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Global well-posedness for the defocusing, cubic nonlinear
Schrédinger equation with initial data in a critical space

Benjamin Dodson

Abstract. In this note we prove global well-posedness for the defocusing, cubic
nonlinear Schrodinger equation with initial data lying in a critical Sobolev space.

1. Introduction

In this note, we discuss the defocusing, cubic, nonlinear Schrodinger equation in three
dimensions,

(1.1) iu¢ C euD F.u/ D juj?u; u.0;x/ D up 2 H*<2.R3/:
Equation (1.1) has a scaling symmetry. For any > 0, if u solves (1.1), then
(1.2) u.t;x/ D u.2t; x/;

also solves (1.1). The initial data ug.x/ has H 1=F .R3/ norm that is invariant under the
scaling (1.2).

The local theory for initial data lying in HF'=2 .R3/ has been completely worked out,
and the scaling symmetry has been shown to control the local well-posedness theory.
Theorem 1.1. Assume uo 2 H¥=2.R3/, kuok, 4-> g3, A. Then there exists 1 D 1.A/ such
that if ke”'uokLt;x_,Rss/ < 1, then there exists a unique solution to (1.1) on 1 R3 with u 2

C.I1H*2.R3/F and
kukL%;x'|R3/ 21

Moreover, if ug, ! uo in H'=2.R?/, then the corresponding solutions u, ! uin
C.IIHP=2.R3//.

This theorem was proved in [3].
From this, it is straightforward to show that local well-posedness holds for (1.1) for any
initial data up 2 HF1=2.R3/. Indeed, by the dominated convergence principle combined
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with Strichartz estimates, for any ug 2 HF*=2.R3/,

(1.3) T“grg keit.uokLt;f’-CE TTr3/ DO

Since 1.A/ is decreasingas A % C 1, Strichartz estimates imply that there exists 1o > 0
such that if kuokyi-2 g3, < 10, (1.1) has a global solution that scatters. By scattering, we

mean that there exist u§, ug so that
t|Iicm1 kut/ e ugkye D O;

and
tlIim1 ku.t/ e""u kyp-> D O:

However, it is important to note that while (1.3) holds for any fixed up 2 HR=2.R3/,
the convergence is not uniform, even for kuokkrlzz o3 A < 1. Thus, one cannot con-
clude directly from [3] that a uniform bound for ku.t/k p1-2 _3,0n the entire time of the
existence of the solution to (1.1) implies that the solution is global. This result was instead
proved in [9], using concentration compactness methods.

Theorem 1.2. Suppose that u is a solution of (1.1) with initial data up 2 H*=2.R3/ and a
maximal interval of existencel D .T ;Tc/. Also assume that sup,, ¢ .Tc/ku.t/kml:z Q3

DA< 1. ThenTc.ug/ D C1, T .uo/D 1, and the solution u scatters. /

It is conjectured that (1.1) is globally well-posed and scattering for any ug 2H'=2.R3/,
without the a priori assumption of a universal bound on the H1® norm of the solu-tion
u.t/. Partial progress has been made in this direction.

A solution to (1.1) has the conserved quantities mass,

Z
M.u.t// D  ju.t;x/j>?dx D M.u.0//;

and energy,
lz 1Z
(1.4) E.u.t//D > jru.t;x/j2dx C 2 ju.t; x/j% dx:

This fact implies global well-posedness for (1.1) with up 2 H!.R3/, where H!.R3/ is
the inhomogeneous Sobolev space of order one. In this case, one could also prove bounds
on the scattering size directly, using the interaction Morawetz estimate of [5].

Theorem 1.3. If uis a solution to (1.1), on an interval |, then

(1.5) kuk‘tﬁ;x'm” . ku kLzlle.;R3/ kuk? TRESTCYE E.u/*2M.u/3=2:

Interpolating (1.4) and (1.5) then implies

(1.6) kukis, M.u/374E.u/34;
t

4 .
< -1R3/
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with bounds independent of | R. Combining Strichartz estimates and local well-posed-
ness theory, a uniform bound on (1.6) forany | R directly implies a uniform bound on

ku kLtS»x N R3/:
The argument from [3] implies that proving scattering is equivalent to proving
(1.7) kUkL{’;X.RR3/ <1:

Indeed, assuming that (1.7) is true, the interval R may be partitioned into finitely many
pieces J such that
kukL_:,;x_JkR3/ K

Then iterate the argument over the intervals Ji, which proves scattering.
This argument also shows that a solution to (1.1) blowing up at a finite time Tp < 1
is equivalent to
kUkLt-r;’x.(IO;To/RZ'/ D1:

Remark. Prior to [5], [8] and [10] proved scattering using the standard Morawetz estim-
ate. See [12] for more details on Strichartz estimates.

Many have attempted to lower the regularity needed in order to prove global well-
posedness. For any s > 1=2, the inhomogeneous Sobolev space H*.R3®/ H!=2.R3/.
Therefore, if up 2 Hj.R?’/, then it would be conjectured that the solution to (1.1) with
initial data ug is global and scatters.

Proving a uniform bound on the H$.R3/ norm would be enough, since by interpola-
tion this would guarantee a uniform bound on the I-F,}ZZ.R3/ norm. The difficulty is that
there does not exist a conserved quantity at regularity s that controls the HS norm for
1=2< s< 1.

Instead, [2] used the Fourier truncation method (see also [1] for the cubic problem in
two dimensions). Decompose the initial data

UuoD PyupC PsyugD vogC wo:

Thenvo2 H'.R3/, and kWOkH’1=2, R3S small. Thus, (1.1) has a global solution for initial
data vo or wpo, call them v and w. Since (1.1) is a nonlinear equation, it is necessary to
also estimate the interaction between v and w in the nonlinearity of (1.1). Then, [2]
proved global well-posedness for (1.1) with initial data ug 2 Hj.R3/ when s > 11=13.
Moreover, [2] proved that the solution is of the form

e uo C v.t/; wherev.t/2 HL.R3/.

The results from the Fourier truncation method for (1.1) were improved using the
I-method. First, [4] improved the regularity necessary for global well-posedness to s>5=6.
Then, [5] improved the necessary regularity to s > 4=5. To the author’s best knowledge,
the best known regularity result is the result of [11], proving global well-posedness and
scattering for regularity s > 5=7. For radial initial data, [6] proved global well-posedness
and scattering for any s > 1=2. This result is almost sharp at high frequencies.
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In this paper, we study the cubic nonlinear Schrédinger equation (1.1) with initial data
lying in the Sobolev space WX7=6;11=7.R3/. That is,
kjrj11=7U0kL7:5.R3/ < 1:

Remark. This norm is well-defined using the Littlewood—Paley decomposition. See for
example [13].

This norm is preserved under the scaling (1.2), and is therefore a critical Sobolev norm.
Moreover, W,/=®11=7 R3/ H1%2 R3/, 50 (1.1) has a local solution for this initial data. We
prove global well-posedness for (1.1) with this initial data.

Theorem 1.4. The cubic nonlinear Schrodinger equation is globally well-posed for initial
data uop 2 W /=117 R3/.

The proof of this theorem will heavily utilize dispersive estimates. Interpolating be-
tween the fact that e't* is a unitary operator,

keit'UQkLz_Rs/ D kuok 2 g3/;

and the dispersive estimate,
ite 1 .
ke UokLl_R3/ . t3=_zku0kL1-R3/'
gives the estimate

e 1
(1.8) ket uoky 7 g3, - tmkuOkth_Rs/i

This implies that the linear solution e'**ug has very good behavior whent > 1, in fact
it is integrable in time. We then rescale so that up has a local solution on an interval (E1; 1e.
We prove that this solution may be decomposed into

u.t/D et upC v.t/C w.t/:

In particular, A
ul/D e uC v.1/C w.1/:

The term

el.t 1/e el uo D elt' Uo

has good properties when t > 1. We can also show that

) 1
.t 1/e .
kre' V.l/kLl . t3:—2,

which also has good properties when t > 1. Finally, w.1/ 2 Hi and has finite energy.
Making a Gronwall argument shows that

kut/ et uo et Y'v.l/k,y

is uniformly bounded on (5,1 /. This is enough to give global well-posedness, but not
scattering.
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This result could be compared to the result in [7] for the nonlinear wave equation.
There, the author proved global well-posedness and scattering for the cubic wave equa-
tion with initial radial data in the Besov space 512,-1 Bi;l. Here, we do not require radial
symmetry, however, we only prove global well-posedness. We are unable to prove scatter-
ing at this time due to the lack of a scale invariant conformal symmetry.

We prove a local well-posedness result in section two, and a global result in sec-tion
three. This argument could be generalized to many intercritical, defocusing nonlinear
Schrodinger equations.

2. Local well-posedness

The Sobolev embedding theorem implies that W,”=%**=7 .R3/ is embedded into H1=2.R3/.
Therefore, (1.1) is locally well-posed, and there exists some T .up/ > 0such that (1.1) hasa
solution on (ET; T ¢ and kuk S ErR ] D o, for some o.kugk Prl:z/ small. After
rescaling using (1.2), suppose  ©

(2.1) kukLt__Sx_(I 1;1R 3/ D 0-

Since .3; 18=5/ is an admissible pair, Strichartz estimates imply

(2.2) kjrj1=ZUkL[1L2x\L2{.6,(CE 1,1R 3/

kjrj1:2U0kLX2.R3/ ¢ kjrj1:ZUkL3tL1§:5,c£ 1;1R 3/kUkLtif?c£ LR 3/°
Therefore,
(2.3) kjrj1=2ukk1L2x\Lzl-6 (E 1;1R 3/ - kuok Ri=2'
Also, by Duhamel’s principle, forany t 2 (E1; 1p
Z t
(2.4) ut/D etug i et /*F.u.//d D u;.t/C un.t/:0

Remark. Recall from (1.1) that F.u/ D juj?u.

We begin with a technical lemma. This lemma allows us to make a Littlewood—Paley
decomposition of uy,, treat each P Ynl separately, and then sum up. It also implies that
un retains all the properties of a solution to the linear Schrédinger equation with initial
data in a Besov space.

Remark. In this section, all implicit constants depend on the norm kuokyy 7-6:11-7.

Remark. Throughout this section we rely very heavily on the bilinear Strichartz estimate
k.eit'PjUO/.eit.PkVo/kLt;zX.RRs/ .2 0=2kkp upki2 kPyvok2:

See [1] for a proof.
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Lemma 2.1. Let P; be the customary Littlewood—Paley projection operator. Also suppose
that u is a solution to (1.1) satisfying (2.1). Then

X i=
(2.5) 2172 kP Fu/kaoe 11k 270 L
Proof. Decompose the nonlinearity,
P;F.u/DP;F.Pj 3u/C3P ;.Pj 3u/%.Pj 3u//C3P ..p 3jc3u/.P; 3u/’/:

By Bernstein’s inequality, and (2.2),

(2.6) 272 kP’ F.P; su/kis & g0k 3/ _ X 3
21=2kp; 3uk3m_(E Ly 277 2 '=6kjrj1=6P|ukLt3L§
lj 3
Next,
(2.7) 2172 p j'Pj 3U/2.Pj 3u//L1L2.(I L1k 2/
- X I 2
2J—2 2 |_4kJrJ1_4P|ukL?;L3x6=7 kUkLt3LX9:
lj 3
Finally, by the bilinear Strichartz estimate
(2.8) k.eit.Pon/.eit.P|1Uo/kLt;i.RRs/ .2 j=2 2'1 kP Upkl_z kP|1Uok|_z;
combined with the principle of superposition and (2.4),
(2.9) k.PJ- U/.P|1U/k|_t2.x
2 12221 kp; uok,> C kP, F.u/kgi2/ kP uoki2 C kP Fou/kis 2 /;

and the Sobolev embedding properties of Littlewood—Paley projections,

.=2 2
27%k. j 3jc3u/.Pj 3u/ kLle.GEtl,'(lR 3/

Py X X
.27 k.Pi,u/.Pj 3jC3U/k|_t.x 2 kP|ZUk|—t2|-i

l1j 3 l1l2j 3
(2‘10) 1) 112])

X
kjrjlzzukLtng 2'1.j 1/ kPj 3jcauokL 214j
3

C kPj 3jc3F .u/kL1th ka|1uOkL2 C kl:’|1|:.u/k|_1|_2t:x
By Strichartz estimates, (2.3), Plancherel’s theorem, and the fractional product rule,

X X -
27 kP uok?> C 27 kP, F.u/kLzlthxG Lar 3 - Kuok? ., C kjrjl‘ZF.u/kLzll_zx
i i
kU()k2

o i1=2 2 4 _
HF 122 C kijrj UkL 31875 kUHtst L
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Combining (2.6)—(2.10) with the Cauchy—Schwarz inequality implies
X

(2.12) 2172 kP, Fu/koge e pars - L
i

which proves the lemma. [ ]

Next, decompose u,, in the following manner:
z 1o/t z t

Un.t/D i et /*F.u//d i et *F.u.//d D v.t/C w.t/;0
1o/t

for some 1 > 0 sufficiently small, to be specified later.

Lemma 2.2. For anyt 2 (EQ; 1e

(2.12) kv.t/k . ﬁ;

and

(2.13) krv.t/kp . %

Proof. By the dispersive estimate, since kukc s . kuk,pi1-, is uniformly bounded on CEG; 1e
Z 1 Zaae 4 1

kv.t/ki . . el t /-F.u/dLl. . FR=: uk®; d . 15712

prove (2.13), observe that by the product rule,
rF.u/ D 2juj?ru C u?ri:

Interpolating,

(2.14) kjirj**2uike2 . kjrji**2uokc2 . 1;

with

(2.15) t8 Mkjrit* urke s . kjrjt** uokyrss . 1;

we have

(2.16) t22krujkes . 1:

Making a dispersive estimate and using (2.16),

z 1o/t z 1o/t 1
it e :2 2
. e juj ru|./dL1. . e ru,./kcskuk 3Ld

Zaare 1 1
o Jt P2 ot

The same computation may also be made for u2r,.
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Next, consider the contribution of juj?ru,,. By (2.5), we can, without loss of gener-
ality, consider only one P ; Littlewood—Paley multiplier, provided the estimate is uniform in
272kP Fru/ky a0

juj?.rPjua/ D jPjuj?.rP yn/C 2Re..P5jN/PjN//.rP uy/C
iP>juj?.rP up/:

Using the bilinear Strichartz estimate in (2.9), as well as (2.11) and the Cauchy—Schwartz
inequality,

X

(2.17) kju;j%.rp }—'nl/kLZth.G;o;ln 3 k.P; u/.P; run|/kLt2l_kaj2u kLtlex

j1j2i
201722 1272 2072Kp FLu/kya 2 kirjtT?Py uokiz C kjrjtT?R

VA SEYESFVEY
kjrj*=2P juoki2 C kjrj'™?P jF.u/kpa2 . 1Lt
Also, by Bernstein’s inequality and Lemma 2.1,
kjrPjunjjPsjuj.jPjujC jP>juj/ki21

kjl"jlzzpj un|kL§L§ kjrj1:2P>jukLt1szkukLt1L5; .1

Therefore,
Z 1 _ Z 1 1
et Mjuitrug/d L KiuiR ek d
(2.18) © t oJt ) . kjuj?
1 11t
rquLle . 't tox -

The same computation can be also be made for u?ri,,. This completes the proof of
Lemma 2.2. ™

Lemma 2.3. For anyt 2 (EQ; 1e

(219) kjrj1=2W.t/kL3 . m

Proof. First observe that by interpolation, Bernstein’s inequality, and (2.16),

(2.20) kjrj*=%e'""uokis . t'*kre'"*P, 1ouokis Ct TT*KPy 12UoK pig. t T
Also since e't® is unitary in L2, by (2.1) and (2.2),

(2.21) kv.t/Kpiz D kupni..l  1/t/Kpps - kjrj1=2ukLt3L1:3:5kukfax A

so interpolating (2.12), (2.13), and (2.21),

4=3

. 122 2122 0 1=3 | :1=2,,2=3 0
(2.22) kjrj==cvkis . kjrji*=“vk=> kjrj vli2 © Teagia
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Finally, making a dispersive estimate, for any t 2 CEQ;1e by (2.20) and (2.22), if 11=%

0
z t
(1=4p1=4 et *jrjt*2F.u/d s
1/t L
(2.23) NERTERt ———5 kjri*”?u./kus ku./k?¢d 2
1/t L
sup 1M kGrit2ukes B4 sup 1Mkt lwkes
t2E0; 10 t2E0;1e

Thus, absorbing the second term on the right-hand side into the left-hand side of (2.23)
proves (2.19):
4

kjrj1=2w.t/kL3 . Iﬂh |
Remark. To make the proofs of Lemmas 2.2 and 2.3 completely rigorous, truncate ugin
frequency. Then the bounds (2.12), (2.13), and (2.19) all hold on some open subset of
(EQ; 1+ that contains 0. Making the bootstrap argument using the proof of Lemma 2.3 gives
bounds on all of (E}1e that do not depend on the frequency truncation of ug. Standard
perturbation arguments then give the lemmas.

Lemma 2.3 can be strengthened to an estimate on the HF* norm of w.

Lemma 2.4. For anyt 2 (EQ; 1e

1

krW.t/kLZ . |1Tt1=4

Proof. Once again make use of the bilinear Strichartz estimate. Again by the product rule,
rF.u/ D 2juj?ruC u?ri:
First, by Strichartz estimates, (2.16), Lemma 2.3, and the Sobolev embedding theorem,
Z t
et /*@2juj?ru, C urtN e d . k2juj?ru; C u?rtNk , es
1o/t L2 Lilx
|1=2t1:2kru|kL%L3XCE.1 R 3/kukL1{_3.¢'1 R 3/kjrj1:2UkL1L%.CEx1 etk 3/
1=4
I
11=4
Next, by (2.19), bilinear Strichartz estimates in (2.9), and the Littlewood—Paley theorem,
k2jujj2.rP pn/C .uj/?.rP Biy/k n
X 2 X ek PR 19 J; 2 2172
2 < 211545p 10k U] 2 112 0jP ,uj ij Unij;

ko j1i j1i

6=5
L2,
k=2p:.:1=2
2 kjrj U-t/kLt1 LB.EL 1/t;tR 3/
kO X

kP, uok? 13 C kP Frulk?a s

kjrjlzzpj F.u/kL%szi

1=2 .,
. 21=2kpP F.ljl/kl_1|_2j1tj )

t

|1=4t1=4
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Next, by Bernstein’s inequality and (2.19)—(2.21),

.r P Jun|/jqujuth L6=52

1=4_1=4
| t

S 1=2 2 122
kjrj UkthL3,gE.1 e 3, KITE TPiunik g se s yeer 2

Pil=2 .
m kJ rj PJ F 'u/kLtlegCEO,‘IR 37+

Summing up inj using Lemma 2.1 completes the proof. [

Remark. The above arguments would work equally well in the time interval CE 1; Oe.

3. Global well-posedness

We are ready to prove Theorem 1.4. The proof will use conservation of the energy (1.4).
Decompose
u.l/D @.1/C w.1/;

where
(3.1) Q.1/D u,.1/C v.1/;

and w.1/ is the w in the previous section. Let Tp > 1 be a time value for which we know
that (1.1) has a solution on (3 To/. By standard local well-posedness arguments and we
know that such a To exists. Then on (E1; To/, decompose

u.t/D @Qt/C w.t/;
where Q.t/ is the solution to
(3.2) i@:C ¢/t/D 0; @.1/D Q.1;x/;
and w.t/ is the solution to
(3.3) i@: C ¢/wD juju; w.1/D w.1;x/:

Let E.t/ denote the energy of w,
1Z 1Z
E.t/D = jrwj?C = jwj*:
/ 5 drwi 7 W

First observe that Lemma 2.4 and kw.1/ka1=2 . limpliesthat E.1/ < 1. The estimate
kw.1/kH:1:2 is a consequence of Lemma 2.1 and the definition of w. To prove The-
orem 1.4, it suffices to prove that for any To > 1 such that (1.1) has a solution on E0; To/,

(3.4) sup E.t/< 1:
t2GE1;To/
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Indeed, by interpolation and the Sobolev embedding theorem, E.t/ < 1 implies that
kw.t/kLs < 1. Meanwhile, by (2.14)—(2.16), (2.12), and (2.21), k@Q.t/kts is uniformly
bounded on R. Therefore, (3.4) implies

kukys @o;rorre/ < 1:
To estimate the growth of E.t/, compute the derivative in time of the energy. By (3.3),
aE.t/ D hew;w:iC hjwj?w;wti D hjwj?w  juj?u; wii;
where h; i is the inner product

VA
hf;gi D Re f.x/#N.x/dx:

By the product rule,

d d
hwy; juj?u  jwjwi D Ehjwjzw;(aic ahjﬁjz;jwjzi
z
1d d
(3.5) C =—Re W2@2C —hw;j@j?Qi 2h@:D;jwij.i
2 dt , dt 2
hjwj?w; @:i  Re  w’@  2hw;j@j* @i hw; @ i

Then define the modified energy,
Z

1
E.t/D E.t/ hjwjw;@i hj@j?; jwj ERe w2®?  hw; j@Qj*Qi:

By Holder’s inequality, and the fact that k@krs ., 1 forallt 2 (E1;1/ (again using (2.14)—
(2.16), (2.12), and (2.21)),

hjwj?w; Qi C hj@j?; jwj%i C %Re w22 C hw;j@j°@i. E.t/37%C E.t/¥%:

Therefore, when E.t/ is large, E.t/ E.t/. Since we are attempting to prove a uniform
bound for E.t/, it is enough to uniformly bound E.t/.
Also, by (3.5),
d V4
Bt/ D hiwPw@d 2halljwi,i Re  wdBk 2hw;j@it@di hw; @, B
Since @solves (3.2), @: D i@ D ieu; C iev.
Lemma 2.2 implies that forany t > 1,

z 1./
: i oL . 1
(3.6)  kv.t/ki: C krv.t/ki1 D . eitt / hrlF.u/dL1 S I
Therefore,
1
hjwj?w;isviD hr.jwj?w/;irvi. krvkiikrwke2kwkZ ., t3TZE.t/:

Remark. Since 1 > 0 is fixed, we will ignore it from now on.



B. Dodson 1098

Also, by Hélder’s inequality and (1.8),

ite A S . .11= = - 1 _
hie.e'** uo/; jwj?wi. kjrjt*="u kL krwk3L72kwk1f47. tlS_TE't/G_7:

This takes care of the contribution of h@y; jwj2wi.
Next, integrating by parts,

(3.7) 2hi.e@/@jwj?iD 2hijr@j?;jwj%i  2hi.r@/ @ rjwj?iD  2hi.r@/ @ rjwj?i:

Then by Hélder’s inequality and (3.6), since k@Qkra . 1,

1

hi.rv/¥; riwj?i. krvky: k@kiakwkeakrwke 2 . 2

E.t/3°%: Also, by Holder’s inequality and interpolation,
. N 11 3=4
(3.8) hicrup/.u/;rjwji . krujkyp kujkea krwke 2 kwkt 4 '?t_H‘E't/ :

Finally, by (3.6), and Lemma 2.1, which by the Sobolev embedding theorem and the defin-
ition of v implies kvkLs . 1

(3.9) hi.rui/v;rjwj?i. krujkg kka’é4 kvkiszrkaz kwkLa . 11! E.t/34:

t 38
In (3.8) and (3.9) we used:

Lemma 3.1. Foranyt O,

1
(3.10) ku ke a . F‘;
and

1
(311) krU|k|_1 . t—

Proof. This is proved by interpolating (2.14)—(2.16). By Bernstein’s inequality, (2.15),
(2.16), and the Sobolev embedding theorem,

(3.12) kl’F’t 1:2U|k|_1 C kl'l'."t 1:2U|k|_1 . i -

Also by the Bernstein inequality and the Sobolev embedding theorem, along with (2.16)
and u; 2 H1=2,

(3.13) kP, 12ujkLa C kP, 12ujkia . (18

This proves the lemma. [ ]
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R
The contribution of 2Re  w?N¥; may be estimated in a similar manner as the contri-

bution of (3.7), except that there is an additional term to consider,
Z

2Re iw?.rd/?:
Interpolating (3.11) with (2.16),
Z
. 1 _
2Re iwZriN /2. kruk? kwk?, . t5—=4E.t/1 2.

Meanwhile, following (2.17) and using Strichartz estimates,
X
jujj2.rp UP'/L1L3=2.tCEg;1R 3 k.P;,u/.P, "Unl/kLtz;kaJZUkaLi
j1j2i
201722 12729072kpy FLu/kya 2 kirj 2Py uokiz C kjrjt TR FLu/kiaz/
j1i2i
Kkjrj*=2P juokL2 C kjrj'=2p jFou/kpz/. L

Plugging this estimate into (2.18) implies that fort > 1,
z 1/
r et /*Fu/ .
0 L3
Interpolating (3.6) with (3.10),
VA

. t1=2_
1
s, 2 2 2 2 1=2,
2Re iw?.rd/? . kr@k?ikwk?, . t3—=2E.t/ :
Now treat
(3.14) 2hw; j@),@:i C hw; @%Rii D 2hw; j@j2i@/i C hw; @2 ie @/
After integrating by parts, by (2.13) and (3.11),
.3.14/ . hjr@j?; jvijwji C hjr@jjrwj; jvj?i
1 2l .
kr@k? sk@keakwke s Ckrwki 2 kryQ kit k@Qk®, . t—5=4E.t/1‘4C—t E.t/*"2ka.t/ka:

Interpolating (3.6) with kvk s . 1 implies kvk a . t 38 Meanwhile, (3.10) implies
kujkia . t 78, so therefore, by (3.1), k@kLs . 1=t Therefore, we have proved

d
(3.15) EE.t/. ETEY

By Gronwall’s inequality, (3.15) implies a uniform bound on E.t/. This implies a uniform
bound on E.t/, since E.t/ E.t/ when E.t/ is large, which proves Theorem 1.4.

.1C E.t//:
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