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Global well-posedness for the defocusing, cubic nonlinear
Schrödinger equation with initial data in a critical space

Benjamin Dodson

Abstract. In this note we prove global well-posedness for the defocusing, cubic
nonlinear Schrödinger equation with initial data lying in a critical Sobolev space.

1. Introduction

In this note, we discuss the defocusing, cubic, nonlinear Schrödinger equation in three
dimensions,

(1.1) i ut C  •u D  F .u/ D  juj2u; u.0; x/ D  u0 2  H 1=2 .R3 /:

Equation (1.1) has a scaling symmetry. For any  >  0, if u solves (1.1), then

(1.2) u.t ; x/ D  u.2t ; x/;

also solves (1.1). The initial data u0.x/ has H 1=2 .R3 / norm that is invariant under the
scaling (1.2).

The local theory for initial data lying in H 1=2 .R3 / has been completely worked out,
and the scaling symmetry has been shown to control the local well-posedness theory.

Theorem 1.1. Assume u0 2  H 1=2 .R3 /, ku0kH 1=2 .R3 /  A. Then there exists ı  D  ı . A /  such
that if ke i t • u0kL t ;x . I R3 / <  ı ,  then there exists a unique solution to (1.1) on I   R 3  with u 2

C .I I H 1= 2 .R3 //, and

kukL t ; x . I R3 /   2ı :

Moreover, if u !  u0 in H 1=2 .R3 /, then the corresponding solutions u !  u in
C .I I H 1= 2 .R3 //.

This theorem was proved in [3].
From this, it is straightforward to show that local well-posedness holds for (1.1) for any

initial data u0 2  H 1=2 .R3 /. Indeed, by the dominated convergence principle combined
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with Strichartz estimates, for any u0 2  H 1=2 .R3 /,

(1.3) lim kei t •u0kLt;x .Œ T ; T  •R 3 / D  0:

Since ı . A /  is decreasing as A  %  C 1 ,  Strichartz estimates imply that there exists ı0  >  0
such that if ku0kH 1=2 .R3 / <  ı0 , (1.1) has a global solution that scatters. By scattering, we
mean that there exist u0 , u0 so that

t 
lim ku.t /      ei t •u0 kH 1=2 D  0;

and

t 
lim ku.t /      ei t •u kH 1=2 D  0:

However, it is important to note that while (1.3) holds for any fixed u0 2  H 1=2 .R3 /,
the convergence is not uniform, even for ku0k P 1=2        3       A  <  1 .  Thus, one cannot con-
clude directly from [3] that a uniform bound for ku.t /k P 1=2        3      on the entire time of the
existence of the solution to (1.1) implies that the solution is global. This result was instead
proved in [9], using concentration compactness methods.

Theorem 1.2. Suppose that u is a solution of (1.1) with initial data u0 2  H 1=2 .R3 / and a
maximal interval of existence I  D  .T ; TC /. Also assume that sup ku.t /k P 1=2        3

D  A  <  1 .  Then TC .u0 / D  C 1 ,  T .u0/ D   1 ,  and the solution u scatters.

It is conjectured that (1.1) is globally well-posed and scattering for any u0 2H 1=2 .R3 /,
without the a priori assumption of a universal bound on the H 1=2 norm of the solu-tion
u.t /. Partial progress has been made in this direction.

A  solution to (1.1) has the conserved quantities mass,
Z

M.u.t // D ju.t ; x/j2 dx D  M.u.0//;

and energy,

(1.4)
Z Z

E .u.t // D  
2

jr u.t ; x/j2 dx C  
4

ju.t ; x/j4 dx:

This fact implies global well-posedness for (1.1) with u0 2  H 1 .R3 /, where H 1 .R3 /  is
the inhomogeneous Sobolev space of order one. In this case, one could also prove bounds
on the scattering size directly, using the interaction Morawetz estimate of [5].

Theorem 1.3. If u is a solution to (1.1), on an interval I ,  then

(1.5) kukL t ; x . I R3 /  .  kukL 1 L 2 . I R 3 /  kuk2
1 H 1 = 2 . I R 3 /  

.  E.u/1=2M.u/3=2:

Interpolating (1.4) and (1.5) then implies

(1.6) kukL 8 L 4 . I R 3 /  .  M.u/3=4E.u/3=4;
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with bounds independent of I   R .  Combining Strichartz estimates and local well-posed-
ness theory, a uniform bound on (1.6) for any I   R  directly implies a uniform bound on

kukL t ; x . I R 3 / :

The argument from [3] implies that proving scattering is equivalent to proving

(1.7) kukL t ; x . R R 3 /  <  1 :

Indeed, assuming that (1.7) is true, the interval R  may be partitioned into finitely many
pieces J k  such that

kukL t ; x . J k R 3 /   ı :

Then iterate the argument over the intervals J k ,  which proves scattering.
This argument also shows that a solution to (1.1) blowing up at a finite time T0 <  1

is equivalent to
kukLt ;x .Œ0;T0 /R3 / D  1 :

Remark. Prior to [5], [8] and [10] proved scattering using the standard Morawetz estim-
ate. See [12] for more details on Strichartz estimates.

Many have attempted to lower the regularity needed in order to prove global well-
posedness. For any s >  1=2, the inhomogeneous Sobolev space H s .R3 /   H 1=2 .R3 /.
Therefore, if u0 2  H s .R3 /, then it would be conjectured that the solution to (1.1) with
initial data u0 is global and scatters.

Proving a uniform bound on the H s .R3 /  norm would be enough, since by interpola-
tion this would guarantee a uniform bound on the H 1=2 .R3 / norm. The difficulty is that
there does not exist a conserved quantity at regularity s that controls the H s  norm for
1=2 <  s <  1.

Instead, [2] used the Fourier truncation method (see also [1] for the cubic problem in
two dimensions). Decompose the initial data

u0 D  P N  u0 C  P > N  u0 D  v0 C  w0:

Then v0 2  H 1 .R3 /, and kw0k P 1=2        3     is small. Thus, (1.1) has a global solution for initial
data v0 or w0, call them v and w. Since (1.1) is a nonlinear equation, it is necessary to
also estimate the interaction between v and w in the nonlinearity of (1.1). Then, [2]
proved global well-posedness for (1.1) with initial data u0 2  H s .R3 /  when s >  11=13.
Moreover, [2] proved that the solution is of the form

ei t •u0 C  v.t /; where v.t / 2  H 1 .R3 /.

The results from the Fourier truncation method for (1.1) were improved using the
I-method. First, [4] improved the regularity necessary for global well-posedness to s>5=6.
Then, [5] improved the necessary regularity to s >  4=5. To the author’s best knowledge,
the best known regularity result is the result of [11], proving global well-posedness and
scattering for regularity s >  5=7. For radial initial data, [6] proved global well-posedness
and scattering for any s >  1=2. This result is almost sharp at high frequencies.
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In this paper, we study the cubic nonlinear Schrödinger equation (1.1) with initial data
lying in the Sobolev space W 7=6;11=7.R3/. That is,

kjr j11=7u0kL7=6 .R3 / <  1 :

Remark. This norm is well-defined using the Littlewood–Paley decomposition. See for
example [13].

This norm is preserved under the scaling (1.2), and is therefore a critical Sobolev norm.
Moreover, W 7=6;11=7.R3/  H 1=2 .R3 /, so (1.1) has a local solution for this initial data. We
prove global well-posedness for (1.1) with this initial data.

Theorem 1.4. The cubic nonlinear Schrödinger equation is globally well-posed for initial
data u0 2  W 7=6;11=7.R3/.

The proof of this theorem will heavily utilize dispersive estimates. Interpolating be-
tween the fact that ei t • is a unitary operator,

ke i t •u0kL2 .R3 / D  ku0kL2 .R3 / ;

and the dispersive estimate,

gives the estimate

(1.8)

ke i t • u0 kL1 .R3 /  .  
t 3=2 ku0kL1 .R3 / ;

ke i t •u0kL7 .R3 / .  
t 15=14 ku0kL7=6 .R3 / :

This implies that the linear solution ei t •u0 has very good behavior when t >  1, in fact
it is integrable in time. We then rescale so that u0 has a local solution on an interval Œ 1; 1• .
We prove that this solution may be decomposed into

In particular,

The term

u.t / D  ei t • u0 C  v.t / C  w.t /:

u.1/ D  ei • u0 C  v.1/ C  w.1/:

ei .t  1/• ei • u0 D  ei t • u0

has good properties when t >  1. We can also show that

kr e i . t  1/• v .1/kL 1  .  
t 3=2 ;

which also has good properties when t >  1. Finally, w.1/ 2  H 1  and has finite energy.
Making a Gronwall argument shows that

ku.t /      ei t • u0      e i .t  1/• v.1/kH 1 ;

is uniformly bounded on Œ1; 1 / .  This is enough to give global well-posedness, but not
scattering.
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This result could be compared to the result in [7] for the nonlinear wave equation.
There, the author proved global well-posedness and scattering for the cubic wave equa-
tion with initial radial data in the Besov space B 2       B 1  . Here, we do not require radial
symmetry, however, we only prove global well-posedness. We are unable to prove scatter-
ing at this time due to the lack of a scale invariant conformal symmetry.

We prove a local well-posedness result in section two, and a global result in sec-tion
three. This argument could be generalized to many intercritical, defocusing nonlinear
Schrödinger equations.

2. Local well-posedness

The Sobolev embedding theorem implies that W 7=6;11=7.R3/ is embedded into H 1=2 .R3 /.
Therefore, (1.1) is locally well-posed, and there exists some T .u0/ >  0 such that (1.1) has a
solution on Œ T; T • and kuk 5 3      D  0, for some 0.ku0k P 1=2 / small. After
rescaling using (1.2), suppose

(2.1) kukLt;x .Œ 1;1•R 3 / D  0:

Since .3; 18=5/ is an admissible pair, Strichartz estimates imply

(2.2) kjr j1 = 2 ukL 1 L 2 \ L 2 L 6 .Œ  1;1•R 3 /

.  kjr j1=2 u0 kL2 .R3 / C  kjr j1=2ukL3 L18=5 .Œ 1;1•R 3/kukLt ;x .Œ 1;1•R 3 /:

Therefore,

(2.3) kjr j1 = 2 ukL 1 L 2 \ L 2 L 6 .Œ  1;1•R 3 / .  ku0k P 1=2 :

Also, by Duhamel’s principle, for any t 2  Œ 1; 1•,
Z t

(2.4) u.t / D  ei t •u0      i      e i .t  /• F .u.// d D  ul .t / C  unl .t /: 0

Remark. Recall from (1.1) that F .u/ D  juj2u.

We begin with a technical lemma. This lemma allows us to make a Littlewood–Paley
decomposition of unl , treat each P  un l separately, and then sum up. It also implies that
un l retains all the properties of a solution to the linear Schrödinger equation with initial
data in a Besov space.

Remark. In this section, all implicit constants depend on the norm ku0kW 7=6;11=7 .

Remark. Throughout this section we rely very heavily on the bilinear Strichartz estimate

k.e i t • P u0 /.e i t • Pk v0 /kL t ;x .RR3 / .  2 j=2 2k kP u0kL2 kPk v0 kL2  :

See [1] for a proof.
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Lemma 2.1. Let P  be the customary Littlewood–Paley projection operator. Also suppose
that u is a solution to (1.1) satisfying (2.1). Then

(2.5)
X

2 j = 2  kP F .u/kL t  Lx .Œ 1;1•R 3 / .  1: j

Proof. Decompose the nonlinearity,

P  F .u/ D P  F . P j  3 u/C3P . . P j  3u/2 .P j  3 u//C3P . . P   3 j C 3 u/.P j  3u/2/:

By Bernstein’s inequality, and (2.2),

(2.6) 2j=2 kP F . P j  3u/kL1 L2 .Œ 1;1•R 3 /

.  2j = 2 kPj  3uk3
3Lx .Œ 1;1•R 3 / .  2j=2 2 l =6 kjr j1=6 Pl ukL3 L6 :

l j  3

Next,

(2.7) 2j=2 P  . . P j  3 u/2 .Pj  3u//L1 L2 .Œ 1;1•R 3 /

.  2j=2  
X  

2 l =4 kjr j1=4 Pl ukL3 L36=7      

2
kukLt L x  

:
l j  3

Finally, by the bilinear Strichartz estimate

(2.8) k.e i t • P u0/.ei t •Pl1 u0 /kL t ; x .RR3 /  .  2 j=2 2l1 kP u0kL2 kPl1 u0kL2 ;

combined with the principle of superposition and (2.4),

(2.9) k.P u/.Pl1  u/kL t ;x

.  2 j=2 2l1 .kP u0kL2 C  kP F .u/kL 1 L 2  / .kPl1 u0kL2 C  kPl1 F .u/kL 1 L 2  /;

and the Sobolev embedding properties of Littlewood–Paley projections,

(2.10)

2j=2 k. j  3 j C 3 u/.P j  3u/2kL1 L2 .Œ 1;1•R 3 /

.  2j=2 k.Pl1  u/. j  3 j C3 u/kL t ; x
kPl2 ukL t  L

1

l 1 j  3                                                                          l1 l2 j  3

.  kjr j1=2 ukL2 L6 2l1 . j       l1/ k j  3 j C3 u0 kL 2  l 1 j

3

C  k j  3 j C 3 F .u/kL 1 L 2         kPl1 u0kL 2 C  kPl1 F .u/kL 1 L 2      :

By Strichartz estimates, (2.3), Plancherel’s theorem, and the fractional product rule,
X

2 j  kP u0k2
2 C  

X
2 j  kP F .u/kL1 L2 .Œ  1;1•R 3 / .  ku0k2 

1=2 C  kjr j1= 2 F .u/kL1 L2

j j

.  ku0k2 
1=2 C  kjr j1=2uk2 

t L
18=5 kuk4

3 L9 .  1:
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Combining (2.6)–(2.10) with the Cauchy–Schwarz inequality implies

(2.11)
X

2 j = 2  kP F .u/kL1 L2 .Œ  1;1•R 3 / .  1;
j

which proves the lemma.

Next, decompose un l in the following manner:
Z .1 ı /t Z t

unl .t / D   i e i .t  /• F .u.// d      i e i .t  /• F .u.// d D  v.t / C  w.t /; 0
.1 ı /t

for some ı  >  0 sufficiently small, to be specified later.

Lemma 2.2. For any t 2  Œ0;1•,

(2.12) kv .t /kL 1  .  
ı1=2 t 1=2 ;

and

(2.13) kr v . t / kL 1  .  
ı t

Proof. By the dispersive estimate, since kukL 3 .  kuk P 1=2 is uniformly bounded on Œ0;1•,
Z .1 ı /t Z .1 ı /t

kv .t /kL 1  .   
0

ei .t  / • F .u/ d
L 1  

.  
0 jt      j3=2 kuk3

3 d .  
ı1=2t 1=2  To

prove (2.13), observe that by the product rule,

Interpolating,

(2.14)

with

(2.15)

we have

(2.16)

r F . u /  D  2juj2r u C  u2ruN:

kjr j1=2 ul kL 2  .  kjr j1=2 u0kL 2 .  1;

t 15
=

14kjr j11=7 ul kL 7  .  kjr j11=7 u0kL7=6 .  1;

t 1=2 kr u l kL 3  .  1:

Making a dispersive estimate and using (2.16),
Z .1 ı /t Z .1 ı /t

 
0

ei .t  /• juj2 r ul ./ d
L 1  

.  
0 jt      j3=2 kr ul ./kL 3  kuk2

3 d

.1 ı /t

.  
0 jt      j3=2 jj1=2 

d .  
ı t

The same computation may also be made for u2ruN l .
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Next, consider the contribution of juj2 r un l . By (2.5), we can, without loss of gener-
ality, consider only one P  Littlewood–Paley multiplier, provided the estimate is uniform in
2j=2kP F .u/kL t  L x  

:

juj2 .r P unl / D  jP j  u j2 . r P  unl / C  2 R e . . P > j  uN /.Pj uN //.r P unl / C

j P > j  u j2 . r P  unl /:

Using the bilinear Strichartz estimate in (2.9), as well as (2.11) and the Cauchy–Schwartz
inequality,

(2.17) kjuj j 2 . r P  unl /kL2 L1 .Œ0;1•R 3 / .  
X      

k.P 1 u/.P r un l /kL t ; x  
kP 2 u k L 1 L 2

j 1 j 2 j

. 2j1 =2 2 j2 =2 2j=2kP F .u/kL 1 L 2       kjr j1=2 P 1 u0kL 2 C  kjr j1=2 P 1

F .u/kL 1 L 2  j 1 j 2 j

 kjr j1=2 P 2 u0kL 2 C  kjr j1=2 P 2 F .u/kL 1 L 2        .  1:

Also, by Bernstein’s inequality and Lemma 2.1,

k j r P  un l j jP> j  uj.jPj  uj C  j P > j  uj/kL2 L1

.  kjr j1=2 P un l kL 2 L 6  kjr j1 = 2 P> j  u k L 1 L 2  k u kL 1 L 3  .  1:

Therefore,
Z .1 ı /t Z .1 ı /t

(2.18) 
 

0
ei .t  /• juj2 r un l ./ d

L 1  
.  

0 jt      j3=2 
kjuj2 r un l kL1  d 

.  
ı t  

kjuj2

r u n l kL 2 L 1  .  
ı t

The same computation can be also be made for u2ruN nl . This completes the proof of
Lemma 2.2.

Lemma 2.3. For any t 2  Œ0;1•,

(2.19) kjr j1=2 w.t /kL 3 .  
ı1=4t 1=4

Proof. First observe that by interpolation, Bernstein’s inequality, and (2.16),

(2.20) kjr j1=2ei t •u0kL 3 .  t 1=4kr ei t • Pt  1=2 u0kL 3 C t  1=4kPt  1=2 u0k P 1=2 . t  1=4:

Also since ei t • is unitary in L2 ,  by (2.1) and (2.2),

(2.21) kv.t /kH 1=2 D  kun l ..1      ı/t /kH 1=2 .  kjr j1=2 ukL t L
18=5 kuk2 

t ;x 
.  2:

so interpolating (2.12), (2.13), and (2.21),

4=3

(2.22) kjr j1=2vkL 3 .  kjr j1=2vk1=3 kjr j1=2vk2=3 .  0
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Finally, making a dispersive estimate, for any t 2  Œ0;1•, by (2.20) and (2.22), if ı1=4   ,
Z t

ı1=4t 1=4 ei .t  /• jr j1=2F .u/ d 
.1

ı /t
Z

(2.23) .  ı1=4t 1=4 kjr j1=2u./kL 3 ku./k2
6 d .1

ı /t

.  sup ı1=4 t 1=4kjr j1=2ukL 3     
3 .  4 C sup ı1=4t 1=4kjr j1=2wkL 3     

3:
t2Œ0;1•                                                                                      t2Œ0;1•

Thus, absorbing the second term on the right-hand side into the left-hand side of (2.23)
proves (2.19):

kjr j1=2 w.t /kL 3 .   
1=4

0 
1=4

Remark. To make the proofs of Lemmas 2.2 and 2.3 completely rigorous, truncate u0 in
frequency. Then the bounds (2.12), (2.13), and (2.19) all hold on some open subset of
Œ0;1• that contains 0. Making the bootstrap argument using the proof of Lemma 2.3 gives
bounds on all of Œ0; 1• that do not depend on the frequency truncation of u0. Standard
perturbation arguments then give the lemmas.

Lemma 2.3 can be strengthened to an estimate on the H 1  norm of w.

Lemma 2.4. For any t 2  Œ0;1•,

kr w .t /kL 2  .  
ı1=4 t 1=4

Proof. Once again make use of the bilinear Strichartz estimate. Again by the product rule,

r F . u /  D  2juj2r u C  u2ruN:

First, by Strichartz estimates, (2.16), Lemma 2.3, and the Sobolev embedding theorem,
Z t

e i .t  /•Œ2juj2rul C  u2ruN l • d .  k2juj2r ul C  u2ruN l k 2     6=5

.1 ı /t

.  ı1=2 t 1=2 kr ul kL1 L3 .Œ .1 ı /t ;t •R 3 / kukL1 L3 .Œ .1 ı /t ;t •R 3 / kjr j1=2 ukL1 L3 .Œ .1 ı /t ;t •R 3 /
1=4

.  
t 1=4

Next, by (2.19), bilinear Strichartz estimates in (2.9), and the Littlewood–Paley theorem,

k2juj j 2 . r P  unl / C  .u j  / 2 . r P  uNnl/k 2     6=5

.  
X  

2 k=2
 X  

2 j 1 C k jP  1 Ck uj2
1=2  X  

2 j 1  22
j jP 1 uj2jP unl j2

1=2

6=5

k0 j 1 j j 1 j                                                                                   t

. 2 k =2kjr j1=2u.t /kL t L3 .Œ.1 ı /t ;t •R 3 /
k0

 
 X  

kP 1 u0k2 
1=2 C  kP 1 F .u/k2

1 L2 

1=2
2j=2kP F .u/kL 1 L 2  j 1 j

.  
ı1=4t 1=4 kjr j1=2 P F .u/kL 1 L 2  :
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Next, by Bernstein’s inequality and (2.19)–(2.21),

. r P  unl /juj jjujL t L
6 = 5

1=4 1=4 1=2 2 1=2
L 1 L 3 .Œ . 1  ı /t ;t •R 3 / L t  Lx .Œ.1 ı /t ;t •R /

.  
ı1=4t 1=4 kjr j1=2 P F .u/kL t  Lx .Œ0;1•R 3 /:

Summing up in j  using Lemma 2.1 completes the proof.

Remark. The above arguments would work equally well in the time interval Œ 1; 0• .

3. Global well-posedness

We are ready to prove Theorem 1.4. The proof will use conservation of the energy (1.4).
Decompose

u.1/ D  vQ.1/ C  w.1/;

where

(3.1) vQ.1/ D  ul .1/ C  v.1/;

and w.1/ is the w in the previous section. Let T0 >  1 be a time value for which we know
that (1.1) has a solution on Œ0; T0/. By standard local well-posedness arguments and we
know that such a T0 exists. Then on Œ1;T0/, decompose

u.t / D  vQ.t/ C  w.t /;

where vQ.t/ is the solution to

(3.2) .i@t C  •/vQ.t/ D  0; vQ.1/ D  vQ.1; x/;

and w.t / is the solution to

(3.3) .i@t C  •/w D  juj2u; w.1/ D  w.1; x/:

Let E . t /  denote the energy of w,
Z Z

E .t /  D  
2

jr wj2 C  
4

jwj4:

First observe that Lemma 2.4 and kw.1/k P 1=2 .  1 implies that E .1/  <  1 .  The estimate
kw.1/k P 1=2     is a consequence of Lemma 2.1 and the definition of w. To prove The-
orem 1.4, it suffices to prove that for any T0 >  1 such that (1.1) has a solution on Œ0;T0/,

(3.4)  sup E . t /  <  1 :
t2Œ1;T0/
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Indeed, by interpolation and the Sobolev embedding theorem, E . t /  <  1  implies that
kw.t /kL 5 <  1 .  Meanwhile, by (2.14)–(2.16), (2.12), and (2.21), kvQ.t /kL 5 is uniformly
bounded on R .  Therefore, (3.4) implies

kukLt ;x .Œ0;T0 /R3 / <  1 :

To estimate the growth of E .t /, compute the derivative in time of the energy. By (3.3),

dt 
E . t /  D   h•w; wt i C  hjwj2w; wt i D  hjwj2w      juj2u; wt i;

where h; i is the inner product
Z

hf; gi D  Re f .x/gN .x/ dx:

By the product rule,

hwt ; juj2u      jwj2wi D  
dt 

hjwj2w; vQi C  
dt 

hjvQj2; jwj2i

(3.5) C  
2 dt 

Re wN2vQ2 C  
dt 

hw;jvQj2vQi      2hvQtvQ; jwj2i

     hjwj2w; vQti      Re w2vQvQt      2hw; jvQj2vQti      hw;vQ2vQti:

Then define the modified energy,
Z

E .t / D  E .t /       hjwj2w; vQi      hjvQj2; jwj2i   
2 

Re w2vQ2      hw; jvQj2vQi:

By Hölder’s inequality, and the fact that kvQkL 4 . ı  1 for all t 2  Œ1;1/ (again using (2.14)–
(2.16), (2.12), and (2.21)),

Z
hjwj2w; vQi C  hjvQj2; jwj2i C  

2 
Re w2vQ2 C  hw;jvQj2vQi .  E .t /3=4 C  E.t /1=4:

Therefore, when E .t /  is large, E . t /   E .t /. Since we are attempting to prove a uniform
bound for E .t /, it is enough to uniformly bound E .t /.

Also, by (3.5),
Z

dt 
E .t / D   hjwj2w; vQti      2hvQtvQ; jwj2i      Re w2vQvQt      2hw; jvQj2vQti      hw;vQ2vQti:

Since vQ solves (3.2), vQt D  i•vQ D  i •ul C  i •v.
Lemma 2.2 implies that for any t >  1,

Z .1 ı /
(3.6) kv .t /kL 1  C  k r v . t / kL 1  D   

0
ei .t  / • hr iF .u/ d

L 1  
.  

ı3=2t 3=2

Therefore,

hjwj2w; i•vi D   hr .jwj2 w/; i r v i .  k r v k L 1  kr w kL 2  kwkL4 . ı  t 3=2 E .t /:

Remark. Since ı  >  0 is fixed, we will ignore it from now on.
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Also, by Hölder’s inequality and (1.8),

hi•.ei t • u0/; jwj2wi .  kjr j11=7 ul kL 7  kr wk3=7 kwk18=7 .  
t 15

=
14 E.t /6=7:

This takes care of the contribution of hvQt; jwj2wi.
Next, integrating by parts,

(3.7) 2hi.•vQ/vQ; jwj2i D   2hi jrvQj2; jwj2i      2hi .rvQ/vQ; rjwj2i D   2hi.rvQ/vQ; rjwj2i:

Then by Hölder’s inequality and (3.6), since kvQkL 4 .  1,

hi .rv/vQ; r jwj2i .  k r v k L 1  kvQkL 4 kwkL 4 kr w kL 2  .  
t 3=2

E.t /3=4: Also, by Hölder’s inequality and interpolation,

(3.8) hi .r ul /.ul /; r jwj2 i .  k r u l kL x      kul kL 4 kr w kL 2  kwkL 4 .  
1 

t 1=8 E.t /3=4:

Finally, by (3.6), and Lemma 2.1, which by the Sobolev embedding theorem and the defin-
ition of v implies kvkL 3 .  1

(3.9) hi .r ul /v ; r jwj2 i .  k r u l k L 1  kvk3=4 kvk1=4 kr w kL 2  kwkL 4 .  
t t 3=8 E.t /3=4:

In (3.8) and (3.9) we used:

Lemma 3.1. For any t  0,

(3.10)

and

(3.11)

kul kL 4 .  
t 1=8 ;

k r u l k L 1  .  
t

Proof. This is proved by interpolating (2.14)–(2.16). By Bernstein’s inequality, (2.15),
(2.16), and the Sobolev embedding theorem,

(3.12) k r P t  1=2 u l k L 1  C  k r P t  1=2 u l kL 1  .  
t

Also by the Bernstein inequality and the Sobolev embedding theorem, along with (2.16)
and ul 2  H 1=2,

(3.13) kPt  1=2 ul kL 4  C  kPt  1=2 ul kL 4  .  
t 1=8

This proves the lemma.
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The contribution of 2Re
R 

w2vNvNt may be estimated in a similar manner as the contri-
bution of (3.7), except that there is an additional term to consider,

 2 Re iw2.rvQ/2:

Interpolating (3.11) with (2.16),

 2 Re iw2.ruN l /2 .  kr ul k2
4 kwk2

4 .  
t 5=4 E .t /1=2:

Meanwhile, following (2.17) and using Strichartz estimates,

juj j 2 . r P  unl /L1 L3=2 .Œ0;1•R 3 / .  
X      

k.P 1 u/.P r un l /kL t ; x  
kP 2 ukL 2 L 6

j 1 j 2 j

. 2j1 =22 j2 =2 2j=2kP F .u/kL 1 L 2  .kjr j1=2 P 1 u0kL 2 C  kjr j1=2 P 1 F .u/kL 1 L 2  /
j 1 j 2 j

 .kjr j1=2 P 2 u0kL 2 C  kjr j1=2 P 2 F .u/kL 1 L 2  / .  1:

Plugging this estimate into (2.18) implies that for t >  1,
     Z .1 ı /

r  
0

ei .t  /• F .u/
L3  

.  
t 1=2

Interpolating (3.6) with (3.10),

 2 Re iw2.rvQ/2 .  krvQk2
4 kwk2

4 .  
t 3=2 E .t /1=2:

Now treat

(3.14) 2hw;jvQj2vQti C  hw;vQ2vQti D  2hw; jvQj2.i•vQ/i C  hw; vQ2.i•vQ/i:

After integrating by parts, by (2.13) and (3.11),

.3.14/ .  hjrvQj2; jvjjwji C  hjrvQjjrwj; jvj2i

.  krvQk2
4 kvQkL 4 kwkL 4 C k r w kL 2  kr vQ kL 1  kvQk2

4 .  
t 5=4 E .t /1=4 C

t
 E.t /1=2kvQ.t /kL 4 :

Interpolating (3.6) with kvk 3 .  1 implies kvk 4 .  t  3=8. Meanwhile, (3.10) implies
kul kL 4 .  t  1=8, so therefore, by (3.1), kvQkL 4 .  1=t 1=8. Therefore, we have proved

(3.15)
dt 

E .t / .  
t 15

=
14 .1 C  E .t //:

By Gronwall’s inequality, (3.15) implies a uniform bound on E .t /. This implies a uniform
bound on E .t /, since E . t /   E .t / when E . t /  is large, which proves Theorem 1.4.
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