with incoming
quark line of momentum rb, an outgoing gluon of momentum k, external electroweak bosons
with momenta qd and an incoming antiquark of momentum p2. All the diagramsM are
defined to include their adjacent fermion propagators.

As in the case of the form factor above, we will seek an expression for the integrand in
which the sum of all connections of a collinear gluon to the hard subdiagram factorizes at
the integrand level, without shifts in the loop momenta. We can easily give a corresponding
prescription for adding terms that integrate to zero, but which provide the desired local
factorization. The general case is illustrated in figure 12, the direct generalization of
figure 10 for the form factors. The diagrams that we modify are those with color factors
C2
F , figure 11a, corresponding to the generator products ∑a,b TbTaTaTb, the “uncrossed

ladder” diagrams referred to above. To all such diagrams, we add a shift counterterm,
which integrates to zero. The integrands of other diagrams are unchanged.

The shift term is the difference between the two momentum-space integrands where
the outer gluon momentum (k here) flows through the inner loop either through the inner
gluon, or through the quark lines that complete the inner loop.

All of the diagrams shown in figure 12, which are in one-to-one correspondence to those
in figure 11a, are singular in region (1k,Hl). In this region, the Ward identity insures that

– 28 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
2

the collinear gluon factorizes. All of the diagrams are finite in region (2k, Hl) except for the
single diagram where the vertex with index β attaches adjacent to the external antiquark
line, just as in the form factor discussion.

The prescription that provides local validity for the Ward identities when the outer
gluon line k becomes collinear to p1 for diagrams in figure 12 is a simple generalization
of the form factor prescription given in eq. (5.4). The verification of the Ward identities
proceeds in exactly the same manner.

The shift terms just described for the diagrams illustrated in figure 12 are given in the
notation described above, and in the figure, by

∆planar = 1
2CFCA

( −iηαβ
k2 + iε

)
v̄(p2)Mβ

3+c (rb + k, k, qc, p2)

× (−igsγλ)
[
−iηλσ
l2 + iε

M(0)
2+b (ra + k + l, qb, rb + k)

− −iηλσ
(l − k)2 + iε

M(0)
2+b (ra + l, qb, rb + k)

]
(−igsγσ)

× M(0)
2+a (p1 + k, qa, ra + k) (−igsγα)u(p1) , (5.7)

where momentum ra + k, flows out of the subdiagram with integrandM(0)
2+a in each of the

diagrams of figure 11, above the loop carrying momentum l in the figure, and rb + k flows
into the subdiagram Mβ

3+c in the ladder diagrams of figure 11a. The cancellation that
ensures local factorization when the diagrams of figure 12 are combined with the remainder
of the diagrams that are singular in (1k,Hl) is identical to the cancellations described above
for the form factor, and the Ward identities are realized locally in momentum space in the
same fashion.

To be explicit, in region (1k, Hl), we can again use the collinear approximation given
in eq. (5.1), allowing us to use the identity of eq. (5.2) repeatedly in the subdiagrams
Mβ

3+c (rb, k, qc, p2), giving the result,

∆planar
∣∣∣
(1k,Hl)

= 1
2CFCA

( −i
k2 + iε

)
v̄(p2)M(0)

2+c (rb, qc, p2) 1
p2 · k

× (−igsγλ)
[
−iηλσ
l2 + iε

M(0)
2+b (ra + k + l, qb, rb + k)

− −iηλσ
(l − k)2 + iε

M(0)
2+b (ra + l, qb, rb + k)

]
(−igsγσ)

× M(0)
2+a (p1 + k, qa, ra) (−igsp/2)u(p1) . (5.8)

As desired, these terms cancel the nonfactoring terms, analogous to the second and third
diagrams of figure 8 for the form factor, which result from making the approximation
in eq. (5.1) for region (1k, Hl) in the crossed ladders and three-gluon vertex diagrams of
figures 11b and c.

In closing this subsection, we observe that the same procedure that demonstrates
factorization of the shift counterterms in double collinear limits (1k, 1l) and (2k, 2l) for
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Figure 12. Shift term ∆planar, eq. (5.8), for uncrossed gluonic loops. All diagrams are assigned
color factor CFCA/2. Each pair of diagrams integrates to zero in loop momentum l, but enables
local factorization in region (1k, Hl).

the form factor applies to the general electroweak amplitudes discussed here. The only
difference is to apply the identity of eq. (5.2) repeatedly, first to the outer gluon, and then
to the resulting vertex into which both (collinear) gluon momenta flow.

5.3 Local factorization for ghost terms

In the foregoing, we have split the treatment of diagrams with three-gluon vertices into
“scalar” and “ghost” components. For V type diagrams discussed in section 4, these were the
scalar term Wµ

scalar and the ghost term Oµ(k, l), given in eqs. (4.11) and (4.15), respectively.
The Oµ term for the three-gluon QCD vertex on the quark line, in particular, is just one
of the diagrams that contributes singularities in the single-collinear region (2k,Hl), where
we expect a factorization of the type shown in figure 3. We have set aside contributions
of this type until now, and we must still show that their factorization requires no shifts
of loop momentum, and hence no additional counterterm. That is, we will verify that the
factorization of the ghost contributions is already local at the order to which we work. The
contributions we have set aside are all in the diagrams of figure 11c for the region (2k,Hl),
with a three-gluon vertex connecting a collinear gluon to the hard scattering. Precisely
analogous arguments apply to (1k,Hl).

This decomposition into scalar and ghost terms for the diagrams of figure 11c originates
with the contraction of a tree triple-gluon vertex with a longitudinal polarization from one
of the gluons,

Ps
y 91

HoI Éqn

Pa

Is

lo

f

P

inan ≡ gsf
abc

l21 l
2
2

[
ηαβ (l2 − l1)µ − ηβµ (2l2 + l1)α + ηµα (2l1 + l2)β

]
(l1 + l2)µ

= gsf
abc

l21 l
2
2

[
lα1 l

β
1 − l

α
2 l
β
2 + ηαβ

(
l22 − l21

)]
, (5.9)
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where in the cases we will consider, l1 + l2 = ±k. The first two terms in the second equality
can be interpreted as ghost-gluon vertices multiplied by the momentum of the outgoing
ghost. These are our ghost terms, referring to their role in the Ward identity, which we
exhibit them graphically as, for example,a a top

Tim e

an b p n
Wo

e

Iola
11

n

e

≡ (−i)
l21

(i)
l22
lβ2

(
gsf

abc(−lα2 )
)
, (5.10)

where the term in parentheses is the standard QCD ghost-gluon vertex, and where the
arrow at the end of the ghost line is

a a top
a a top Km b

Etta
11

n
n

e

e

µ
D

la
≡ lβ2 . (5.11)

The contraction of the triple gluon vertex is then

Ps
y 91

HoI Éqn

Pa

Is

lo

f

P

inan =

a a top

Tim e

an b p n
Wo

e

Iola
11

n

e

+

a a top

Tim e

an b p n
Wo

e

Iola
11

n

e

+ gsf
abcηαβ

[ 1
l21
− 1
l22

]
. (5.12)

The final terms in the right-hand side are the contribution of what we have called the scalar
part of the three-gluon vertex.

To understand factorization for ghost terms in (2k,Hl), we must consider all diagrams
that have three-gluon vertices and are singular in this region. To anticipate, we check
numerically, in section 7, the absence of singular-collinear divergences in (2k,Hl) for the sum
of all diagrams in the diphoton amplitude, including the ghost contributions. We would like
to demonstrate here the mechanism of this cancellation analytically in this case. This will
make the pattern clear, and the result applies immediately to amplitudes with arbitrary
numbers of massive electroweak bosons at this order in QCD. Specifically, we are going to
confirm that the collinear singularity from ghost terms factorizes, and is thus cancelled by
the corresponding IR contribution to the form factor in the finite amplitude we construct
in eq. (2.3).

Specializing to diphoton production, there are five diagrams with three-gluon vertices
that become singular in the region (2k,Hl) (plus five more with the photons exchanged.) To
see how factorization works for the ghost terms, we must combine all five diagrams. Sup-
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pressing the external antiquark line, in the k ‖ p2 collinear limit, these diagrams contribute

lim
k‖p2
M2|ghost ∼
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After applying the identity of eq. (5.12) and keeping the ghost contributions, we have
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In the above, the vertex of a quark an antiquark and a ghost with an arrow is substituted by

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

an Ap
q

or hmm b
re

11
n

n

e

e

b
bip

g
not

y
at

t

v f v

b

P 9

laR

2Pak

pt
o

= −igsT (q)
b

/l . (5.15)

We also introduce a quark-antiquark-ghost vertex (without an arrow) that reads

Pak

n
De e

e e

i D
b v

b p
a e a

= gsT
(q)
b . (5.16)

As usual, the key to factorization in the collinear region is the scalar polarization of
the collinear gluon where it attaches to the off-shell “hard” subdiagram. For the terms
considered here, the results we are after follow primarily from the tree-level gluon quark
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identity of eq. (5.2), which we represent pictorially as
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With the application of eq. (5.2), the expression of eq. (5.14) simplifies to

lim
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The first and second diagrams in the right-hand side are not singular in the k ‖ p2 limit, as
the 1/(/p2 − /k) denominator is cancelled. The third diagram contributes to the singularity,
but it is factorized. The remaining diagrams include differences of self-energy subgraphs,
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CA
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l2(l − k)2 (5.19)

which, at the integrand level, each equals a ghost self-energy correction multiplied by a
momentum vector. Indeed, a direct computation gives

Pak

n
De e

e e

i D
b v

b p
a e a

= g3
sCAT

(q)
c

k · l
l2 (l − k)2 k2

/k . (5.20)

Symmetrizing eq. (5.20) over loop momentum flows, l↔ k − l, we observe that it matches

– 33 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
2

the right-hand side of eq. (5.19). We obtain,
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The above identity casts the collinear limit in the form

lim
k‖p2
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The last two diagrams with ghost self-energy insertions simplify with the application of
eq. (5.17) and the use of the Dirac equation on the quark u(p1). We find,
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In eq. (5.23), the remaining terms are either finite in the k ‖ p2 limit (first two diagrams in
the right-hand side) or are factorized (two last diagrams). The factorized singularities are
cancelled against the analogous contribution to the form factor IR counterterm. This is the
result we set out to show, here in the case of the production of two off-shell photons. The
arguments, however, go over directly to the full set of processes for electroweak production
we are considering. A higher number of electroweak vertices simply increases the number
of times we need to apply the tree-level Ward identity (5.2), shown graphically in (5.17).
Thus, as anticipated, no further infrared counterterms are required to produce our local
integrand in the subtracted amplitude of eq. (2.3). To complete our construction of a
numerically-computable subtracted amplitude, we must render the infrared-subtracted
amplitudes ultraviolet-convergent. This is the subject of the next section.

6 Ultraviolet subtractions

The diagrams of figure 11, the set for which the Ward identity factorizes single-collinear gluon
contributions, require QCD and electroweak renormalization in general. As in ref. [146],
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we seek to add infrared finite counterterms that render the diagrams convergent in the
ultraviolet. These counterterms can be computed separately, and tailored to be equivalent
to any desired renormalization scheme.

Our counterterms remove the ultraviolet singularities of one loop amplitudes for elec-
troweak production, as

M(1)
UV finite(k) =M(1)(k) +Rk→∞M(1)(k), (6.1)

where the term Rk→∞M(1)(k) subtracts the singularity by furnishing an infrared finite
approximation of the amplitude in the ultraviolet multiplied by −1. The symbol Rk→∞
can be thought of as a linear operation which acts on all one-loop Feynman graphs
that are singular in the ultraviolet and substitutes them with the negative of a suitable
ultraviolet approximation.

At two loops, the amplitude is rendered finite in the ultraviolet by

M(2)
UV finite(k, l) =M(2)(k, l) +Rk→∞M(2)(k, l) +Rl→∞M(2)(k, l)

+Rk,l→∞
{
M(2)(k, l) +Rk→∞M(2)(k, l) +Rl→∞M(2)(k, l)

}
. (6.2)

In addition to one-loop counterterms Rk→∞ and Rl→∞ (in the first line) for ultraviolet
divergences in one loop subgraphs, Rk.l→∞ (in the second line) introduces local counterterms
that remove ultraviolet singularities in the limit where both loop momenta become infinite
simultaneously. To construct the counterterms, we proceed as in ref. [146], Taylor expanding
in the ratios of external momenta to loop momenta and screening infrared singularities by
replacing massless propagators with massive. For example,

Rl,k→∞ : 1
(l + k + r)2 → −

1
(l + k)2 + 2(l + k) · r

((l + k)2)2 + . . .

→ − 1
(l + k)2 −M2 + 2(l + k) · r

((l + k)2 −M2)2 . (6.3)

The two-loop superficial singularities in Rk,l→∞ are logarithmic and we construct straight-
forward counterterms regarding substitutions such as the ones above and keeping the leading
term in the ultraviolet expansion. This procedure is described in detail in ref. [146]. The
treatment of ultraviolet singularities in one-loop subgraphs requires a further discussion
due to its interplay with the factorization of collinear singularities.

At the order we consider (one loop in the hard part) there are two sets of QCD UV
counterterms in Rl→∞, those for fermion self energies and those for vertex corrections.
Their construction needs to be performed carefully, as we now explain, in what concerns
ambiguities in non-leading (finite) contributions in the ultraviolet expansion. As a concrete
example of such an ambiguity, consider a possible ultraviolet counterterm of the integrand
expression that is proportional to the abelian part of the one-loop quark-gluon vertex,

Rl→∞ :
/lγµ/l

l2(l − ra)2(l + rb)2 → −
/lγµ/l

(l2 −M2)3 , (6.4)
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where the fixed momenta ra,b may include loop k. Alternatively, the same expression can
be also approximated by a counterterm with the form

Rl→∞ :
/lγµ/l

l2(l − ra)2(l + rb)2 → −
2lµ/l

(l2 −M2)3 + γµ

(l2 −M2)2 . (6.5)

These two example counterterms both match the UV singularity of the original term but
differ by finite contributions in the ultraviolet. However, our choice is constrained to be
consistent for all graphs that enter the Ward identity that guarantees the factorization of
infrared singularities when the second loop momentum, k in this example, becomes collinear
to an initial state quark or antiquark.

We have already seen that all the diagrams of figure 11 satisfy the Ward identities
necessary for factorization in region (1k, Hl) locally in loop momenta k and l. If we carry
out the expansions that define UV counterterms consistently, we naturally expect that the
sets of integrals that define counterterms satisfy the same Ward identities locally. Let us see
how this comes about for the QCD loops that require renormalization in figure 11. Again,
these are either self-energies or vertex corrections, corresponding to diagrams where the set
of momenta {qb} in figure 11a,d is empty, or vertex corrections, also corresponding to no qb
emissions in figure 11b,c.

The self energy diagrams for figure 11d are of the usual form, and we define their
integrands by

a

t.ua to b
Rn

egg M
a

b
B

MBye tobe98

e

okPa

omg
k

t

enil
t

≡ Πqq(r, l)

= −CF g2
s

1
l2(r + l)2 γ

α(r/+ l/)γα . (6.6)

The counterterm integrand corresponding to Πqq(r, l) is chosen as

Rl→∞Πqq(r, l) = g2
s CF 2 (1− ε)

×
{

2l · r /l
(l2 −M2)3 −

/r + /l

(l2 −M2)2

}
(6.7)

where M is an arbitrary mass parameter.
For the self energy diagrams of figure 11a (b = 0 in M2+b), we include the shift

subtractions of figure 12 with nonabelian color factors. Shift subtractions add a contribution
to the quark self-energy integrand that is given by

Πshift
qq (r, k, l) = CA

2CF



a
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egg M
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e
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omg
k

t

enil
t


= − CA2 g2

s

[ 1
(l − k)2(r + l − k)2 γ

α(r/+ l/− /k)γα −
1

l2(r + l)2 γ
α(r/+ l/)γα

]
.

(6.8)
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The above expression is singular in the ultraviolet limit l→∞. We subtract the singularity
with a counterterm

Rl→∞Πshift
qq (r, k, l) = g2

s CA (1− ε)

×
{

/k

(l2 −M2)2 −
4l · k /l

(l2 −M2)3

}
. (6.9)

As we have already remarked, infrared shift counterterms, such as the one of eq. (6.8), vanish
upon integration. This property also holds for the corresponding ultraviolet counterterm
of eq. (6.9), ∫

dDl Rl→∞Πshift
qq (k, l) = 0 . (6.10)

We will verify that the counterterms defined in eqs. (6.7) and (6.9) satisfy the Ward
identity relating the vertex corrections to self energies, locally in momentum space. At the
integrand level, the relevant vertex corrections are given by the sum of the QED and QCD
vertex diagrams,

Γµ,cqqg (r, k, l) ≡

e

mis
y

R

rige

Y c
R R

e

ta
k

e

tf b b b

+

e

mis
y

R

rige

Y c
R R

e

ta
k

e

tf b b b

. (6.11)

The expression corresponding to the right-hand side of the above equation is obtained with
a direct application of Feynman rules assuming the depicted loop momentum routing. The
diagrams of eq. (6.11) are divergent in the limit l→∞. For the corresponding counterterm,
we pick

Rl→∞Γµ,cqqg (r,k, l) =−g3
sT

(q)
c

×
{

(CF−CA)(1−ε) 4/l lµ

(l2−M2)3−[εCA+2(1−ε) CF ] γµ

(l2−M2)2

}
.

(6.12)

It is now straightforward to verify the Ward identity

kµRl→∞Γµ,cqqg (r, k, l) = gs T
(q)
c

[
Rl→∞Πqq (ra, l)−Rl→∞Πqq (ra + k, l)

−Rl→∞Πshift
qq (ra, k, l) + g2

s CA
/k

(l2 −M2)2

]
. (6.13)

On the right hand side, the first, second and fourth terms in square brackets are in the
“standard” form of the vertex function Ward identity, two self-energy terms and a term
associated with ghosts. Compared to these standard terms, we have an additional term,
Πshift
qq , which will compensate for the ultraviolet behavior the shift term appropriate for all
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the uncrossed ladder diagrams of figure 11a. The self energies Πqq (ra, l) and Πqq (ra + k, l),
match self energies in figure 11d.

It is also worth noting that the shift counterterm preserves the Ward identities as-
sociated with the electroweak vertices as well. This is because both the self energies
and the QCD vertex corrections to electroweak vertices are QCD uncrossed ladders in
figure 11a. In particular, a generic one-loop QCD correction to an electroweak vertex has
the functional form,

Γ
qq • (ra, rb, l) ≡

e

mis
y

R

rige

Y c
R R

e

ta
k

e

tf b b b

= −ig2CF
γν
(
/l + /ra

)
•
(
/l + /rb

)
γν

l2 (l + ra)2 (l − qr)2 . (6.14)

In the above, the tree-level electroweak vertex is denoted with the symbol • . To cancel
the ultraviolet singularity we pick the following counterterm,

Rl→∞Γ
qq • (ra, rb, l) = ig2

sCF
γν/l • /lγν
(l2 −M2)3 . (6.15)

We will now focus on one-loop corrections for QCD vertices and propagators in S-type
and V-type diagrams, which we treated with special rules in order to ensure factorization
of collinear singularities. Correspondingly, special counterterms specific to these diagrams
are required for the cancellation of ultraviolet singularities.

In eq. (4.35) we have given an alternative, yet equivalent upon integration, form for
one-loop corrections of vertices adjacent to an incoming leg, compared to the expression
described by eq. (6.11). To account for this difference in the ultraviolet, in addition to
applying the counterterm of eq. (6.12), we also renormalize the expressions of eq. (4.38)
and eq. (4.46),

Rl→∞∆1J µc (k, l) ≡ g3
s T

(q)
c (CF − CA) 2 (1− ε) /η1

2p1 · η1

×
[
− pµ1

(l2 −M2)2 + 4l · p1 l
µ

(l2 −M2)3

]
, (6.16)

Rl→∞∆1⊥J µc (k, l) ≡ g3
s T

(q)
c (CF − CA) 2 (1− ε)

/l⊥
(
lµ + l̃µ

)
(l2 −M2)3 . (6.17)

Upon integration over the l momentum, the above counterterms, as expected, vanish∫
ddl Rl→∞∆1J µc (k, l) = 0,

∫
ddl Rl→∞∆1⊥J µc (k, l) = 0 . (6.18)

For S-type diagrams, self-energy corrections on quark propagators adjacent to an
incoming quark or antiquark are evaluated according to eq. (4.19) and eq. (4.20). To remove
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the ultraviolet singularity in NS−q(k, l) and NS−q̄(k, l) we add a counterterm which reads

Rl→∞NS−q(k, l) = Rl→∞NS−q̄(k, l) ≡ − (1− ε) 1
(l2 −M2)2 . (6.19)

This counterterm differs locally from the self-energy counterterm of eq. (6.7) used for internal
lines. However, the two counterterms are equivalent after integration of the loop-momentum
l. Indeed, with a simple tensor reduction to master integrals we can show that∫

ddl Rl→∞Πqq(r, l) = /r

∫
ddl Rl→∞NS−q(k, l) . (6.20)

We now have all the ingredients to check that our ultraviolet counterterms respect the
Ward identity that cancels the singularity in the (Hl, 2k) region. We find,

Rl→∞
[
J µc,canonical(k, l) + ∆̃1J µc (k, l)

]
u(p1)

= Rl→∞
[
J µc,canonical(k, l) + ∆1J µc (k, l) + ∆1⊥J µc (k, l)

]
u(p1)

= g3
s T

(q)
c

{
(CF − CA) (1− ε)

[
γµ⊥(p1,p2)

(l2 −M2)2 −
4/l⊥(p1,p2)l

µ
⊥(p1,p2)

(l2 −M2)3

]

+ CA
γµ

(l2 −M2)2

}
u(p1) . (6.21)

Upon contracting with kµ, as occurs in the k ‖ p2 collinear limit, we see that the terms
in the square bracket above vanish due to p2 · γ⊥(p1,p2) = p2 · l⊥(p1,p2) = 0. The last term,
proportional to CA γµ, is associated with ghosts. When combined with the analogous terms
of eq. (6.13), from one-loop vertex corrections that are not adjacent to the incoming legs,
it factorizes.

In summary, we have constructed one-loop Rl→∞ ultraviolet counterterms that respect
the same Ward identities locally as the amplitude that we constructed in the previous
sections. Combined with two-loop Rk,l→∞ counterterms, we are now in a position to subtract
all singularities, ultraviolet and infrared, simultaneously, using the scheme of eq. (2.3). In
the next section, we detail the steps that we follow for an example two-loop amplitude.

7 Numerical check

In the previous sections, we presented a systematic method to remove the ultraviolet and
infrared singularities of amplitudes for generic electroweak production through two loops.
To check our method, we apply it to the q(p1) + q̄(p2)→ γ∗(q1) + γ∗(q2) QCD amplitude.

We first generate [175] the integrand for the Feynman diagrams, applying Feynman
rules in the Feynman gauge and assigning appropriate momentum flows following the rules
as in figure 1. The tree amplitude is

M(0)
γ∗γ∗ =

PP P
my pen'sik w pr y c

rR Y C

Y c

p g1 1

Pa 92

Ps 91

Pa 92

+ (γ∗(q1)↔ γ∗(q2)) , (7.1)
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Table 1. One-loop diagrams for qq̄ → γ∗γ∗.
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4

Table 2. Two-loop S-type diagrams for qq̄ → γ∗γ∗.

where the second contributing diagram not explicitly shown is obtained by Bose symmetry,
exchanging the momenta and polarizations of the external photons. The one-loop amplitude
integrand is given by

M(1)
γ∗γ∗(k) =

4∑
i=1
D(1)
i (k) + (γ∗(q1)↔ γ∗(q2)) , (7.2)

where the integrands D(1)
i (k) of the one-loop Feynman diagrams are derived by a direct

application of Feynman rules in Feynman gauge on the graphs of table 1. In all graphs the
momentum k of the gluon flows out of the quark-gluon vertex which is nearest within the
fermion line to the antiquark q̄(p2).

The part of the two-loop amplitude integrand which is discussed in this publication is
constructed as

M(2)
γ∗γ∗ (k, l) =

4∑
i=1
D(2)
i (k, l) +

38∑
i=5
D(2)
i (k, l)

+
4∑
i=1
D(2)

LP,i (k, l) + CA
2CF

20∑
i=13

[
D(2)
i (k, l − k)−D(2)

i (k, l)
]

+ (γ∗(q1)↔ γ∗(q2)) . (7.3)

Equation (7.3) does not include two-loop diagrams with vacuum polarization corrections
to a gluon propagator or two-loop diagrams with fermion loops. Up to straightforward
multiplications with colour factors, these diagrams also appear in the QED process of
e+e− → γ∗γ∗. We can subtract their singularities locally with the procedures developed in
section 4 of ref. [146] and we will not discuss them in this publication any further.
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Table 3. Two-loop V-type diagrams for qq̄ → γ∗γ∗.
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Table 4. Two-loop “abelian” planar diagrams (excluding S-type) for qq̄ → γ∗γ∗ with a collinear
singularity in k ‖ p1 or k ‖ p2.

The integrands of the Feynman diagrams D(2)
i (k, l) and D(2)

i (k, l) which are included
in eq. (7.3) are derived from the graphs depicted in tables 2, 3, 4, 5. We now describe the
explicit steps we take for the construction of each term in eq. (7.3).

1. We assign loop momentum flows to all diagrams D(2)
i (k, l) as depicted in figure 1,

according to the following rules.

• In diagrams with a triple-gluon vertex
(
D(2)

9 −D
(2)
12 ,D

(2)
21 ,D

(2)
23 ,D

(2)
32 ,D

(2)
34

)
, we

assign momentum labels k, l − k,−l to the three gluons, in the order that they
get attached to the fermion line starting from the external antiquark q̄(p2) and
with an outgoing direction to the corresponding quark gluon vertices.

• In the remaining diagrams, without a triple-gluon vertex, we assign momentum
labels k, l to the two virtual gluons, in the order that they get attached to the
fermion line starting from the external antiquark q̄(p2) and with an outgoing
direction to the corresponding quark gluon vertices.

– 41 –



J
H
E
P
0
5
(
2
0
2
3
)
2
4
2
















































































































Ps 91

k e

p2 92

p g
Ehimee
k

Pa 92

p g

Ly
Pa 92
















































































































Ps 91

k e

p2 92

p g
Ehimee
k

Pa 92

p g

Ly
Pa 92


















































1 IP

gem

9

k
p g2 2

p g

Ltjg
1

KE
Pa 92

p g1
Theme

mm
Pa 92
















































































































go
Pa 92

p g

e
k

p g2 2

p gI I

KEPa 92

D(2)
21 D(2)

22 D(2)
23 D(2)

24
















































































































Ps 91

a
p g2 2

p g1 I

E
RE

Pa 92

Ps 91

E a

Pa 92
















































































































Ps 91

a
p g2 2

p g1 I

E
RE

Pa 92

Ps 91

E a

Pa 92


















































1 IP

gem

9

k
p g2 2

p g

Ltjg
1

KE
Pa 92

p g1
Theme

mm
Pa 92


















































1 IP

gem

9

k
p g2 2

p g

Ltjg
1

KE
Pa 92

p g1
Theme

mm
Pa 92

D(2)
25 D(2)

26 D(2)
27 D(2)

28















































































































go
Pa 92

p g

e
k

p g2 2

p gI I

KEPa 92
















































































































Ps 91

Fi

Pa 92

p g1

Lefty
I

e

k

pippin

s

p g1 I

Pa 92
















































































































Ps 91

a
p g2 2

p g1 I

E
RE

Pa 92

Ps 91

E a

Pa 92
















































































































e

p gt

for
I

Am

R Few

Pa 92

D(2)
29 D(2)

30 D(2)
31 D(2)

32
















































































































Ps 91

Fi

Pa 92

p g1

Lefty
I

e

k

pippin

s

p g1 I

Pa 92
















































































































p gI I

yo
Pa Em 92

p g

haR

Pa 92

Ps 91

got
Pa 92
















































































































Ps 91

k e

p2 92

p g
Ehimee
k

Pa 92

p g

Ly
Pa 92

p gI I

Ke
p g2 2

p g1 I

Pa 92

D(2)
33 D(2)

34 D(2)
35 D(2)

36

Papp
92

P 922

Ps 91

h
m

P 922

Piggy
92

Pa 92

Papp
92

P 922

Ps 91

h
m

P 922

Piggy
92

Pa 92

D(2)
37 D(2)

38

Table 5. The remaining two-loop diagrams for qq̄ → γ∗γ∗ (excluding the ones with fermion loops
and vacuum polarization corrections to the gluon propagator which have been treated in ref. [146]).
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Table 6. Two-loop diagrams of null integrated value that eliminate loop polarizations in the
qq̄ → γ∗γ∗ amplitude integrand.
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2. Diagrams D(2)
1 (k, l) , . . . , D(2)

4 (k, l) (in table 2) belong to the S type. We derive
a dual integrand D(2)

i for them by treating the quark self-energy according to the
rules of eqs. (4.19), (4.20) and the remaining parts of these graphs with standard
Feynman rules.

3. Feynman diagrams D(2)
5 (k, l) , . . . , D(2)

36 (k, l) are computed with only a conventional
application of Feynman rules (always in the Feynman gauge).

4. As we have discussed in section 4, diagrams D(2)
5 (k, l) , . . . , D(2)

12 (k, l) (in table 3)
belong to the V type and give rise to loop polarizations. We add to the right-hand
side of eq. (7.3) four diagrams D(2)

LP,i(k, l), depicted in table 6, which are engineered to
eliminate loop polarizations. The exotic vertices correspond to the currents introduced
in section 4, which are ∆1 of eq. (4.38) in D(2)

LP,1(k, l), ∆2 of eq. (4.39) in D(2)
LP,3(k, l),

∆̃1 of eq. (4.48) in D(2)
LP,2(k, l) and ∆̃2 of eq. (4.49) in D(2)

LP,4(k, l). All other parts of
these graphs are computed with conventional Feynman rules. We emphasize that
the novel diagrams, D(2)

LP,i(k, l), are important locally to guarantee factorization of
collinear singularities, but they do not change the value of the amplitude as they
integrate to zero.

5. In the last term of the second line of eq. (7.3) we use the integrands of planar diagrams
with collinear singularities in table 4 to construct shift counterterms as described in
section 5.

We now remove the ultraviolet divergences of the one and two loop amplitudes at the
integrand level, applying the formulas of eq. (6.1) and eq. (6.2) in section 6. This yields an
ultraviolet finite one and two-loop amplitude,

M(1)
γ∗γ∗ (k, l)→M(1),R

γ∗γ∗ (k, l) , (7.4)

M(2)
γ∗γ∗ (k, l)→M(2),R

γ∗γ∗ (k, l) . (7.5)

Eqs (6.1) and Eqs. (6.2) can be implemented by introducing counterterm Feynman rules, as
one often does in UV renormalization of integrated amplitudes. Alternatively, one could
implement an algorithm that applies to each graph and subgraph, identifying the singular
limit and regulating it with the counterterms described in section 6. In the numerical check
of this section, we have chosen the latter approach.

The integrands constructed in eq. (7.4) and eq. (7.5) are still singular in infrared limits.
However, in their construction, we have achieved that all collinear singularities factorize
after we symmetrize over the loop momenta k ↔ l and sum over diagrams. We remove the
remaining infrared singularities with counterterms derived from a form-factor amplitude for
a generic 2→ 1 process. Through two loops, the form factor integrand is generated from
the diagrams of table 7 as

F (0) [H] = F (0)
1 [H] , (7.6)

F (1) [H] (k) = F (1)
1 [H] (k) , (7.7)
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Table 7. Diagrams for the form factor amplitude q(p1) + q̄(p2)→ H through two loops.

F (2) [H] (k, l) =
2∑
i=1
F (2)
i [H] (k, l) +

8∑
i=3
F (2)
i [H] (k, l) ,

+
2∑
i=1
F (2)

LP,i [H] (k, l) + CA
2CF

[
F (2)

5 [H] (k, l − k)−F (2)
5 [H] (k, l)

]
. (7.8)

The tree, one-loop and two-loop form factor integrands above are generated for a generic
vertex H, which is color-diagonal and takes the form of an arbitrary matrix in spinor
space. The two-loop integrand F (2) [H] (k, l) is constructed applying identical rules for
treating S type diagrams F (2)

1 ,F (2)
2 , cancelling loop polarizations with F (2)

LP,1,F
(2)
LP,2 and
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shift counterterms, all of which we have included in the construction of the right-hand side
of eq. (7.3). We note that the second line of eq. (7.8) integrates to zero. The integration of
the first line in eq. (7.8) can be performed with standard methods and relevant results are
available to even higher orders than the two loops [176–185] that we require here. To remove
ultraviolet singularities from the one and two-loop form factor amplitudes, we construct
F (1),R [H] (k) and F (2),R [H] (k, l) using, again, the subtraction of eq. (6.1) and eq. (6.2).

Before we present an expression for the infrared finite remainder of theMγ∗γ∗ amplitude,
we introduce a class of objects and a corresponding notation that are required for the
construction of the spin-matrix H. Following the notation of eq. (2.3), every diagram
D ∈ D(j)

i ,F (j)
i takes the form

D = v̄ (p2) D̃ u(p1). (7.9)
We define a dual matrix in spin-space of a diagram D (or sum of diagrams) by replacing
the spinor v̄(p2) and u(p1) factors with the projector of eq. (2.4),

D → S (D) ≡ P1 D̃ P1. (7.10)

We remark that if we insert the matrix S (D) as a vertex into the zeroth-order form factor,
we obtain back D,

S (D)→ D = F (0) [S (D)] . (7.11)
We now have all ingredients for constructing integrands for the one and two loop amplitudes
that are free of all infrared singularities. This is a realization of eq. (2.3). We have

H(1)
γ∗γ∗ (k) =M(1),R

γ∗γ∗ (k)−F (1),R
[
S
(
M(0)

γ∗γ∗

)]
(k) , (7.12)

and

2H(2)
γ∗γ∗ (k, l) =M(2),R

γ∗γ∗ (k, l)−F (2),R
[
S
(
M(0)

γ∗γ∗

)]
(k, l)−F (1),R

[
S
(
H(1)
γ∗γ∗(k)

)]
(l)

+ (k ↔ l) . (7.13)

We now check explicitly with a semi-numerical calculation that our construction in
eq. (7.12) and eq. (7.13) leads to expressions in their right-hand sides that are free of infrared
singularities and ultraviolet singularities. Our check is carried out with the same method as
in the analogous numerical study of the abelian contribution to the amplitude of ref. [146].
At one loop, our construction of eq. (7.12) is almost identical, up to colour factors and the
functional form of the chosen ultraviolet counterterms for the one-loop quark propagator
and one-loop quark gluon vertex, to the analogous QED process of ref. [146], and we readily
reproduce that the one-loop remainder H(1)

γ∗γ∗ (k) is finite in all soft, collinear and ultraviolet
limits. The construction of H(2)

γ∗γ∗ (k) has required several novel ingredients with respect to
the QED process of ref. [146] that we test and verify with the calculations of this section.

For ease of comparison, we fix external momenta, spinors (in the Weyl representation)
and polarization vectors to the same values to the ones of ref. [146]. These values are

p1 =


1
0
0
1

 , p2 =


1
0
0
−1

 , q1 =


1
0

1/3
1/7

 , q2 =


1
0
−1/3
−1/7

 , (7.14)
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and

ε(q1) =


4
−4
9
7

 , ε(q2) =


2
−1
−3
−7

 , u(p1) =


0
−7
3
0

 , v(p2)T =


0
13
−9
0

 .
(7.15)

We also construct the loop momenta from vectors K+, L+ parallel to p1, vectors K−, L−
parallel to p2 and vectors K⊥, L⊥ perpendicular to both p1, p2, with values

K+ =


33
17
0
0
33
17

 , K− =


−48

19
0
0
48
19

 , K⊥ =


0
21
23
21
41
0

 , (7.16)

L+ =


47
23
0
0
47
23

 , L− =


− 7

61
0
0
7
61

 , L⊥ =


0
−37

73
−39

67
0

 . (7.17)

We evaluate the IR- and UV-subtracted finite two-loop amplitude integrand H2(k, l) for
loop momentum values

k = δn+K+ + δn−K− + δn⊥K⊥, l = δm+L+ + δm−L− + δm⊥L⊥, (7.18)

where δ is kept as an analytic parameter. The exponents n+, n−, n⊥,m+,m−,m⊥ serve
to study the behaviour in all singular limits [168] by setting their values to appropriate
integers. The sets of values and the corresponding infrared or ultraviolet limits are listed
in the table 8. After we substitute eq. (7.18) in the expression of H2(k, l), we perform the
Dirac algebra in conventional dimensional regularization. Specifically, we encounter Dirac
structures with contracted gamma matrices,

v̄(p2) . . . γµ . . . γµ . . . u(p1) , (7.19)

where in the ellipses represent products of other gamma matrices contracted, similarly,
with each other or with momenta or polarization vectors. We use the Clifford algebra
of γ matrices to bring the mutually contracted matrices to adjacent position where we
can substitute

γµγµ = (4− 2ε) 1. (7.20)

After this manipulation, which extracts explicitly the dependence of the integrand on the
spacetime dimensionality, and after collecting powers of the parameter δ, spinor and scalar
products are computed numerically with exact arithmetic. We maintain explicit dependence
on the dimensional regulator ε and the parameter δ. This permits us to perform a Taylor
expansion in δ for each of the loop momentum configurations listed in table 8. In all cases,
we find that

lim
k,l∈Table 8

ddk ddlH(2)
γ∗γ∗ (k, l) = O (δ) , (7.21)

which confirms that our counterterms have removed all singularities.
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Singularity type Limit n+ n− n⊥ m+ m− m⊥
double soft k, l→ 0 1 1 1 1 1 1

k → 0, l ‖ p1 1 1 1 0 2 1
soft/collinear l→ 0, k ‖ p1 0 2 1 1 1 1

k → 0, l ‖ p2 1 1 1 2 0 1
l→ 0, k ‖ p2 2 0 1 1 1 1

two-loop collinear k ‖ p1, l ‖ p1 0 2 1 0 2 1
k ‖ p2, l ‖ p2 2 0 1 2 0 1

collinear pairs k ‖ p1, l ‖ p2 0 2 1 2 0 1
k ‖ p2, l ‖ p1 2 0 1 0 2 1

single soft k → 0 1 1 1 0 0 0
l→ 0 0 0 0 1 1 1
k ‖ p1 0 2 1 0 0 0

single collinear k ‖ p2 2 0 1 0 0 0
l ‖ p1 0 0 0 0 2 1
l ‖ p2 0 0 0 2 0 1

single UV k →∞ -1 -1 -1 0 0 0
l→∞ 0 0 0 -1 -1 -1

double UV k, l→∞ -1 -1 -1 -1 -1 -1

Table 8. List of singular limits for the qq̄ → γ∗γ∗ amplitude.

8 Conclusions and outlook

In this paper we have shown how to implement the factorization of infrared singularities at a
local level in momentum space for a large class of two-loop QCD amplitudes for electroweak
production initiated by the annihilation of quark pairs. In the result, all dependence on
the masses and momenta of the produced electroweak bosons is locally infrared finite and
amenable to numerical evaluation. In particular, the local subtractions implemented in this
method do not introduce exotic denominators, and the resulting integrals can be deformed
in their complex planes as necessary to avoid threshold and related singularities. The
number of infrared counterterms necessary to achieve these results is not large; in fact
smaller than the number of diagrams. Once these counterterms are combined algebraically,
the factorization of collinear singularities is “automatic”.

We believe that the developments in this paper are a significant step toward a very
general method for the construction of numerically-computable short distance functions
in factorized cross sections, at two loops in QCD and perhaps beyond. We anticipate
that a similar, although not identical, procedure will allow an extension to gluon-initiated
amplitudes for the same electroweak processes. Beyond that, we are hopeful that this
approach can be extended to final states involving both mixed electroweak production and
QCD radiation, and eventually pure QCD processes.

In the context of generalizations of this work, we note that our local factorization is in
the same spirit as the exploitation of the local cancellation [58, 77] of infrared singularities
in suitably-defined sums over final states. Both can alleviate the need for infrared regulation
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and/or the segmentation of phase space. In fact, final-state cancellations rely on only
the hermiticity of the interaction Hamiltonian and are in this sense “automatic” once
appropriate integrands are combined consistently. The analogous principle underlying
infrared factorization is causality, the application of which is complicated by the unphysical
modes of perturbative gauge theories. These are the origins of both the treatment of loop
polarizations and the shift subtractions described in this paper. We conjecture that our
two-loop solutions to these problems should be extendable to higher order. More ambitiously,
we hope that by combining the local factorization developed here with the local cancellation
of final-state singularities, we may make possible a new, numerically-based approach to
precision in factorizable collider processes.
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