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Abstract

The use of invariant response functions in treatments of electron scatter-

ing from hadronic targets is reviewed. Various classes of reaction are treated,

building from the simplest (and best known) case of inclusive scattering from

unpolarized targets, to more complicated cases involving polarized electrons

and possibly polarized spin-1/2 targets. In particular, the general structure of

semi-inclusive polarized electron scattering from polarized spin-1/2 targets is

emphasized. A summary is presented of how the leptonic and hadronic tensors

that enter in the formalism are constructed in a general covariant way in terms

of kinematic factors that are frame dependent but model independent and in-

variant response functions which contain all of the model-dependent dynamics.

In the process of reviewing the general problem the relationships to the conven-

tional responses expressed in terms of the frame-dependent helicity components

of the exchanged virtual photon are presented.
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1. Introduction and General Developments

Studies of electron scattering within the Plane-Wave Born Approximation

(PWBA) involve the contraction of the relatively simple electron tensor with

the tensor that captures the dynamical content of the system from which the

electrons are being scattered (see, for instance, [1] for a general overview of5

the subject). For the latter we have in mind hadronic systems, specifically

nucleons or nuclei. Typically this contraction of leptonic and hadronic tensors

is decomposed into the individual Lorentz components that are written in a

coordinate system oriented along and transverse to the direction of the virtual

photon exchanged between the electron and the hadronic system (see [2] and [3]10

and references therein for the specific conventions employed in the present work).

This approach has been employed for many decades and has proven to be useful

in that sometimes, for instance at very high energies, the various pieces of the

response are not all of similar importance and accordingly approximations may

be made; note, however, that this situation is not always the case. A drawback of15

this approach is that the response functions that enter are specific components of

the hadronic tensor and thus are not Lorentz invariant. This means that when

one wishes to inter-relate results in different frames of reference, for instance

between the target rest frame and a frame in which the electrons and target

hadrons are colliding, it becomes necessary to perform a Lorentz transform on20

the second-rank hadronic tensor.

In contrast, at least within the context of inclusive electron scattering, it

is well-known that the tensor contraction may be written in terms of Lorentz

invariant response functions multiplied by simple kinematic factors. For ex-

ample, when scattering from unpolarized systems the familiar decomposition25

into Lorentz scalar response functions W1,2 is conventional (see later and [1]

for discussion of this simplest of cases). These two response functions may be

shown to be functions of two Lorentz scalar quantities, as will be discussed in
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detail later in this review. These ideas have been extended to more complicated

reactions in which some particle or particles in the final state may be detected30

in coincidence with the scattered electron or where the target is polarized. In

the present study we present a review of the general formalism for a selection

of these reactions employing invariant hadronic response functions throughout.

In the case of so-called semi-inclusive reactions where the incident electron is in

general polarized, where the target is assumed to be polarized and where one35

particle is detected in coincidence with the scattered electron (its polarization

is assumed not to be measured) we provide detailed arguments for the structure

of the tensor contraction and the resulting cross section, since this situation is

likely to be the most relevant in future experimental studies.

The paper is organized in the following way: in the present section some40

familiar general developments are summarized which involve the contraction of

the leptonic and hadronic tensors and include the specific forms for the electron

scattering tensors in the Extreme Relativistic Limit (ERLe). This is followed in

Sec. 2 with a review of the steps followed in developing detailed constructions

of the general hadronic tensors for several specific classes of electron scattering45

reactions. This is followed in Sec. 3 with several examples where the hadronic

tensors are expressed in terms of frame-dependent response functions, including

a discussion of how these are related to their counterparts written in terms of

invariant response functions. In Sec. 4 the semi-inclusive cross section is given

for a general situation where the polarized spin-1/2 target is moving in some50

arbitrary direction — this for use in collider physics. For completeness the

simpler situation of polarized inclusive electron scattering from a (moving) po-

larized spin-1/2 target is presented in Sec. 5. To conclude the paper a summary

is given in Sec. 6.

We begin with some general developments that are common to all elec-

tron scattering formalism at the level of the plane-wave Born approximation.2

2We use the conventions of [4] in this work. We also employ the conventions previously

used by us and others in many previous studies. Namely we denote 4-vectors by capital letters
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The general cross section is proportional to the contraction of the leptonic and

hadronic tensors ηµν and Wµν , respectively

ηµνW
µν . (1)

Being composed of bilinear products of the corresponding leptonic and hadronic55

current matrix elements (jfi)µ and (Jfi)
µ
, respectively, in the forms

ηµν ∼
∑
if

(jfi)
∗
µ (jfi)ν (2)

Wµν ∼
∑
if

(Jfi)
µ∗

(Jfi)
ν
, (3)

with appropriate averages over initial and sums over final states, one has imme-

diately that

ηνµ = (ηµν)
∗

(4)

W νµ = (Wµν)
∗
. (5)

Instead of ηµν we employ the following convention for the leptonic tensor

(see [2])60

χµν ≡ 4m2
eη
µν (6)

= χµνunpol + χµνpol. (7)

Also, since the electromagnetic current is conserved,

Qµ (jfi)µ = Qµ (Jfi)
µ

= 0, (8)

one has that

Qµχµν = χµνQ
ν = QµW

µν = WµνQν = 0. (9)

and 3-vectors by lower case letters, Aµ = (A0,a), Bµ = (B0,b), etc. The scalar product of

two 4-vectors is then A · B = A0B0 − a · b and therefore the scalar product of a 4-vector

with itself is A2 = (A0)2 − a2 where a ≡ |a|. One potential point of confusion can occur with

these conventions, viz. for the momentum transfer 4-vector Qµ = (Q0,q) = (ω,q) = (ν,q)

we have Q2 = (Q0)2 − q2 which for electron scattering is spacelike, and accordingly Q2 < 0.

One should be careful not to confuse our sign convention for this quantity with the so-called

SLAC convention which has the opposite sign Q2
SLAC = −Q2 > 0.
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Since one can decompose the tensors into symmetric and anti-symmetric

contributions (i.e., under exchange of µ and ν), namely,

χsµν ≡ 1

2
(χµν + χνµ) (10)

χaµν ≡ 1

2
(χµν − χνµ) (11)

Wµν
s ≡ 1

2
(Wµν +W νµ) (12)

Wµν
a ≡ 1

2
(Wµν −W νµ) (13)

with

χµν = χµνs + χµνa (14)

Wµν = Wµν
s +Wµν

a . (15)

Clearly one has the individual continuity equation relationships

QµW
µν
s = QµW

µν
a = 0, (16)

and also only symmetric (anti-symmetric) leptonic tensors will contract with

symmetric (anti-symmetric) hadronic tensors when forming the cross section,

the last going as

χµνW
µν = χsµνW

µν
s + χaµνW

µν
a . (17)

We also have from Eqs. (4) and (5) that

χµνs = Reχµν (18)

χµνa = iImχµν (19)

Wµν
s = ReWµν (20)

Wµν
a = iImWµν ; (21)

we shall make use of this when constructing explicit forms for the tensors by65

including the factor i in the appropriate places.

Furthermore, one can isolate contributions that contain the target spin from

those that do not by forming the unpolarized (spin sum) terms and polarized
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(spin difference) terms, so that the total becomes

χµνs,a =
(
χµνs,a

)
unpol

+
(
χµνs,a

)
pol

(22)

Wµν
s,a =

(
Wµν
s,a

)
unpol

+
(
Wµν
s,a

)
pol

(23)

with all four contributions individually satisfying the continuity equation con-70

straint:

Qµ
(
χµνs,a

)
unpol

= Qµ
(
χµνs,a

)
pol

= 0 (24)

Qµ
(
Wµν
s,a

)
unpol

= Qµ
(
Wµν
s,a

)
pol

= 0. (25)

When only the incident electrons may be polarized but the scattered electron’s

polarization is assumed not to be measured one can show that the leptonic tensor

contributions that do not involve the electron polarization are only symmetric,

while those that do involve the electron polarization are only anti-symmetric75

(see [2]).

The incident electron has 4-momentum Kµ = (ε,k), the scattered electron

has 4-momentum K ′
µ

= (ε′,k′) and Qµ = Kµ − K ′
µ
. We shall adopt the

convention where q points along the 3-direction, so that the 4-vector momentum

transfer is

Qµ = (ω, 0, 0, q) (26)

with energy transfer ω = ν (the former is commonly employed in nuclear physics

while the latter is almost always chosen for use in particle physics; we use the

two interchangeably) and 3-momentum transfer q = |q|. One can show that for

electron scattering the 4-momentum transfer must be spacelike:

Q2 = ω2 − q2 = −4kk′ sin2 θe/2 ≤ 0; (27)

here we invoke the Extreme Relativistic Limit (ERLe) for the electron, i.e., we

take the electron mass me to be much smaller than ε and ε′ (the situation where

the mass terms are not ignored is discussed in [2]). For convenience later we

also define80

ν′ ≡ ω/q = ν/q (28)

ρ ≡ |Q2/q2| = 1− ν′2 (29)
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with 0 ≤ ν′ ≤ 1 and 0 ≤ ρ ≤ 1.

We quote the standard results for the leptonic coefficients in the ERLe; their

derivation can be found e.g. in [3]. By convention, upon removing a common

factor v0 from the leptonic tensor given above, where

v0 ≡ (ε+ ε′)2 − q2 = 4kk′ cos 2θe/2, (30)

we are left with the following six leptonic ERLe “Rosenbluth” factors

vL = ρ2 ≡
(
−Q2

q2

)2

(31)

vT =
1

2
ρ+ tan2 θe/2 (32)

vTT = −1

2
ρ (33)

vTL = − 1√
2
ρ
√
ρ+ tan2 θe/2 (34)

vT ′ = tan θe/2
√
ρ+ tan2 θe/2 (35)

vTL′ = − 1√
2
ρ tan θe/2. (36)

The first four, vL, vT , vTT and vTL, arise from the symmetric part of the leptonic

tensor, while vT ′ and vTL′ stem from its anti-symmetric part. Note that in the

general case there are nine such factors; see [3] for discussions of the general85

case. In the present study we assume that only the incident electron may be

polarized and we invoke the ERLe throughout. Similar labelling conventions

prove to be useful for the hadronic tensor in many applications and we shall
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employ them throughout this study:

WL ≡
(
W 00
fi

)
s

(37)

WT ≡
(
W 22
fi

)
s

+
(
W 11
fi

)
s

(38)

WTT ≡
(
W 22
fi

)
s
−
(
W 11
fi

)
s

(39)

WTL ≡ 2
√

2
(
W 01
fi

)
s

= 2
√

2ReW 01
fi (40)

WT ′
≡ 2i

(
W 12
fi

)
a

= −2ImW 12
fi (41)

WTL′
≡ 2

√
2i
(
W 02
fi

)
a

= −2
√

2ImW 02
fi (42)

WTT ≡ 2
(
W 12
fi

)
s

= 2ReW 12
fi (43)

WTL ≡ 2
√

2
(
W 02
fi

)
s

= 2
√

2ReW 02
fi (44)

WTL′
≡ −2

√
2i
(
W 01
fi

)
a

= 2
√

2ImW 01
fi . (45)

As in the cited work the notation here is the following: the quantities labelled L90

refer to contributions involving the µν = 00 parts of the tensors; those labelled

T , TT , T ′ and TT involve only transverse components of the tensors; and those

labelled TL, TL′, TL and TL′ involve interferences having real or imaginary

parts of the µν = 01 and 02 components of the tensors. Unprimed quantities

arise from symmetric tensors, viz., those that do not involve polarized electrons,95

whereas those with primes only occur when electron polarizations enter. The

underlined quantities labelled TT and TL occur only when the electron beam

is polarized and the polarization of the scattered electron is measured (see [2]);

since we will not consider this situation in the present study, these contributions

are henceforth dropped. Finally, the sector labelled TL′ does occur when only100

the electron beam is polarized, although at high energies these can also safely

be ignored since they go as 1/γ where γ is the usual ratio of energy to mass for

the electron and thus are also neglected in the present work, leaving 6 classes of

response. Accordingly, for the situation of interest in the present study the full

contraction of the leptonic and hadronic tensors may then be written in terms105

of these real quantities, 4 involving symmetric contributions and 2 involving
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anti-symmetric contributions:

C = v0
[(
vLW

L + vTW
T + vTLW

TL + vTTW
TT
)

+h
(
vT ′WT ′

+ vTL′WTL′
)]
, (46)

where C is a Lorentz invariant. Here h is the incident electron’s helicity. We note

that, while the entire right-hand side of the equation forms a Lorentz invariant,

the individual factors are all frame-dependent.110

One may also re-write the leptonic factors in a way that involves the so-

called photon longitudinal polarization. One begins with the transverse term in

Eq. (32)

vT =
1

2
ρ+ tan2 θe/2 (47)

=
1

2
ρ

[
1 +

2

ρ
tan2 θe/2

]
, (48)

thereby defining the photon longitudinal polarization

E ≡
[
1 +

2

ρ
tan2 θe/2

]−1
, (49)

which implies that

tan2 θe/2 =
ρ

2

(
E−1 − 1

)
. (50)

If one defines the ratios

uX ≡
vX
vT

(51)

with X = L, T, TT, TL, T ′ and TL′ and substitutes in the above equations for

vX for the factor tan θe/2 one finds that115

uL = 2ρE

uT = 1

uTT = −E

uTL = −√ρ
√
E (1 + E) (52)

uT ′ =
√

1− E2

uTL′ = −√ρ
√
E (1− E).
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The invariant in Eq. (46) in this notation in the ERLe then becomes

C = v0vT

[(
2ρEWL +WT − EWTT −√ρ

√
E (1 + E)WTL

)
+h
(√

1− E2WT ′
−√ρ

√
E (1− E)WTL′

)]
. (53)

Equations (46) and (53) for electron scattering in general have the following

properties: the entire expressions for C are Lorentz invariant; however, the

factors on the right-hand sides of the equations are not, but are all frame-

dependent. That is, v0, the “Rosenbluth” factors vX , with X = L, T, · · · ,120

etc., and the response functions WX all depend on the chosen reference frame

— clearly the last, since they involve particular Lorentz components of the

hadronic tensor which are frame dependent. If one wants to relate these in one

frame to another then they must be Lorentz-transformed (i.e., with respect to

both Lorentz indices in Wµν). Specific cases exist where this transformation is125

relatively simple, such as between the target rest frame and the target-virtual

photon center-of-momentum frame where the boost is along the q-direction (see,

for instance, [3]). However, while certainly possible, it is not so simple when,

for instance, going between the rest frame and a general collider frame involving

crossed beams.130

The goal of the present work is to review an alternative set of developments

where, instead of frame-dependent response functions, the results are expressed

in terms of invariant hadronic response functions multiplied by general kine-

matic factors which are frame-dependent. This will allow universal invariant re-

sponse functions from measurement in different frames to be compared. Again135

we emphasize the fact that the results in Eqs. (46) and (53) are not wrong, since

the overall expressions are Lorentz invariant, only that the hadronic responses

that would be deduced upon analyzing measurements in two different frames

would not be the same, that is, in general [Wµν ]frame1 6= [Wµν ]frame2

2. Hadronic Tensors and Invariant Response Functions140

In this section we review the past developments of the use of invariant re-

sponse functions in semi-leptonic electroweak interactions. The general strategy

10



Figure 1: Feynman diagram for inclusive electron scattering. The 4-momenta here are dis-

cussed in the text.

followed here is to use the basic 4-vectors that enter for a specific choice of con-

ditions and to write the hadronic tensor involved as a linear combination of all

allowable contributions built from those 4-vectors that can be formed multiplied145

by invariant response functions. We begin with a review of the simplest case of

inclusive scattering of unpolarized electrons from unpolarized targets where the

procedures are easiest to follow and then successively turn to more complicated

situations.

2.1. Unpolarized Inclusive Electron Scattering150

Here no final-state particles are assumed to be detected and both the elec-

trons and the target are assumed to be unpolarized. This case was developed in

the early 1960s [5], [6], [7] (see also [8]) and provides the prototype for all other

cases to follow. The hadronic vertex has 4-momentum Qµ incoming via the ex-

changed virtual photon, together with Pµ, the 4-momentum of the target, and

P ′µ, the undetected 4-momentum of the final state, corresponding to the reac-

tion being assumed to be inclusive (see Fig. 1). Conservation of 4-momentum

allows the last to be eliminated, viz.

P ′µ = Pµ +Qµ. (54)
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The Lorentz scalars for this reaction are those that can be built from the two

independent 4-vectors (Qµ, Pµ), namely, Q2, Q ·P and P 2, and since P 2 = M2,

where M is the mass of the target, one has only two independent Lorentz scalars

upon which the invariant response functions can depend. These may be chosen

to be Q2 and Q ·P , or alternatively, one may define a Lorentz invariant version

of the Bjorken x-variable via

x ≡
∣∣Q2
∣∣

2Q · P
, (55)

where x reverts to the usual definition in the target rest frame, viz., xR =

|Q2|/2Mν, and then use as Lorentz scalar variables (Q2, x).

In building the general form for the hadronic tensor in this case it is conve-

nient to employ instead of Pµ the projected 4-vector

Uµ ≡ 1

M

(
Pµ −

(
Q · P
Q2

)
Qµ
)
, (56)

where by construction

Q · U = 0 (57)

U2 = 1− (Q · P )
2

M2Q2
. (58)

This strategy will be used in the later more complicated cases and will be seen

to greatly simplify the developments there. As we have seen in Sec. 1, when155

the electrons are unpolarized only symmetric tensors enter and hence for this

inclusive unpolarized case one can build the most general symmetric second-rank

tensor:

(Wµν
s )

incl
unpol = X1g

µν +X2Q
µQν

+X3U
µUν +X4 (QµUν + UµQν) , (59)

where general Lorentz invariant response functions X1,2,3,4 have been intro-

duced; each is a function of the two Lorentz scalars discussed above, say, (Q2,

Q · P ). Since the electromagnetic current is conserved one has in momentum

space that

Qµ (Wµν
s )

incl
unpol = 0 (60)
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and hence that (
X1 +X2Q

2
)
Qν +

(
X4Q

2
)
Uν = 0. (61)

and since Qν and Uν are linearly independent 4-vectors this means that

X1 +X2Q
2 = X4 = 0, (62)

leaving

(Wµν
s )

incl
unpol = − (W1)

incl

(
gµν − QµQν

Q2

)
+ (W2)

incl
UµUν , (63)

where we follow standard convention and define X1 ≡ − (W1)
incl

and X3 ≡

(W2)
incl

. Here the motivation for including the factor M in Eq. (56) becomes160

clear: all four of the tensors above have the same dimensions. As long as Lorentz

invariant scalars are used for the arguments of the two invariant response func-

tions (W1,2)
incl

these factors in Eq. (63) are Lorentz invariant, viz., do not

depend on the particular frame of reference involved in a specific situation.

Hence (W1,2)
incl

determined in the rest frame, the CM frame, the Breit frame,165

or in any specific collider frame are all identical, in contrast to the response

functions WL,T,··· introduced in Sec. 1 which are frame-dependent.

Note that if one wishes to use as response functions F1,2 as is common in the

high-energy regime (HER), then to maintain their Lorentz invariant properties

one should use the definitions170

(F1)
incl ≡ M (W1)

incl
(64)

(F2)
incl ≡ Q · P

M
(W2)

incl
, (65)

and treat these as functions of the Lorentz scalars Q2 and x in Eq. (55).

While the focus in this work is on parity-conserving electron scattering we

note that when studying the full electroweak interaction even for inclusive scat-

tering that additional contributions enter since then one has both polar- and

axial-vector currents, the latter not being conserved. For instance, see [9], [10],175

[11] for discussions of neutrino reactions, and [9], [10], [12], [13] for discussions

of parity-violating electron scattering.
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Figure 2: Feynman diagram for semi-inclusive electron scattering. The 4-momenta here are

discussed in the text. In particular, particle x is assumed to be detected in coincidence with the

scattered electron and thus Pµx is assumed to be known. Since the total final-state momentum

P ′µ is known (see Fig. 1 for inclusive scattering) this implies that the missing 4-momentum

is also known via the relationship Pµm = P ′µ − Pµx .

2.2. Semi-inclusive Scattering from Unpolarized Targets

Semi-inclusive electron scattering entails reactions of the sort (e, e′x), (−→e , e′x),

(e, e′−→x ) and (−→e , e′−→x ), where the scattered electron and some other particle x180

are assumed to be detected in coincidence in the final state (see Fig. 2). The

incident electron may be polarized, the detected particle (if it is not spin-0) may

have its polarization measured, or both. Let us begin with the cases where the

polarization of particle x is assumed not to be measured.

The strategy reviewed in the previous section is easily generalized. We follow

the developments presented in [14] and employ the same conventions as in that

work. Now one has three 4-vectors upon which to build the hadronic tensor,

namely, (Qµ, Pµ, Pµx ), where the 4-momentum of particle x is Pµx = (Ex,px).

As above the invariant response functions are functions of the available Lorentz

scalars, namely, the four quantities (Q2, Q ·P , Q ·Px, P ·Px) having eliminated

the other two possibilities via their (assumed known) masses: P 2 = M2 and

P 2
x = M2

x , where Mx is the mass of particle x. Again it proves convenient to
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use projected 4-vectors: we use Uµ rather than Pµ as above and introduce

V µ ≡ 1

M

(
Pµx −

(
Q · Px
Q2

)
Qµ
)
. (66)

By construction, one has

Q · U = Q · V = 0 (67)

and185

U2 = 1− (Q · P )
2

M2Q2
(68)

V 2 =
1

M2

(
M2
x −

(Q · Px)
2

Q2

)
(69)

U · V =
1

M2

(
P · Px −

(Q · P ) (Q · Px)

Q2

)
. (70)

Note that we have chosen to use the target mass M above and not the mass of

particle x, namely Mx, since we want to allow the latter to be general enough

to include the photon. Furthermore, we can replace V µ with a 4-vector that is

orthogonal not only to Qµ but to Uµ as well:

Xµ ≡ V µ −
(
U · V
U2

)
Uµ, (71)

where then

Q · U = Q ·X = U ·X = 0 (72)

and

X2 = V 2 − (U · V )
2

U2
. (73)

Given the above 4-vector building blocks, we now proceed to construct second-

rank hadronic tensors with the appropriate symmetries. We begin with the

symmetric cases where no target polarization is involved.

Wµν
1,s ≡ gµν −

QµQν

Q2
(74)

Wµν
2,s ≡ UµUν (75)

Wµν
3,s ≡ XµXν (76)

Wµν
4,s ≡ UµXν +XµUν . (77)
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Here the motivation for including the factors M becomes clear: all four of the

tensors above have the same dimensions. We have the following upon contract-

ing with Qµ:

QµW
µν
m,s = 0 (78)

for m = 1, 2, 3, 4. The general tensor of this type is obtained by summing

over the 4 contributions, where each is multiplied by a Lorentz scalar, invariant

response function, Am, that in turn depends only on the four Lorentz scalars in

the problem, namely

(Wµν
s )

semi−1
unpol =

4∑
m=1

AmW
µν
m,s (79)

and as above one has

Qµ (Wµν
s )

semi−1
unpol = 0 (80)

as required for the overall symmetric, unpolarized tensor by the continuity equa-

tion. The notation “semi-1” is used to denote that one particle is assumed to

be detected in coincidence with the scattered electron. Thus the symmetric,

unpolarized second-rank hadronic tensor may then be written

(Wµν
s )

semi−1
unpol = − (W1)

semi−1
(
gµν − QµQν

Q2

)
+ (W2)

semi−1
UµUν

+ (W3)
semi−1

XµXν + (W4)
semi−1

(UµXν +XµUν) ,

(81)

namely, with four contributions involving invariant functions (Wm)
semi−1

, m =190

1, 2, 3, 4 (here we have shifted from using invariant functions Am to more famil-

iar notation, including the minus sign in the (W1)
semi−1

case, which is conven-

tional).

Additionally in the semi-inclusive case with no hadronic polarizations one

can now have an anti-symmetric tensor; there is only one anti-symmetric con-

tribution that uses Qµ, Uµ and Xν as a basis [14], namely

Wµν
1,a ≡ i(UµXν −XµUν), (82)
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where here and below the factor i has been included following Eq. (21). Con-

tracting the valid anti-symmetric tensor with Qµ yields zero and we find that the

anti-symmetric, unpolarized tensor is constructed from the single basis tensor

of the correct type with an invariant functions here called (W5)
semi−1

:

(Wµν
a )

semi−1
unpol = i (W5)

semi−1
(UµXν −XµUν) , (83)

namely the so-called 5th response (see, for instance, [14] and earlier references

therein).195

This semi-inclusive analysis has been extended to neutrino reactions which

entails dealing with both polar- and axial-vector currents [15].

Without providing the details let us note that in past work [14] cases have

been studied where two particles x1 and x2 are assumed to be detected in

coincidence with the scattered electron (denoted “semi-2”), but where the po-200

larizations of those particles are assumed not to be measured, namely, for the

reactions (e, e′x1x2) and (−→e , e′x1x2). In analogy with the semi-1 situation 4-

vectors for the two final-state hadrons are involved, Pµx1
and Pµx2

, and one must

work with a set of four 4-vectors,
(
Qµ, Pµ, Pµx1

, Pµx2

)
. Now the set of dynamical

Lorentz scalars is (Q2, Q ·P , Q ·Px1 , Q ·Px2 , P ·Px1 , P ·Px2 , Px1 ·Px2), namely,205

all invariant response functions are now functions of seven dynamical Lorentz

scalars for this semi-2 situation. As above one can form the corresponding pro-

jected analogs of Eq. (66) denoted V µ1 and V µ2 defined such that Q · V1,2 = 0,

and then orthogonalize the complete set of four 4-vectors following a similar

procedure to that outlined above. Finally, one can proceed to write the semi-2210

symmetric and anti-symmetric hadronic tensors as above and employ the conti-

nuity equation to arrive at the extensions of Eqs. (81) and (83); the details are

omitted here and the reader is directed to [14] for the full analysis.

Note also that, if one wishes to proceed to reactions with three or more par-

ticles in coincidence with the scattered electron, for example, (e, e′x1x2x3 · · · )

and (−→e , e′x1x2x3 · · · ), a change in the logic occurs, namely, at the level of semi-2

one already has four independent 4-vectors
(
Qµ, Pµ, Pµx1

, Pµx2

)
and accordingly

any additional 4-vectors may be written as linear combinations of these four,
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for example,

Pµx3
= aQµ + bPµ + cPµx1

+ dPµx2
, (84)

where a, b, c, d are Lorentz scalars. That is, any set of four linearly independent

4-vectors spans the 4D space. Hence, the form of the semi-2 cross section is the215

most general, although each invariant response function must depend on the

complete set of Lorentz scalars for each case semi-2, semi-3, etc. (see [14] for

more detail on this and other issues).

Finally, in reviewing the past developments of the various hadronic tensors

in terms of invariant response functions let us note that the cases of (e, e′−→x )220

and (−→e , e′−→x ) reactions have been presented in [16].

2.3. Semi-inclusive Scattering from Polarized Spin-1/2 Targets

In this section we proceed to summarize the procedures for building the most

general tensors for semi-inclusive electron scattering from polarized spin-1/2

targets written in terms of invariant response functions. Later, in the following225

section, we will connect this approach with the more familiar one where frame-

dependent responses are involved. This situation is likely to be one of the most

relevant in future experimental studies and accordingly we provide a detailed

summary of the procedures involved. In particular, we employ notation that is

consistent with that used in previous studies where cross sections for electron230

scattering from unpolarized targets have been developed, namely, those summa-

rized above. The simpler unpolarized-target cases may then straightforwardly

be recovered from the more general results. At the end of the section we briefly

discuss alternative schemes.

The process is shown schematically in Fig. 3 (see also Fig. 2). That is, we con-235

sider reactions of the type −→e +
−→
A (1/2)→ e′+x+B where the incident electron

may be polarized, the spin-1/2 target A may be polarized and where we assume

that, in addition to the scattered electron, some (unpolarized) particle x is de-

tected in coincidence. The sum of all open channels that make up the final state

is denoted B and is assumed not to be detected. Employing notation commonly240

used in nuclear physics the reaction may be written
−→
A (1/2)(−→e , e′x)B. We shall
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Figure 3: Schematic representation of semi-inclusive electron scattering. The coordinate sys-

tem is chosen such that the electron scattering occurs in the 13-plane and has the 3-momentum

transfer along the 3-axis. The particle x detected in coincidence with the scattered electron

has 3-momentum px which lies in a plane in general inclined at an azimuthal angle φx with

respect to the electron scattering plane and has polar angle θx with respect to q. The polar-

ization of the spin-1/2 target involves the spin 3-vector s with polar and azimuthal angles θ∗

and φ∗, respectively, in the chosen coordinate system.
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discuss how such semi-inclusive reactions are related to the inclusive cross sec-

tion, i.e., for reactions of the type −→e +
−→
A (1/2) → e′ + X or

−→
A (1/2)(−→e , e′)X,

where X denotes the complete (undetected) final state. The formalism is de-

veloped in a general coordinate system as one wishes to be able to relate the245

response in different frames of reference, in particular, in the target rest frame

and in a frame where the incident electrons and the spin-1/2 target are both

moving and colliding.

The developments summarized here are general and intended for use at any

energy scale and for studies both of particle and nuclear physics. For instance,250

past and ongoing studies involve fixed-target (target rest frame) measurements

say at SLAC or JLab or other fixed-target facilities as well as at colliders. The

energies involved in the former are typically 10s of GeV or lower, while the

latter range up to quite high energies — the high-energy regime (HER). In the

future one anticipates studies at the EIC collider facility where electrons at 10s255

of GeV will be collided with hadronic targets at 100s of GeV. In fact, where

polarized electrons are to be scattered from polarized spin-1/2 targets in that

facility it is anticipated that both polarized protons and polarized 3He nuclei

will be employed. Accordingly one is motivated to develop the formalism for

general semi-inclusive scattering of polarized electrons from polarized spin-1/2260

targets in a covariant way through the use of general invariant hadronic response

functions for use in all situations at all energies.

Two examples where the ideas are relevant, one from particle physics and

one from nuclear physics are the following. For the former consider charged

pion production from a polarized proton target (see, for instance, [17] or [3]265

and references therein). For single-pion production one then has the (exclusive)

reaction −→e + −→p → e′ + n + π+ with a neutron and a positive pion in the

final state. As a semi-inclusive reaction one then has either −→p (−→e , e′n)π+ where

particle x is a neutron and the pion is undetected or −→p (−→e , e′π+)n where particle

x is a π+ and the neutron is undetected. In fact these are the same reaction and270

accordingly they constitute a single channel. Clearly there are experimental

considerations involved in which particle is the one detected in coincidence;
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however, theoretically they are indistinguishable. For higher-energy kinematics

one reaches a threshold where additional channels open. For instance, once the

relevant threshold is reached, two-pion production becomes possible, −→e +−→p →275

e′ + n + π+ + π0 and then −→e + −→p → e′ + p + π− + π+, and so on, with more

and more particles in the final state. Of those a given semi-inclusive reaction

is to be taken as having some given particle detected in coincidence with the

scattered electron and all other particles undetected.

A second example, taken from nuclear physics, is where the polarized elec-280

tron is scattered from a polarized 3He target. Let us focus on the reaction

3−→He(−→e , e′p) where a proton is assumed to be detected in coincidence with the

scattered electron. The unobserved part of the final state depends on the spe-

cific kinematics of the reaction. At threshold one has the (exclusive) two-body

reaction −→e +3 −→He→ e′ + p+ d and then for slightly higher missing energies the285

three-body breakup reaction −→e +3−→He→ e′+ p+ p+n. Alternatively one could

have a neutron as the particle detected in coincidence with the scattered elec-

tron, 3−→He(−→e , e′n). In this case the two-body channel does not occur, although

the three-body breakup channel does. In fact, for the latter the final state is

the same and this will have consequences later when we discuss the issue of290

avoiding double counting. As in the particle physics example above, when the

energy increases a threshold is reached where pion production can occur and

the final state becomes even more complicated. Nevertheless, the semi-inclusive

reaction is well defined: the point is that a specific particle is assumed to be the

one called “x”, namely, the one that is detected, whereas all other particles in295

the final state must be summed while avoiding double counting.

Before providing a review of the detailed formalism involved with this class

of reactions let us anticipate a few of the salient features that will emerge.

� We shall see that there are four sectors which may be separated by em-

ploying the polarizations. When unpolarized electrons are involved only300

symmetric tensors enter, whereas when the incident electrons are longitu-

dinally polarized only anti-symmetric tensors occur.
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� The four types of polarization (electrons polarized or not with target po-

larized or not) may be separated using those polarizations. We shall see

that there are four symmetric invariant responses for the fully unpolarized305

case, one anti-symmetric invariant response when the electron is polarized

but the target is not, eight symmetric invariant responses when the elec-

tron is unpolarized but the target is polarized, and five anti-symmetric

invariant responses when both electrons and target are polarized.

� These 18 invariant response functions will be shown to be functions of four310

Lorentz scalar invariants. The 18 responses may be sub-divided into two

sets of nine according to their properties under parity and time-reversal;

these two sets typically behave quite differently.

� We also detail how the hadronic response may be characterized using the

helicity decomposition of the virtual photon to label the various contribu-315

tions. We shall detail how this representation relates to the decomposition

in terms of invariant response functions.

� A prime motivation for such studies is to have the semi-inclusive cross

section written in a completely general frame of reference. This then allows

one to relate the results in (say) the collider frame to the target rest frame,320

or to relate the results in the rest frame to those in the photon-target

center-of-momentum frame. This can prove to be essential when models

are being developed for the hadronic physics that are non-relativistic and

hence cannot be boosted — polarized 3He would be one such example —

since only in the target rest frame will such models make sense.325

� Finally, we review how inclusive (polarized) scattering emerges via specific

integrals over semi-inclusive cross sections with appropriate sums over all

open channels.

We begin by extending the analysis outlined in the previous sections, pro-

viding more detail here since this case is the main focus of the present study.330
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As shown in Fig. 3, the laboratory system involves the choice where the 3-

momentum transfer lies along the 3-direction and the electrons lie in the 13-

plane, as discussed in Sec. 1; accordingly, we have the 123-system shown in

the figure. Since we want to retain the usual meaning for the leptonic and

hadronic factors discussed in Sec. 1, it is important to employ this system for335

the developments above. In this system we have the following 4-vectors:

Qµ = (ω,q) (85)

Pµ = (Ep,p) (86)

Pµx = (Ex,px) (87)

Sµ =
(
S0, s

)
(88)

with 3-vectors

q = qu3 (89)

p = p (sin θ cosφu1 + sin θ sinφu2 + cos θu3) (90)

px = px (sin θx cosφxu1 + sin θx sinφxu2 + cos θxu3) (91)

s = s (sin θ∗ cosφ∗u1 + sin θ∗ sinφ∗u2 + cos θ∗u3) . (92)

The target (mass M) and particle detected in coincidence with the scattered

electron (mass Mx) are both on-shell and thus Ep =
√
p2 +M2 and Ex =√

p2x +M2
x . Note that in Eq. (92) the magnitude s and the angles (θ∗, φ∗) are

assumed to be in the general frame; they can be related to rest-frame variables by

employing rotations and a boost. The target spin 4-vector Sµ may be developed

further by exploiting the two conditions it must satisfy, namely

P · S = 0 (93)

and

S2 =
(
S0
)2 − s2 = −1, (94)

which may be verified by going to the target rest frame. We shall not pursue

these developments in the present work, leaving that for another time.
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Thus we see that as building blocks we may employ the 4-momentum transfer

Qµ, the target 4-momentum Pµ, the 4-momentum of some particle detected in

the final state Pµx , and the 4-vector that characterizes the target spin, Sµ. As

usual, it is convenient to replace the last three with projected 4-vectors, i.e.,

vectors that are by construction orthogonal to Qµ. When the spin is not involved

the analysis is the one presented in the previous section involving the 4-vectors

(Qµ, Pµ, Pµx ) and therefore (Qµ, Uµ, Xµ) with the constraints Q · U = Q · V =

Q ·X = U ·X = 0. Note that we can also define a fourth 4-vector via

Dµ ≡ 1

M
εµαβγQαUβXγ =

1

M3 ε
µαβγQαPβPxγ (95)

which is dual to the above set, behaves as an axial-vector and satisfies Q ·D =340

U · D = X · D = 0. As above we have the four dynamical Lorentz scalars

(Q2, Q · P , Q · Px, P · Px) as arguments of the invariant response functions, or,

equivalently we may define the following dimensionless invariants

Ip ≡ Q · P
Q2

(96)

Ix ≡ Q · Px
Q2

(97)

Ippx ≡ P · Px
Q2

, (98)

and alternatively employ the following four Lorentz scalars as arguments of the

invariant response functions, (Q2, Ip, Ix, Ippx).345

When the spin is involved we then have the 4-vector Σµ

Σµ ≡ Sµ − IsQµ, (99)

where

Is ≡
Q · S
Q2
· (100)

satisfying the constraint Q · Σ = 0. Note that the spin 4-vector does not enter

as a dynamical Lorentz scalar since it occurs as part of the projection operator

Pspin ≡
1

2
(1 + γ5γµS

µ) (101)
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and either does not enter (unpolarized) or occurs explicitly (polarized) where,

being part of the projection operator, it only enters linearly. Since P · S = 0

and S2 = −1, we have

U · Σ = − (Q · P ) (Q · S)

MQ2
(102)

and

Σ2 = −

[
1 +

(Q · S)
2

Q2

]
. (103)

We can also define two 4-vectors that contain the spin 4-vector linearly and are

dual to specific combinations of the others, namely,

X
µ ≡ 1

M
εµαβγSαQβUγ =

1

M2
εµαβγSαQβPγ (104)

U
µ ≡ 1

M
εµαβγSαQβXγ =

1

M
εµαβγSαQβVγ −

(
U · V
U2

)
X
µ
. (105)

One has that

Q · U = X · U = Σ · U = 0 (106)

Q ·X = U ·X = Σ ·X = 0 (107)

and additionally that

I0 ≡ U · U = −X ·X (108)

=
1

M
εαβγδΣαQβUγXδ (109)

=
1

M3
εαβγδSαQβPγPxδ, (110)

an invariant that depends linearly on the target spin. Note that a tensor of the

form

Q
µ ≡ εµαβγΣαUβXγ (111)

is redundant, since it can be shown that

Q
µ

= −MI0
Q2

Qµ (112)

where Qµ will be used instead as a building block.350
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Next, let us consider the 4-vector X
µ

defined in Eq. (104). In contracting

with εµαβγ the contributions in Σα and Uγ containing Qα and Qγ , respectively,

may be ignored due to the explicit factor Qβ , and hence we can write

X
µ

=
1

M2
εµαβγSαQβPγ (113)

= − 1

M2

[
ωεµ0αγ − qεµ3αγ

]
SαPγ , (114)

the latter expression in the 123-system. If we define the following anti-symmetric

tensor

Fµν ≡ 1

M
(PµSν − SµP ν) (115)

and evaluate the result in Eq. (114) explicitly we find that

X
0

=
q

M
F 12 (116)

X
1

=
1

M

(
ωF 23 + qF 02

)
(117)

X
2

=
1

M

(
ωF 31 − qF 01

)
(118)

X
3

= ν′X
0
. (119)

Again these may be developed, leading to the following expressions: one can355

show that one obtains

X
i

=
1

M2

(
[(ωp− Epq)× s] + S0 (q× p)

)i
, i = 1, 2, 3 (120)

X
0

=
1

ν′
X

3
. (121)

And finally we have the 4-vector U
µ

defined in Eq. (105)

U
µ

=
1

M
εµαβγSαQβXγ (122)

=
1

M
εµαβγSαQβVγ −

(
U · V
U2

)
X
µ

(123)

= T
µ −

(
U · V
U2

)
X
µ
, (124)

where

T
µ ≡ 1

M2
εµαβγSαQβPxγ (125)

= − 1

M2

[
ωεµ0αγ − qεµ3αγ

]
SαPxγ . (126)
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As above we can define

Gµν ≡ XµSν − SµXν (127)

and find that

U
0

=
q

M
G12 (128)

U
1

=
1

M

(
ωG23 + qG02

)
(129)

U
2

=
1

M

(
ωG31 − qG01

)
(130)

U
3

=
ω

M
G12 = ν′U

0
. (131)

We can also develop T
µ
; define

Fµνx ≡ 1

M
(Pµx S

ν − SµP νx ) (132)

and find that360

T
0

=
q

M
F 12
x (133)

T
1

=
1

M

(
ωF 23

x + qF 02
x

)
(134)

T
2

=
1

M

(
ωF 31

x − qF 01
x

)
(135)

T
3

=
ω

M
F 12
x = ν′T

0
. (136)

Again these may be developed leading to the following expressions:

T
i

=
1

M2

(
[(ωpx − Exq)× s] + S0 (q× px)

)i
, i = 1, 2, 3 (137)

T
3

= νT
0
. (138)

2.3.1. Second-Rank Tensors: Symmetric, polarized

Let us begin the symmetric polarized developments by starting with a set of

symmetric second-rank tensors that starts with the set of 4 symmetric tensors

obtained in the unpolarized case, Wµν
m,s, with m = 1 · · · 4 as in Eqs. (74–77),365
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multiplied by I0, namely

W ′µν1,s ≡
(
gµν − QµQν

Q2

)
I0

W ′µν2,s ≡ (UµUν) I0 (139)

W ′µν3,s ≡ (XµXν) I0

W ′µν4,s ≡ (UµXν +XµUν) I0.

Here and below the prime is included to denote the fact that the target spin

is involved. These all have the desired properties, namely, they behave as vec-

tor/vector and are linear in the spin; they all have the same dimensions. Con-

tractions with Qµ yield zero as above. To these we can add another set built370

from Ūµ and X
µ

together with the 4-vectors Qµ, Uµ and Xµ.

For the remaining building blocks constructed from tensors containing the

spin we use

W ′µν5,s ≡ UµŪν + UνŪµ (140)

W ′µν6,s ≡ UµX
ν

+ UνX
µ

(141)

W ′µν7,s ≡ XµŪν +XνŪµ (142)

W ′µν8,s ≡ XµX
ν

+XνX
µ
, (143)

again with no contributions that are proportional to Qµ or Qν as these would

yield zero when contracted with the electron tensor. Again these behave as

vector/vector and are linear in the spin and all yield zero when contracted with

Qµ. Accordingly, if we expand the symmetric polarized tensor in this set of

basis tensors,

(Wµν
s )pol =

8∑
m=1

A′mW
′µν
m,s (144)

with general invariant response functions A′m, and impose the continuity equa-
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tion constraint Qµ (Wµν
s )pol = 0 we obtain the following:

(Wµν
s )pol =

[
−W ′1

(
gµν − QµQν

Q2

)
+W ′2U

µUν

+ W ′3X
µXν +W ′4 (UµXν +XµUν)] I0

+W ′5
(
UµŪν + UνŪµ

)
+W ′6

(
UµX

ν
+ UνX

µ
)

+W ′7
(
XµŪν +XνŪµ

)
+W ′8

(
XµX

ν
+XνX

µ
)
, (145)

again shifting from generic invariant functions A′m to the more conventional

notation involving invariant W ′m. Thus, for the symmetric, polarized case we375

are left with eight contributions. All tensors here have the same dimensions and

consequently all invariant functions have the same dimensions.

2.3.2. Second-Rank Tensors: Anti-symmetric, polarized

In this sector we begin with a basis tensor that involves the Levi-Civita

symbol and is linear in spin:

W ′µν1,a ≡
i

M
εµναβΣαQβ . (146)

Note that one has the following identities,

Q2εµναβΣαXβ = M
(
QµŪν −QνŪµ

)
(147)

Q2εµναβΣαUβ = M
(
QµX

ν −QνXµ
)

(148)

and hence no terms having the Levi-Civita symbol as here are needed, since

they also yield zero upon contraction with the electron tensor. Since we want

tensors that are linear in spin and of vector/vector form we can also have the

following tensors:

W ′µν2,a ≡ i(UµŪν − UνŪµ) (149)

W ′µν3,a ≡ i(UµX
ν − UνXµ

) (150)

W ′µν4,a ≡ i(XµŪν −XνŪµ) (151)

W ′µν5,a ≡ i(XµX
ν −XνX

µ
) (152)

with no terms of the form QµŪν−QνŪµ or QµX
ν−QνXµ

, since, as above, these

yield zero when contracted with the lepton tensor. Finally, as in the symmetric
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case we can use the anti-symmetric contribution above (Eq. (82)) multiplied by

the invariant I0:

W ′µν6,a ≡ i(UµXν −XµUν)I0. (153)

however, one can prove the following identity380

−I0 (UµXν − UνXµ) =
1

M
U2X2εµναβΣαQβ +X2

(
UµX

ν − UνXµ
)

+U2
(
XµU

ν −XνU
µ
)

(154)

and hence the tensor W ′µν6,a is redundant. The remaining five tensors all yield zero

when contracted with Qµ. Accordingly we have the following five independent

contributions:

(Wµν
a )pol = i

[
1

M
W ′9ε

µναβΣαQβ

+W ′10(UµŪν − UνŪµ) +W ′11(UµX
ν − UνXµ

) (155)

+ W ′12(XµŪν −XνŪµ) +W ′13(XµX
ν −XνX

µ
)
]
.

As above, we have shifted notation to make this sector coherent with the pre-

vious ones; all tensors have the same dimensions, implying that the invariant385

functions all have the same dimensions. As an alternative it is also possible to

expand the contraction of the leptonic and hadronic tensors in terms of Lorentz

scalars rather than employing the 4-vectors as we have here. The resulting form

is documented in [18] 3.

Let us end this section with a brief discussion of how the use of time-reversal390

invariance allows one to separate the four types of contributions into two classes.

3An extended version of this study is available in the cited reference: there explicit results

are given in the target rest frame and six appendices are included detailing the conventions

used, expressing the contraction of the tensors entirely in terms of invariants, inverting the

invariant response representations in terms of photon helicity projections, detailing the nature

of the cross section as the available phase-space increases and more channels become open,

including some connections with conventional kinematic variables and discussing inclusive

scattering in more detail to make connections with (more) familiar material. For brevity

these addenda have been omitted in this shorter version.
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The basic requirement for the time-reversal operator is to relate a given matrix

element to one that describes the process running in the opposite direction,

that is to a matrix element where the incoming state now contains all of the

particles from the original final state and the final state contains the particles395

from the original initial state. If the original matrix element has a final state

with two or more interacting particles this requires that the boundary condition

for this state be changed from the incoming boundary condition to the outgoing

boundary condition.

The effects of time-reversal on the hadronic tensor have been studied in great400

detail in the context of multipole expansions for arbitrary target spin (see, for

instance, [3] and references therein). The result is that the matrix elements

must fall into two classes: one where the transition multipole moment is real

and another where it is imaginary. These two classes result in response functions

that are either even or odd under time-reversal, TRE or TRO, respectively. Note405

that time-reversal invariance is assumed throughout this work; being TRE or

TRO does not imply violation of this symmetry.

For the case of a spin-1/2 particle in the initial or final state the effects of

time-reversal can be greatly simplified by the simultaneous application of both

time-reversal and parity [16]. This is particularly useful in the case where the

hadronic tensor is written as a linear combination of invariant functions of inner

products of the available 4-momenta and second-rank tensors constructed from

these four-momenta and the spin vector, such as we have done above. For the

purpose of this discussion let

Wµν(Q,P, Px, Pm, S, (−)) = 〈P, S| Jµ†(Q) |Px, Pm, S, (−)〉

× 〈Px, Pm, S, (−)| Jµ(Q)(−) |P, S〉 , (156)

where (−) denotes the incoming boundary conditions for the final scattering

state. This trivially implies that

W ∗µν(Q,P, Px, Pm, S, (−)) = W νµ(Q,P, Px, Pm, S, (−)). (157)

Equations (81,83,145,155) are constructed such that Wi, i = 1, . . . , 5 andW ′i , i =
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1, . . . , 13 are real.

The components of the hadronic tensor in Eqs. (81,83,145,155) are param-

eterized in terms of Lorentz 4-vectors. The result of combining time-reversal

and parity causes no change to the momentum 4-vectors while causing the spin

4-vector to change sign. Most importantly, time-reversal causes a change in

the boundary condition of the scattering state from incoming ((−)) to outgoing

((+)). This gives

Wµν(Q,P, Px, Pm, S, (−))
T P−−→W νµ(Q,P, Px, Pm,−S, (+))

=−W ∗µν(Q,P, Px, Pm, S, (+)) . (158)

Since Qµ, Uµ and Xµ depend only on the momentum 4-vectors one has

Qµ
T P−−→ Qµ

Uµ
T P−−→ Uµ

Xµ T P−−→ Xµ . (159)

The vectors Σµ, X
µ

and U
µ

are linear in Sµ and thus

Σµ
T P−−→ −Σµ

X
µ T P−−→ −Xµ

U
µ T P−−→ −Uµ. (160)

The scalar I0 is also linear in Sµ and accordingly

I0
T P−−→ −I0 . (161)

The invariant functions Wi andW ′i are real and the complex conjugation changes410

the sign of all factors of i.

Applying these rules to Eqs. (81,83,145,155) yields

Wi(−)
T P−−→Wi(+), i = 1, . . . , 4 (162)

W5(−)
T P−−→ −W5(+) (163)

W ′i (−)
T P−−→ −W ′i (+), i = 1, . . . , 8 (164)

W ′i (−)
T P−−→W ′i (+), i = 9, . . . , 13 . (165)
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Number Time-Reversal

Unpolarized Symmetric 4 Even

Anti-symmetric 1 Odd

Polarized Symmetric 8 Odd

Anti-symmetric 5 Even

Table 1: This table shows the number of invariant functions falling into the four sectors

according to polarization and symmetry indicating the time-reversal properties of each sector.

Under conditions where the boundary condition has no effect, such as the

plane-wave impulse approximation, factorization approximations or where the

final state is obtained through a single resonance at the energy where only the

real part contributes, the invariant functions in Eqs. (163) and (164) must be415

zero. In such a special case this reduces the number of invariant functions from

18 to 9 with a similar reduction in the number of reponse functions. Generally

speaking, however, all 18 play a role. This is the same as would be obtained

by applying the multipole analysis with time-reversal only [3]. Indeed, this is a

very old result which goes back at least to early studies of pion electroproduction420

using polarized electrons and scattering from polarized proton targets (see [3]

and references therein); our point here is simply to note that the present analysis

in terms of invariant hadronic response functions has, as it should, the same

structure.

In summary we have 18 invariant response functions falling into the four sec-425

tors categorized in Table 1, with the symmetric contributions entering when the

incident electrons are unpolarized and the anti-symmetric contributions when

they are polarized, in fact, longitudinally polarized when in the ERLe. The sec-

tors are otherwise specified by whether or not the spin-1/2 target is unpolarized

or polarized.430
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3. Frame-dependent Forms for the Response

3.1. Frame-dependent Hadronic Responses in the Present Work

We next proceed to write explicit forms for the hadronic tensors defined in

Sec. 1. Clearly, since these involve specific Lorentz components of the general

hadronic tensor, these quantities are frame-dependent. We begin with the435

symmetric, unpolarized case given in Eq. (81) which immediately yields the

following for the minimal set of components:

(
W 00
s

)
unpol

= −1

ρ
W1 +

(
U0
)2
W2 +

(
X0
)2
W3 +

(
2U0X0

)
W4 (166)(

W 01
s

)
unpol

=
(
U0U1

)
W2 +

(
X0X1

)
W3 +

(
U0X1 +X0U1

)
W4 (167)(

W 11
s

)
unpol

= W1 +
(
U1
)2
W2 +

(
X1
)2
W3 +

(
2U1X1

)
W4 (168)(

W 22
s

)
unpol

= W1 +
(
U2
)2
W2 +

(
X2
)2
W3 +

(
2U2X2

)
W4 (169)(

W 02
s

)
unpol

=
(
U0U2

)
W2 +

(
X0X2

)
W3 +

(
U0X2 +X0U2

)
W4 (170)(

W 12
s

)
unpol

=
(
U1U2

)
W2 +

(
X1X2

)
W3 +

(
U1X2 +X1U2

)
W4. (171)

Note that, since the symmetric leptonic tensor in this work may be shown to have

no µν = 02 or 12 components, the last two hadronic contributions (Eqs. (170-

171)) do not enter when the tensors are contracted, leaving a total of four terms,440

as expected for the situation where only the incident electrons may be polarized

and the ERLe is invoked [2]. In the situation where the incident electrons

are polarized and where the scattered electron’s polarization is assumed to be

measured these last two contributions do enter. Following the nomenclature in
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[2] we have445

WL
unpol ≡

(
W 00
s

)
unpol

= −1

ρ
W1 +

(
U0
)2
W2 +

(
X0
)2
W3

+2U0X0W4 (172)

WT
unpol ≡

(
W 22+11
s

)
unpol

= 2W1 +
[(
U1
)2

+
(
U2
)2]

W2

+
[(
X1
)2

+
(
X2
)2]

W3 + 2
[
U1X1 + U2X2

]
W4 (173)

WTT
unpol ≡

(
W 22−11
s

)
unpol

=
[
−
(
U1
)2

+
(
U2
)2]

W2

+
[
−
(
X1
)2

+
(
X2
)2]

W3 + 2
[
−U1X1 + U2X2

]
W4 (174)

WTL
unpol ≡ 2

√
2
(
W 01
s

)
unpol

= 2
√

2
[
U0U1W2 +X0X1W3

+
(
U0X1 +X0U1

)
W4

]
. (175)

Next, for the anti-symmetric, unpolarized case we have the following

from Eq. (83):

(
W 02
a

)
unpol

= iW5

(
U0X2 −X0U2

)
(176)(

W 12
a

)
unpol

= iW5

(
U1X2 −X1U2

)
, (177)

yielding

WTL′

unpol ≡ 2
√

2
(
iW 02

a

)
unpol

= −2
√

2W5

(
U0X2 −X0U2

)
(178)

WT ′

unpol ≡ 2
(
iW 12

a

)
unpol

= −2W5

(
U1X2 −X1U2

)
. (179)

These can all contribute in a situation where the incident electron is polarized.

However, note the following: if mass terms in the electron tensor are retained450

(even in the PWBA) then one finds that the TL′ and T ′ contributions are of

leading order whereas the TL′ contributions go as 1/γe or 1/γ′e where γe = ε/me

and γ′e = ε′/me and hence may usually be neglected at high energies, leaving

only the TL′ and T ′ contributions.

Next we consider the contributions that arise from contractions of the sym-455

metric leptonic tensor with the symmetric hadronic tensor for the case where

the target is polarized – the symmetric, polarized case. From the develop-

ments in the last section we find that the following contributions enter in this
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sector:

WL
pol ≡

(
W 00
s

)
pol

=
{
−W ′1/ρ+

(
U0
)2
W ′2 +

(
X0
)2
W ′3 + 2U0X0W ′4

}
I0

+2
{
U0Ū0W ′5 + U0X

0
W ′6 +X0Ū0W ′7 +X0X

0
W ′8

}
(180)

460

WT
pol ≡

(
W 22
s +W 11

s

)
pol

=
{

2W ′1 +
((
U2
)2

+
(
U1
)2)

W ′2

+
((
X2
)2

+
(
X1
)2)

W ′3 + 2
(
U2X2 + U1X1

)
W ′4

}
I0

+2
{(
U2Ū2 + U1Ū1

)
W ′5 +

(
U2X

2
+ U1X

1
)
W ′6 (181)

+
(
X2Ū2 +X1Ū1

)
W ′7 +

(
X2X

2
+X1X

1
)
W ′8

}

WTT
pol ≡

(
W 22
s −W 11

s

)
pol

=
{((

U2
)2 − (U1

)2)
W ′2

+
((
X2
)2 − (X1

)2)
W ′3 + 2

(
U2X2 − U1X1

)
W ′4

}
I0 (182)

+2
{(
U2Ū2 − U1Ū1

)
W ′5 +

(
U2X

2 − U1X
1
)
W ′6

+
(
X2Ū2 −X1Ū1

)
W ′7 +

(
X2X

2 −X1X
1
)
W ′8

}

WTL
pol ≡ 2

√
2
(
W 01
s

)
pol

= 2
√

2
[{
U0U1W ′2 +X0X1W ′3 +

(
U0X1 + U1X0

)
W ′4
}
I0

+
(
U0Ū1 + U1Ū0

)
W ′5 +

(
U0X

1
+ U1X

0
)
W ′6 (183)

+
(
X0Ū1 +X1Ū0

)
W ′7 +

(
X0X

1
+X1X

0
)
W ′8

]
following conventional notation.

Finally, we need to develop the anti-symmetric, polarized case. From
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Eq. (155) we have that465 (
W 02
a

)
pol

= i

[
1

M
W ′9ε

02αβΣαQβ

+W ′10(U0Ū2 − U2Ū0) +W ′11(U0X
2 − U2X

0
)

+ W ′12(X0Ū2 −X2Ū0) +W ′13(X0X
2 −X2X

0
)
]

(184)(
W 12
a

)
pol

= i

[
1

M
W ′9ε

12αβΣαQβ

+W ′10(U1Ū2 − U2Ū1) +W ′11(U1X
2 − U2X

1
)

+ W ′12(X1Ū2 −X2Ū1) +W ′13(X1X
2 −X2X

1
)
]
, (185)

where no cases with components µν = 03, 13 or 23 are needed, since they can be

eliminated using the continuity equation. These yield three possible responses,

of which we further develop only the two below, as TL′ is typically suppressed,

see the discussion after eq. (179).

WT ′

pol ≡ 2
(
iW 12

a

)
pol

(186)

= −2

[
1

M
W ′9ε

12αβΣαQβ

+W ′10(U1Ū2 − U2Ū1) +W ′11(U1X
2 − U2X

1
)

+ W ′12(X1Ū2 −X2Ū1) +W ′13(X1X
2 −X2X

1
)
]

(187)

WTL′

pol ≡ 2
√

2
(
iW 02

a

)
pol

(188)

= −2
√

2

[
1

M
W ′9ε

02αβΣαQβ

+W ′10(U0Ū2 − U2Ū0) +W ′11(U0X
2 − U2X

0
)

+ W ′12(X0Ū2 −X2Ū0) +W ′13(X0X
2 −X2X

0
)
]
. (189)

This completes the general structure of both the leptonic and hadronic ten-470

sors in a general frame where the spin-1/2 target is polarized and moving with

some general 4-momentum Pµ. Once we know the detailed descriptions of the

basic 4-vectors involved (see the next section) the tensors involved in forming

the semi-inclusive cross section are then completely specified, requiring only

the invariant response functions Wm and W ′m, these, of course, being functions475

of the four basic Lorentz scalar invariants in the problem (again, see the next
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section). Our strategy below is first to express the basic 4-vectors involved in

a rotated frame of reference, and then to boost our results to the target rest

frame. In this last frame we will then be in a position to evaluate the tensors

involved and hence to extract specific results for the invariant response functions480

required.

3.2. Relationships to other Conventions

Above we have summarized the relationships between the frame-dependent

and Lorentz invariant formulations of the hadronic response following the con-

ventions that have been adopted by many in studies of electron scattering for485

over half a century. Other conventions have also been employed and, while at-

tempting to review how all of these are inter-related would go beyond the scope

of the present work, in this section we do provide connections to two other ways

of expressing the response for the present class of reactions.

One formulation of the problem is quite old, coming from studies of exclusive490

pion electroproduction from polarized protons [17] (see also [3] and references

therein). While this involves an exclusive final-state channel, nevertheless the

structure of the cross section falls within the class of reactions being summa-

rized here and, for instance, is well-known to involve 18 individual (frame de-

pendent) response functions. Typically, for this reaction, one adopts the virtual495

photon/target center-of-momentum frame, since the exclusive final state is con-

veniently handled in that frame. This frame may be related relatively easily

to the target rest frame, since the Lorentz transformation involved is rather

straightforward (see, for example, [3]).

From [17] one has the following:

dσ

dΩ
= σ0 + σe + σt + σet, (190)

where σ0 arises when neither the electron nor the target are polarized, σe arises

when the electron is longitudinally polarized but the target is unpolarized, σt

arises when the electron is unpolarized but the target is polarized, and σet arises

when both the electron and the target are polarized. Beginning with the fully
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unpolarized case from [17] one has

σ0 = σU + EσL + EσT cos 2φ+

√
1

2
E (1 + E)σI cosφ (191)

and accordingly one can show that the four contributions σU,L,T,I are related500

to four specific response functions used in the present work, namely

σU = N1 ·
(
WT
unpol

)
(192)

σL = N1 ·
(
2ρEWL

unpol

)
(193)

σT cos 2φ = N1 ·
(
−WTT

unpol

)
(194)

σI cosφ = N1 ·
(
−
√

2ρWTL
unpol

)
. (195)

Here, as usual, ρ =
∣∣Q2/q2

∣∣ and N1 is a factor that relates the normalization

conventions employed in [17] to those employed in this work — we postpone

the discussion of the overall normalization of the response functions until Sec. 4

where the semi-inclusive cross section is discussed in more detail. It is then505

straightforward to relate these expressions directly to expressions containing

the invariant response functions. For example, using Eqs. (172) and (173) one

has

σL = N1 ·
[
2ρE

(
W 00
s

)
unpol

]
(196)

= N1 ·
[
2ρE

{
−1

ρ
W1 +

(
U0
)2
W2 +

(
X0
)2
W3

}]
(197)

σU = N1 ·
(
W 22+11
s

)
unpol

(198)

= N1 ·
[
2W1 +

[(
U1
)2

+
(
U2
)2]

W2

+
[(
X1
)2

+
(
X2
)2]

W3 + 2
[
U1X1 + U2X2

]
W4

]
(199)

and likewise for the other responses here and below. Of course, the kinematic

factors ρ, Uµ and Xµ must be evaluated in the appropriate frame of reference.510

When only the electron is polarized (that is, longitudinally polarized and in

the ERLe) the result from [17] may be written

σe ≡
√

1

2
E (1− E)σ′I sinφ, (200)
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where σ′I is the imaginary part of the same expression for which σI is the real

part (see [17] Eqs. (22a) and (23); we have condensed the notation here for

clarity). This is similarly related to a fifth contribution found in the present

work, namely

σ′I sinφ = N1 ·
(
−
√

2ρWTL′

unpol

)
, (201)

involving the so-called 5th response function.

When the target is polarized but not the incident electron analogously to

Eq. (191) one has

σt = σ̃U + E σ̃L + E [σ̃T1 cos 2φ+ σ̃T2 sin 2φ]

+

√
1

2
E (1 + E) [σ̃I1 cosφ+ σ̃I2 sinφ] , (202)

now containing both sine and cosine contributions, where

σ̃U = N1 ·
(
WT
pol

)
(203)

σ̃L = N1 ·
(
2ρEWL

pol

)
(204)

σ̃T1 cos 2φ+ σ̃T2 sin 2φ = N1 ·
(
−WTT

pol

)
(205)

σ̃I1 cosφ+ σ̃I2 sinφ = N1 ·
(
−
√

2ρWTL
pol

)
. (206)

Here we have suppressed any explicit dependence on the target polarization. In515

[17] and later in the present review if projections of the target spin along q the

momentum transfer direction (unit vector uL′), in the direction q × px (unit

vector uN ′) and in the direction uS′ = uN ′×uL′ one can show that σ̃U , σ̃L, σ̃T1

and σ̃I1 involve four distinct responses containing the N ′ projection, σ̃T2 and

σ̃I2, involve two distinct responses containing the L′ projection, and two more520

distinct responses containing the N ′ projection. Namely, in this sector one has

eight distinct types of response.

And then when both the target and the incident electron are polarized one

can write the results from [17] in the form

σet =
√

1− E2σ̃′T +

√
1

2
E (1− E) [σ̃′I1 sinφ+ σ̃′I2 cosφ] (207)
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with

σ̃′T = N1 ·
(
WT ′

pol

)
(208)

σ̃′I1 sinφ+ σ̃′I2 cosφ = N1 ·
(
−
√

2ρWTL′

pol

)
. (209)

In this case it can be shown (see [17]) that σ̃′T has two distinct responses involv-

ing the L′ and S′projections, σ̃′I1 has one response involving the N ′ projection,525

and σ̃′I2 has two distinct responses involving the L′ and S′projections, for a

total of five. In total there are 18 distinct responses. As stated above, all of

these results may be written in terms of invariant response functions using the

expressions given in Sec. 3.

Other conventions have been employed for several decades (see, for example,530

[19], [20]): for instance, in the high-energy regime one has a set of conventions

that have been adopted in several studies and, while the notation varies from

study to study, these are all essentially the same.

For example, in [21], semi-inclusive electron scattering is discussed from the

point of view of SIDIS. Just like in the earlier paper by [3], the 18 response535

functions (as they are called in a nuclear context) or structure functions (as

they are called in a DIS context), are discussed in two specific laboratory frames

of reference, the laboratory gamma-lepton frame and the laboratory gamma-

hadron frame. The author mentions how to obtain 18 independent functions

using constraints following [5], but does not relate the invariant functions with540

the functions in the specific frames he discusses.

In other work Diehl and Sapeta [22] focus on how the polarization is specified,

with respect to the lepton beam or the virtual photon direction. They discuss

the transformation between these two polarization coordinate systems for the

target polarization (longitudinal or transverse target polarization) and work in545

the target rest frame, stating that for a collider everything can be boosted along

the lepton beam momentum. In this review, we use a completely general axis for

the target polarization, characterized by the starred angles. The relationships

we provide here include these two specific choices of polarization axes, and the

use of invariant functions eliminates the need for a potentially cumbersome550
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boost.

Let us consider one of these other treatments of the problem in a little more

detail. Specifically we relate the present conventions to those employed in the

target rest frame by [23]. The aim of their paper is to model the cross section at

tree level in terms of transverse-momentum dependent parton distribution and555

fragmentation functions. For the target-unpolarized terms one has

FUU,T = N2 ·
(
WT
unpol

)
(210)

FUU,L = N2 ·
(
2ρWL

unpol

)
(211)

cosφhF
cosφh

UU = N2 ·
(
−
√
ρ/2WTL

unpol

)
(212)

cos 2φhF
cos 2φh

UU = N2 ·
(
−WTT

unpol

)
(213)

sinφhF
sinφh

LU = N2 ·
(
−
√
ρ/2WTL′

unpol

)
, (214)

where again N2 is an overall normalization factor (as above, we postpone the

discussion of the overall normalization of the response functions until Sec. 4

where the semi-inclusive cross section is discussed in more detail), and when

the target is polarized one has560

|S⊥| sin(φh − φs)F sin(φh−φs)
UT,T = N2 ·

(
WT
pol

)
(215)

|S⊥| sin(φh − φs)F sin(φh−φs)
UT,L = N2 ·

(
2ρWL

pol

)
(216)

S‖ sinφhF
sinφh

UL + |S⊥|
[
sinφsF

sinφs

UT

+ sin(2φh − φs)F sin(2φh−φs)
UT

]
= N2 ·

(
−
√
ρ/2WTL

pol

)
(217)

S‖ sin 2φhF
sin 2φh

UL + |S⊥|
[
sin(φh + φs)F

sin(φh+φs)
UT

+ sin(3φh − φs)F sin(3φh−φs)
UT

]
= N2 ·

(
−WTT

pol

)
(218)

S‖FLL + |S⊥| cos(φh − φs)F cos(φh−φs)
LT = N2 ·

(
WT ′

pol

)
(219)

S‖ cosφhF
cosφh

LL + |S⊥|
[
cosφsF

cosφs

LT

+ cos(2φh − φs)F cos(2φh−φs)
LT

]
= N2 ·

(
−
√
ρ/2WTL′

pol

)
.

(220)
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The target polarizations are related by the following:

S‖ = PL′ (221)

|S⊥| cos(φh − φs) = PS′ (222)

|S⊥| sin(φh − φs) = −PN ′ , (223)

where the polarizations on the right-hand sides of the equations are discussed

in more detail in Sec. 4.3. As for the previous example, all of these results may

be written in terms of invariant response functions using the expressions given

in Sec. 3.565

Finally, we note that other reactions have been studied using similar ap-

proaches to those employed here. For instance, in the dilepton production paper

of [24] the hadronic side of the reaction involves two (polarized) hadrons which

collide, exchanging a virtual photon which then has a lepton pair plus X at its

other end. However, whatever specific choices of colliding hadrons are made,570

they are not as in the present paper, namely, a hadron (the spin-1/2 target, per-

haps polarized) for one and a state typically having a hadron plus unobserved

“missing” particles (“breakup”). Similar reasoning applies to the case of polar-

ized hadron pair production in electron-positron annihilation discussed in [25],

leading to a different state than discussed here. For the present case one may575

make the following arguments (see the end of Sec. 2.3): applying time-reversal

interchanges initial and final hadronic states and applying complex conjugation

restore the states to their original order, albeit while now requiring the complex

conjugate of the matrix element involved. Two types of contributions occur:

TRE corresponding to real parts of matrix elements and TRO corresponding to580

imaginary parts. We again emphasize that within the present context P and T

are assumed to be good symmetries; the TRE/TRO characterization, of course,

does not imply violation of time-reversal invariance. When discrete states are

involved initial- and final-state phases cancel and thus TRO contributions are

absent. For example, for elastic scattering (see, for instance, [26]) where ini-585

tial and final hadronic states are the same and where any chosen phase simply

cancels this means that only real parts can survive and thus that TRO contri-
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butions are absent. This is well-known for elastic electron scattering where only

even Coulomb, odd magnetic and no electric multipoles occur when P and T

are taken to be good symmetries (see, for instance [1], Chapters 7 and 15).590

However, for inelastic scattering involving breakup (as in the present work)

the initial and final states are not in general relatively real, the imaginary parts

do occur and therefore TRO contributions are in general non-zero (they may be

small, however not always). Such contributions have been measured in specific

cases. Typically the reason some feel they are zero stems from the model as-595

sumptions made. For instance, in high-energy physics if the “handbag” assump-

tion is invoked, then the TRO contributions are zero. However, if higher-order

diagrams are added (for instance by adding gluon lines between the quark lines)

then one is faced with loop integrals, which means complexity and means both

TRE and TRO contributions can be present. In hadronic physics discussions600

of pion electroproduction or nuclear applications such as (e, e′p) reactions with

nuclei one naturally sees such contributions as coming from “final-state interac-

tions”. And in the latter case, when final-state interactions are assumed to be

absent, then again TRO contributions are as well.

The case of pp or pp̄ dilepton production [24] provides an example where both605

frame-dependent and Lorentz invariant responses have been discussed; however,

that situation is akin to the situation outlined above for elastic scattering [26]

where a reduced set of response functions enters. In this special case those

two reactions may be related; however, the “breakup” class of reactions being

reviewed in this work is more general and involves a larger number of (different)610

response functions.

4. Semi-inclusive Cross Section for Electron Scattering from a Polar-

ized Spin-1/2 Target

The full semi-inclusive electron scattering cross section in a general frame

of reference may be written in terms of the Mott cross section, some kinematic615

factors that arise from using the Feynman rules [4], together with a general
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response function Fsemi. We begin the discussion in this section by introducing

useful notation for the kinematic variables involved in semi-inclusive scattering.

4.1. Kinematics for Semi-inclusive Scattering

Referring to Figs. 3 and 2, as discussed above, we are assuming that the ini-620

tial state has two particles of masses me and M with 4-momenta Kµ = (ε,k) and

Pµ = (Ep,p), where ε =
√
k2 +m2

e and Ep =
√
p2 +M2, respectively, which

collide, leaving a particle of mass me with 4-momentum K ′µ = (ε′,k′) where

ε′ =
√
k′2 +m2

e and producing a final state with 4-momentum P ′µ = (Ep′ ,p
′)

and hence invariant mass W =
√
E2
p′ − p′2. In turn, the final state is assumed to625

be divided into two pieces, one the specific particle “x” that is assumed to be de-

tected, having 4-momentum Pµx = (Ex,px), where Ex =
√
p2x +M2

x , together

with the undetected (“missing”) parts of the final state having 4-momentum

Pµm = (Etotm ,pm) with missing energy Etotm , missing momentum pm, and invari-

ant mass Wm =

√
(Etotm )

2 − p2m. Note: for the total missing energy we use630

Etotm , since we reserve the notation Em to denote a different, but related quan-

tity (see below). See Fig. 2 where conservation of 4-momentum requires that

Qµ + Pµ = P ′µ = Pµx + Pµm and thus

Etotm = Ep′ − Ex (224)

pm = p′ − px. (225)

From above we have that

Pµm = Qµ + Pµ − Pµx (226)

and therefore that

Etotm = ω + Ep − Ex (227)

pm = p′ − px. (228)

Following the procedures adopted in studies of scaling [27] let us employ as635

independent kinematic variables the missing momentum pm and, rather than
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the missing energy Em, the following energy

Em(pm) ≡ Etotm −
(
Etotm

)
T
≥ 0 (229)

=
√
W 2
m + p2m −

√
(WT

m)
2

+ p2m, (230)

where the threshold value of the invariant mass of the missing momentum is

denoted WT
m; examples of this are given later. This quantity has the merit of

taking on the value Em = 0 at threshold. When used in the context of nuclear640

physics the missing 3-momentum is typically much smaller than the invariant

masses of either the daughter threshold value (often the daughter ground-state

mass) or any higher-energy daughter state and thus Eq. (230) may be written

Em(pm) = Wm

√
1 +

(
pm
Wm

)2

−WT
m

√
1 +

(
pm
WT
m

)2

(231)

= Wm

(
1 +

p2m
2W 2

m

+ · · ·
)
−WT

m

(
1 +

p2m

2 (WT
m)

2 + · · ·

)
(232)

=
(
Wm −WT

m

)
[1− δm + · · · ] (233)

where

δm ≡
p2m

2WmWT
m

� 1 (234)

typically. Often setting δm to zero is an excellent approximation; this correc-

tion involves only the difference between the kinetic energy of recoil when the645

daughter system is at threshold and when it is in some excited state. However,

it is not necessary ever to make these approximations and the exact expressions

can alway be employed.

In studies of nuclear physics it is common to define a different quantity

(confusingly also called the missing energy) where kinetic energies are employed,650

Em. Defining the kinetic energies

T ≡ Ep −M (235)

Tx ≡ Ex −Mx (236)

Tm ≡ Etotm −Wm, (237)
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one has

Em ≡ ω − (Tx + Tm) (238)

=
(
Wm −WT

m

)
+ Es − T (239)

' Em(pm) + Es − T, (240)

where the so-called separation energy

Es ≡Mx +WT
m −M ≥ 0 (241)

has been introduced and the approximation in the third equation above corre-

sponds to neglecting the correction involving δm discussed above.

Using the energy conservation condition in Eq. (227) we have

Em(pm) = (Ep + ω)−
(
Etotm

)
T
−
√
M2
x + p′2 + p2m − 2pmp′ cos θm, (242)

where θm is the angle between p′ and pm and pm = |pm|. By setting Em to655

zero and solving the above equation for pm under the limiting conditions where

cos θm = ±1 it is straightforward to show that the above equation at Em = 0

has two solutions

p+m ≡ Y =
1

W 2

[
(Ep + ω)

√
Λ2 −W 2 (WT

m)
2

+ p′Λ

]
(243)

−p−m ≡ y =
1

W 2

[
(Ep + ω)

√
Λ2 −W 2 (WT

m)
2 − p′Λ

]
, (244)

where, following the notation of [27] we have introduced the quantity

Λ ≡ 1

2

[
W 2 +

(
WT
m

)2 −M2
x

]
. (245)

Note that the quantity in the square root may be written

Λ2 −W 2
(
WT
m

)2
=

1

4

[
W 2 −

(
WT
m +Mx

)2] [
W 2 −

(
WT
m −Mx

)2]
(246)

and, since the argument of the square root must be non-negative, that

W ≥WT = WT
m +Mx. (247)

Upon setting y = 0 one finds that

ω = ω0 ≡
√
M2
x + q2 +WT

m −M. (248)
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Figure 4: Physically allowed region for the situation where y < 0. The variables employed

here are discussed in the text.

Given these relationships it is then straightforward to determine the physically

allowed regions in the Em-pm plane: for y ≥ 0 corresponding to ω ≥ ω0 one has

E0m(−pm) ≤ E(pm) ≤ E0m(pm) for 0 ≤ pm ≤ y

0 ≤ E(pm) ≤ E0m(pm) for y ≤ pm ≤ Y,
(249)

while for y ≤ 0 corresponding to ω ≤ ω0 one has

0 ≤ E(pm) ≤ E0m(pm) for −y ≤ pm ≤ Y, (250)

where

E0m(pm) ≡ (Ep + ω)−
(
Etotm

)
T
−
√
M2
x + (p′ − pm)

2
, (251)

namely, the value of Em(pm) when cos θm = +1. These regions are shown in

Figs. 4 and 5. The region in Fig. 5 is seen to be bounded from below by the

curve E0m(−pm) which occurs when θm = π and above by the curve E0m(pm)

which occurs when θm = 0 for 0 ≤ pm ≤ y, while the other regions are all

bounded by zero from below and by the curve E0m(pm) from above. When

Em(pm) = 0 one has from Eq. (242) that

cos θm =
1

2pmp′

{
M2
x + p′2 + p2m −

[
(Ep + ω)−

(
Etotm

)
T

]2}
, (252)

which determines θm for this boundary.
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Figure 5: Physically allowed region for the situation where y > 0. The variables employed

here are discussed in the text.

Thus we have the allowed regions of kinematics in the Em-pm plane for given660

values of q and ω or, equivalently, of Q2 and ω = ν or q and y, where y = y (q, ω)

given above is often used to replace ω in scaling analyses [27]. In turn these

impose limits on the allowed values of the energy, 3-momentum and polar angle

for the detected particle x: first, taking the scalar and cross product of p′ with

px = p′ − pm yields665

px cos θx = p′ − pm cos θm (253)

px sin θx = pm sin θm (254)

and thus

Ex = (Ep + ω)−
((
Etotm

)
T

+ Em(pm)
)

(255)

px =
√
p′2 + p2m − 2pmp′ cos θm (256)

tan θx =
pm sin θm

p′ − pm cos θm
. (257)

By evaluating these expressions on the above boundaries one can then determine

the physically allowed regions for Pµx . Let us denote the allowed region for the

variables px (and hence Ex) and the polar angle θx by Γx. The above equations

define the kinematic boundaries within which all values of (px, θx) are allowed670

and outside of which no physically allowed values exist. Later we discuss the

roles played by the azimuthal angle φx where all values (0, 2π) are allowed.
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These results may be specialized from the general frame to the rest frame

where p = 0 and thus T = 0 by making the following replacements: the energy

E and the 3-momentum p′ are replaced by M and q, respectively, and θm675

becomes the angle between q and pm; W and Λ are Lorentz invariants and so

do not change. The results one then obtains are the ones that are familiar from

analyses of scaling [27].

That said, it should be noted that all of these developments are also valid

for studies of particle physics at high energies.680

4.2. Semi-inclusive Cross Section

Having established the allowed regions for the kinematics in semi-inclusive

reactions we may now proceed to a discussion of the cross section. The Feynman

rules followed in this work are those of [4]: we provide details in an appendix of

[18] for how the general expression for the six-fold semi-inclusive cross section

is obtained. That general answer may be re-written in the following form to

connect with the above development of the leptonic and hadronic tensors[
d6σ

dΩdk′dpxd cos θxdφx

]
x

=
1

2π
σMottf

M

Ep

p2x
Ex

[
Fsemi

]
x

(258)

where
α2v0k

′

Q4k
= σMott =

(
α cos θe/2

2ε sin2 θe/2

)2

(259)

is the Mott cross section and
[
Fsemi

]
x

is the invariant called C = χµνW
µν

divided by the factor v0, namely[
Fsemi

]
x

= χµνW
µν
x /v0 (260)

= vL
[
WL
x

]semi
+ vT

[
WT
x

]semi
+ · · · (261)

as discussed below and where the subscript “x” has been added to remind us

that this forms the semi-inclusive cross section where particle x is assumed to be

detected. The factor M/Ep arises from applying the Feynman rules in a general

frame where the target is moving; this factor becomes unity in the target rest

frame. Furthermore, the factor [28, 29]

f =
[
(βe − βp)2 − (βe × βp)2

]−1/2
, (262)
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with βe = k/ε and βp = p/Ep as usual, accounts for the flux of the (in general

colliding) beams. In the rest frame one has βp = 0 and thus fR = 1/βe which685

equals unity in the ERLe.

In Eq. (258) a specific choice has been made for the normalization. In

particular, while any constants or Lorentz invariants could be absorbed into the

definitions of the invariant functions we choose to fix the conventions so that

upon integrating the semi-inclusive cross section over the detected particle’s 3-690

momentum and summing over all open channels, i.e., all particles x while taking

care not to double-count, one should recover the inclusive cross section with its

conventional normalization. That is, to obtain the contribution of the channel

having particle x to the inclusive cross section one should perform the integral

over px, cos θx and φx over the allowed physical region for the semi-inclusive695

reaction (e, e′x) (see above for detailed discussion concerning the allowed region)[
d2σ

dΩdk′

]
x

=

{∫
dpx

∫
d cos θx

∫ 2π

0

dφx

[
d6σ

dΩdk′dpxd cos θxdφx

]
x

}
allowed

(263)

=
1

2π
σMottf

M

Ep

{∫
dpx

p2x
Ex

∫
d cos θx

[
Gsemi

]
x

}
allowed

, (264)

where [
Gsemi

]
x
≡
∫ 2π

0

dφx
[
Fsemi

]
x
. (265)

Then the full inclusive cross section is obtained by summing over all open chan-

nels, taking care not to double-count:

d2σ

dΩdk′
=
∑̂
x

[
d2σ

dΩdk′

]
x

, (266)

where the requirement not to double-count is indicated by the hat over the

summation. In the next section the full inclusive cross section is also written in

the form
d2σ

dΩdk′
= σMottf

M

Ep
Rincl, (267)

where

Rincl = Rincl1 + · · · (268)

and

Rincl1 =
[
vLR

L
unpol

]incl
+ · · · (269)
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Clearly the integral over φx for contributions that have no explicit φx-dependence

simply accounts for the factor 2π put in the denominator above.

One may now change variables in the following ways. Since from Eq. (228)

pm = p′ − px and we are keeping q and p constant and hence also p′ = p + q

constant, one has

p2xdpxd cos θx = p2mdpmd cos θm (270)

and thus the semi-inclusive cross section may be written as differential in the

missing-momentum plus changing p2x to p2m. Since we also have from Eq. (242)

that

Em(pm) = (Ep + ω)−
(
Etotm

)
T
−
√
M2
x + p′2 + p2m − 2pmp′ cos θm, (271)

we can change variables from cos θm to E :[
∂Em

∂ cos θm

]
pm

=
pmp

′

Ex
(272)

and so [
d6σ

dΩdk′dpmdEmdφx

]
x

=
1

2πp′
σMottf

M

Ep
pm
[
Fsemi

]
x
. (273)

To form the inclusive cross section one may then proceed to integrate over pm,

Em and φx (which is unchanged from the previous treatment), where now the700

physical region defining the boundaries in the (pm, Em)-plane is that discussed

above.

The above has been developed in a general frame; if one wishes to have the

results in the target rest frame all that is necessary is to set p to zero, in which

case p′ → q, θm becomes the angle between q and pm and Ep →M .705

As discussed in detail above where the invariant response functions have

been developed, the overall response can be decomposed into the four sectors

that are classified by the types of polarization they involve

Fsemi = Fsemi1 + hFsemi2 + h∗Fsemi3 + hh∗Fsemi4 . (274)

In the semi-inclusive case, as we have seen earlier, the responses here depend on

four scalar invariants, (Q2, Ip, Ix, Ippx), together with the kinematic variables
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that enter through the lepton tensor. Clearly again the four sectors can be

separated by flipping the electron helicity h and the direction of the target spin

via the factor h∗. Explicitly we have710

Fsemi1 = vL
[
WL
unpol

]semi
+ vT

[
WT
unpol

]semi
+vTT

[
WTT
unpol

]semi
+ vTL

[
WTL
unpol

]semi
(275)

hFsemi2 = vT ′

[
WT ′

unpol

]semi
+ vTL′

[
WTL′

unpol

]semi
(276)

h∗Fsemi3 = vL
[
WL
pol

]semi
+ vT

[
WT
pol

]semi
+vTT

[
WTT
pol

]semi
+ vTL

[
WTL
pol

]semi
(277)

hh∗Fsemi4 = vT ′

[
WT ′

pol

]semi
+ vTL′

[
WTL′

pol

]semi
. (278)

Here the responses
[
WK
unpol

]semi
and

[
WK
pol

]semi
with K = L, T , TL, TT ,

T ′ and TL′ are the semi-inclusive quantities developed earlier, now with the

label semi appended to distinguish them from the inclusive responses discussed

above. As we found earlier, Fsemi1,4 are TRE while Fsemi2,3 are TRO. In turn,

the individual responses are built from the 18 invariant response functions Wm,715

m = 1, . . . , 5 and W ′m, m = 1, . . . , 13. Note: the invariant responses here are

for semi-inclusive scattering and depend on the four chosen scalar invariants;

these quantities should not be confused with the inclusive invariant response

functions discussed below.

4.3. Two Coordinate Systems for the Target Spin720

We will have occasion to use two different coordinate system to specify the

axis of quantization for the target spin. In the discussions above we chose

the lepton-plane oriented coordinate system where q is along the 3-axis and

the 2-axis is normal to the electron scattering plane (see Fig. 3). It proves

to be convenient to introduce a rotated (around the 3-direction) coordinate725

system which we denote with primes, namely one with 3′-axis along q and 2′-

axis normal to the plane formed by q and px (see Fig. 6). The reason for this

choice of rotated system will become apparent in due course. The unit vectors
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Figure 6: Two coordinate systems for the target spin. The original coordinate system is shown

in Fig. 3 and here one can see how the primed system is related via a rotation around the

3-direction (the direction of the 3-momentum transfer q) by the azimuthal angle φx. Hence

in the 123-system the azimuthal angle of the target spin is φ∗, while in the 1′2′3′-system it is

φ∗′ = φ∗ − φx.

in these two systems are related by

u1′ = cosφxu1 + sinφxu2 (279)

u2′ = − sinφxu1 + cosφxu2 (280)

u3′ = u3 (281)

and the inverse730

u1 = cosφxu1′ − sinφxu2′ (282)

u2 = sinφxu1′ + cosφxu2′ (283)

u3 = u3′ . (284)

One has that

q = qu3 = qu3′ (285)

while

px = px [sin θxu1′ + cos θxu3′ ] (286)
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with no 2′ component, by construction. A simple result (which we use below)

is accordingly

q× px = qpx sin θx (− sinφxu1 + cosφxu2) (287)

= qpx sin θxu2′ , (288)

namely having only a 2′ component. The spin 4-vector may then be written in

either the 123 system or the 1′2′3′ system. One may define projections of the

spin 3-vector in the two systems in the following way: the L, S and N directions735

are obtained by setting θ∗ = 0 (for L), θ∗ = π/2 with φ∗ = 0 (for S) and φ∗ =

π/2 (for N), namely, making projections along the 123 system unit vectors

PL ≡ u3 · s = h∗s cos θ∗ (289)

PS ≡ u1 · s = h∗s sin θ∗ cosφ∗ (290)

PN ≡ u2 · s = h∗s sin θ∗ sinφ∗ (291)

or doing the same, but for the unit vectors in the 1′2′3′ system

PL′ ≡ u3′ · s = h∗s cos θ∗ (292)

PS′ ≡ u1′ · s = h∗s sin θ∗ cosφ∗
′

(293)

PN ′ ≡ u2′ · s = h∗s sin θ∗ sinφ∗
′
. (294)

Using the relationships amongst the unit vectors above one has that

PL = PL′ (295)

PS = cosφxPS′ − sinφxPN ′ (296)

PN = sinφxPS′ + cosφxPN ′ (297)

PS′ = cosφxPS + sinφxPN (298)

PN ′ = − sinφxPS + cosφxPN . (299)

Note that PL′ = PL contains no dependence on φx.740

Recalling the conventions employed in some analyses of frame-dependent

formulations in Sec. 3.2, we see how the approach using the spin azimuthal angle
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φ∗′ referenced to the hadron plane (which is commonly used in treatments of

pion electroproduction; see, for example, the discussion in [3]), together with

the azimuthal angle between the electron and hadron planes φh leads to a simple745

pattern. Here we have φ∗′ = φ∗ − φx = φs − φh, with φh = φx and φs = φ∗;

accordingly the dependences in Sec. 3.2 are the following:

sin(φh − φs) = − sinφ∗′ (300)

cos(φh − φs) = cosφ∗′ (301)

sinφs = sinφh cosφ∗′ + cosφh sinφ∗′ (302)

cosφs = cosφh cosφ∗′ − sinφh sinφ∗′ (303)

sin(φh + φs) = sin 2φh cosφ∗′ + cos 2φh sinφ∗′ (304)

sin(2φh − φs) = sinφh cosφ∗′ − cosφh sinφ∗′ (305)

cos(2φh − φs) = cosφh cosφ∗′ + sinφh sinφ∗′ (306)

sin(3φh − φs) = sin 2φh cosφ∗′ − cos 2φh sinφ∗′ (307)

together with sinφh, cosφh, sin 2φh and cos 2φh. We see that for the spin-

dependent sector the dependences on the spin azimuthal angle enter not at all

(L′) or through factors cosφ∗′ (S′) or sinφ∗′ (N ′). The dependences on the750

azimuthal angle φh are the following: no dependence for L, T and T ′ responses,

via factors sinφh and cosφh for TL and TL′ responses, and via factors sin 2φh

and cos 2φh for TT responses. This simple pattern is well-known in studies of

pion electroproduction (see, for example, Sec. 3 of [3] and Table 2 of [18]).

5. Inclusive Scattering of Polarized Electrons from755

Polarized Spin-1/2 Targets

For inclusive scattering one simply needs to eliminate all contributions that

contain the 4-vectors V µ or Xµ, as well as the invariant I0 as they involve the

4-vector Pµx which does not enter in the inclusive case. All invariant response

functions depend only on two scalar quantities, for example, Q2 and Q · P =760
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Q2Ip. Accordingly one obtains the following:

(Wµν
s )

incl
unpol = − (W1)

incl

(
gµν − QµQν

Q2

)
+ (W2)

incl
UµUν (308)

(Wµν
a )

incl
unpol = 0 (309)

(Wµν
s )

incl
pol = (W ′6)

incl
(
UµX

ν
+ UνX

µ
)

(310)

−i (Wµν
a )

incl
pol =

1

M
(W ′9)

incl
εµναβΣαQβ

+ (W ′11)
incl

(UµX
ν − UνXµ

) (311)

with 5 inclusive invariant functions (Wm)
incl

, m = 1, 2 and (W ′m)
incl

, m =

6, 9, 11. Using our previous results for semi-inclusive scattering but now drop-

ping all contributions containing V µ or Xµ we obtain the following: for the

symmetric, unpolarized cases (now not continuing to develop the TL and765

TT cases) [
WL
unpol

]incl
= −1

ρ
(W1)

incl
+
(
U0
)2

(W2)
incl

(312)[
WT
unpol

]incl
= 2 (W1)

incl
+
[(
U1
)2

+
(
U2
)2]

(W2)
incl

(313)[
WTT
unpol

]incl
=

[
−
(
U1
)2

+
(
U2
)2]

(W2)
incl

(314)[
WTL
unpol

]incl
= 2

√
2U0U1 (W2)

incl
, (315)

no results for the anti-symmetric, unpolarized case

(Wµν
a )

incl
unpol = 0, (316)

as can be seen above in discussing the semi-inclusive responses. All contri-

butions there contained explicit factors involving V µ or Xµ; in fact, potential

contributions of this type are parity-violating when electrons are polarized longi-

tudinal or sideways. For the symmetric, polarized cases (now not continuing770

to develop the TL and TT cases) we have[
WL
pol

]incl
= U0X

0
W ′6 (317)[

WT
pol

]incl
=

(
U2X

2
+ U1X

1
)
W ′6 (318)[

WTT
pol

]incl
=

(
U2X

2 − U1X
1
)
W ′6 (319)[

WTL
pol

]incl
= 2

√
2
(
U0X

1
+ U1X

0
)
W ′6, (320)
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all of which are proportional to the same invariant response function W ′6. And,

finally, for the anti-symmetric, polarized situation (now not continuing to

develop the TL′ case, although it is very similar to the TL′ case below, simply

having 2 replaced by 1; as noted earlier, this term can occur when only the in-775

cident electron is polarized but when the scattered electron’s polarization is not

measured although the leptonic factor goes as 1/γ and hence this contribution

may be safely neglected at high energies – we do so in the following) we have[
WT ′

pol

]incl
= −2

[
1

M
(W ′9)

incl
ε12αβΣαQβ

+ (W ′11)
incl

(U1X
2 −X1

U2)
]

(321)[
WTL′

pol

]incl
= −2

√
2

[
1

M
(W ′9)

incl
ε02αβΣαQβ

+ (W ′11)
incl

(U0X
2 −X0

U2)
]
. (322)

In total we find that 5 invariant response functions enter, W1,2 and W ′9,11 in

contributions that are TRE, plus the contributions that involve the invariant780

response function W ′6 and are TRO.

The general inclusive cross section may then be written in the following form:

d2σ

dΩedk′
≡ σMottf

M

Ep
Rincl (323)

where σMott is the Mott cross section given in Eq. (259) and the full inclusive

response is given by

Rincl = Rincl1 + hRincl2 + h∗Rincl3 + hh∗Rincl4 , (324)

in which the four contributions correspond to completely unpolarized, electron

polarization only, target polarization only, and double polarization, respectively.

As above all responses here depend on two scalar invariants such as Q2 and

Q ·P together with the electron scattering angle θe which enters via the leptonic785

factors. Clearly the four sectors can be separated by flipping the electron helicity
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h and the direction of the target spin via the factor h∗. Explicitly we have

Rincl1 = vL
[
WL
unpol

]incl
+ vT

[
WT
unpol

]incl
+vTL

[
WTL
unpol

]incl
+ vTT

[
WTT
unpol

]incl
(325)

hRincl2 = 0 (326)

h∗Rincl3 = vL
[
WL
pol

]incl
+ vT

[
WT
pol

]incl
+vTL

[
WTL
pol

]incl
+ vTT

[
WTT
pol

]incl
(327)

hh∗Rincl4 = vTL′

[
WTL′

pol

]incl
+ vT ′

[
WT ′

pol

]incl
, (328)

where, as above, we have dropped the small TL′ contribution. The leptonic fac-

tors are given in eqs. (31) - (36) while the inclusive hadronic response functions

are given above.790

5.1. The Transition from Semi-Inclusive to Inclusive Scattering

While the above developments yield the structure of the general inclusive

cross section directly, it is also instructive to follow a different strategy and pro-

ceed from the semi-inclusive cross section for a given channel (i.e., for a specific

particle x detected in coincidence with the scattered electron), integrating over795

the allowed kinematics of the 4-momentum that goes with that particle, and

then summing over all open channels, of course, paying close attention to issues

of double-counting.

We start with the general forms for the semi-inclusive cross section for the

specific channel where particle x is assumed to be detected given above in Secs.800

4.2 and 4.3. The dependence on the azimuthal angle φx occurs in the explicit

factors cosφx, cos 2φx and sinφx in the rest frame for the cases where the target

is unpolarized. Clearly, upon performing the integrals over φx over the range

(0, 2π) yields zero for the TT , TL and TL′ cases, verifying the above inclusive

structure. The L and T cases simply pick up a factor 2π when the azimuthal805

integral is performed. In summary, for the target unpolarized situation one finds

that each channel yields only L and T responses.

The situation where the target is polarized is a little more complicated.

There one finds that as well as explicit factors cos φx, cos 2φx, sinφx and sin 2φx,
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one has implicit dependence on φx via the factors PS′ and PN ′ . In this scenario810

it, of course, makes no sense to use the primed spin-projection variables, since

the plane in which the momentum of particle x lies is being integrated over and

accordingly we must go back to the original unprimed spin projections which are

referred to the electron scattering frame. Two of the symmetric, polarized cases

are simple: the L and T results depend on the azimuthal angle solely through815

the factor PN ′ , which, by Eq. (303) only has dependences sin φx and cosφx and

accordingly upon integrations over φx yield zero. The remaining cases require

somewhat more work. The symmetric TL response has three contributions

x1 ∼ cosφxPN ′ =
1

2
[− sin 2φxPS + (1 + cos 2φx)PN ] (329)

x2 ∼ sinφxPL′ = sinφxPL (330)

x3 ∼ sinφxPS′ =
1

2
[sin 2φxPS + (1− cos 2φx)PN ] . (331)

Upon integrating over φx one then finds that the x1 and x3 cases yield πPN ,

while the x2 case yields zero, namely, a nonzero result that goes as PN . Similarly,820

the symmetric TT response also has three contributions

y1 ∼ cos 2φxPN ′ =
1

2
[− (sin 3φx − sinφx)PS

+ (cos 3φx + cosφx)PN ] (332)

y2 ∼ sin 2φxPL′ = sin 2φxPL (333)

y3 ∼ sin 2φxPS′ =
1

2
[(sin 3φx + sinφx)PS

+ (− cos 3φx + cosφx)PN ] , (334)

all of which integrate to zero and yield no contribution for the TT term. Next,

the anti-symmetric polarized cases are handled similarly: for the T ′ response

the contribution that involves PS′ yields zero upon integration over φx while the

contribution that involves PL′ and hence no dependence on φx yields a nonzero825

result arising from the factor 2π coming from the integral. Thus the T ′ response

yields a nonzero result that is proportional to PL. Finally, the TL′ response
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involves three contributions

z1 ∼ cosφxPL′ = cosφxPL (335)

z2 ∼ cosφxPS′ =
1

2
[(1 + cos 2φx)PS + sin 2φxPN ] (336)

z3 ∼ sinφxPN ′ =
1

2
[− (1− cos 2φx)PS + sin 2φxPN ] . (337)

As above, the term involving z1 integrates to zero, while the z2 and z3 terms

yields factors of π and −π, respectively, and involve the spin projection PS .830

Thus exactly the structure found above when proceeding to the inclusive cross

section directly is found by integrating the semi-inclusive responses over φx.

Again, the strategy in the present work is the following: given some model

for the polarized semi-inclusive cross section in the rest system one can deduce

what are the invariant response functions for that model. With these the expres-835

sions in a general system immediately yield results for any choice of kinematics.

The key feature is having everything written in terms of kinematic factors and

invariant responses, since the latter are independent of the choice of frame. So,

for example, while the earlier studies referred to above are completely general,

they must be re-cast in terms of invariant response functions if one wishes to840

relate the results in different frames of reference.

6. Summary

The present study has focused on a review of the general formalism for rep-

resenting electron scattering in terms of Lorentz invariant hadronic response

functions. The formalism is very general and meant to be applicable both for845

low-energy reactions and in the high-energy regime (HER). Together with the

well-known leptonic tensor that arises from products of the electron EM current

matrix elements in past studies the EM hadronic tensors has been constructed

using specific general basis sets of 4-vectors. Several cases are summarized,

from the simplest involving unpolarized electrons being inclusively scattered850

from unpolarized targets to much more complicated cases where, in addition

to the scattered electron other particles may be assumed to be detected or
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where hadronic polarizations enter. After reviewing the well-known cases in the

present study we have focused on the specific case involving scattering of polar-

ized electrons from polarized spin-1/2 targets in situations where the scattered855

electron and some (unpolarized) particle x are detected in coincidence, viz.,

semi-inclusive scattering. The other simpler reactions may then be recovered

as special sub-cases of this general reaction. For the polarized semi-inclusive

reaction in total one finds that there are 18 basis tensors, four symmetric ones

when both the electron and target are unpolarized, a single anti-symmetric one860

when the electron is longitudinally polarized while the target is unpolarized,

eight symmetric ones when the electron is unpolarized but the target is polar-

ized, and five anti-symmetric ones when the electron and the target are both

polarized. The contraction of the leptonic and hadronic tensors that enters

when applying the Feynman rules, which is a Lorentz invariant, is then formed865

as a linear combination involving these 18 hadronic tensors weighted with 18

invariant response functions, Wi, i = 1, 5 when the target is unpolarized and

W ′i , i = 1, 13 when the target is polarized. Each of these invariant responses is

a function of four Lorentz scalars (Q2, Ip, Ix, Ippx) (see Eqs. (96–98)). Thus one

has the kinematics of the reaction and the target spin dependence expressed in870

terms of the basis 4-vectors while the dynamics are contained in the 18 invariant

response functions. Clearly the former are frame-dependent while the latter are

not.

Given the Lorentz invariant contraction of the leptonic and hadronic tensors

one can proceed using the Feynman rules to obtain the semi-inclusive cross875

section in a general frame where both the incident electron and the target

are assumed to be moving, the latter with momentum p. All of the kine-

matic factors summarized above must then be evaluated in this specific frame.

Specifically, we require the functions F in Eqs. (279–282) to be combined as

in Eq.(278) and inserted into Eq. (277). To accomplish this we require the880

response functions
[
WK
unpol

]semi
and

[
WK
pol

]semi
with K = L, T , TL, TT , T ′

and TL′ developed earlier; see Eqs. (172–175), (178–179), (180–183) and (187–

189) in Sect. 3.1 where these response functions are written explicitly in terms
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of invariant response functions which contain the dynamics of the problem and

simple kinematic variables. The kinematic variables of course differ in different885

frames whereas the invariant response functions do not. These expressions may

be employed in any frame simply by evaluating the kinematic factors in the

particular frame of interest. One may then obtain the corresponding results

in a different frame where the target has a different value for its momentum

simply by choosing the appropriate value for p; all other kinematic variables890

are then to be evaluated in that different frame. Specifically, one can express

the semi-inclusive cross section in the target rest frame by setting p = 0 (see

[18] for details). Importantly, the dynamical content in the problem, which is

encapsulated in the invariant response functions summarized above does not

change when changing frames. Also, the 18 invariant response functions are895

functions only of the four Lorentz scalars listed above; these are also invariant.

The semi-inclusive cross section separates into four sectors according to the

electron and target polarizations, namely, (I) both unpolarized, (II) electron

polarized, target unpolarized, (III) target polarized, electron unpolarized, and

(IV) both polarized. Having control of these polarizations then immediately al-900

lows the four sectors to be isolated. Furthermore, the cross section has explicit

dependence on several kinematic variables that may be evaluated in principle to

obtain enough linear equations in the 18 unknowns — the 18 invariant response

functions — to invert and thereby determine those response functions. Specif-

ically, the dependences on the electron scattering angle θe, on the azimuthal905

angle for the 3-momentum of the detected particle, φx, and on the angles θ∗

and φ∗ that specify the axis of quantization of the target spin can be used to

isolate the required linear equations (in [18] an appendix is provided with the

details).

Hence several strategies are available. In one approach where measurements910

are made in two different types of experiments the experimental results could be

used in principle to isolate the 18 invariant response functions for the kinematical

situation involved in the two experiments. Specifically, one could envision one

experiment being performed in the target rest frame (fixed-target experiments)
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and from those measurements the 18 invariant response functions or some subset915

thereof being determined. One might then have a different experiment where

the electron and target are both in motion (collider experiments): nevertheless,

the same strategy could be followed and the 18 invariant response functions

determined, albeit, perhaps for non-overlapping kinematics. The two sets of

invariant responses could then be analyzed in a universal way.920

A similar strategy occurs when using theory to make predictions of the

semi-inclusive cross section. For instance, one may be forced to work in the

target rest frame when modeling the dynamics using ingredients that are not

“boostable”, which is almost always the case in nuclear physics for nuclei other

than the deuteron. However, one could deduce the corresponding invariant925

response functions working in the target rest frame and then employ them in,

say, the collider frame. Specific modeling of this sort will be undertaken by the

authors in the future.

To make contact with other approaches, in the process of developing the

semi-inclusive cross section we have chosen to express the results in terms of930

specific Lorentz components of the general hadronic tensor which are governed

by the helicity projections of the exchanged virtual photon. In [18] we have

included an appendix where this step is skipped and the contraction of leptonic

and hadronic tensors is expressed directly in terms of invariant quantities. The

two approaches are completely equivalent, but each may have advantages in935

particular applications.

Finally, we have shown how the inclusive scattering of polarized electrons

from polarized spin-1/2 targets is related to integrations of the semi-inclusive

cross sections plus sums over all open channels. Again we note that in [18] one

may find another appendix containing a few more details on inclusive scattering940

to help the reader find more familiar ground to aid in navigating the much more

intricate problem of semi-inclusive scattering.
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