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Abstract

The use of invariant response functions in treatments of electron scatter-
ing from hadronic targets is reviewed. Various classes of reaction are treated,
building from the simplest (and best known) case of inclusive scattering from
unpolarized targets, to more complicated cases involving polarized electrons
and possibly polarized spin-1/2 targets. In particular, the general structure of
semi-inclusive polarized electron scattering from polarized spin-1/2 targets is
emphasized. A summary is presented of how the leptonic and hadronic tensors
that enter in the formalism are constructed in a general covariant way in terms
of kinematic factors that are frame dependent but model independent and in-
variant response functions which contain all of the model-dependent dynamics.
In the process of reviewing the general problem the relationships to the conven-
tional responses expressed in terms of the frame-dependent helicity components

of the exchanged virtual photon are presented.
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1. Introduction and General Developments

Studies of electron scattering within the Plane-Wave Born Approximation
(PWBA) involve the contraction of the relatively simple electron tensor with
the tensor that captures the dynamical content of the system from which the
electrons are being scattered (see, for instance, [1] for a general overview of
the subject). For the latter we have in mind hadronic systems, specifically
nucleons or nuclei. Typically this contraction of leptonic and hadronic tensors
is decomposed into the individual Lorentz components that are written in a
coordinate system oriented along and transverse to the direction of the virtual
photon exchanged between the electron and the hadronic system (see [2] and [3]
and references therein for the specific conventions employed in the present work).
This approach has been employed for many decades and has proven to be useful
in that sometimes, for instance at very high energies, the various pieces of the
response are not all of similar importance and accordingly approximations may
be made; note, however, that this situation is not always the case. A drawback of
this approach is that the response functions that enter are specific components of
the hadronic tensor and thus are not Lorentz invariant. This means that when
one wishes to inter-relate results in different frames of reference, for instance
between the target rest frame and a frame in which the electrons and target
hadrons are colliding, it becomes necessary to perform a Lorentz transform on
the second-rank hadronic tensor.

In contrast, at least within the context of inclusive electron scattering, it
is well-known that the tensor contraction may be written in terms of Lorentz
invariant response functions multiplied by simple kinematic factors. For ex-
ample, when scattering from unpolarized systems the familiar decomposition
into Lorentz scalar response functions Wi o is conventional (see later and [1]
for discussion of this simplest of cases). These two response functions may be

shown to be functions of two Lorentz scalar quantities, as will be discussed in
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detail later in this review. These ideas have been extended to more complicated
reactions in which some particle or particles in the final state may be detected
in coincidence with the scattered electron or where the target is polarized. In
the present study we present a review of the general formalism for a selection
of these reactions employing invariant hadronic response functions throughout.
In the case of so-called semi-inclusive reactions where the incident electron is in
general polarized, where the target is assumed to be polarized and where one
particle is detected in coincidence with the scattered electron (its polarization
is assumed not to be measured) we provide detailed arguments for the structure
of the tensor contraction and the resulting cross section, since this situation is
likely to be the most relevant in future experimental studies.

The paper is organized in the following way: in the present section some
familiar general developments are summarized which involve the contraction of
the leptonic and hadronic tensors and include the specific forms for the electron
scattering tensors in the Extreme Relativistic Limit (ERL,). This is followed in
Sec. 2 with a review of the steps followed in developing detailed constructions
of the general hadronic tensors for several specific classes of electron scattering
reactions. This is followed in Sec. 3 with several examples where the hadronic
tensors are expressed in terms of frame-dependent response functions, including
a discussion of how these are related to their counterparts written in terms of
invariant response functions. In Sec. 4 the semi-inclusive cross section is given
for a general situation where the polarized spin-1/2 target is moving in some
arbitrary direction — this for use in collider physics. For completeness the
simpler situation of polarized inclusive electron scattering from a (moving) po-
larized spin-1/2 target is presented in Sec. 5. To conclude the paper a summary
is given in Sec. 6.

We begin with some general developments that are common to all elec-

tron scattering formalism at the level of the plane-wave Born approximation.?

2We use the conventions of [4] in this work. We also employ the conventions previously

used by us and others in many previous studies. Namely we denote 4-vectors by capital letters
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The general cross section is proportional to the contraction of the leptonic and

hadronic tensors 7, and WH", respectively
N WH. (1)

Being composed of bilinear products of the corresponding leptonic and hadronic

current matrix elements (j fi)u and (Jy;)", respectively, in the forms

Ny~ Z(]fl): (jfi)l, (2)

if

W S (T (g ®3)
if

with appropriate averages over initial and sums over final states, one has imme-

diately that

Nop = (77/1,1/)* (4)

W = (W) (5)

Instead of 7n,, we employ the following convention for the leptonic tensor

(see [2])

4mZnt (6)

X"
= Ximpol T Xpor- (7)

Also, since the electromagnetic current is conserved,
Q" (jri), = Qu (Jp)" =0, (8)

one has that

QHX/LV = X;WQV = Q;LWHV = WMVQ:/ =0. (9)

and 3-vectors by lower case letters, A* = (A% a), B* = (B%b), etc. The scalar product of
two 4-vectors is then A- B = A°B? — a . b and therefore the scalar product of a 4-vector
with itself is A2 = (A%)2 — a? where a = |a|. One potential point of confusion can occur with
these conventions, viz. for the momentum transfer 4-vector Q* = (Q°,q) = (w,q) = (v,q)
we have Q2 = (Q°)2 — ¢ which for electron scattering is spacelike, and accordingly Q2 < 0.
One should be careful not to confuse our sign convention for this quantity with the so-called

SLAC convention which has the opposite sign QQSLAC =-Q?>0.



Since one can decompose the tensors into symmetric and anti-symmetric

contributions (i.e., under exchange of p and v), namely,

1

Xfw = ) (X/w + Xu,u) (10)
1

XZV = 5 (X;w - Xu,u) (11>
1

Wk = 3 (WHY 4+ WVH) (12)
1

Wi =S (W - W) (13)

with
XM= XY (14)
WHY = W 4+ WE, (15)

Clearly one has the individual continuity equation relationships
QW =QWwWi =0, (16)

and also only symmetric (anti-symmetric) leptonic tensors will contract with
symmetric (anti-symmetric) hadronic tensors when forming the cross section,
the last going as

X W = X W3+ X W™ (17)

We also have from Egs. (4) and (5) that

X2 = Rex" (18)
B = imy (19)
Wi = ReW™ (20)
W = {ImWe (21)

we shall make use of this when constructing explicit forms for the tensors by
including the factor ¢ in the appropriate places.
Furthermore, one can isolate contributions that contain the target spin from

those that do not by forming the unpolarized (spin sum) terms and polarized
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(spin difference) terms, so that the total becomes

M= ) () (22)
W&"::Z = (Wsp;g)unpol + (W:Z)pol (23)

with all four contributions individually satisfying the continuity equation con-

straint:
Qu (X’s%

Qu (W

= Qu(x£%),, =0 (24)

pol

= Qu(Wk) —=0. (25)

pol

) npor
) unpor
When only the incident electrons may be polarized but the scattered electron’s
polarization is assumed not to be measured one can show that the leptonic tensor
contributions that do not involve the electron polarization are only symmetric,
while those that do involve the electron polarization are only anti-symmetric
(see [2]).

The incident electron has 4-momentum K* = (e, k), the scattered electron
has 4-momentum K" = (¢/,k’) and Q* = K* — K'". We shall adopt the
convention where q points along the 3-direction, so that the 4-vector momentum

transfer is

Q" = (w,0,0,q) (26)
with energy transfer w = v (the former is commonly employed in nuclear physics
while the latter is almost always chosen for use in particle physics; we use the
two interchangeably) and 3-momentum transfer ¢ = |q|. One can show that for

electron scattering the 4-momentum transfer must be spacelike:
Q% = w? — ¢* = —4kK' sin* 6, /2 < 0; (27)

here we invoke the Extreme Relativistic Limit (ERL,) for the electron, i.e., we
take the electron mass m, to be much smaller than € and € (the situation where
the mass terms are not ignored is discussed in [2]). For convenience later we

also define

V' = w/qg=v/q (28)

Q%/? =1-v" (29)

>
If
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with0<1/ <land 0<p<1.
We quote the standard results for the leptonic coefficients in the ERL,; their
derivation can be found e.g. in [3]. By convention, upon removing a common

factor vy from the leptonic tensor given above, where
vo = (e + €)% — ¢* = 4kK cos?6,/2, (30)

we are left with the following six leptonic ERL, “Rosenbluth” factors

w o= = (‘) (31)

q
1
vp = §p+tan29€/2 (32)
1
vrr = 5P (33)

1
vrr, = *Ep p+tan2 06/2 (34)

v = tanf./21/p+tan®6,/2 (35)

1
vrp = fﬁptanﬂe/l (36)

The first four, vy, vy, vpr and vy, arise from the symmetric part of the leptonic
tensor, while vy and vy stem from its anti-symmetric part. Note that in the
general case there are nine such factors; see [3] for discussions of the general
case. In the present study we assume that only the incident electron may be
polarized and we invoke the ERL, throughout. Similar labelling conventions

prove to be useful for the hadronic tensor in many applications and we shall
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employ them throughout this study:

who= (W), (37)
W= (Wi, + (W), (38)
Wit = (W), - (Wi, (39)
Wt = 22 (WP, = 2v2ReW(} (40)
W = 20 (W}2), = —2ImW}? (41)
WTE = 2v2i (W), = —2v/2ImW? (42)
WIE = 2(W}7) = 2ReW;? (43)
WL = 22 (W) =2V2ReW}? (44)
W = —2v2i (W) = 2V2ImWl (45)

As in the cited work the notation here is the following: the quantities labelled L
refer to contributions involving the pur = 00 parts of the tensors; those labelled
T,TT, T and TT involve only transverse components of the tensors; and those
labelled TL, TL', TL and TL' involve interferences having real or imaginary
parts of the ur = 01 and 02 components of the tensors. Unprimed quantities
arise from symmetric tensors, viz., those that do not involve polarized electrons,
whereas those with primes only occur when electron polarizations enter. The
underlined quantities labelled TT and T'L occur only when the electron beam
is polarized and the polarization of the scattered electron is measured (see [2]);
since we will not consider this situation in the present study, these contributions
are henceforth dropped. Finally, the sector labelled T'L' does occur when only
the electron beam is polarized, although at high energies these can also safely
be ignored since they go as 1/ where ~ is the usual ratio of energy to mass for
the electron and thus are also neglected in the present work, leaving 6 classes of
response. Accordingly, for the situation of interest in the present study the full
contraction of the leptonic and hadronic tensors may then be written in terms

of these real quantities, 4 involving symmetric contributions and 2 involving
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anti-symmetric contributions:

C = v [(ULWL + ’UTWT + UTLWTL + ’UTTWTT>

+h (vT/ W' 4+ orp WTL/)] , (46)

where C is a Lorentz invariant. Here h is the incident electron’s helicity. We note
that, while the entire right-hand side of the equation forms a Lorentz invariant,
the individual factors are all frame-dependent.

One may also re-write the leptonic factors in a way that involves the so-
called photon longitudinal polarization. One begins with the transverse term in

Eq. (32)

1

vro= 5P + tan®6,/2 (47)
1 2

= 5r {1 + ;tanz 06/2} , (48)

thereby defining the photon longitudinal polarization

£ = {1 + %tanQ 96/2} - , (49)
which implies that
tan®0,/2 = £ (€7 1), (50)
If one defines the ratios
v
ux = ﬁ (51)

with X = L, T,TT, TL,T" and TL' and substitutes in the above equations for
vx for the factor tand,/2 one finds that

up, = 2p€
ur = 1

ury = —€&

urp, = —/pVEN+E) (52)
upr = 1-€2

urpy = —/pV/EMDL=E).
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The invariant in Eq. (46) in this notation in the ERL, then becomes

C = wour |[(20EWE+WT —eWTT - o /EM+EWTT)
+h (MWT’ - ﬁmwﬂ’)] . (53)

Equations (46) and (53) for electron scattering in general have the following
properties: the entire expressions for C are Lorentz invariant; however, the
factors on the right-hand sides of the equations are not, but are all frame-
dependent. That is, vy, the “Rosenbluth” factors vx, with X = L, T,---,
etc., and the response functions WX all depend on the chosen reference frame
— clearly the last, since they involve particular Lorentz components of the
hadronic tensor which are frame dependent. If one wants to relate these in one
frame to another then they must be Lorentz-transformed (i.e., with respect to
both Lorentz indices in WH¥). Specific cases exist where this transformation is
relatively simple, such as between the target rest frame and the target-virtual
photon center-of-momentum frame where the boost is along the g-direction (see,
for instance, [3]). However, while certainly possible, it is not so simple when,
for instance, going between the rest frame and a general collider frame involving
crossed beams.

The goal of the present work is to review an alternative set of developments
where, instead of frame-dependent response functions, the results are expressed
in terms of invariant hadronic response functions multiplied by general kine-
matic factors which are frame-dependent. This will allow universal invariant re-
sponse functions from measurement in different frames to be compared. Again
we emphasize the fact that the results in Egs. (46) and (53) are not wrong, since
the overall expressions are Lorentz invariant, only that the hadronic responses
that would be deduced upon analyzing measurements in two different frames

would not be the same, that is, in general [W""], .., # [W"]

frame2

2. Hadronic Tensors and Invariant Response Functions

In this section we review the past developments of the use of invariant re-

sponse functions in semi-leptonic electroweak interactions. The general strategy

10



145

150

Figure 1: Feynman diagram for inclusive electron scattering. The 4-momenta here are dis-

cussed in the text.

followed here is to use the basic 4-vectors that enter for a specific choice of con-
ditions and to write the hadronic tensor involved as a linear combination of all
allowable contributions built from those 4-vectors that can be formed multiplied
by invariant response functions. We begin with a review of the simplest case of
inclusive scattering of unpolarized electrons from unpolarized targets where the
procedures are easiest to follow and then successively turn to more complicated

situations.

2.1. Unpolarized Inclusive Electron Scattering

Here no final-state particles are assumed to be detected and both the elec-
trons and the target are assumed to be unpolarized. This case was developed in
the early 1960s [5], [6], [7] (see also [8]) and provides the prototype for all other
cases to follow. The hadronic vertex has 4-momentum Q* incoming via the ex-
changed virtual photon, together with P*, the 4-momentum of the target, and
P'*, the undetected 4-momentum of the final state, corresponding to the reac-
tion being assumed to be inclusive (see Fig. 1). Conservation of 4-momentum

allows the last to be eliminated, viz.

P'* = PH 4 Q. (54)

11
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The Lorentz scalars for this reaction are those that can be built from the two
independent 4-vectors (Q*, P*), namely, @2, Q- P and P?, and since P? = M?,
where M is the mass of the target, one has only two independent Lorentz scalars
upon which the invariant response functions can depend. These may be chosen
to be Q% and Q - P, or alternatively, one may define a Lorentz invariant version
of the Bjorken z-variable via
||

2Q - P’

x (55)

where x reverts to the usual definition in the target rest frame, viz., xgp =
|Q?|/2Mv, and then use as Lorentz scalar variables (Q?, z).
In building the general form for the hadronic tensor in this case it is conve-

nient to employ instead of P* the projected 4-vector

e (GDe)

where by construction

0 (57)

Q- P)°
M2Q?

Q-U

Uz = 1-—

(58)

This strategy will be used in the later more complicated cases and will be seen
to greatly simplify the developments there. As we have seen in Sec. 1, when
the electrons are unpolarized only symmetric tensors enter and hence for this
inclusive unpolarized case one can build the most general symmetric second-rank

tensor:

(Ws,uu)incl _ X1g‘“' + XQQ/,LQV

unpol

+X3UHUY + Xy (QHUY +UHQY), (59)

where general Lorentz invariant response functions Xj 234 have been intro-
duced; each is a function of the two Lorentz scalars discussed above, say, (Q?,
Q@ - P). Since the electromagnetic current is conserved one has in momentum
space that

Qu (W) =0 (60)

unpol —

12
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and hence that
(X1 +X2Q%) Q" + (X4Q*) U = 0. (61)

and since Q¥ and U" are linearly independent 4-vectors this means that

X1+ X2Q% = Xy =0, (62)

leaving
(W Yooy = — (W)™ (gw - Q;?) +(Wo)™ M UrUY, (63)
where we follow standard convention and define X; = — (W,)"* and X3 =

(W)™, Here the motivation for including the factor M in Eq. (56) becomes
clear: all four of the tensors above have the same dimensions. As long as Lorentz
invariant scalars are used for the arguments of the two invariant response func-
tions (Wl’g)md these factors in Eq. (63) are Lorentz invariant, viz., do not
depend on the particular frame of reference involved in a specific situation.
Hence (W1,2)ind determined in the rest frame, the CM frame, the Breit frame,
or in any specific collider frame are all identical, in contrast to the response
functions W57+ introduced in Sec. 1 which are frame-dependent.

Note that if one wishes to use as response functions Fj 5 as is common in the
high-energy regime (HER), then to maintain their Lorentz invariant properties

one should use the definitions

(Fl)incl = M (Wl)incl (64)
(F2)incl = Lj\f (WQ)incl ’ (65)

and treat these as functions of the Lorentz scalars @ and x in Eq. (55).
While the focus in this work is on parity-conserving electron scattering we
note that when studying the full electroweak interaction even for inclusive scat-
tering that additional contributions enter since then one has both polar- and
axial-vector currents, the latter not being conserved. For instance, see [9], [10],
[11] for discussions of neutrino reactions, and [9], [10], [12], [13] for discussions

of parity-violating electron scattering.

13
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Figure 2: Feynman diagram for semi-inclusive electron scattering. The 4-momenta here are
discussed in the text. In particular, particle x is assumed to be detected in coincidence with the
scattered electron and thus P} is assumed to be known. Since the total final-state momentum
P'* is known (see Fig. 1 for inclusive scattering) this implies that the missing 4-momentum

is also known via the relationship Pk, = P'* — P}.

2.2. Semi-inclusive Scattering from Unpolarized Targets

Semi-inclusive electron scattering entails reactions of the sort (e, €'z), (€, €'z),
(e,e’@) and (€,e @), where the scattered electron and some other particle z
are assumed to be detected in coincidence in the final state (see Fig. 2). The
incident electron may be polarized, the detected particle (if it is not spin-0) may
have its polarization measured, or both. Let us begin with the cases where the
polarization of particle x is assumed not to be measured.

The strategy reviewed in the previous section is easily generalized. We follow
the developments presented in [14] and employ the same conventions as in that
work. Now one has three 4-vectors upon which to build the hadronic tensor,
namely, (Q", P*, P!), where the 4-momentum of particle x is P¥ = (E,,p.).
As above the invariant response functions are functions of the available Lorentz
scalars, namely, the four quantities (Q?, Q- P, Q- P,, P- P,) having eliminated
the other two possibilities via their (assumed known) masses: P2 = M? and

P2 = M2

T

where M, is the mass of particle x. Again it proves convenient to

14
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use projected 4-vectors: we use U* rather than P* as above and introduce

e (- (%) @) o

By construction, one has

Q-U=Q - V=0 (67)
and
U? = 1—% (68)
o JQQ<M3<Q¢§T>2> (60)
U.v o= A;Q(P-PE—W) (70)

Note that we have chosen to use the target mass M above and not the mass of
particle x, namely M,, since we want to allow the latter to be general enough
to include the photon. Furthermore, we can replace V# with a 4-vector that is

orthogonal not only to Q" but to U* as well:

XH=VH— (UU'QV) U*, (71)
where then
Q-U=Q-X=U-X=0 (72)
and )
X2yt (UTV) (73)

Given the above 4-vector building blocks, we now proceed to construct second-
rank hadronic tensors with the appropriate symmetries. We begin with the

symmetric cases where no target polarization is involved.

QMY

Wi, =g" o (74)
Wi = Uru” (75)
Wi = X1 X" (76)
WY = UFXY + XMUY. (77)

15
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Here the motivation for including the factors M becomes clear: all four of the
tensors above have the same dimensions. We have the following upon contract-
ing with Q:

QuIWh, =0 (78)

for m = 1,2,3,4. The general tensor of this type is obtained by summing
over the 4 contributions, where each is multiplied by a Lorentz scalar, invariant
response function, A,,, that in turn depends only on the four Lorentz scalars in

the problem, namely

4
(W) ma - = D AmWhY, (79)
m=1
and as above one has
Qu (W)t =0 (80)

as required for the overall symmetric, unpolarized tensor by the continuity equa-
tion. The notation “semi-1" is used to denote that one particle is assumed to
be detected in coincidence with the scattered electron. Thus the symmetric,

unpolarized second-rank hadronic tensor may then be written

vysemi—1 semi—1 v QHQV semi—1 v
O (e R U
+ (WS)semi—l X”XV + (W4)semi—l (U'U’XV + XMUV) ,
(81)
namely, with four contributions involving invariant functions (W,,)*™ ", m =

1,2, 3,4 (here we have shifted from using invariant functions A,, to more famil-
iar notation, including the minus sign in the (Wy)*™ " case, which is conven-
tional).

Additionally in the semi-inclusive case with no hadronic polarizations one
can now have an anti-symmetric tensor; there is only one anti-symmetric con-

tribution that uses Q*, U* and X as a basis [14], namely

Wi = (UM XY — XPUY), (82)

16
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where here and below the factor ¢ has been included following Eq. (21). Con-
tracting the valid anti-symmetric tensor with ), yields zero and we find that the
anti-symmetric, unpolarized tensor is constructed from the single basis tensor

of the correct type with an invariant functions here called (Ws)**™ "

(Wp,ll)semifl - (W5)semi71 (Uy,Xl/ . X,u,UV) , (83)

a Junpol

namely the so-called 5th response (see, for instance, [14] and earlier references
therein).

This semi-inclusive analysis has been extended to neutrino reactions which
entails dealing with both polar- and axial-vector currents [15].

Without providing the details let us note that in past work [14] cases have
been studied where two particles 1 and x5 are assumed to be detected in
coincidence with the scattered electron (denoted “semi-2”), but where the po-
larizations of those particles are assumed not to be measured, namely, for the
reactions (e, ¢’z1x2) and (€, e’ x125). In analogy with the semi-1 situation 4-
vectors for the two final-state hadrons are involved, P}, and P}, and one must
work with a set of four 4-vectors, (Q*, P*, Pt Pt ). Now the set of dynamical
Lorentz scalars is (Q2, Q- P, Q-Py,, Q- Py,, P-Py,, P-P,,, Py, - Py,), namely,
all invariant response functions are now functions of seven dynamical Lorentz
scalars for this semi-2 situation. As above one can form the corresponding pro-
jected analogs of Eq. (66) denoted V}* and V4* defined such that Q - V32 = 0,
and then orthogonalize the complete set of four 4-vectors following a similar
procedure to that outlined above. Finally, one can proceed to write the semi-2
symmetric and anti-symmetric hadronic tensors as above and employ the conti-
nuity equation to arrive at the extensions of Eqs. (81) and (83); the details are
omitted here and the reader is directed to [14] for the full analysis.

Note also that, if one wishes to proceed to reactions with three or more par-
ticles in coincidence with the scattered electron, for example, (e, e zixoxs---)
and (?, e'ryxowy - - - ), a change in the logic occurs, namely, at the level of semi-2
one already has four independent 4-vectors (Q“7 PH, Pﬁl,P‘,ﬁ;) and accordingly

any additional 4-vectors may be written as linear combinations of these four,

17
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for example,

Pl = aQ" + bP" + cP} + dPl, (84)
where a, b, ¢, d are Lorentz scalars. That is, any set of four linearly independent
4-vectors spans the 4D space. Hence, the form of the semi-2 cross section is the
most general, although each invariant response function must depend on the
complete set of Lorentz scalars for each case semi-2, semi-3, etc. (see [14] for
more detail on this and other issues).

Finally, in reviewing the past developments of the various hadronic tensors
in terms of invariant response functions let us note that the cases of (e, e’ @)

and (€, e/ 2) reactions have been presented in [16].

2.3. Semi-inclusive Scattering from Polarized Spin-1/2 Targets

In this section we proceed to summarize the procedures for building the most
general tensors for semi-inclusive electron scattering from polarized spin-1/2
targets written in terms of invariant response functions. Later, in the following
section, we will connect this approach with the more familiar one where frame-
dependent responses are involved. This situation is likely to be one of the most
relevant in future experimental studies and accordingly we provide a detailed
summary of the procedures involved. In particular, we employ notation that is
consistent with that used in previous studies where cross sections for electron
scattering from unpolarized targets have been developed, namely, those summa-
rized above. The simpler unpolarized-target cases may then straightforwardly
be recovered from the more general results. At the end of the section we briefly
discuss alternative schemes.

The process is shown schematically in Fig. 3 (see also Fig. 2). That is, we con-
sider reactions of the type @ + Z(l /2) — €' + x+ B where the incident electron
may be polarized, the spin-1/2 target A may be polarized and where we assume
that, in addition to the scattered electron, some (unpolarized) particle x is de-
tected in coincidence. The sum of all open channels that make up the final state
is denoted B and is assumed not to be detected. Employing notation commonly

used in nuclear physics the reaction may be written X(l /2)(€,e'x)B. We shall

18



| 13-plane

Figure 3: Schematic representation of semi-inclusive electron scattering. The coordinate sys-
tem is chosen such that the electron scattering occurs in the 13-plane and has the 3-momentum
transfer along the 3-axis. The particle x detected in coincidence with the scattered electron

has 3-momentum p, which lies in a plane in general inclined at an azimuthal angle ¢, with

respect to the electron scattering plane and has polar angle 0, with respect to q. The polar-

ization of the spin-1/2 target involves the spin 3-vector s with polar and azimuthal angles 6*
and ¢*, respectively, in the chosen coordinate system.
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discuss how such semi-inclusive reactions are related to the inclusive cross sec-
tion, i.e., for reactions of the type € + 2(1/2) — e 4+ X or Z(l/Q)(?,e’)X,
where X denotes the complete (undetected) final state. The formalism is de-
veloped in a general coordinate system as one wishes to be able to relate the
response in different frames of reference, in particular, in the target rest frame
and in a frame where the incident electrons and the spin-1/2 target are both
moving and colliding.

The developments summarized here are general and intended for use at any
energy scale and for studies both of particle and nuclear physics. For instance,
past and ongoing studies involve fixed-target (target rest frame) measurements
say at SLAC or JLab or other fixed-target facilities as well as at colliders. The
energies involved in the former are typically 10s of GeV or lower, while the
latter range up to quite high energies — the high-energy regime (HER). In the
future one anticipates studies at the EIC collider facility where electrons at 10s
of GeV will be collided with hadronic targets at 100s of GeV. In fact, where
polarized electrons are to be scattered from polarized spin-1/2 targets in that
facility it is anticipated that both polarized protons and polarized 3He nuclei
will be employed. Accordingly one is motivated to develop the formalism for
general semi-inclusive scattering of polarized electrons from polarized spin-1/2
targets in a covariant way through the use of general invariant hadronic response
functions for use in all situations at all energies.

Two examples where the ideas are relevant, one from particle physics and
one from nuclear physics are the following. For the former consider charged
pion production from a polarized proton target (see, for instance, [17] or [3]
and references therein). For single-pion production one then has the (exclusive)
reaction € + ? — € 4+ n+ 7" with a neutron and a positive pion in the
final state. As a semi-inclusive reaction one then has either ?(?, e/n)mt where
particle x is a neutron and the pion is undetected or ?(?, ¢/m)n where particle
x is a 71 and the neutron is undetected. In fact these are the same reaction and
accordingly they constitute a single channel. Clearly there are experimental

considerations involved in which particle is the one detected in coincidence;
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however, theoretically they are indistinguishable. For higher-energy kinematics
one reaches a threshold where additional channels open. For instance, once the
relevant threshold is reached, two-pion production becomes possible, e+ ? —
¢ +n+7t+7%and then € + 7 — € +p+a~ +nt, and so on, with more
and more particles in the final state. Of those a given semi-inclusive reaction
is to be taken as having some given particle detected in coincidence with the
scattered electron and all other particles undetected.

A second example, taken from nuclear physics, is where the polarized elec-
tron is scattered from a polarized 3He target. Let us focus on the reaction
3}?3(?, e’p) where a proton is assumed to be detected in coincidence with the
scattered electron. The unobserved part of the final state depends on the spe-
cific kinematics of the reaction. At threshold one has the (exclusive) two-body
reaction € +3 IT(E — €’ +p+d and then for slightly higher missing energies the
three-body breakup reaction e +3 IT% — ¢ +p+p+n. Alternatively one could
have a neutron as the particle detected in coincidence with the scattered elec-
tron, 3}Te>(€>, e’'n). In this case the two-body channel does not occur, although
the three-body breakup channel does. In fact, for the latter the final state is
the same and this will have consequences later when we discuss the issue of
avoiding double counting. As in the particle physics example above, when the
energy increases a threshold is reached where pion production can occur and
the final state becomes even more complicated. Nevertheless, the semi-inclusive
reaction is well defined: the point is that a specific particle is assumed to be the
one called “x”, namely, the one that is detected, whereas all other particles in
the final state must be summed while avoiding double counting.

Before providing a review of the detailed formalism involved with this class

of reactions let us anticipate a few of the salient features that will emerge.

e We shall see that there are four sectors which may be separated by em-
ploying the polarizations. When unpolarized electrons are involved only
symmetric tensors enter, whereas when the incident electrons are longitu-

dinally polarized only anti-symmetric tensors occur.
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e The four types of polarization (electrons polarized or not with target po-

larized or not) may be separated using those polarizations. We shall see
that there are four symmetric invariant responses for the fully unpolarized
case, one anti-symmetric invariant response when the electron is polarized
but the target is not, eight symmetric invariant responses when the elec-
tron is unpolarized but the target is polarized, and five anti-symmetric

invariant responses when both electrons and target are polarized.

These 18 invariant response functions will be shown to be functions of four
Lorentz scalar invariants. The 18 responses may be sub-divided into two
sets of nine according to their properties under parity and time-reversal;

these two sets typically behave quite differently.

We also detail how the hadronic response may be characterized using the
helicity decomposition of the virtual photon to label the various contribu-
tions. We shall detail how this representation relates to the decomposition

in terms of invariant response functions.

A prime motivation for such studies is to have the semi-inclusive cross
section written in a completely general frame of reference. This then allows
one to relate the results in (say) the collider frame to the target rest frame,
or to relate the results in the rest frame to those in the photon-target
center-of-momentum frame. This can prove to be essential when models
are being developed for the hadronic physics that are non-relativistic and
hence cannot be boosted — polarized *He would be one such example —

since only in the target rest frame will such models make sense.

Finally, we review how inclusive (polarized) scattering emerges via specific
integrals over semi-inclusive cross sections with appropriate sums over all

open channels.

We begin by extending the analysis outlined in the previous sections, pro-

viding more detail here since this case is the main focus of the present study.
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As shown in Fig. 3, the laboratory system involves the choice where the 3-
momentum transfer lies along the 3-direction and the electrons lie in the 13-
plane, as discussed in Sec. 1; accordingly, we have the 123-system shown in
the figure. Since we want to retain the usual meaning for the leptonic and
hadronic factors discussed in Sec. 1, it is important to employ this system for

the developments above. In this system we have the following 4-vectors:

Q" = (wq) (85)

Pt = (Ep,p) (86)

Py = (E:P2) (87)

sto= (%) (88)

with 3-vectors

qQ = qu3 (89)

p = p(sinfcosguy + sinfsin pus + cos fuy) (90)

Pz = Dg(sinf, cosp,u; + sinf, sin ¢, us + cosb,us) (91)

s = s(sinf" cos¢*uy + sinf* sin ¢p*uy + cos6*ug) . (92)

The target (mass M) and particle detected in coincidence with the scattered
electron (mass M) are both on-shell and thus E, = /p?> + M? and E, =
/P2 + M2. Note that in Eq. (92) the magnitude s and the angles (6%, ¢*) are
assumed to be in the general frame; they can be related to rest-frame variables by
employing rotations and a boost. The target spin 4-vector S* may be developed

further by exploiting the two conditions it must satisfy, namely
P-S=0 (93)

and

§2 = (89)% — 6% = —1, (94)

which may be verified by going to the target rest frame. We shall not pursue

these developments in the present work, leaving that for another time.
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Thus we see that as building blocks we may employ the 4-momentum transfer
Q*, the target 4-momentum P*, the 4-momentum of some particle detected in

the final state P*

x

and the 4-vector that characterizes the target spin, S*. As
usual, it is convenient to replace the last three with projected 4-vectors, i.e.,
vectors that are by construction orthogonal to Q*. When the spin is not involved
the analysis is the one presented in the previous section involving the 4-vectors
(Q*, P*, P¥) and therefore (Q*,U*, X*) with the constraints Q -U =Q -V =
Q- X =U-X =0. Note that we can also define a fourth 4-vector via

1 o 1 «

Dt = et P1QUs X, = e #1QuPs Py, (95)
which is dual to the above set, behaves as an axial-vector and satisfies Q) - D =
U-D=X-D =0. As above we have the four dynamical Lorentz scalars
(Q% Q- P,Q-P,, P-P,) as arguments of the invariant response functions, or,

equivalently we may define the following dimensionless invariants

QP

L = 5 (96)
. P,

L = ¢ o (97)
PP,

L, = 7, (98)

and alternatively employ the following four Lorentz scalars as arguments of the
invariant response functions, (Q?, I, I, Ipp, )

When the spin is involved we then have the 4-vector %#
YH =8 — [,Q", (99)

where

QS
Q

satisfying the constraint @ - X = 0. Note that the spin 4-vector does not enter

I, (100)

as a dynamical Lorentz scalar since it occurs as part of the projection operator

Pspin = (1 + ’757;“9“) (101)

N | =
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and either does not enter (unpolarized) or occurs explicitly (polarized) where,
being part of the projection operator, it only enters linearly. Since P-S = 0

and S? = —1, we have

_ (@-P)(@-9)
U-S= - (102)
and )
$2=_ |1+ (QC'QS) ] . (103)

We can also define two 4-vectors that contain the spin 4-vector linearly and are

dual to specific combinations of the others, namely,

X" = %awf”sacgﬁU7 = #EWWQQK;Pv (104)
U" = %swﬁvsa@[;xy = %ew/ﬁsacgﬁvW = <UU2V> X" (105)
One has that
QU = X-U=%-U=0 (106)
Q-X = U-X=%-X=0 (107)

and additionally that

Iy = U-U=-X-X (108)
1

= M@‘J“BV‘;ZQQQU,YX(; (109)
1

= 35780 Qs Py Prs, (110)

an invariant that depends linearly on the target spin. Note that a tensor of the
form

Q" =erPy,UsX, (111)
is redundant, since it can be shown that

MI,
o

where Q" will be used instead as a building block.

=

Q" (112)
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Next, let us consider the 4-vector X' defined in Eq. (104). In contracting
with €#*%7 the contributions in ¥, and U,, containing Q, and Q., respectively,
may be ignored due to the explicit factor (g, and hence we can write

1

~H
X = Wﬁuaﬂ’ysa@ﬁp,y (113)
1
= —7M2 [MGV‘OO"Y - q€“3m] SaP'ya (114>

the latter expression in the 123-system. If we define the following anti-symmetric
tensor

= % (PHSY — S P¥) (115)

and evaluate the result in Eq. (114) explicitly we find that

~Y 4 12

X = LF 116
i (116)

- 1

X = 7 (WF? 4 qF™) (117)

- 1

X = 7 (WP —aF™) (118)

X = vx (119)

Again these may be developed, leading to the following expressions: one can

show that one obtains

—i 1 i

X = e ((wp— Epa) xs]+S8% (axp)) ,i=1,2,3  (120)
—0 1—3

X o= X (121)

And finally we have the 4-vector U" defined in Eq. (105)

v = %E“QQWSQQ[?XW (122)
= s, - () (123
_ T (UU'QV)X*L, (124)
where
T = #ewﬂ’ysaQﬂPM (125)
_ _# [UJGHOOW _ qeui’am] S Py (126)
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As above we can define

G = XISV — SHXV (127)
and find that
770 4 ~12
= = 12
U 276 (128)
— 1
U = — (WG +¢G") (129)
M

—2 1 .
U = 5 (WG — ¢G™) (130)
T = %G” =T (131)

We can also develop T"; define

1
FM = — (PrSY — ShpY 132
2 =g (P87 = SME) (132)
0 and find that
T = HF;‘Z (133)
- 1
T' = — (WP +qF) (134)
— 1
T = = (WF — gF}) (135)
—3 w —0
= HF;‘Z =T . (136)

Again these may be developed leading to the following expressions:

— 1 i
r = e ((wpe — Ezq) x 8]+ 8% (@x ps)) , i=1,2,3  (137)
T = JT. (138)

2.8.1. Second-Rank Tensors: Symmetric, polarized
Let us begin the symmetric polarized developments by starting with a set of
symmetric second-rank tensors that starts with the set of 4 symmetric tensors

s Obtained in the unpolarized case, WHY  with m = 1---4 as in Egs. (74-77),

m,s’
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multiplied by Iy, namely

wOv
Wiy = (oG )

QQ
Wty = (U*UY) I (139)
Wi = (XPXY) I,
Wiy = (U'XY + X'U") I.

Here and below the prime is included to denote the fact that the target spin
is involved. These all have the desired properties, namely, they behave as vec-
tor/vector and are linear in the spin; they all have the same dimensions. Con-
tractions with Q" yield zero as above. To these we can add another set built
from U* and X" together with the 4-vectors Q*, U* and X*.

For the remaining building blocks constructed from tensors containing the

spin we use

Wity = urur + Uror
Wi =ur X"+ Uv X"
Wé’f: = X*UY + XVUH

W = x'X" + XVX",

again with no contributions that are proportional to Q" or Q¥ as these would
yield zero when contracted with the electron tensor. Again these behave as
vector/vector and are linear in the spin and all yield zero when contracted with
Q*. Accordingly, if we expand the symmetric polarized tensor in this set of

basis tensors,
8

(WE ) por = D Al WY (144)

m'"'m,s
m=1

with general invariant response functions A/ , and impose the continuity equa-

28



375

tion constraint @, (W}"),,, = 0 we obtain the following:

wOyv
o = [ 8L

+ WEXHXY + W (UFXY + XPUY)] I

WS (URTY + U O¥) + Wi (UFX” 4+ UK

FWL (XD + XVT") + W (X“YV + X”Y“) . (145)
again shifting from generic invariant functions A/, to the more conventional
notation involving invariant W/ . Thus, for the symmetric, polarized case we

are left with eight contributions. All tensors here have the same dimensions and

consequently all invariant functions have the same dimensions.

2.8.2. Second-Rank Tensors: Anti-symmetric, polarized
In this sector we begin with a basis tensor that involves the Levi-Civita

symbol and is linear in spin:

1,a

i
W = —vabyy g, 146
Ve Qs (146)
Note that one has the following identities,
Q2o Xy = M (QUT* — Q'T") (147)
Q2MaBy Uy = M (QMY” - Q”Y”) (148)
and hence no terms having the Levi-Civita symbol as here are needed, since
they also yield zero upon contraction with the electron tensor. Since we want

tensors that are linear in spin and of vector/vector form we can also have the

following tensors:

Wil =i(UrU” - UrU*) (149)
Wil =i(UrX —U"X") (150)
Wiy =i(X 0" — XYU*) (151)
Wit =i(X"X - X¥X") (152)

with no terms of the form Q*U* —Q*U* or Q"X —Q¥X", since, as above, these

yield zero when contracted with the lepton tensor. Finally, as in the symmetric
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case we can use the anti-symmetric contribution above (Eq. (82)) multiplied by
the invariant Ij:

Wy = iU XY — XFUY) . (153)

however, one can prove the following identity

I, (UMXY —UYXH) = %sz%wﬂzacgﬁ + X2 (UMY” - UVY“)

+U2 (X“U" - X”U“) (154)

and hence the tensor Wé“ +/ is redundant. The remaining five tensors all yield zero
when contracted with Q*. Accordingly we have the following five independent

contributions:

1
We ot = i[MWéEHVaBEaQﬁ
+Wio(UHTY = UYTH) + Wi, (U*X" - U"X") (155)

WL (XPTY — XUTP) + Wg(XPX — XVX“)] .

As above, we have shifted notation to make this sector coherent with the pre-
vious ones; all tensors have the same dimensions, implying that the invariant
functions all have the same dimensions. As an alternative it is also possible to
expand the contraction of the leptonic and hadronic tensors in terms of Lorentz
scalars rather than employing the 4-vectors as we have here. The resulting form
is documented in [18] 3.

Let us end this section with a brief discussion of how the use of time-reversal

invariance allows one to separate the four types of contributions into two classes.

3 An extended version of this study is available in the cited reference: there explicit results
are given in the target rest frame and six appendices are included detailing the conventions
used, expressing the contraction of the tensors entirely in terms of invariants, inverting the
invariant response representations in terms of photon helicity projections, detailing the nature
of the cross section as the available phase-space increases and more channels become open,
including some connections with conventional kinematic variables and discussing inclusive
scattering in more detail to make connections with (more) familiar material. For brevity

these addenda have been omitted in this shorter version.
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The basic requirement for the time-reversal operator is to relate a given matrix
element to one that describes the process running in the opposite direction,
that is to a matrix element where the incoming state now contains all of the
particles from the original final state and the final state contains the particles
from the original initial state. If the original matrix element has a final state
with two or more interacting particles this requires that the boundary condition
for this state be changed from the incoming boundary condition to the outgoing
boundary condition.

The effects of time-reversal on the hadronic tensor have been studied in great
detail in the context of multipole expansions for arbitrary target spin (see, for
instance, [3] and references therein). The result is that the matrix elements
must fall into two classes: one where the transition multipole moment is real
and another where it is imaginary. These two classes result in response functions
that are either even or odd under time-reversal, TRE or TRO, respectively. Note
that time-reversal invariance is assumed throughout this work; being TRE or
TRO does not imply violation of this symmetry.

For the case of a spin-1/2 particle in the initial or final state the effects of
time-reversal can be greatly simplified by the simultaneous application of both
time-reversal and parity [16]. This is particularly useful in the case where the
hadronic tensor is written as a linear combination of invariant functions of inner
products of the available 4-momenta and second-rank tensors constructed from
these four-momenta and the spin vector, such as we have done above. For the

purpose of this discussion let

W™ (Q, P, Py, P, S, (—)) = (P, S| J"'(Q) | Py, P, S, (—))
X Py, Py, S, (5)[ JH(Q)(—) P, S),  (156)

where (—) denotes the incoming boundary conditions for the final scattering

state. This trivially implies that
W*HU(Q7 Pa Pl'a P’rn7 S7 (_)) = WU#(Qa Pa Pla PWL? S7 (_)) (157)

Equations (81,83,145,155) are constructed such that W;, i =1,...,5and W/, i =
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1,...,13 are real.

The components of the hadronic tensor in Eqs. (81,83,145,155) are param-
eterized in terms of Lorentz 4-vectors. The result of combining time-reversal
and parity causes no change to the momentum 4-vectors while causing the spin
4-vector to change sign. Most importantly, time-reversal causes a change in
the boundary condition of the scattering state from incoming ((—)) to outgoing
((+)). This gives

W*(Q, P, Py, Py, S, (=) TAWH(Q, P, Py, Py, =S, (+))
:_W*MU(Qv‘Panava‘S? (+)) (158)
Since Q*, U* and X* depend only on the momentum 4-vectors one has

Qr TP, g

e TP e

x T2, xn, (159)
The vectors ¥#, X" and U" are linear in S* and thus

s TP, s

Y“ TP 7yu

[ 5 o (160)
The scalar Iy is also linear in S* and accordingly

AL (161)

The invariant functions W; and W/ are real and the complex conjugation changes
the sign of all factors of i.

Applying these rules to Egs. (81,83,145,155) yields

Wi(=) == Wi(+), i=1,...,4 (162)
Ws(—) 225 —Ws(+) (163)
W/(=) B —wl(4), i=1,...,8 (164)
Wi(—) T2 wWli(+), i=9,...,13. (165)
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Number | Time-Reversal
Unpolarized Symmetric 4 Even
Anti-symmetric 1 Odd
Polarized Symmetric 8 Odd
Anti-symmetric 5 Even

Table 1: This table shows the number of invariant functions falling into the four sectors

according to polarization and symmetry indicating the time-reversal properties of each sector.

Under conditions where the boundary condition has no effect, such as the
plane-wave impulse approximation, factorization approximations or where the
final state is obtained through a single resonance at the energy where only the
real part contributes, the invariant functions in Eqgs. (163) and (164) must be
zero. In such a special case this reduces the number of invariant functions from
18 to 9 with a similar reduction in the number of reponse functions. Generally
speaking, however, all 18 play a role. This is the same as would be obtained
by applying the multipole analysis with time-reversal only [3]. Indeed, this is a
very old result which goes back at least to early studies of pion electroproduction
using polarized electrons and scattering from polarized proton targets (see [3]
and references therein); our point here is simply to note that the present analysis
in terms of invariant hadronic response functions has, as it should, the same
structure.

In summary we have 18 invariant response functions falling into the four sec-
tors categorized in Table 1, with the symmetric contributions entering when the
incident electrons are unpolarized and the anti-symmetric contributions when
they are polarized, in fact, longitudinally polarized when in the ERL.. The sec-
tors are otherwise specified by whether or not the spin-1/2 target is unpolarized

or polarized.
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3. Frame-dependent Forms for the Response

3.1. Frame-dependent Hadronic Responses in the Present Work

We next proceed to write explicit forms for the hadronic tensors defined in
Sec. 1. Clearly, since these involve specific Lorentz components of the general
hadronic tensor, these quantities are frame-dependent. We begin with the
symmetric, unpolarized case given in Eq. (81) which immediately yields the

following for the minimal set of components:

W) wnpor = *%Wl+ (U°)° Wy + (X°) W + (2U°X°) W, (166)
(W) g = (UPUY) W+ (XOXT) Ws + (U°XT + XOUT) Wy (167)
W) et = Wi+ (U)W (X)) Ws + (20" X)W, (168)
(W2) et = Wi+ (U2 Wa + (X2)* W5 + (202X2) W, (169)
(W) et = (UPU2) W+ (XOX?) Wy + (UOX? + XOU?) Wy (170)
(W) et = (OU)Wa+ (XX Ws + (U X + X'U?) Wi, (171)

Note that, since the symmetric leptonic tensor in this work may be shown to have
no pv = 02 or 12 components, the last two hadronic contributions (Egs. (170-
171)) do not enter when the tensors are contracted, leaving a total of four terms,
as expected for the situation where only the incident electrons may be polarized
and the ERL, is invoked [2]. In the situation where the incident electrons
are polarized and where the scattered electron’s polarization is assumed to be

measured these last two contributions do enter. Following the nomenclature in
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[2] we have

Wit = (W), = = Wt (U)W (X)W

+2U0°X°W, (172)
Whpa = (WEHY) oy 4 [(01) + (U2)°] W,

+ (X + (3] W 2 X TN W (173)
Wity = (W2 = [- 0 + @3]

[ (X () Wa 2 [0+ 02X W (174
Witha = 2V2(W) 0 =2V2 [UU' W, + XOX Wy

+(U'XT+ XU W] . (175)

Next, for the anti-symmetric, unpolarized case we have the following

from Eq. (83):

(Ve upr = W5 (UOX? = X°U?) (176)
(Wa®) g = W5 (U X* = XTU?) (177)
yielding
Wik, = 2v2 (W) ppor = —2V2W5 (U°X? = XOU?) (178
W"z—;;POl = 2 (iW;2>unpol = _2W5 (U1X2 - XlUQ) : (179)

These can all contribute in a situation where the incident electron is polarized.
However, note the following: if mass terms in the electron tensor are retained
(even in the PWBA) then one finds that the TL' and T" contributions are of
leading order whereas the TL' contributions go as 1/, or 1/v, where 7. = €¢/m,
and 7, = €/ /m. and hence may usually be neglected at high energies, leaving
only the TL' and T" contributions.

Next we consider the contributions that arise from contractions of the sym-
metric leptonic tensor with the symmetric hadronic tensor for the case where
the target is polarized — the symmetric, polarized case. From the develop-

ments in the last section we find that the following contributions enter in this

35



sector:

L — 00
WPOZ = (W5 )pol
= {=Wi/p+ (U)W + (X0) W5+ 20X WS } I
+2 {U°U°W5’ + UK W, + X0, + XOY‘)Wé} (180)

460

wT = (W32+W11)pol {2W1 (

pol s

U)W
+((X2)2+(X))W3+2(U2X2+UX) i} o
x)w;

+2{(U20? + U T Wi + (UK + U'X (181)
+ (X202 + X0 Wy + (XX 4 XX ) Wi
wit = wz-wi, ={(?)’ - ")) w;
+ (%) = (X)) Wi+ 2 (U2X2 - U'X ) Wi I (182)
+2{(U0? - U T Wi+ (UK - UK ) W
+ (X202 - X0y + (XX - XX ) Wi

WLt 2V2 (W)

pol
= V2 [{UU'WS + XOX'W, + (U°X! + U XO) Wi I
+(UT + U)W+ (UK + UK ) W (183)
+ (X0 + X T W+ (XX + XX7) Wy
following conventional notation.

Finally, we need to develop the anti-symmetric, polarized case. From
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Eq. (155) we have that

1
(Wa?) i z‘[MWés”“"zaQﬁ
FW(UCT? — U20°) + W, (UK - UX)
+ W (XO0? — X20°) + Wiy (X°X” — XQYO)} (184)
1
(W;2)pol i |:MWé512o{,BZaQﬁ

FW (U2 — U0 + WL (UMK - UK

+ Wiy(XT0? = X201 + Wy (XX - X*X)|, (185)

where no cases with components pv = 03, 13 or 23 are needed, since they can be
eliminated using the continuity equation. These yield three possible responses,
of which we further develop only the two below, as T'L’ is typically suppressed,
see the discussion after eq. (179).

wh = 2wk

pol a )pol

(186)

M
FW (U2 — U0 + W, (UMK — U2X )

1
= -2 |:W9/612a52an

+ Wiy(X0? = X201 + W (X' X - X*X)] - (187)
WL 2V2 (iw2?)

p

(188)

pol
= 22 []\ZWQ’EOQQBEQQB
FW(UCT? — U20°) + W], (UK — U2X)
WL (X002 — X20°) + W4 (XOX — XQYO)} . (189)

This completes the general structure of both the leptonic and hadronic ten-
sors in a general frame where the spin-1/2 target is polarized and moving with
some general 4-momentum P*. Once we know the detailed descriptions of the
basic 4-vectors involved (see the next section) the tensors involved in forming
the semi-inclusive cross section are then completely specified, requiring only
the invariant response functions W,,, and W), these, of course, being functions

of the four basic Lorentz scalar invariants in the problem (again, see the next
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section). Our strategy below is first to express the basic 4-vectors involved in
a rotated frame of reference, and then to boost our results to the target rest
frame. In this last frame we will then be in a position to evaluate the tensors
involved and hence to extract specific results for the invariant response functions

required.

3.2. Relationships to other Conventions

Above we have summarized the relationships between the frame-dependent
and Lorentz invariant formulations of the hadronic response following the con-
ventions that have been adopted by many in studies of electron scattering for
over half a century. Other conventions have also been employed and, while at-
tempting to review how all of these are inter-related would go beyond the scope
of the present work, in this section we do provide connections to two other ways
of expressing the response for the present class of reactions.

One formulation of the problem is quite old, coming from studies of exclusive
pion electroproduction from polarized protons [17] (see also [3] and references
therein). While this involves an exclusive final-state channel, nevertheless the
structure of the cross section falls within the class of reactions being summa-
rized here and, for instance, is well-known to involve 18 individual (frame de-
pendent) response functions. Typically, for this reaction, one adopts the virtual
photon/target center-of-momentum frame, since the exclusive final state is con-
veniently handled in that frame. This frame may be related relatively easily
to the target rest frame, since the Lorentz transformation involved is rather
straightforward (see, for example, [3]).

From [17] one has the following:

d

d—g200+06+0t+0et7 (190)
where o( arises when neither the electron nor the target are polarized, o, arises
when the electron is longitudinally polarized but the target is unpolarized, o,

arises when the electron is unpolarized but the target is polarized, and o.; arises

when both the electron and the target are polarized. Beginning with the fully
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unpolarized case from [17] one has
1
oo =0y +Eor + Eor cos2¢ + 55(14—5)0;008@1) (191)

so and accordingly one can show that the four contributions oy, 1 7,1 are related

to four specific response functions used in the present work, namely

ov = M
o, = M
T
orcos2¢ = N unpol)

( wT
orcosgp = Ni- (*\/%Wgn%ol) .

W pol) 192

(
. (QpEWL )

unpol

(192)
(193)
(194)
(195)

195

Here, as usual, p = |Q2 / q2| and N7 is a factor that relates the normalization
conventions employed in [17] to those employed in this work — we postpone
the discussion of the overall normalization of the response functions until Sec. 4
sos  where the semi-inclusive cross section is discussed in more detail. It is then
straightforward to relate these expressions directly to expressions containing

the invariant response functions. For example, using Eqs. (172) and (173) one

has
op = M- {2p5 (Wsoo)unpol] (196)
= M- [2/)5{—;W1+(U°)2W2+(X°)2W3H (197)
ov = Ni- (W) (198)

— Ny o {(Ul)2 + (U2)2} W
+ () () W2 UK+ 02X W] (199)
and likewise for the other responses here and below. Of course, the kinematic
s factors p, U* and X* must be evaluated in the appropriate frame of reference.

When only the electron is polarized (that is, longitudinally polarized and in

the ERL,) the result from [17] may be written

Oe = %5 (1—&)oysing, (200)
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where o7 is the imaginary part of the same expression for which oy is the real
part (see [17] Eqgs. (22a) and (23); we have condensed the notation here for
clarity). This is similarly related to a fifth contribution found in the present

work, namely
ohsing = A - (—\/ Wunpol) (201)
involving the so-called 5th response function.

When the target is polarized but not the incident electron analogously to

Eq. (191) one has

o = oy+Eap+E[or1cos2d+ oy sin 2¢)

—H/%S (1+&)[or1cos¢p+ arasing], (202)

now containing both sine and cosine contributions, where

ou = N~ ( pol)

oL = Ni-(20EW)))
(=W,
(~v2r

pol )

Here we have suppressed any explicit dependence on the target polarization. In

ng COS 2(]5 + 5T2 sin 2¢) = N1 pol )

5[1 COS¢ + 312 sin(b = N1

[17] and later in the present review if projections of the target spin along q the
momentum transfer direction (unit vector uy/), in the direction q X p, (unit
vector uy-) and in the direction ug: = uns X uys one can show that oy, o1, o
and o1 involve four distinct responses containing the N’ projection, or9 and
012, involve two distinct responses containing the L’ projection, and two more
distinct responses containing the N’ projection. Namely, in this sector one has
eight distinct types of response.

And then when both the target and the incident electron are polarized one

can write the results from [17] in the form

1
Ot = V1 —E267 + 55 (1 —&) [0}, sin¢ + a5 cos @] (207)
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with

A (W;}) (208)
o7 sing +opcosp = Nj- (—\/QpW;;Z{‘/) : (209)

In this case it can be shown (see [17]) that ¢/ has two distinct responses involv-
ing the L’ and S’projections, o7, has one response involving the N’ projection,
and o7, has two distinct responses involving the L’ and S’projections, for a
total of five. In total there are 18 distinct responses. As stated above, all of
these results may be written in terms of invariant response functions using the
expressions given in Sec. 3.

Other conventions have been employed for several decades (see, for example,
[19], [20]): for instance, in the high-energy regime one has a set of conventions
that have been adopted in several studies and, while the notation varies from
study to study, these are all essentially the same.

For example, in [21], semi-inclusive electron scattering is discussed from the
point of view of SIDIS. Just like in the earlier paper by [3], the 18 response
functions (as they are called in a nuclear context) or structure functions (as
they are called in a DIS context), are discussed in two specific laboratory frames
of reference, the laboratory gamma-lepton frame and the laboratory gamma-
hadron frame. The author mentions how to obtain 18 independent functions
using constraints following [5], but does not relate the invariant functions with
the functions in the specific frames he discusses.

In other work Diehl and Sapeta [22] focus on how the polarization is specified,
with respect to the lepton beam or the virtual photon direction. They discuss
the transformation between these two polarization coordinate systems for the
target polarization (longitudinal or transverse target polarization) and work in
the target rest frame, stating that for a collider everything can be boosted along
the lepton beam momentum. In this review, we use a completely general axis for
the target polarization, characterized by the starred angles. The relationships
we provide here include these two specific choices of polarization axes, and the

use of invariant functions eliminates the need for a potentially cumbersome
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boost.

Let us consider one of these other treatments of the problem in a little more
detail. Specifically we relate the present conventions to those employed in the
target rest frame by [23]. The aim of their paper is to model the cross section at

s tree level in terms of transverse-momentum dependent parton distribution and

fragmentation functions. For the target-unpolarized terms one has

Four = Na-(Wipol) (210)
Fou = No- (20Wh00) (211)
cosonFp ™ = Now (—vp/2Wihy) (212)
cos 20, Fi 52" = No- (-WILE) (213)
simonFip = No- (—Vo/2Whky), (214)

where again M, is an overall normalization factor (as above, we postpone the
discussion of the overall normalization of the response functions until Sec. 4
where the semi-inclusive cross section is discussed in more detail), and when

s0 the target is polarized one has

|SL|sin(dn — ds) Fompgt %) = Nap- (WD) (215)
|1 |sin(én — ds) Fgpg %) = Na- (20WE)  (216)
Sy sin g Fyp 4 IS | [sin o, Fip

+sin(2¢h—¢s)F§;<2¢h*¢f)} - NQ-(—\/p/TW;lL)

(217)

Sjisin 201, g " + 1S4 [sin(on + 6,) Fyip ™+
+sin(3¢h—¢s)Ff]i;(3¢h_¢s)} = Ny (-WIT) (218
S| Fie + IS1] cos(dn — o) Fip ™ = Ny (W) (219)

S| cos ¢th°LS¢h +151] {cos ¢SF2C7)§¢S

+cos(20n — o) Fip* | = e+ (< Vp2WEE ).
(220)
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The target polarizations are related by the following:

Sy = Pu (221)
S1[cos(¢n — ¢s) = Ps (222)
|Si|sin(én —¢s) = —Pn, (223)

where the polarizations on the right-hand sides of the equations are discussed
in more detail in Sec. 4.3. As for the previous example, all of these results may
be written in terms of invariant response functions using the expressions given
in Sec. 3.

Finally, we note that other reactions have been studied using similar ap-
proaches to those employed here. For instance, in the dilepton production paper
of [24] the hadronic side of the reaction involves two (polarized) hadrons which
collide, exchanging a virtual photon which then has a lepton pair plus X at its
other end. However, whatever specific choices of colliding hadrons are made,
they are not as in the present paper, namely, a hadron (the spin-1/2 target, per-
haps polarized) for one and a state typically having a hadron plus unobserved
“missing” particles (“breakup”). Similar reasoning applies to the case of polar-
ized hadron pair production in electron-positron annihilation discussed in [25],
leading to a different state than discussed here. For the present case one may
make the following arguments (see the end of Sec. 2.3): applying time-reversal
interchanges initial and final hadronic states and applying complex conjugation
restore the states to their original order, albeit while now requiring the complex
conjugate of the matrix element involved. Two types of contributions occur:
TRE corresponding to real parts of matrix elements and TRO corresponding to
imaginary parts. We again emphasize that within the present context P and T
are assumed to be good symmetries; the TRE/TRO characterization, of course,
does not imply violation of time-reversal invariance. When discrete states are
involved initial- and final-state phases cancel and thus TRO contributions are
absent. For example, for elastic scattering (see, for instance, [26]) where ini-
tial and final hadronic states are the same and where any chosen phase simply

cancels this means that only real parts can survive and thus that TRO contri-
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butions are absent. This is well-known for elastic electron scattering where only
even Coulomb, odd magnetic and no electric multipoles occur when P and T
are taken to be good symmetries (see, for instance [1], Chapters 7 and 15).

However, for inelastic scattering involving breakup (as in the present work)
the initial and final states are not in general relatively real, the imaginary parts
do occur and therefore TRO contributions are in general non-zero (they may be
small, however not always). Such contributions have been measured in specific
cases. Typically the reason some feel they are zero stems from the model as-
sumptions made. For instance, in high-energy physics if the “handbag” assump-
tion is invoked, then the TRO contributions are zero. However, if higher-order
diagrams are added (for instance by adding gluon lines between the quark lines)
then one is faced with loop integrals, which means complexity and means both
TRE and TRO contributions can be present. In hadronic physics discussions
of pion electroproduction or nuclear applications such as (e, €'p) reactions with
nuclei one naturally sees such contributions as coming from “final-state interac-
tions”. And in the latter case, when final-state interactions are assumed to be
absent, then again TRO contributions are as well.

The case of pp or pp dilepton production [24] provides an example where both
frame-dependent and Lorentz invariant responses have been discussed; however,
that situation is akin to the situation outlined above for elastic scattering [26]
where a reduced set of response functions enters. In this special case those
two reactions may be related; however, the “breakup” class of reactions being
reviewed in this work is more general and involves a larger number of (different)

response functions.

4. Semi-inclusive Cross Section for Electron Scattering from a Polar-

ized Spin-1/2 Target

The full semi-inclusive electron scattering cross section in a general frame
of reference may be written in terms of the Mott cross section, some kinematic

factors that arise from using the Feynman rules [4], together with a general
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response function F*¢™¢, We begin the discussion in this section by introducing

useful notation for the kinematic variables involved in semi-inclusive scattering.

4.1. Kinematics for Semi-inclusive Scattering

Referring to Figs. 3 and 2, as discussed above, we are assuming that the ini-
tial state has two particles of masses m, and M with 4-momenta K* = (¢, k) and
Pt = (E,,p), where ¢ = \/m and E, = \/m, respectively, which
collide, leaving a particle of mass m,. with 4-momentum K'* = (¢/,k’) where
¢ = /k'* + m2 and producing a final state with 4-momentum P'* = (E,,p’)
and hence invariant mass W = Eﬁ, — p'2. In turn, the final state is assumed to
be divided into two pieces, one the specific particle “x” that is assumed to be de-
tected, having 4-momentum P¥ = (E,,p,), where E, = \/m, together
with the undetected (“missing”) parts of the final state having 4-momentum
Pt = (E p,,) with missing energy E'°', missing momentum p,,, and invari-
ant mass W,, = (E;",‘l”")2 —p2,. Note: for the total missing energy we use
Ett since we reserve the notation E,, to denote a different, but related quan-
tity (see below). See Fig. 2 where conservation of 4-momentum requires that

Q" + P# = P'" = PI' + P} and thus

EY = E,—FE, (224)
Pn = P — P (225)
From above we have that
Pl =Q"+ P — P! (226)
and therefore that
EY¥' = w+E,—E, (227)
Pn = P — P (228)

Following the procedures adopted in studies of scaling [27] let us employ as

independent kinematic variables the missing momentum p,, and, rather than
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the missing energy F,,, the following energy

Emlpm) = EX'—(ER') >0 (229)
VW2 +p2, =\ (WE)? +p2,, (230)

where the threshold value of the invariant mass of the missing momentum is
denoted W,L; examples of this are given later. This quantity has the merit of
taking on the value &,, = 0 at threshold. When used in the context of nuclear
physics the missing 3-momentum is typically much smaller than the invariant
masses of either the daughter threshold value (often the daughter ground-state
mass) or any higher-energy daughter state and thus Eq. (230) may be written

Enlpm) = Wi 1/1+(p’” W,?;,/H g;’; (231)

Wi (1+2€’[ﬁ%+~-~> —wr <1+2(WT)2+-~-> (232)
]

(Wi = WYL =8+ (233)

where

2
P
Sm T < 1 (234)

typically. Often setting d,, to zero is an excellent approximation; this correc-
tion involves only the difference between the kinetic energy of recoil when the
daughter system is at threshold and when it is in some excited state. However,
it is not necessary ever to make these approximations and the exact expressions
can alway be employed.

In studies of nuclear physics it is common to define a different quantity
(confusingly also called the missing energy) where kinetic energies are employed,

E,,,. Defining the kinetic energies

T = E,—M (235)
T, = E,— M, (236)
T, = E9“ —W,, (237)
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one has

Ep = w—(Th+Th) (238)
= Wp-Wh+E,—-T (239)
=~ Em(pm) +E, T, (240)

where the so-called separation energy
Es=M,+ WL —M>0 (241)

has been introduced and the approximation in the third equation above corre-
sponds to neglecting the correction involving d,,, discussed above.

Using the energy conservation condition in Eq. (227) we have

Empm) = (Ep +w) — (E,t,‘zt)T — /M2 42 42, — 2ppp cosb,,,  (242)

where 0, is the angle between p’ and p,, and p,, = |pm|. By setting &, to
zero and solving the above equation for p,, under the limiting conditions where
cos0,, = £1 it is straightforward to show that the above equation at &,, = 0

has two solutions

1
R [(Ep +w) /A2 - W2 (W) +p’A] (243)
_ 1
IR [ AO N/ CRTEIUF T AN P CIT

where, following the notation of [27] we have introduced the quantity
A= % w24+ (i) = 2. (245)
Note that the quantity in the square root may be written
A2 w2 (W) = L [w2 - W)’ [ - (wE - an)?] (i)
and, since the argument of the square root must be non-negative, that
w>wr =wl+ M,. (247)
Upon setting y = 0 one finds that

w=wy=/M2+q@2+WE - M. (248)

47



y <0

Figure 4: Physically allowed region for the situation where y < 0. The variables employed

here are discussed in the text.

Given these relationships it is then straightforward to determine the physically

allowed regions in the &,,-p,, plane: for y > 0 corresponding to w > wy one has

EV (—pm) < E(pm) < EY(pm) for 0 <py <y

(249)
0 < E(pm) < En(Pm) for y < pm <Y,
while for y < 0 corresponding to w < wy one has
0 < E(pm) < EQ(pm) for —y < pn <Y, (250)
where
£, (pm) = (By +) = (") = /M2 4 6 —pm)®, (251)

namely, the value of &, (p,,) when cosf,, = +1. These regions are shown in
Figs. 4 and 5. The region in Fig. 5 is seen to be bounded from below by the
curve €2 (—pm) which occurs when 6, = 7 and above by the curve &2 (pm)
which occurs when 6, = 0 for 0 < p,, < y, while the other regions are all
bounded by zero from below and by the curve £9 (p,) from above. When
Em(pm) = 0 one has from Eq. (242) that

1 2
05t = 5o (M2 42 492 — [(By +w) - (B}, (252)

which determines 6,,, for this boundary.
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y>0

Figure 5: Physically allowed region for the situation where y > 0. The variables employed

here are discussed in the text.

Thus we have the allowed regions of kinematics in the &,,-p,, plane for given
values of ¢ and w or, equivalently, of Q? and w = v or q and y, where y = y (¢, w)
given above is often used to replace w in scaling analyses [27]. In turn these
impose limits on the allowed values of the energy, 3-momentum and polar angle

for the detected particle x: first, taking the scalar and cross product of p’ with

Pz = p/ — Pm yields

pypcosf, = p —pm,cosby, (253)
prsinf, = p,sinb,, (254)
and thus
E, = (By+w)— (B +Empm)) (255)
Dy = \/p/2 + p2, — 2pp’ cos Oy, (256)
tang, = —PmSnOn (257)

P — P €OS Oy
By evaluating these expressions on the above boundaries one can then determine
the physically allowed regions for P¥. Let us denote the allowed region for the
variables p, (and hence F,) and the polar angle 6, by I';.. The above equations
define the kinematic boundaries within which all values of (p,,0,) are allowed
and outside of which no physically allowed values exist. Later we discuss the

roles played by the azimuthal angle ¢, where all values (0, 27) are allowed.
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These results may be specialized from the general frame to the rest frame
where p = 0 and thus 7' = 0 by making the following replacements: the energy
E and the 3-momentum p’ are replaced by M and q, respectively, and 6,,
becomes the angle between q and p,,,; W and A are Lorentz invariants and so
do not change. The results one then obtains are the ones that are familiar from
analyses of scaling [27].

That said, it should be noted that all of these developments are also valid

for studies of particle physics at high energies.

4.2. Semi-inclusive Cross Section

Having established the allowed regions for the kinematics in semi-inclusive
reactions we may now proceed to a discussion of the cross section. The Feynman
rules followed in this work are those of [4]: we provide details in an appendix of
[18] for how the general expression for the six-fold semi-inclusive cross section
is obtained. That general answer may be re-written in the following form to

connect with the above development of the leptonic and hadronic tensors

dSo 1 M p2 ;
[ I fSemZ 258
dQdk'dp,d cos 0, d¢>J T gl g 7], (258)
where 9
a2k’ acosf./2
= ongo = [ C08Ve/2 259
Q*k TMott <26 sin® 96/2> (259)

is the Mott cross section and []fsemi]w is the invariant called C = x,, W

divided by the factor vy, namely

[Fem] = X WE v (260)

x

]semi ] semst

= v [WE +op (W) (261)

as discussed below and where the subscript “x” has been added to remind us
that this forms the semi-inclusive cross section where particle x is assumed to be
detected. The factor M/E, arises from applying the Feynman rules in a general
frame where the target is moving; this factor becomes unity in the target rest

frame. Furthermore, the factor [28, 29]

—1/2

F=18.-8,) = B.x 8] ", (262)
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with 8. = k/e and B, = p/E, as usual, accounts for the flux of the (in general
colliding) beams. In the rest frame one has 8, = 0 and thus ff = 1/8, which
equals unity in the ERL,.

In Eq. (258) a specific choice has been made for the normalization. In
particular, while any constants or Lorentz invariants could be absorbed into the
definitions of the invariant functions we choose to fix the conventions so that
upon integrating the semi-inclusive cross section over the detected particle’s 3-
momentum and summing over all open channels, i.e., all particles x while taking
care not to double-count, one should recover the inclusive cross section with its
conventional normalization. That is, to obtain the contribution of the channel
having particle x to the inclusive cross section one should perform the integral
over p,, cosf, and ¢, over the allowed physical region for the semi-inclusive

reaction (e, e’x) (see above for detailed discussion concerning the allowed region)

do ] / d / dcos / i o (263)
adr |, b "o O Ak dpdcos 0,46, |, S e

1 M P2 ,
. dp, T d ez semi , 264
27TUM tthp {/ P Ex/ cos [g ]x}anowed (264)

where )
[gsemi] . = / d(]ﬁx []:semi] . (265)
0
Then the full inclusive cross section is obtained by summing over all open chan-
nels, taking care not to double-count:
d’*c /[ d?c
— = - 266
dQAdk! ; [dekj’} . (266)

where the requirement not to double-count is indicated by the hat over the

summation. In the next section the full inclusive cross section is also written in

the form
d20 M incl
m = UMotthpR y (267)
where
Rincl —_ R?incl 4. (268)
and

Rind _ [’ULRL ]incl

unpol

(269)

o1



700

705

Clearly the integral over ¢, for contributions that have no explicit ¢,-dependence
simply accounts for the factor 27 put in the denominator above.

One may now change variables in the following ways. Since from Eq. (228)
Pm = P — pz and we are keeping q and p constant and hence also p’ = p +q
constant, one has

p2dp.dcos B, = p,dpy,dcos b, (270)

and thus the semi-inclusive cross section may be written as differential in the
missing-momentum plus changing p2 to p2,. Since we also have from Eq. (242)

that

Em(pm) = (Ep +w) — (Ef,‘;t)T — \/M% + p'? + p2, — 2pmp’ cos by, (271)

we can change variables from cos#,, to &:

IEm Pmd’
= 272
L’?cosﬂm]p" E, (272)
and so
dbo 1 M )
— o D semi ) 2
[dek"dpdemd(pJ . 2y Mot f Epp []: L (273)

To form the inclusive cross section one may then proceed to integrate over p,,,
En and ¢, (which is unchanged from the previous treatment), where now the
physical region defining the boundaries in the (py,, Em)-plane is that discussed
above.

The above has been developed in a general frame; if one wishes to have the
results in the target rest frame all that is necessary is to set p to zero, in which
case p’ — q, 6, becomes the angle between q and p,, and E, — M.

As discussed in detail above where the invariant response functions have
been developed, the overall response can be decomposed into the four sectors

that are classified by the types of polarization they involve
J—_-semi — J—_-ieemi + h]:'Qsemi + h*fé?emi + hh*fjemz (274)

In the semi-inclusive case, as we have seen earlier, the responses here depend on

four scalar invariants, (Q?,1,, I, I, ), together with the kinematic variables
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that enter through the lepton tensor. Clearly again the four sectors can be
separated by flipping the electron helicity h and the direction of the target spin

via the factor h*. Explicitly we have

f-lsemi = g [Wuanol] semsi + v [WgﬂnpOl]semi
+urT [anq;oz]semi +vrL [WEanoﬂsem (275)
hEF™ = o [Wg;polrm +upp [ang’olremi (276)
WFEm = o [WE]™ 4 op W]
+opr [WEFT™™ 4 opy, [WEF] ™™ (277)
B EM — o, [W;}rm +or [Wﬂ’}semi. (278)
Here the responses [anpolremi and [nglremi with K = L, T, TL, TT,

T’ and TL' are the semi-inclusive quantities developed earlier, now with the
label semi appended to distinguish them from the inclusive responses discussed
above. As we found earlier, 4™ are TRE while F54™ are TRO. In turn,
the individual responses are built from the 18 invariant response functions W,,,
m=1,...,5and W/, m =1,...,13. Note: the invariant responses here are
for semi-inclusive scattering and depend on the four chosen scalar invariants;
these quantities should not be confused with the inclusive invariant response

functions discussed below.

4.83. Two Coordinate Systems for the Target Spin

We will have occasion to use two different coordinate system to specify the
axis of quantization for the target spin. In the discussions above we chose
the lepton-plane oriented coordinate system where q is along the 3-axis and
the 2-axis is normal to the electron scattering plane (see Fig. 3). It proves
to be convenient to introduce a rotated (around the 3-direction) coordinate
system which we denote with primes, namely one with 3’-axis along q and 2’-
axis normal to the plane formed by q and p, (see Fig. 6). The reason for this

choice of rotated system will become apparent in due course. The unit vectors
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Figure 6: Two coordinate systems for the target spin. The original coordinate system is shown

in Fig. 3 and here one can see how the primed system is related via a rotation around the

3-direction (the direction of the 3-momentum transfer q) by the azimuthal angle ¢,. Hence

in the 123-system the azimuthal angle of the target spin is ¢*, while in the 1’2’3’-system it is

o' = ¢* — o

in these two systems are related by

uy/
o/

usg/

70 and the inverse

One has that

while

COS ¢,uy + sin ¢, us
—sin ¢,uy + cos P us

us

COS ¢puys — Sin g, Uy
sin ¢ uy/ + €oS P uo

us.

q = quz = quy

Pz = Dy [sinf,uy/ + cos b, us/]

o4

(279)
(280)

(281)

(282)
(283)
(284)

(285)

(286)
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with no 2’ component, by construction. A simple result (which we use below)

is accordingly

A X Pz = @pgsind, (—sing,u; + cosp,uz) (287)

= qpsinfyuy, (288)

namely having only a 2’ component. The spin 4-vector may then be written in
either the 123 system or the 12’3’ system. One may define projections of the
spin 3-vector in the two systems in the following way: the L, S and N directions
are obtained by setting 8* = 0 (for L), 6* = 7/2 with ¢* = 0 (for S) and ¢* =

/2 (for N), namely, making projections along the 123 system unit vectors

P, = wuz-s=h"scosf" (289)
Ps = uy-s=h"ssinf" cos¢o” (290)
Py = ug-s=h%ssinf"sin¢* (291)

or doing the same, but for the unit vectors in the 1’2’3’ system

P, = uy -s=h*scosf* (292)
Py = uyp-s=h*ssinf* cosd* (293)
Py = uy-s=h*ssinf*sine* . (294)

Using the relationships amongst the unit vectors above one has that

PL = P (295)
Ps = cos¢,Pg —sing, Py (296)
Py = sin¢g,Ps + cos ¢, P (297)
Psi = cospyPs +sind, Py (298)
Pn: = —sing,Ps + cos ¢, Py. (299)

Note that P, = P, contains no dependence on ¢,.
Recalling the conventions employed in some analyses of frame-dependent

formulations in Sec. 3.2, we see how the approach using the spin azimuthal angle

99



745

750

755

760

¢*' referenced to the hadron plane (which is commonly used in treatments of
pion electroproduction; see, for example, the discussion in [3]), together with
the azimuthal angle between the electron and hadron planes ¢y, leads to a simple
pattern. Here we have ¢*' = ¢* — ¢, = ¢s — ¢p, With ¢, = ¢, and ¢, = ¢*;

accordingly the dependences in Sec. 3.2 are the following:

sin(gn —ds) = —sing™’ (300)
cos(op — ¢5) = cos¢* (301)
sings = singy cosd*’ + cos Py, sin ¢’ (302)

cos s = cosppcos @ — sin ¢y sin p*’ (303)

sin(¢n + ¢s) = sin2¢y cos ¢’ + cos 2¢y, sin ¢’ (304)
sin(2¢n, — ¢s) = sin¢y cosd*’ — cos dy, sin ¢’ (305)
cos(2¢ — ¢ps) = cos ¢y, cos ¢’ + sin ¢y, sin ¢*’ (306)
sin(3¢n — ¢s) = sin2¢y cos ¢’ — cos 2y, sin ¢*’ (307)

together with sin ¢y, cos ¢y, sin2¢, and cos2¢;,. We see that for the spin-
dependent sector the dependences on the spin azimuthal angle enter not at all
(L") or through factors cos¢*’ (S’) or sin¢*’ (N’). The dependences on the
azimuthal angle ¢, are the following: no dependence for L, T' and T’ responses,
via factors sin ¢, and cos ¢, for T'L and T'L’ responses, and via factors sin 2¢,
and cos 2¢y, for T'T responses. This simple pattern is well-known in studies of

pion electroproduction (see, for example, Sec. 3 of [3] and Table 2 of [18]).

5. Inclusive Scattering of Polarized Electrons from

Polarized Spin-1/2 Targets

For inclusive scattering one simply needs to eliminate all contributions that
contain the 4-vectors V# or X*, as well as the invariant Iy as they involve the
4-vector P¥ which does not enter in the inclusive case. All invariant response

functions depend only on two scalar quantities, for example, Q% and Q - P =
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Q?1,. Accordingly one obtains the following:

pvyincl _ incl m% Q#QV incl pruyrv
(WS )unpol - _(Wl) g — Q2 +(W2) UrU (308)
(WE Yot = 0 (309)
Wt = )™ (0 X"+ X" (310)
. vyinc 1 mnec va
—i (W) = 5 (W)™ P 20Qp
+ ()" U - 0V (311)

with 5 inclusive invariant functions (W)™, m = 1,2 and (W})", m =
6,9,11. Using our previous results for semi-inclusive scattering but now drop-
ping all contributions containing V# or X* we obtain the following: for the
symmetric, unpolarized cases (now not continuing to develop the T'L and

TT cases)

[W’lfnpol}ind _ _% (Wy)mel 4 (U0)2 (W) ! (312)
[WuTnpoJMd _ Q(Wl)iml+ [(U1)2+ (U2)2} (Wz)incl (313)
Wit = |- )+ )] ()™ (314)
[WuTanoJincl = 22U%%! (Wg)md, (315)

no results for the anti-symmetric, unpolarized case
(W Yinpor = 0 (316)
as can be seen above in discussing the semi-inclusive responses. All contri-

butions there contained explicit factors involving V*# or X*; in fact, potential
contributions of this type are parity-violating when electrons are polarized longi-
tudinal or sideways. For the symmetric, polarized cases (now not continuing

to develop the TL and TT cases) we have

WL = v'X'wy (317)
incl -2 —1

Wi = (X0 X ) wy (318)

[WIT™e = (UQY2 - Ulfl) W (319)

WEi"™ = 22 (UK + X)W, (320)
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all of which are proportional to the same invariant response function W§. And,
finally, for the anti-symmetric, polarized situation (now not continuing to
develop the TL' case, although it is very similar to the T'L’ case below, simply
having 2 replaced by 1; as noted earlier, this term can occur when only the in-
cident electron is polarized but when the scattered electron’s polarization is not
measured although the leptonic factor goes as 1/ and hence this contribution

may be safely neglected at high energies — we do so in the following) we have

,7incl 1 incl o
] = 2 [M (W) 12°9%,Q;
+ (W)™ (X - X 02 (321)
s inel 1 incl o
W)™ = ava| g v eeos,,
+ (W) (UOX — YOUQ)} . (322)

In total we find that 5 invariant response functions enter, Wi o and Wy, in
contributions that are TRE, plus the contributions that involve the invariant
response function W{ and are TRO.

The general inclusive cross section may then be written in the following form:

d’o

M _,
oy = OMott f—E Rinel (323)
e 4

where o704 is the Mott cross section given in Eq. (259) and the full inclusive

response is given by
Rincl _ Rlind + hR;ncl + h*RénCl + hh*RinCl, (324)

in which the four contributions correspond to completely unpolarized, electron
polarization only, target polarization only, and double polarization, respectively.
As above all responses here depend on two scalar invariants such as Q2 and
Q- P together with the electron scattering angle 6. which enters via the leptonic

factors. Clearly the four sectors can be separated by flipping the electron helicity
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h and the direction of the target spin via the factor h*. Explicitly we have

Riret = g [WE o] ™ +or W] ™
+orr, [WEE ™ + vrr [WEE ] (325)
AR = 0 (326)
WR = o [WE]™ +op [WE]T
+ors, [WEA™ 4 opp [WET]™ (327)
3 — [W;ZLT”CZMT [W;}rnd7 (328)

where, as above, we have dropped the small TL’ contribution. The leptonic fac-
tors are given in egs. (31) - (36) while the inclusive hadronic response functions

are given above.

5.1. The Transition from Semi-Inclusive to Inclusive Scattering

While the above developments yield the structure of the general inclusive
cross section directly, it is also instructive to follow a different strategy and pro-
ceed from the semi-inclusive cross section for a given channel (i.e., for a specific
particle x detected in coincidence with the scattered electron), integrating over
the allowed kinematics of the 4-momentum that goes with that particle, and
then summing over all open channels, of course, paying close attention to issues
of double-counting.

We start with the general forms for the semi-inclusive cross section for the
specific channel where particle x is assumed to be detected given above in Secs.
4.2 and 4.3. The dependence on the azimuthal angle ¢, occurs in the explicit
factors cos ¢, cos 2¢, and sin ¢, in the rest frame for the cases where the target
is unpolarized. Clearly, upon performing the integrals over ¢, over the range
(0,27) yields zero for the TT, TL and TL' cases, verifying the above inclusive
structure. The L and T cases simply pick up a factor 2 when the azimuthal
integral is performed. In summary, for the target unpolarized situation one finds
that each channel yields only L and T responses.

The situation where the target is polarized is a little more complicated.

There one finds that as well as explicit factors cos ¢, cos 2¢,,, sin ¢,, and sin 2¢,,
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one has implicit dependence on ¢, via the factors Pg. and Py-. In this scenario
it, of course, makes no sense to use the primed spin-projection variables, since
the plane in which the momentum of particle x lies is being integrated over and
accordingly we must go back to the original unprimed spin projections which are
referred to the electron scattering frame. Two of the symmetric, polarized cases
are simple: the L and T results depend on the azimuthal angle solely through
the factor Py, which, by Eq. (303) only has dependences sin ¢,, and cos ¢, and
accordingly upon integrations over ¢, yield zero. The remaining cases require

somewhat more work. The symmetric T'L response has three contributions

1
T1 ~ cosP, PN = 3 [—sin 2¢,Ps + (1 + cos 2¢,,) Py] (329)
To ~ sing,Pr =sin¢g,Pr, (330)
1
x3 ~ singyPs = 5 [sin2¢,Ps + (1 — cos2¢,) Pn] . (331)

Upon integrating over ¢, one then finds that the xz; and z3 cases yield 7Py,
while the x5 case yields zero, namely, a nonzero result that goes as Py . Similarly,

the symmetric TT response also has three contributions

Y1 ~ cos2¢,Pn = % [~ (sin 3¢, — sin¢,) Py

+ (cos 3¢, + cos ¢ ) P] (332)
Y2~ sin2¢,Pr = sin2¢,Pr (333)
ys ~ sin20,Psi = 5 [(sin36, +sin6,) P

+ (= cos 3¢, + cos ¢,) Pn] (334)

all of which integrate to zero and yield no contribution for the 77" term. Next,
the anti-symmetric polarized cases are handled similarly: for the T response
the contribution that involves Pg- yields zero upon integration over ¢, while the
contribution that involves Py, and hence no dependence on ¢, yields a nonzero
result arising from the factor 27 coming from the integral. Thus the T’ response

yields a nonzero result that is proportional to Py. Finally, the T'L’' response
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involves three contributions

z1 ~ €oS¢Pr = cosod,Pr, (335)
1

Zo ~ €O0S¢ Pg = 3 [(1 + cos2¢,) Ps + sin 2¢, Pn] (336)
1

23 ~ sing,Pn = 5 [— (1 — cos2¢;) Ps + sin 26, Pn] . (337)

As above, the term involving z; integrates to zero, while the zo and z3 terms
yields factors of m and —m, respectively, and involve the spin projection Pg.
Thus exactly the structure found above when proceeding to the inclusive cross
section directly is found by integrating the semi-inclusive responses over ¢,.
Again, the strategy in the present work is the following: given some model
for the polarized semi-inclusive cross section in the rest system one can deduce
what are the invariant response functions for that model. With these the expres-
sions in a general system immediately yield results for any choice of kinematics.
The key feature is having everything written in terms of kinematic factors and
invariant responses, since the latter are independent of the choice of frame. So,
for example, while the earlier studies referred to above are completely general,
they must be re-cast in terms of invariant response functions if one wishes to

relate the results in different frames of reference.

6. Summary

The present study has focused on a review of the general formalism for rep-
resenting electron scattering in terms of Lorentz invariant hadronic response
functions. The formalism is very general and meant to be applicable both for
low-energy reactions and in the high-energy regime (HER). Together with the
well-known leptonic tensor that arises from products of the electron EM current
matrix elements in past studies the EM hadronic tensors has been constructed
using specific general basis sets of 4-vectors. Several cases are summarized,
from the simplest involving unpolarized electrons being inclusively scattered
from unpolarized targets to much more complicated cases where, in addition

to the scattered electron other particles may be assumed to be detected or
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where hadronic polarizations enter. After reviewing the well-known cases in the
present study we have focused on the specific case involving scattering of polar-
ized electrons from polarized spin-1/2 targets in situations where the scattered
electron and some (unpolarized) particle z are detected in coincidence, wviz.,
semi-inclusive scattering. The other simpler reactions may then be recovered
as special sub-cases of this general reaction. For the polarized semi-inclusive
reaction in total one finds that there are 18 basis tensors, four symmetric ones
when both the electron and target are unpolarized, a single anti-symmetric one
when the electron is longitudinally polarized while the target is unpolarized,
eight symmetric ones when the electron is unpolarized but the target is polar-
ized, and five anti-symmetric ones when the electron and the target are both
polarized. The contraction of the leptonic and hadronic tensors that enters
when applying the Feynman rules, which is a Lorentz invariant, is then formed
as a linear combination involving these 18 hadronic tensors weighted with 18
invariant response functions, W;, i« = 1,5 when the target is unpolarized and
W, i =1,13 when the target is polarized. Each of these invariant responses is
a function of four Lorentz scalars (Q?, I, I;, I, ) (see Egs. (96-98)). Thus one
has the kinematics of the reaction and the target spin dependence expressed in
terms of the basis 4-vectors while the dynamics are contained in the 18 invariant
response functions. Clearly the former are frame-dependent while the latter are
not.

Given the Lorentz invariant contraction of the leptonic and hadronic tensors
one can proceed using the Feynman rules to obtain the semi-inclusive cross
section in a general frame where both the incident electron and the target
are assumed to be moving, the latter with momentum p. All of the kine-
matic factors summarized above must then be evaluated in this specific frame.
Specifically, we require the functions F in Egs. (279-282) to be combined as
in Eq.(278) and inserted into Eq. (277). To accomplish this we require the
}m and [WKFW’ with K = L, T, TL, TT, T’

: K
response functions [W pol

unpol
and T'L' developed earlier; see Egs. (172-175), (178-179), (180-183) and (187—

189) in Sect. 3.1 where these response functions are written explicitly in terms
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of invariant response functions which contain the dynamics of the problem and
simple kinematic variables. The kinematic variables of course differ in different
frames whereas the invariant response functions do not. These expressions may
be employed in any frame simply by evaluating the kinematic factors in the
particular frame of interest. One may then obtain the corresponding results
in a different frame where the target has a different value for its momentum
simply by choosing the appropriate value for p; all other kinematic variables
are then to be evaluated in that different frame. Specifically, one can express
the semi-inclusive cross section in the target rest frame by setting p = 0 (see
[18] for details). Importantly, the dynamical content in the problem, which is
encapsulated in the invariant response functions summarized above does not
change when changing frames. Also, the 18 invariant response functions are
functions only of the four Lorentz scalars listed above; these are also invariant.

The semi-inclusive cross section separates into four sectors according to the
electron and target polarizations, namely, (I) both unpolarized, (II) electron
polarized, target unpolarized, (IIT) target polarized, electron unpolarized, and
(IV) both polarized. Having control of these polarizations then immediately al-
lows the four sectors to be isolated. Furthermore, the cross section has explicit
dependence on several kinematic variables that may be evaluated in principle to
obtain enough linear equations in the 18 unknowns — the 18 invariant response
functions — to invert and thereby determine those response functions. Specif-
ically, the dependences on the electron scattering angle 6., on the azimuthal
angle for the 3-momentum of the detected particle, ¢,, and on the angles 6*
and ¢* that specify the axis of quantization of the target spin can be used to
isolate the required linear equations (in [18] an appendix is provided with the
details).

Hence several strategies are available. In one approach where measurements
are made in two different types of experiments the experimental results could be
used in principle to isolate the 18 invariant response functions for the kinematical
situation involved in the two experiments. Specifically, one could envision one

experiment being performed in the target rest frame (fixed-target experiments)
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and from those measurements the 18 invariant response functions or some subset
thereof being determined. One might then have a different experiment where
the electron and target are both in motion (collider experiments): nevertheless,
the same strategy could be followed and the 18 invariant response functions
determined, albeit, perhaps for non-overlapping kinematics. The two sets of
invariant responses could then be analyzed in a universal way.

A similar strategy occurs when using theory to make predictions of the
semi-inclusive cross section. For instance, one may be forced to work in the
target rest frame when modeling the dynamics using ingredients that are not
“boostable”, which is almost always the case in nuclear physics for nuclei other
than the deuteron. However, one could deduce the corresponding invariant
response functions working in the target rest frame and then employ them in,
say, the collider frame. Specific modeling of this sort will be undertaken by the
authors in the future.

To make contact with other approaches, in the process of developing the
semi-inclusive cross section we have chosen to express the results in terms of
specific Lorentz components of the general hadronic tensor which are governed
by the helicity projections of the exchanged virtual photon. In [18] we have
included an appendix where this step is skipped and the contraction of leptonic
and hadronic tensors is expressed directly in terms of invariant quantities. The
two approaches are completely equivalent, but each may have advantages in
particular applications.

Finally, we have shown how the inclusive scattering of polarized electrons
from polarized spin-1/2 targets is related to integrations of the semi-inclusive
cross sections plus sums over all open channels. Again we note that in [18] one
may find another appendix containing a few more details on inclusive scattering
to help the reader find more familiar ground to aid in navigating the much more
intricate problem of semi-inclusive scattering.
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