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INTRODUCTION: A major challenge in genomics
is discerning which bases among billions alter
organismal phenotypes and affect health and
disease risk. Evidence of past selective pressure
on a base, whether highly conserved or fast
evolving, is a marker of functional importance.
Bases that are unchanged in all mammals may
shape phenotypes that are essential for orga-
nismal health. Bases that are evolving quickly
in some species, or changed only in species that
share an adaptive trait, may shape phenotypes
that support survival in specific niches. Identi-
fying bases associated with exceptional capacity
for cellular recovery, such as in species that
hibernate, could inform therapeutic discovery.
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RATIONALE: The power and resolution of evo-
lutionary analyses scale with the number and
diversity of species compared. By analyzing ge-
nomes for hundreds of placental mammals, we
can detect which individual bases in the genome
are exceptionally conserved (constrained) and
likely to be functionally important in both cod-
ing and noncoding regions. By including species
that represent all orders of placental mammals
and aligning genomes using a method that does
not require designating humans as the reference
species, we explore unusual traits in other species.

RESULTS: Zoonomia’s mammalian comparative
genomics resources are the most comprehensive
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mals and a whole-genome alignment of 240
placental mammals representing all orders. We
estimate that at least 10.7% of the human genome
is evolutionarily conserved relative to neutrally
evolving repeats and identify about 101 million
significantly constrained single bases (false dis-
covery rate < 0.05). We cataloged 4552 ultra-
conserved elements at least 20 bases long that
are identical in more than 98% of the 240 pla-
cental mammals.

Many constrained bases have no known func-
tion, illustrating the potential for discovery using
evolutionary measures. Eighty percent are out-
side protein-coding exons, and half have no
functional annotations in the Encyclopedia of
DNA Elements (ENCODE) resource. Constrained
bases tend to vary less within human popula-
tions, which is consistent with purifying se-
lection. Species threatened with extinction have
few substitutions at constrained sites, possibly
because severely deleterious alleles have been
purged from their small populations.

By pairing Zoonomia’s genomic resources
with phenotype annotations, we find genomic
elements associated with phenotypes that differ
between species, including olfaction, hiberna-
tion, brain size, and vocal learning. We associate
genomic traits, such as the number of olfactory
receptor genes, with physical phenotypes, such
as the number of olfactory turbinals. By compar-
ing hibernators and nonhibernators, we impli-
cate genes involved in mitochondrial disorders,
protection against heat stress, and longevity in
this physiologically intriguing phenotype. Using
a machine learning-based approach that pre-
dicts tissue-specific cis-regulatory activity in
hundreds of species using data from just a few,
we associate changes in noncoding sequence
with traits for which humans are exceptional:
brain size and vocal learning.

CONCLUSION: Large-scale comparative genomics
opens new opportunities to explore how ge-
nomes evolved as mammals adapted to a wide
range of ecological niches and to discover what
is shared across species and what is distinc-
tively human. High-quality data for consistently
defined phenotypes are necessary to realize this
potential. Through partnerships with researchers
in other fields, comparative genomics can ad-
dress questions in human health and basic
biology while guiding efforts to protect the bio-
diversity that is essential to these discoveries.
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Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes
for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At
least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily
constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly
conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and
half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes
and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could
inform therapeutic development. Earth’s vast and imperiled biodiversity offers distinctive power for identifying

genetic variants that affect genome function and organismal phenotypes.

lacental mammals, the evolutionary line-

age that includes humans, are exception-

ally diverse, with more than 6100 extant

species (I), from the 2-g bumblebee bat

to the 150,000-kg blue whale (2, 3). Over
the past 100 million years, mammals have ad-
apted to almost every habitat on Earth (Fig. 1A)
(4). Zoonomia is the largest comparative ge-
nomics resource for mammals produced to
date, with whole genomes aligned for 240 di-
verse species [2.3-fold more families and 3.9-
fold more species than the mammals included
in the earlier 100 Vertebrates alignment (5)]
and protein-coding sequences aligned for 427
species (6). Using this resource, we can find
elements that are conserved in the genomes
of all placental mammals, elements that are
changing unusually quickly in particular line-
ages, and elements that are associated with
particular traits. All three approaches address
a primary challenge in genomics: identifying
genomic elements that affect genome function
and organismal phenotypes (7).

Species evolve through selection on both
small, sequence-level mutations and larger
structural changes to the genome (e.g., trans-
location of transposable elements, inversions,
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deletions, and duplications), as well as through
hybridization with other species (8-10). Muta-
tions are assumed to arise by random chance
and then rise and fall in frequency within a pop-
ulation as a consequence of both neutral drift
and selection. Mutations that disrupt charac-
teristics that are essential for survival tend to be
lost, whereas those conferring an advantage are
more likely to be retained, eventually resulting
in genetic differences that differentiate species.

By aligning the genomes of many different
species, we can measure whether mutations at
a given position in the genome are retained
more or less often than expected under neutral
drift (77-13). Fewer differences between spe-
cies than expected suggests evolutionary con-
straint (dearth of variation due to purifying
selection; also referred to as conservation),
whereas more differences than expected in
some lineages suggests acceleration (rapid
evolution that may be clade-specific) (12, 13).
Both metrics indicate that the given position
has arole in molecular function. Measures of
constraint and acceleration do not vary with
cell type or developmental time point sam-
pled, which simplifies sample collection and
data generation. They are complementary to
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methods for annotating the functional ge-
nome (14, 15).

Previous studies have used comparative ge-
nomics analyses to associate protein-coding
changes with specific adaptations (76), such
as diet type (I7), echolocation (18), and sub-
terranean habitation (19). However, these
studies included few species relative to Zoo-
nomia. As a result, they lacked the power and
resolution required to investigate changes in
genes and noncoding regulatory elements on
a genome-wide level. Studying the evolution of
regulatory elements, which make up much of the
functional sequence in the genome, is partic-
ularly challenging because they tend to evolve
more quickly and be less strongly conserved
than coding elements (15, 20, 2I). By substan-
tially increasing the number and diversity of
species in our comparative genomic analyses,
we increase the sensitivity and specificity of
methods used for detecting evolutionary sig-
nals and associating these signals with species-
level phenotypes (22, 23).

Evolutionary constraint is a powerful tool
for determining which genomic variants are
causally implicated in human diseases. We ex-
plore this in detail in our companion paper
(24), where we show that constrained posi-
tions are enriched for variants that explain
common disease heritability more than any
other functional annotation and that using
the Zoonomia constraint scores improves poly-
genic risk scoring and fine-mapping of candi-
date disease loci.

Here, we use the new comparative geno-
mics resources produced by Zoonomia to
explore placental mammal evolution, including
the origins of exceptional traits. We also syn-
thesize the discoveries described by the com-
pendium of papers in the Zoonomia package.

Evolutionary constraint and acceleration
in mammals

We selected species for inclusion in Zoonomia
to maximize the evolutionary branch length
represented and thereby increase the power to
detect constraint (4). The updated 241-way
reference-free Cactus alignment with 240 spe-
cies (domestic dog has two representatives)
overcomes limitations of reference-based align-
ments (table S1) (4, 1I). It includes genomic
elements lost in humans, allows detection of
multiple-orthology relationships, and captures
complex rearrangements and copy-number var-
iation. We observed 3.6 million perfectly con-
served sites, which is 19,000-fold more than
expected by chance, assuming a uniform substi-
tution rate (4), and is consistent with purifying
selection on functional positions in the genome.

We measured constraint across the human,
chimpanzee, mouse, dog, and little brown bat
reference genomes by projecting the Cactus
alignment onto each species and then measur-
ing sequence constraint with phyloP (Fig. 2, A
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and B, and table S2) (11, 12). The chimpanzee-
referenced alignment supports the investiga-
tion of bases deleted in only humans. Mouse,
dog, and little brown bat have well-annotated
reference genomes and represent diverse
branches of the mammalian lineage, support-
ing comparative research in a wide range of
organisms. We measured sequence constraint
in the primate subset of the Cactus alignment
(43 species) using PhastCons, which offers more
power with fewer species by scoring multibase
elements rather than single bases (24, 25).

We inferred a new phylogeny of placental
mammals that we used for subsequent an-
alyses that require a tree (26) (Fig. 1B). This
phylogeny used only bases from the alignment
that scored as near-neutrally evolving with
phyloP (V = 466,232). It places interordinal
diversification before the major extinction event
marking the end of the Cretaceous period,
addressing a long-standing debate in the field
(27-30). A divergence time analysis of the phy-
logeny supports the “long-fuse” model of
mammalian diversification, with interordinal
diversification in the Cretaceous and most in-
traordinal diversification after the Cretaceous-
Paleogene mass extinction event (37-33), and
not the fossil record-derived “explosive” mod-
el, which places all inter- and intraordinal di-
versification after the Cretaceous-Paleogene
event, or other scenarios (34-36).

At any given site in the genome, the number
of species aligned can vary from just one to all
240. The variation in alignment depth distin-
guishes regulatory regions with differing evo-
lutionary histories (37). In the human-referenced

alignment, 91% of the human genome aligns
to at least five species, but only 11% aligns to
>95% (=228) of species (fig. S1). Candidate cis-
regulatory elements are 926,535 putative reg-
ulatory elements in the human genome defined
by the Encyclopedia of DNA Elements (ENCODE)
resource (14) using DNA accessibility and chro-
matin modification data. In the alignment at
candidate cis-regulatory elements, we discern
three common patterns (Fig. 2C). In highly
conserved elements, most bases align in most
species, including distantly related species. In
actively evolving elements, most species have a
partial alignment to humans. Primate-specific
elements align exceptionally well in only a
small number of species. Promoter-like and
enhancer-like elements tend to be highly
conserved. Elements that specifically bind
the transcription factor CTCF or are marked
by H3K4me3 (trimethylated histone H3 ly-
sine 4) are more likely to be evolving actively,
and about 20% are primate-specific (Fig. 2D).

Estimate of genome-wide constraint

We estimate that a minimum of 332 Mb (10.7%)
of the human genome is under constraint
through purifying selection (Fig. 2A) (12). We
computed this lower-bound of the percentage
under constraint by comparing the observed
genome-wide phyloP score distribution to that
expected in the absence of selection (modeled
using ancestral repeats) (fig. S2A). Using boot-
strapping, we show that the sample of an-
cestral repeats used had little effect on the
lower-bound constraint estimate that was
achieved; a 95% confidence interval spans only

1.9 mega-base pairs (Mbp). Ancestral repeats
are a reasonable proxy for neutrally evolving
sequence and can help account for local fac-
tors such as GC-content and mutation rate
variation that might affect the phyloP score
distribution (72, 38, 39). Our estimate of 10.7%
falls at the upper end of previous estimates,
which ranged from 3 to 12% (40). It is sub-
stantially higher than estimates of at least 5%
that were calculated using similar methods
but much smaller mammalian datasets (12, 13).
With more species, we have more power to
detect both weaker constraint across mam-
mals and lineage-specific constraint, although
these scenarios are not readily distinguished
by the phyloP scores (fig. S2, B and C).

The lower-bound estimates for constraint in
chimp-, mouse-, dog-, and bat-referenced pro-
jections of the alignment range from 239 Mb
in the mouse (9.0%) to 359 Mb in the chimp
(11.8%) (Fig. 2A and table S2). We are unable to
determine whether the total amount of con-
straint truly varies between species. Both the
species composition of the dataset and tech-
nical confounders, including differences in as-
sembly contiguity and quality, could explain the
differences observed. The amount of sequence
detected as significantly constrained [false dis-
covery rate (FDR) < 0.05] correlates with the
average branch length to the nine closest spe-
cies [Spearman’s correlation coefficient (p) =
—0.975; p = 0.0048], with more constraint de-
tected in species with more closely related spe-
cies in the alignment (table S3). This suggests
that the amount of the genome under detect-
able constraint in mouse, dog, and bat will
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Fig. 1. New placental mammal phylogeny supports the long-fuse model of diversification. (A) Most
interordinal diversification occurred in the Cretaceous, coincident with continental fragmentation and sea
level changes. A pulse of intraordinal diversification occurred after the mass extinction event at the
Cretaceous-Paleogene (K-Pg) boundary. Green, orange, and yellow shading bounded by gray lines

demarcates different time periods. (B) A phylogeny based on divergence times estimated using ~470 kb
of near-neutrally evolving sequence for 240 species resolves recalcitrant relationships in the placental mammal
phylogeny (black numbers in white circles), including (1) Euarchonta (primates, colugos, and treeshrews), (2)
Scrotifera [Perissodactyla (odd-toed ungulates), Cetartiodactyla (terrestrial even-toed ungulates and cetaceans),

carnivorans, and bats], (3) Fereuungulata (perissodactyls, cetartiodactyls, carnivorans, pangolins), and (4)
Zoomata [perissodactyls and Ferae (carnivorans and pangolins)]. [Species silhouettes are from PhyloPic]

increase as additional species are added to
the alignment.

Genes enriched for constraint
and acceleration

Genes with highly constrained protein-coding
sequences are enriched in biological processes
that function similarly across species, whereas
those that are changing more quickly are en-
riched in processes that vary between species,
consistent with previous studies (41-45). We
tested the top 5% most accelerated and most
conserved genes as measured by mean phyloP

Christmas et al., Science 380, eabn3943 (2023)

score of coding sequence (data S1) against
a nonredundant representative set of Gene
Ontology (GO) biological processes using
WebGestalt and identified overrepresented
gene sets (46-48). The most constrained genes
are involved in posttranscriptional regula-
tion of gene expression (“mRNA processing”;
GO:0006397; 81 of 487 genes; prpr < 0.0002)
and embryonic development (“cell-cell signal-
ing by wnt”; GO:0198738, 79 of 460 genes,
Prpr < 0.0002) (fig. S3A and table S4). RNA
processing is essential for regulating cellular
responses to environmental change (49), and

28 April 2023

defects can cause debilitating diseases (50).
“Pattern specification process” ranks third
and includes all four HOX gene clusters
(GO:0007389, 76 of 433; prpr < 0.0002). The
most accelerated genes shape an animal’s in-
teraction with its environment, including in-
nate and adaptive immune responses, skin
development, smell, and taste (fig. S3B).
‘We leveraged the large number of species in
the Zoonomia alignments to show that a well-
described gene inactivation, originally specu-
lated to be human-specific (51), is found in 10
different lineages of mammals. The gene CMAH
is inactivated in humans by a 92-bp frame-
shifting exon deletion but is intact in other
great apes (52). CMAH encodes an enzyme that
converts the sialic acid Neu5Ac to Neu5Gc,
and its loss restricts infection by pathogens
dependent on Neu5Gc [e.g., malaria parasite
Plasmodium reichenow? (53)] but increases
susceptibility to viruses that bind Neu5Ac [e.g.,
severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) (54)]. When first ob-
served, the loss of CMAH in humans was
speculated to explain human-specific brain
expansion (565, 56), but other mammals were
subsequently shown to lack CMAH function
(567-59). We combined the Cactus whole-genome
alignment with analyses of read coverage and
coding sequence alignment and found that
CMAH has been inactivated in 40 of 239 spe-
cies analyzed, representing 10 lineages (five
newly discovered), including three rodent line-
ages and three bat lineages (fig. S4) (58). We
confirm that CMAH loss occurred in the an-
cestor of all mustelids and pinnipeds using 11
species (compared with three originally) and
that, among the primates, only humans and
platyrrhine (New World) monkeys have lost
CMAH (57). The role of CMAH in pathogen
response suggests that its loss could shape the
zoonotic potential of Neu5Ge-dependent path-
ogens, but further investigation is needed (60).
Correlating CMAH inactivation with suscep-
tibility to infection by SARS-CoV-2 or other
viruses will require measuring infection sus-
ceptibility for a larger and more diverse set of
mammals than has been studied to date.

Single-base resolution of constraint

Coding regions are the most strongly enriched
for evolutionarily constrained positions, but
most (80%) constrained positions are noncod-
ing (Fig. 2E). We defined a “constrained base”
as a position that has a positive phyloP score
with FDR < 5%. Constrained bases comprise
3.26% (101 Mb) of the human genome (Fig. 2B
and table S2) and tend to cluster together, as
previously described (13, 61). Most (80%) are
within 5 bp of another constrained base, and
30% are in blocks =5 bp. The conservative FDR
< 5% threshold limits the number of false
positives but may miss weakly constrained
bases or bases constrained in just a subset of
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Fig. 2. Comparing 240 species resolves mammalian constraint to single bases
and identifies elements under selection. (A and B) We estimated a lower-bound
on the total amount of the genome under constraint (A) and the number of single
bases constrained at different FDR thresholds (B). The red lines in (B) indicate

the 5% FDR threshold, with the amount of sequence below this threshold given.

(C and D) Comparing the number of species with poor alignments (x axis) with those
with good alignments (y axis) at 924,641 human candidate cis-regulatory elements
(14) (C) reveals three clusters that are nonrandomly distributed across element
types (all chi-square test p < 2.2 x 103%) (D). (E) Functional elements are enriched
for constraint, with candidate cis-regulatory elements in blue and other element
types in black. The dashed line indicates no enrichment. DHS, DNase hypersensitivity
site; 3'UTR, 3" untranslated region; 5'UTR, 5’ untranslated region. (F) Constraint is
negatively correlated with degeneracy across 59,504,353 protein-coding positions.
(G) Methionine codons functioning as start sites in protein-coding sequence are
more constrained at each of the three codon positions. (H) Cysteines in disulfide
bridges are more constrained than other cysteines. In (F) to (H), the box boundaries

Christmas et al., Science 380, eabn3943 (2023) 28 April 2023

chromosome

represent 25 and 75% quartiles, with a horizontal line at the median and the vertical
line demarcating an additional 1.5 times interquartile range (IQR) above and

below the box boundaries. ***pyiicoxon < 1 % 107, (I) Most zooUCEs are new and do
not overlap ultraconserved elements in the original set (73). (J) All zooUCEs are
shorter than the original ultraconserved elements. Box and whisker parameters are
the same as in (F), with outlier zooUCEs (>1.5 times IQR below or above the box
boundaries) plotted as open circles. (K) Human variants in zooUCEs (light orange)
have lower minor allele frequencies than they do in exons or genome-wide (gray).
The vertical lines are at the means. The filled area is the distribution of allele
frequencies. (L) Constraint measured in 100-kb bins genome-wide. The most
constrained 100-kb bins include the HOX clusters (red). HOXD (red star) overlaps
the longest synteny block shared across mammals (174). Rearrangements in this
locus can lead to limb malformations and other damaging outcomes. One bin
containing MUCI6 (purple diamond) significantly lacks constraint. MUCI6 provides a
mucosal barrier that protects epithelial cells from pathogens. The red dashed line
indicates g = 0.05. Labeled bins have g < 0.006.
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mammals. Using a threshold of FDR < 20% in-
creases the estimated percentage of bases con-
strained from 3.26 to 7.56% (Fig. 2B and table S2).

The phyloP scores have three-base perio-
dicity in coding sequence, consistent with the
genetic code (62, 63). The Zoonomia phyloP
scores are strongly correlated with the codon
degeneracy at individual positions. Nondegen-
erate sites are far more likely to be constrained
bases than fourfold degenerate sites (74.1 ver-
sus 18.5%). The median phyloP score exome-
wide is 4.9 [interquartile range (IQR) = 5.8] in
the first position (nondegenerate for 17 of
20 amino acids), 6.0 (IQR = 4.0) in the sec-
ond (nondegenerate in 19 of 20), and 0.68
(IQR = 2.7) in the third (nondegenerate for
2 of 20) (fig. S5). The more functionally equiv-
alent nucleotide options a coding base has in
the genetic code, the weaker its phyloP score
(Spearman’s p = —0.51, p < 2.2 x 107'%) (Fig.
2F). Our ability to demonstrate expected pat-
terns of constraint in coding sequence suggests
that we have achieved sufficient power to re-
solve constraint to single bases in the human
genome. This is unprecedented. The 29 Mam-
mals project alignment resolved constraint to
~12 bases (13), and studies with more species
examined only a subset of the genome (12).
Comparing exomes for 141,456 humans achieved
only gene- or exon-level resolution (64).

We discern stronger constraint at critical
positions in peptides than at other protein-
coding positions, supporting the utility of the
Zoonomia phyloP scores for predicting func-
tional importance. Whereas previous work
had shown broadly that splice sites are often
located in constrained regions (61), we discern
enrichment of constraint at start codons, stop
codons, and splice sites specifically (24 times,
19 times, and 25 times greater than genome-
wide; chi-square test, p < 2.2 x 107'%). Meth-
ionine codons that function as start codons
are more conserved than methionines else-
where in the peptide (Fig. 2G). Cysteines in in-
trapeptide disulfide bridges, which can cause
misfolding when mutated (65), are more con-
served than other cysteines (Fig. 2H).

Bases constrained in mammals are less
likely to be variable in humans, consistent
with purifying selection (64, 66-68). Previous
work showed that variants in functional posi-
tions have lower minor allele frequencies among
humans in the Trans-Omics for Precision Med-
icine dataset (TOPMed) (69). Positions desig-
nated as evolutionarily constrained in Zoonomia
similarly have lower minor allele frequencies in
TOPMed, consistent with functional importance
[constrained: frequency = 0.0026 + 0.02 (+SD)
and N = 20,718,868; unconstrained: 0.0040 +
0.04 and N = 601,458,551; Pwitcoxon = 95 x 1072]
(69). The less variable the position is in hu-
mans, the stronger its constraint across mam-
mals (Spearman’s p = 0.78, p = 0.00014; N =
622,177,419; fig. S6A).

Christmas et al., Science 380, eabn3943 (2023)

Incorporating mammalian constraint into
functional predictions will likely be partic-
ularly informative for poorly annotated posi-
tions. The correlation between the percentage
of variants that are very rare in humans (minor
allele frequency <0.005 variants) and phyloP
scores is strongest for positions that are scored
as having unknown functional impact by SnpEff
(70) (Spearman’s p = 0.98, p = 545 x 10°; N =
608,227,093; fig. S6B). SnpEff already consid-
ers 100-way vertebrate constraint scores in
scoring variants, suggesting that constraint
within mammals provides functional informa-
tion that is not available through other sources.

Using versions of the reference-free Cactus
alignment projected onto species other than
human, we can assess constraint at positions
that are deleted in the human genome and
thus missing from previous resources (5, 13).
We identified 10,032 human-specific deletions
that overlap conserved elements and function-
ally assessed their regulatory effects using mas-
sively parallel reporter assays (71). Subsetting
on just human-specific deletions constrained
in chimp (phyloP score > 1) substantially in-
creased concordance between measured regu-
latory change and predicted transcription factor
binding differences [Pearson’s correlation co-
efficient (') increases from 0.25 (p = 0.0037) to
0.37 (p = 0.00019); Spearman’s p increases
from 0.24 (p = 0.00614) to 0.32 (p = 0.00158)].

New catalogs of conserved elements

We expanded and refined the catalog of ultra-
conserved elements in the human genome by
13-fold using the Cactus alignment, providing
a rich new resource for exploring essential
mammalian traits (72). The original set of 481
mammal ultraconserved elements consists of
elements >200 bp long with identical se-
quence between human, mouse, and rat (73).
Most are noncoding, and many function as
enhancers during embryonic development
(74-76). We defined Zoonomia ultraconserved
elements (zooUCEs) as regions 20 bp or longer
where every position is identical in at least
235 of 240 (98%) species in the alignment. Of
the 4552 zooUCEs [average size 28.9 + 13.0 bp
(£SD)], 753 overlap 318 of the original ultra-
conserved elements, whereas 3799 are new
(Fig. 2, I and J). Twenty-seven zooUCEs are
longer than 100 bp (fig. S7A). Most of the zooUCEs
are noncoding (69% are outside of protein-
coding exons). Like the original ultraconserved
elements, they are enriched near genes whose
products are involved in transcription-related
and developmental biological processes (table
S5 and data S1) (73). The longest two zooUCEs
(190 and 161 bp) are separated by a single base
and are in an intron of POLAI, which encodes
the catalytic subunit of DNA polymerase o.
Human TOPMed variants are rare in zooUCEs
compared with the rest of the genome, sug-
gesting purifying selection within humans
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similar to the original UCEs (25, 72, 77, 78).
ZooUCEs have fewer positions that are varia-
ble in humans (17.6%) than the coding sequences
of genes (22.7%), which are known to be ex-
ceptionally constrained (69). When variants
do occur in zooUCEs, their allele frequencies
tend to be extremely low compared with those
of variants that occur elsewhere in the genome.
Average minor allele frequencies were 12.97
and 7.72 times lower in zooUCEs [N = 23,228;
mean = 0.0003 + 0.01 (+SD)] compared with
genome-wide (N = 652,661,279; mean = 0.004 +
0.04) and within exons (V = 73,635,415; mean =
0.002 + 0.03), respectively (Fig. 2K).

We also cataloged constrained regions in the
human genome using a phyloP score-based
metric that allowed for more variability in
constraint across mammals than the zooUCE
criteria. Regions of contiguous constraint are
regions of at least 20 bases where every in-
dividual base has a phyloP score above the
FDR < 5% threshold (fig. S7B). Of the 595,536
such regions that we identified, most are short
(median size = 32, IQR = 27), but 273 are
longer than 500 bp and six are longer than
1kb. The longest (1.36 kb) is in an intron of the
gene METAPID (chr2:172071926-172073285)
and encompasses four distal enhancer-like
candidate cis-regulatory elements. METAPID
encodes an essential mitochondrial protein that
is conserved at least back to the common an-
cestor of human and zebrafish (79). This locus
physically interacts with at least one transcrip-
tion start site for each of METAPID (FastHiC q =
2.23 x 107%), TLKI (FastHiC ¢ = 7.62 x 10~%), and
HATI (FastHiC ¢ = 3.92 x 1072) in human adult
cortex Hi-C data (80-82). The synteny between
these three genes is preserved in the Xenopus
frog (83, 84). TLK1 regulates chromatin struc-
ture (85), HAT1 coordinates histone production
and acetylation (86), and both are expressed
in the cerebral cortex of 19 (TLK1) or 21 (HAT1)
out of 19 or 21 mammals analyzed in a previ-
ous study, respectively (87).

We identified broad regions of unusually
high constraint by scoring 100-kb nonover-
lapping bins (V = 28,218) across the genome
based on the fraction of bases that were con-
strained (data S2). We identified 53 bins with
significantly elevated constraint (g < 0.05; aver-
age 17.8% constrained bases versus 3.5% for
the genome; table S6). These bins are enriched
for transcription-related biological processes
and overlap the four HOX gene clusters (Fig. 2L).
Five are in gene deserts, and two neighbor
highly constrained developmental transcrip-
tion factors (LMO4 and BCLI11A) (88, 89).

Constraint suggests regulatory function

Zoonomia’s metrics of constraint can help de-
tect positions likely to have regulatory func-
tion both within and outside of coding regions.
In coding sequence, fourfold degenerate sites
that overlap ENCODES transcription factor

50f15

€70C ‘L7 1dy uo AJISIOATUN) APV SEX9, 18 S10°00UdI0s" mMm//:sd1iY WIoIj papeo[umMOo(]



RESEARCH | ZOONOMIA

binding sites (V = 2,647,541) (90) show mod-
erately higher constraint than other fourfold
degenerate sites (V = 2,420,610; chi-square test,
p < 22 x 107, fig. $8). Noncoding constrained
bases are enriched in regulatory elements across
mammals and within primates, including at
promoter-like signatures, enhancer-like signa-
tures, sites bound by CTCF, and sites marked
by H3K4me3 (Fig. 2E) (20, 91). The proportion
of bases under constraint is higher in the sub-
set of gene deserts (the longest 5% of intergenic
regions) that neighbor developmental transcrip-
tion factors (224 of 873 regions; Pwiicoxon = 215 X
107%) (92, 93) than in other gene deserts and is
particularly high in candidate cis-regulatory ele-
ments within such gene deserts (N = 38,065;
Pwilcoxon = 6.95 x 10728° compared with ele-
ments in other gene deserts; table S7).
Zoonomia constraint scores can distinguish
which regulatory elements are likely to be
functionally conserved across species. We
identified transcription factor binding sites
genome-wide for 367 transcription factors
using convolutional neural networks and pub-
licly available data for more than 600 ENCODE3
(14) transcription factor binding experiments
spanning hundreds of cell and tissue types
(37). This is a more comprehensive assessment
of the regulatory landscape in mammals than
was performed in previous work, which fo-
cused on two or three different transcription
factors in five or six species (94, 95). We used
a two-component Gaussian mixture model to
classify sites as constrained or unconstrained.
Of 15.6 million unique binding sites, covering
5.7% of the human genome, 1.9 million (0.8%
of the genome) are constrained (table S8).
Minor allele frequencies at sites variable in hu-
mans are significantly lower in constrained
(mean = 0.0022, SD = 0.032) than in uncon-
strained (mean = 0.0036, SD = 0.041) binding
sites (one-sided Dwicoxon < 2.2 x 107, con-
sistent with strong purifying selection on
these sites. The fraction of binding sites con-
strained varies by transcription factor and
ranges from 1.5% (ZNF250) to 59.8% (YY2) (fig.
S10A). The orthologs of the constrained bind-
ing sites are enriched for active histone marks
[H3K4me3 and H3K27ac (acetylated histone
H3 lysine 27)] in macaque, dog, mouse, and
rat compared with unconstrained binding sites,
suggesting that constrained sites are more
likely to be functional in other species (fig. S9).
The correlation of constraint with both
motif information content and functional state
is evident in transcription factor binding sites
for CTCF. CTCF is a highly conserved and
ubiquitously expressed transcription factor
that mediates genome three-dimensional (3D)
structure (96-98). Overall, 14.8% of CTCF’s
binding sites are constrained (Fig. 3A). Motif
information content for individual bases is
significantly more correlated with base-level
constraint in constrained sites than in uncon-
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strained sites, showing that Zoonomia achieved
single-base resolution constraint in noncoding
regulatory elements that were missing from
earlier analyses (95, 99) (Fig. 3B and fig. S10).
This pattern persists across constrained bind-
ing sites for all evaluated transcription factors
(Fig. 3C and fig. S10, B and C), advancing ear-
lier work that lacked single base-level resolu-
tion (37, 95, 99). The motif logos calculated
from constrained CTCF binding sites are nearly
identical across species, unlike unconstrained
sites (Fig. 3D), suggesting that constrained
binding sites are more likely to be functional
in other mammals (Fig. 3, E and F).

Unannotated constraint

Almost half of all constrained bases (48.5%)
are in regions with no annotations in the

thousands of cell types, tissues, or conditions
assayed by ENCODES3 (table S9) (14). We
grouped constrained bases (phyloP FDR < 5%)
fewer than 5 bp apart in unannotated inter-
genic regions (excluding repeats, centromeres,
and telomeres) to define 423,586 elements,
which we term unannotated intergenic con-
strained regions (UNICORNSs) (median size =
20 bp; IQR = 23; 95th percentile = 131 bp;
0.5% of genome; Fig. 4A and fig. S7C). Most
(77.0%) of these unannotated elements are
within 500 kb of the transcription start site for
a protein-coding gene. They tend to contain
fewer variants (Pwircoxon < 2.2 x 1071%) with
lower minor allele frequencies (Pwicoxon < 2-2 X
107'%) than other intergenic regions (Fig. 4B).

Many unannotated regions are likely to be
functional under conditions that were not
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Fig. 3. Conserved function of constrained transcription factor binding sites. (A) A two-component
Gaussian mixture model fit over average phyloP scores across hinding sites for CTCF distinguishes the distribution
for evolutionarily constrained sites (red) from others (gray). (B) At CTCF binding sites, aggregate phyloP scores
are high for constrained binding sites (red, 61,832 sites) but not for unconstrained binding sites (gray, 424,177 sites).
The same pattern is observed for other transcription factors (fig. S10). (C) Across all transcription factors, aggregate
phyloP scores are more strongly correlated (Pearson’s correlation) with binding site information content for
constrained sites than for unconstrained sites. Boxes and whiskers represent 25% quartile, 75% quartile, minimum,
and maximum, with a horizontal line at the median. The shading indicates the density of the data. (D) CTCF logos
of constrained and unconstrained sets for four species made by lifting over human transcription factor binding
sites. (E) Fraction of constrained (red) and unconstrained (gray) CTCF binding sites that are shared between pairs of
species. (F) CTCF transcription factor chromatin immunoprecipitation sequencing (ChiP-seq) signal over binding
sites in mammalian livers sorted by average phyloP scores. Each row is a binding site; in nonhuman species, only
aligned sites are shown. The horizontal lines indicate significant constraint. Ranges give the minimum and maximum
ChlP-seq fold change over input for each species. (G) Percentage of primate-specific and non—primate-specific
transcription factor binding sites that are derived from individual transposable element classes. LINE, long
interspersed nuclear element; LTR, long terminal repeat; MIR, mammalian-wide interspersed repeat; SINE, short
interspersed nuclear element. [Species silhouettes are from PhyloPic]
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A ENCODE cCREs 1] Evolution through transposable elements
Transcription factor binding | Il [ | [ . We cataloged transposable elements in the ge-
DNasel hypersensitive sites  [I Il || [ | Ml [ T | nomes of 248 species (fig. S11) (110). Transpos-
gene PMFBP1 able elements are mobile DNA sequences 100
UNICORNs il | I N N to 10,000 bp long that can accumulate to >1
minor allele 05 T . . . . X . o« o . million copies per genome. Despite their po-
frequency tential to influence genome structure and func-
tion (111, 112), they are difficult to analyze, and
most studies have focused on human and
mammal mouse (713). We analyzed transposable ele-
constraint ment class, number, and distribution in 248
(phyloP) species (table S1). There is little variation be-
tween mammals in the fraction of the genome
. in transposable elements [N = 248; 49.0 = 7.5%
coﬁgmai;et (+SD)], consistent with counterbalancing
(phastCons) accumulation with DNA loss (714). Recent ac-
0 cumulation, especially retrotransposon accu-
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Fig. 4. Constraint highlights unannotated regions that are likely functional. (A) Example
UNICORNs on human chromosome 16. The largest is 418 bp and located 3.5 kb upstream of the

transcription start site of the gene PMFBPI; the second largest is 174 bp. Gray dots represent single
bases. Red dashed lines represent the FDR < 5% threshold for phyloP and the threshold for phastCons
that captures equivalent genome proportion (phastCons base score = 0.961). UNICORNs lack coding
or regulatory annotations in ENCODE (top track), and most have low diversity in human populations
(second track). (B) UNICORNs contain fewer variants, and those present have lower allele frequencies
than those in the random set (Wilcoxon rank sum test, p < 2.2 x 1076). The fraction of bases with single-nucleotide
polymorphisms (SNPs) versus mean minor allele frequency for human SNPs within UNICORNSs (left) or within a
random set of unannotated sequences (right) is shown. Allele frequencies were logjo transformed. Human variants

and allele frequencies were obtained from TOPMed data freeze 8 (69).

assayed in human ENCODES3 (table S9) (14).
For example, open chromatin regions (a proxy
for candidate enhancers) in developing brain
tissues (100), adult motor cortical neuron cell
types (10I), and narrowly defined regions of
young adult brain (102) overlap 8.8, 7.1, and
8.6% of UNICORNS respectively (17% collect-
ively; 5.4, 2.7, and 4.2% are active in only de-
veloping brain, adult motor cortical neurons,
and young adult brain regions, respectively).
As resources like ENCODE expand to include
more difficult-to-access time points, cell types,
and tissues, we anticipate that the function of
many UNICORNSs will be elucidated.

Regions of accelerated evolution

Recent evolution in the human lineage may
have occurred in part by modifying the 3D
structure of the genome, which can alter gene

Christmas et al., Science 380, eabn3943 (2023)

regulation (03). We developed an automated
pipeline for identifying “accelerated” regions
that are highly constrained across mammals
but exceptionally variable in particular lineages
(104). We found 312 regions accelerated in
humans and 141 in chimpanzees, most of
which are noncoding. Human (82%) and chim-
panzee (86%) accelerated regions tend to have
signatures of positive selection (after account-
ing for other factors such as GC-biased gene
conversion); these accelerated regions also tend
to reside near developmental and neurological
genes, consistent with previous work (105-108).
In domains that contain human accelerated
regions, we show that the 3D genome struc-
ture is altered by human-specific structural
variants, suggesting a role for enhancer hi-
jacking in the species-specific evolution of these
loci (109).

28 April 2023

mulation, is positively correlated with genome
size [hierarchical Bayesian model, coefficient
of determination (R?) = 0.54(95% high probabil-
ity density 042, 0.64)], suggesting insufficient
time to purge insertions after a surge of activ-
ity, and negatively correlated with transposable
element diversity, suggesting that genomic con-
trol mechanisms may limit the repertoire of
active elements (110, 115). Younger transposable
element families are more likely to include in-
sertions that are polymorphic in the species and
thus may be subsequently lost. However, any
family with multiple members is likely a per-
manent feature of the species because there is
no known mechanism to target an entire family
for elimination. Bats are a hotspot for horizontal
transfer of DNA transposons, with more than
200 such events, compared with just 11 trans-
ferred into other lineages (table S10) (116).
Overall, about 11% of constrained human
bases are in transposable elements, with con-
straint enriched in simple repeats and DNA
transposons and depleted in short interspersed
nuclear elements, long terminal repeats, and
satellite repeats (fig. S12A). This likely reflects
the absence of function within more recently
inserted transposable elements. DNA transpo-
sons are an ancient class of repeats known to
acquire functional roles, such as the transcrip-
tion factor ZBEDS5 (70% constrained) (117). By
contrast, the repeat classes depleted in con-
straint have been active more recently during
primate evolution and are therefore less likely
to be functional (718). In simple repeats, con-
straint is negatively correlated with distance
to the nearest gene. Simple repeats near genes,
where they are more likely to influence gene
expression (119), are more constrained (Spear-
man’s p = —0.13, p < 2.2 x 107'°; fig. S12B).
Most (87%) primate-specific transcription
factor binding sites overlap transposable ele-
ments, unlike most non-primate-specific sites
(30%) (Fig. 3@G). Sites in transposable elements,
and especially those in younger elements, tend
to be less conserved and change more quickly
(fig. S13). Our results suggest that transposable
elements may be a driver of recent regulatory
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innovations in primates (120-122), with the
caveat that the binding sites have not been
confirmed to have regulatory function (723).
Transposable element-derived CTCF binding
sites found only in primates are enriched near
genes involved in vision, reproduction, immu-
nity, lower extremity development, and social
behavior [enrichment analysis of cis-regulatory
regions with Genomic Regions Enrichment of
Annotations Tool (GREAT) (108); table S11].

Connecting genotype to phenotype

The Zoonomia resource offers an unprecedented
opportunity to explore the evolution of exceptional
mammalian traits by associating genomic vari-
ation with species-level phenotypes in hundreds
of diverse species. For many traits, phenotype an-
notations are sparse, limiting the application of
these methods. Here, we illustrate the potential of
this approach using traits that vary within multi-
ple clades of mammals and for which we have
species-level phenotypes for a large number of
Zoonomia species. We apply tests for different
modes of evolution, including changes in gene
number, gene sequence, and gene regulation.

Olfactory ability

Mammals have widely varying olfactory abil-
ities, reflecting adaptation to different ecolog-
ical niches (124-128). Olfactory receptor gene
repertoire is a proxy for olfactory ability in
mammals (728). We investigated olfactory evo-
lution by first identifying olfactory receptor
genes in genome assemblies of 249 mamma-
lian species through genome annotation by
means of a set of mammalian receptor profile
hidden Markov models (table S12) (127). This
increases by 10-fold the number of species
with olfactory gene annotations. Our anno-
tated gene counts do not vary with genome
quality, as measured by contig N50 (Spear-
man’s p = 0.065, p = 0.31, N = 249), scaffold
N50 (Spearman’s p = 0.0091, p = 0.89, N = 249),
or genome completeness (129) (Spearman’s p =
0.10, p = 0.11, N = 249), and capture the wide
variation across species [mean count = 1218 +
683 (+SD), N = 249] (Fig. 5A and fig. S14,).

By improving representation within line-
ages, most notably rodents (IN=55), cetaceans
(N = 17), and xenarthrans (IV = 8), we discern
variation in olfaction that was missed in ear-
lier studies (fig. S15). Rodents have more ol-
factory receptor genes on average than other
mammals [55 rodents versus 194 others,
mean = 1434 + 466 (+SD) versus 1156 + 721, ¢ =
3.4, Dstest = 0.0008]. The top rodent is the
Central American agouti (3233 genes), which
has more genes than all but three other species
(Hoffmann’s two-toed sloth, the nine-banded
armadillo, and the African savanna elephant).
Cetaceans have the narrowest variation of any
order. All cetaceans (17 species) have excep-
tionally small olfactory receptor gene reper-
toires relative to other mammals (225 + 75
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genes compared with 1290 + 650 genes, t =
—22.9, Priest = 5.8 x 107%°). Baleen whales
retain olfactory structures that were lost in
toothed whales (130, 131), and, consistent with
this anatomic evidence for olfactory ability,
the four baleen whale species in Zoonomia
have more olfactory receptor genes than the
13 toothed whales (339 + 36 versus 190 + 40,
t = —6.96, Pyiest = 0.00064) (fig. S14).

The association of olfactory turbinal num-
ber with olfactory receptor gene repertoire
across placental mammals suggests that both
evolve in response to selection on olfactory
capacity. Olfactory turbinals are an anatomic
feature of the nasal cavity that is known to
affect olfactory capacity (132-134). In 64 spe-
cies that were phenotyped for both traits, the
number of olfactory turbinals correlates with
the number of olfactory receptor genes (Spear-
man’s p = 0.7, p = 5.50 x 10™™) (Fig. 5A). This
relationship remains significant after account-
ing for species relationships by applying a
phylogenetic generalized least squares meth-
od (phylolm coefficient = 0.014, p = 4.31 x 107)
and a permutation approach that preserves
the tree topology (permutation p = 0.0013)
(fig. S16) (135-137). We also confirm earlier
observations that the number of genes is nega-
tively associated with group living (phylolm
coefficient = —0.0013, phylogeny-aware per-
mutation p = 0.022) (127, 138), possibly be-
cause social animals are less dependent on
smell. The association between the number of
genes and solitary living fails to reach sig-
nificance (phylolm coefficient = 0.00086,
phylogeny-aware permutation p = 0.099).

Hibernation

Zoonomia includes the largest mammal protein-
coding alignment completed to date, with 17,795
human genes aligned in up to 488 assemblies
of 427 distinct species (6). This alignment com-
plements the Cactus whole-genome alignment
(4, I1). Tt integrates gene annotation, ortholog
detection, and classification of genes as intact
or inactivated and can join orthologous frag-
ments of genes split in fragmented assemblies.
Our protein-coding alignment includes 22
deep hibernators (species capable of core tem-
perature depression below 18°C for >24 hours)
and 154 strict homeotherms (species that main-
tain constant body temperature), offering an
opportunity to explore the genomic origins of
hibernation. Forms of torpor are found in every
deep mammalian lineage, suggesting that meta-
bolic depression through heterothermy existed
in some form in the ancestor of all mammals
(139, 140). Modifications, including the capacity
for seasonal hibernation, may be derived. Under-
standing the genomics of hibernation, including
cellular recovery from repeated cooling and re-
warming without apparent long-term harm,
could inform therapeutics, critical care, and
long-distance spaceflight (141, 142).
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Comparing hibernators and strict homeo-
therms to the reconstructed ancestral mam-
mal protein-coding sequence using generalized
least squares forward genomics (23) identified
28 100-bp regions (pepr < 0.05) in 20 genes
where hibernators are less diverged from the
placental mammalian ancestor (table S13).
Two of these genes, MFN2 and PINKI, overlap
four GO Biological Process gene sets related
to depolarization and degradation of damaged
mitochondria, an organelle essential for meta-
bolic depression (table S14)) (143), although the
process’s enrichment is only nominally signif-
icant (top geneset p = 7.5 x 10™%; pgpr = 0.39).
A third, TXNIP, also regulates mitophagy (144)
and shows torpor-responsive gene expression
in rodents (I45-147) and bats (148).

Testing with RERconverge identified an ad-
ditional 22 genes as evolving unusually fast or
slow in hibernators compared with homeotherms
(Fig. 5B and data S3) (149-151). RERconverge
tests for associations between relative evolu-
tionary (substitution) rates of genes and the
evolution of traits. We controlled for the high
proportion of hibernators in the bat lineage, a
potential confounder, through a Bayes factor
analysis that quantified the amount of signal
arising from hibernators and from bats and
excluded genes with a hibernator signal less
than fivefold larger than the bat signal (fig.
S17). The top-scoring genes (prpr < 0.05 and
phylogeny-aware permutation prpr < 0.05)
included 11 that are evolving faster and 11 that
are evolving slower in hibernating species (fig.
S18). Faster-evolving genes are nominally en-
riched in gene sets related to temperature
response and immunity (fig. SI8A and table
S15). Among the genes that are evolving faster
in hibernators are HSPDI [involved in stress
adaptation underlying mammalian torpor
(152)], the mTor pathway inhibitor ADAMST9
[also implicated in longevity based on sequence
convergence in microbats and naked mole rats
(153)], and two genes connected to neuro-
developmental disorders [the voltage-gated
sodium channel gene SCN2A4 (154) and the mem-
brane K-Cl cotransporter gene SLCI245 (155)].

There is no overlap between the two methods
in the genes that score as significant (phylogeny-
aware permutation prpr < 0.05), suggesting
that their distinct methodologies are sensitive
to different types of sequence change. One gene
(the neurodevelopmental gene NCDN) is nom-
inally significant in both sets (p < 0.05 and per-
mutation p < 0.05 in both analyses).

Neurological traits

We developed a toolkit for associating differ-
ences in cis-regulatory elements, an important
driver of phenotype divergence (156-158), with
differences in phenotypes that include brain
size and vocal learning (159, 160). This Tissue-
Aware Conservation Inference Toolkit (TACIT)
does not require tissue-specific cis-regulatory
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Fig. 5. Associating coding and regulatory change with species phenotypes.
(A) Olfactory receptor gene count (x axis) is associated with the number

of olfactory turbinals (y axis) in 64 species. Labels and silhouettes mark
outliers and species of interest. (B) Testing the coding sequence of 16,209 genes
identified 341 genes that are evolving faster or slower in hibernators (prpr <
0.05; gray open circles), and 22 are significant after phylogeny-aware
permutation testing (permutation prpr < 0.05; labeled), including 11 evolving
faster (red filled circles) and 11 evolving slower (blue filled circles). (C) TACIT
first trains a predictive classifier on sequences that underlie open chromatin
regions from tissues or cell types in a few species and then predicts open
chromatin in many others and tests for phenotype associations. (D) TACIT
associated a motor cortex open chromatin region with brain size (a continuous-

brain size residual density

valued trait), driven by associations within Laurasiatheria (59 species) and
Euarchonta (36 species) but not within Glires (33 species). Results are for a
rhesus macaque open chromatin region (chrl0:48660711-48661679) near
MACRODZ2. The phylolm line of best fit is shown for all species [solid line; phylolm
coefficient (slope) = 0.45, permutation prpr = 0.11] and, as a visual aid, for
each clade (dashed line). Triangles represent cetaceans (highest variation in
brain size residual), squares represent great apes (highest variation in brain size
residual within Euarchonta), and circles represent other species. (E) TACIT
associated a motor cortex open chromatin region with vocal learning (a binary
trait) in the GALC locus (phylolm coefficient = 6.51, permutation prpr =

0.045) (137). Results are for an Egyptian fruit bat open chromatin region
(PVIL01002568.1:139004-139596). [Species silhouettes are from PhyloPic]
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element data from every species, which is costly
and logistically challenging to obtain. Instead,
it uses cis-regulatory sequence features in a tis-
sue or cell type of interest from a few species to
train machine-learning models that can be used
to predict activity in that tissue or cell type at
cis-regulatory element orthologs in many spe-
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cies (Fig. 5C) (15). Models trained in one spe-
cies can identify species- and tissue-specific
cis-regulatory element activity in others, in-
cluding for elements not used in training, dem-
onstrating the feasibility of this approach (75).
We then associated the predictions with pheno-
types. We ran TACIT on traits that are pheno-
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typed in more than 80 Zoonomia species and
are proposed to involve neural cell types for
which we have cis-regulatory element data
from multiple species (motor cortex and parv-
albumin neurons) (101, 161-163).

Brain size, measured relative to body size, is
associated with predicted activity at cis-regulatory
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elements that are active in the motor cortex (49
out of 98,912 elements tested, four species with
training data, 158 species tested) and parv-
albumin neurons (15 out of 35,034 elements
tested, two species with training data, 72 spe-
cies tested) (phylogeny-aware permutation
Drpr < 0.15) (159, 164-166). This includes a
region near the gene MACROD2, a nervous
system development gene implicated in mi-
crocephaly and intellectual disability in humans
(Fig. 5D) (167, 168). Motor cortex cis-regulatory
elements near genes previously implicated in
microcephaly or macrocephaly tend to have
more significant associations with brain size
across mammals (one-sided Pwiicoxon = 0.013).
In an analysis of 175 phenotyped species,
both protein-coding changes and cis-regulatory
changes were associated with capacity for
vocal learning (160). Vocal learning is the
ability to mimic noninnate sounds and likely
evolved convergently in humans, bats, ceta-
ceans, and pinnipeds (169). Our analysis of
candidate cis-regulatory elements active in
motor cortex (N = 94,444) and parvalbumin
neurons (N = 35,557) identified motor cortex
elements near GALC (Fig. 5E) (170), TSHZ3
(171), and other speech disorder-related genes.

Applying genomics to

biodiversity conservation

In addition to illuminating mammalian evo-
lutionary history, Zoonomia’s alignment and
measures of constraint can help efforts to
protect biodiversity for the future. Evolution-
ary constraint scores enable empirical esti-
mation of deleterious genetic load and its
demographic drivers across diverse species.
We find that Zoonomia species with smaller
historical effective population sizes carry higher
fixed genetic load, with proportionally more
missense substitutions (phylolm p = 7.76 x 107°)
and substitutions at constrained sites (phy-
lolm p = 9.63 x 1072). Species with a smaller
historical effective population size are also more
likely to be classified as threatened by the Inter-
national Union for Conservation of Nature
(IUCN) (phylolm p < 3.3 x 107°%), suggesting
that historical processes are predictive of spe-
cies’ contemporary extinction risk status. Our
analysis showed that threatened species have
fewer substitutions at extremely constrained
sites (phylolm p = 0.001), particularly in pri-
mates, whereas the opposite is true of missense
substitutions, possibly because severely dele-
terious alleles have been purged or lost to drift
(172) (Fig. 6). As the number of species with
reference genomes grows, so will the power to
leverage genomic data for identifying those most
susceptible to the impacts of rapid environmental
changes that characterize the Anthropocene.

Discussion

By aligning hundreds of mammalian genomes,
Zoonomia realizes the vision of the landmark
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Fig. 6. Genomic metrics distinguish at-risk primate species. Primates that are categorized at increasing levels
of extinction risk and with smaller effective population sizes have fewer substitutions at extremely constrained
sites, measured as kurtosis (which describes the tail of the distribution) of phyloP scores (phylolm p =7.9 x 10 and
p = 0.024, respectively). Four at-risk species with the smallest effective population size (labeled with silhouettes)
have low kurtosis (i.e., fewer phyloP outliers), and a species categorized as “least concern” with the largest effective
population size has high kurtosis (gray mouse lemur; labeled). [Species silhouettes are from PhyloPic]

29 Mammals paper (13) to achieve single-base
resolution of constraint across the human ge-
nome. This resource, which includes even deeper
coverage of protein-coding regions (6), addresses
a central goal of medical genomics: to identify
genetic variants that influence disease risk
and understand their biological mechanisms
(7, 24, 37, 71, 173). It also opens new opportu-
nities for exploring the evolution of mam-
malian genomes as species diverged and
adapted to a wide range of ecological niches
(15, 26, 110, 116, 160, 174) and for discovering
what is distinctively human (704).
Zoonomia illustrates how new sequencing
technology and analysis methods are trans-
forming comparative genomics while under-
scoring the critical need for high-quality
phenotype annotations. Studies into the geno-
mic origins of exceptional mammalian traits
have the potential to inform human therapeu-
tic development (741) but are limited by sparse
and inconsistent phenotype data. Here, we fo-
cus on a handful of traits for which we could
define phenotypes consistently in large num-
bers of species, including hibernation (174 spe-
cies), brain size (158 species), and vocal learning
(175 species). Achieving the richer datasets that
are needed to study other traits, evaluate pat-
tern robustness, and address broader prospects
requires collaborations between genomics re-
searchers and scientists with expertise in mor-
phology, physiology, and behavior to develop
standardized phenotype definitions that apply
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across species (175). It also requires proper col-
lection, annotation, and data-handling prac-
tices that facilitate discovery, evaluation, and
reuse of data (176).

Comparative genomics projects are classical-
ly motivated by the potential to advance hu-
man biomedicine, but they rely on biodiversity
imperiled by human activity (177). Our analysis
suggests that even a single reference genome
per species may help conservation scientists
identify potentially threatened populations
earlier when management efforts can be more
efficient and effective, but more work is needed
to develop these methods (172). Through close
and enduring partnerships with researchers
working in biodiversity conservation, resources
from Zoonomia and other comparative ge-
nomics projects can address questions in human
health and basic biology while simultaneously
guiding efforts to protect the biodiversity that
is essential to these discoveries (178).

Methods summary
Alignment and annotation

We finalized the Zoonomia Cactus alignment
by updating the initial Progressive Cactus
alignment used in (17) to remove a mislabeled
genome. We identified genes in Zoonomia ge-
nomes using halLiftover in conjunction with
the Zoonomia Cactus alignment, identifying
sequences orthologous to the protein-coding
sequence of human exons from ENSEMBL
across each of the 241 assemblies. We also
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developed an alternative reference-based ap-
proach described in our companion paper (6),
which we applied to 427 species. We used a
combination of two approaches using short
sequencing reads and genome assemblies to
determine whether the CMAH gene had been
lost in mammalian genomes. We considered
putative CMAH gene loss events to be cases
where both these approaches indicated loss of
the same part of the gene.

Constraint scoring

We used the Zoonomia alignment and a ran-
domly selected set of ancestral repeat posi-
tions (100 kb total) to generate three different
neutral models: one for autosomes and one
each for the two sex chromosomes. We used
PhyloFit from Phast v1.5 to estimate branch
lengths. We used this same method to esti-
mate primate-neutral models, but with the
ancestral branch reconstruction based on the
43 primates from the alignment. We used
phyloP (part of the PHAST v1.5 package) to
calculate per-base constraint and acceleration
p values. We calculated phyloP scores on the
human-, chimpanzee-, mouse-, dog-, and bat-
referenced 241-way alignments, as well as for a
human-referenced, primates-only alignment
(43-way). We computed a mammalian phyloP
threshold by converting the p values corre-
sponding to the phyloP scores into g values
using a FDR correction. We considered any
column with a resulting ¢ < 0.05 to be sig-
nificantly evolutionarily constrained or accel-
erated, as determined by the sign of the score.

Analyzing constraint
Proportion of genome under constraint

We estimated lower bounds for the fraction
of sites under purifying selection across the
human, chimpanzee, dog, house mouse, and
little brown bat genomes by comparing the
empirical cumulative distribution functions of
phyloP scores across each genome to the those
of ancestral repeats, following the same meth-
od detailed in (12).

Constraint in functional elements

We extracted phyloP scores for all positions in
protein-coding genes (GENCODE v.36) includ-
ing 5’ and 3' untranslated regions, and com-
pared constraint between different positions
within coding sequences. We summarized mean
and standard deviation phyloP scores for posi-
tions within codons, degenerate and nonde-
generate positions, methionines that act as
and do not act as start codons, and cysteines
that form and do not form intrapeptide disul-
fide bridges. We calculated constraint enrich-
ment for several genome features (coding
sequences, 5’ untranslated regions, 3’ untrans-
lated regions, introns, DNase hypersensitivity
sites, and the five types of cCREs [ENCODE
candidate cis-regulatory regions (14)], where
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we calculated constraint enrichment as the
constrained fraction of the feature divided by
the constrained fraction of the genome.

Highly constrained regions

We identified all positions where the number
of species aligned was =235 and the base was
the same among all species aligned at that
position. We then merged neighboring posi-
tions, creating zooUCEs ranging in size from
20 to 190 bp. We assessed overlap between our
zooUCEs and previously defined UCEs. We
also defined regions of contiguous constraint
as regions of at least 20 contiguous base pairs
with phyloP scores above the FDR > 0.05
threshold and identified 100-kb bins with sig-
nificantly high or low constraint.

Constraint in unannotated regions

We subsetted the human genome, removing
all regions with the following annotations:
GENCODE v37 exons (untranslated regions
and exons for all protein-coding genes), pro-
moters (transcription start site +1 kb), introns,
ENCODE3 cCREs, DNase hypersensitivity sites
(including transcription factor binding sites),
chromatin interaction analysis with paired-end
tag sequencing (ChIA-PET) anchors, three pro-
moter annotation sets, and six enhancer an-
notation sets (table S9). Within the remaining
unannotated sequence, we identified closely lo-
cated constraint positions to define a set of
423,586 UNICORNS.

Olfaction

‘We explored the olfactory receptor gene family
across the Zoonomia species set, indepen-
dently of alignment-based annotation. We
mined all genomes for olfactory receptor gene
sequences using the olfactory receptor assigner
(179). We classified sequences as “pseudogenes”
if they contained in-frame stop codons or were
shorter than 650 bp and therefore not long
enough to form the seven-transmembrane
domain. We curated species-specific numbers
of olfactory turbinals from both sides of the
nasal cavity (table S12), obtaining turbinal
numbers for 64 species in our sample. We
tested for an association between the total
number of olfactory receptor genes with the
number of olfactory turbinals using phylolm
(136), solitary living status, and group living
status while accounting for the Zoonomia
phylogenetic tree (26, 138).

Hibernation

We investigated genomic differences between
mammals that we defined as hibernators and
as strict homeotherms (table S1), with 22 spe-
cies defined as deep hibernators and 154: spe-
cies defined as strict homeotherms. We used
generalized least squares forward genomics
to identify genes that are more similar to the
mammalian ancestor than they are to non-
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hibernators as well as to identify regions con-
served in hibernators relative to the placental
ancestor. We also used RERconverge (149)
to identify genes with significant evolution-
ary rate shifts in hibernating mammals ver-
sus nonhibernating mammals. Such genes are
putative hibernation-related genes.
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