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1 Introduction

One of the most powerful ideas in theoretical physics is the systematic application of
universal principles, such as symmetry, causality and unitarity, to constrain observable
quantities. This approach, generally referred to as the bootstrap, has led to many insights
into the dynamics of quantum field theory and quantum gravity, see [1-5] and references
therein.

The precise form of observables and thus also the implementation of the bootstrap
strategy depends on the global geometry of spacetime. For example, in asymptotically
flat space, a relevant set of observables is the S-matrix. In asymptotically AdS space, it
is the correlators of the boundary CFT. In this work, we will focus on scattering in 1+1
dimensions. We will use the conformal bootstrap in 1D CFTs to constrain scattering in
QFTs in AdS,. We will also draw parallels with the analogous results about 2D S-matrices
in flat space.

In principle, the ultimate goal of the S-matrix bootstrap is to construct the most
general Lorentz-invariant S-matrix consistent with unitarity and causality. Needless to



say, the solution of this problem is currently far out of reach. On the other hand, if we
only demand consistency order by order at small energy, then the complete solution is
known. The solution is called low-energy effective field theory (EFT). Indeed, the purpose
of low-energy EFT is to provide a parametrization of the most general S-matrix consistent
at low energy [6-8]. The situation is similar for scattering in AdS. We can study solutions
of the conformal bootstrap equations in the boundary CF'T order by order in an expansion
around mean field theory, i.e. free theory in AdS. Again, the most general perturbative
solution of the bootstrap is parametrized by a bulk effective Lagrangian and computed
using bulk Witten diagrams [9-11].

However, there is no guarantee that a perturbative solution of the bootstrap equations
arises from a theory consistent at all energies. In other words, the set of solutions of the
full bootstrap could be much smaller than the set of EFTs. Indeed, it has long been known
that low-energy couplings must satisfy various inequalities if the EFT arises from a UV-
complete theory [12, 13]. Such bounds have recently received a renewed attention, see for
example [14-20]. A central task facing the modern S-matrix and conformal bootstrap is to
find the complete set of constraints on the low-energy parameters arising in fully consistent
theories.

A fruitful approach to deriving constraints on IR observables following from UV con-
sistency stems from dispersion relations. Dispersion relations distill causality and unitarity
into precise sum rules satisfied by the dynamical data. In flat space, dispersion relations
follow from analyticity and boundedness of the S-matrix at high energy by a contour de-
formation in the space of complexified momenta.

Recently, dispersive sum rules for the S-matrix were explored systematically in [21-25].
Following [21], one can introduce the arcs, which are certain integrals of the two-to-two
S-matrix defined at a variable energy scale M. On one hand, the arcs are computable in
terms of a low-energy EFT valid at the scale M. On the other hand, a contour deformation
expresses the arcs as moments of the imaginary part of the S-matrix at energies above M.
UV unitarity leads to positivity properties of these moments, yielding inequalities satisfied
by the IR parameters. An interesting outcome of these inequalities is a justification of the
expectation that higher-derivatives couplings in the EFT should be suppressed by inverse
powers of the UV cutoff M dictated by dimensional analysis.

Dispersive arguments have a natural implementation for scattering in AdS in the lan-
guage of the conformal bootstrap. Indeed, causality and unitarity are deeply embedded
in the conformal bootstrap. In particular, the CFT crossing equation is a statement of
causality, expressing the commutativity of spacelike-separated local operators in a four-
point function. Dispersive CF'T sum rules can be derived as rigorous consequences of the
CF'T crossing equation in Lorentzian signature by applying suitable linear functionals to
it [26, 27]. The defining property of a dispersive functional is that heavy operators enter
only through the double commutator a.k.a. double discontinuity. This statement is the
AdS analogue of the idea that heavy states enter the dispersive sum rules in flat space only
through the imaginary part of the S-matrix.

Dispersive CFT sum rules have appeared in various forms in the conformal bootstrap
literature, for example as superconvergence sum rules [28], analytic extremal function-



als [29-32], or as sum rules arising in the Polyakov-Mellin approach to the conformal boot-
strap [33-36]. In the context of CFTs in d > 2 dimensions, they were studied systematically
in [37].

In analogy with flat space, these sum rules can be used to prove bounds on couplings
in a low-energy EFT in AdS. The bounds follow by splitting the contributions to the CFT
crossing equation into those of light and heavy operators, where the separation occurs at a
scaling dimension Ag,, ~ M Raqs. The contribution of the light operators to a dispersive
sum rule defines the AdS analogue of the arc variables. These arcs can be computed in
terms of an EFT in AdS assuming this EFT is valid up to the scale Ag,,. The crossing
equation relates the arcs to moments of the contribution of heavy operators to the double
commutator. Positivity of these contributions then implies bounds on the arcs and hence
on the IR observables. This logic was used in [38] to prove bounds on higher-derivative
couplings in weakly-coupled gravitational theories in AdSp with D > 4, building on the
flat-space arguments of [25]. It was shown that at the leading order at large Ag,p, the
bounds are at least as strong as the corresponding bounds in flat space. In particular,
there remains the logical possibility that the AdS bounds are strictly stronger than the flat
space bounds.

The main purpose of this note is to extend dispersive arguments to AdSs and deduce
EFT bounds in that case. We imagine placing a non-gravitational QFT in AdSs and study
it through the lens of the boundary correlators, as advocated in [39] and further explored
more recently in [40]. The latter reference also derives a bound on the leading irrelevant
interaction in a scalar theory.

The set of boundary correlators defines what one may call a 1D CFT. While not in-
cluding a stress tensor, such 1D CFT satisfies a natural extension of the higher-d conformal
bootstrap equations to d = 1. The 1D conformal bootstrap is the simplest nontrivial case
of the conformal bootstrap. It allows one to study the conformal bootstrap equations in
the simplest possible setting and has already lead to many insights [41-45]. It is therefore
natural to look for the analogue of dispersive bounds in this case. In particular, we will
address the question of optimality of the AdS bounds by showing that at the leading order
at large Agap, they exactly agree with the flat-space bounds.

The main difference between d > 1 and d = 1 is the absence of a transverse impact
parameter space in the bulk in the latter case. This considerably simplifies kinematics, but
does not limit the power of the bootstrap in constraining bulk scattering.

Our central technical result is an explicit construction of dispersive sum rules C} for
1D CFETs. These play the same role for AdS, scattering as the spin-k subtracted dispersion
relation plays for the 2D S-matrix. The construction of C} follows the template of 1D
analytic extremal functionals of [29-31]. C} is defined as a weighted integral of the 1D
conformal bootstrap equation. A contour deformation then shows that heavy operators
enter C} only though their double discontinuity. The parameter k controls the inverse
power of A suppressing the heavy contributions.

We will define the AdSy arc variables as the contribution of operators with A < Agap
to the dispersive sum rule Cy. This definition makes sense without resorting to any EFT
description of bulk physics. Assuming bulk physics is well-approximated by a tree-level



EFT valid up to scale Ag,p, the arc variables defined by C}, compute precisely the quartic
higher-derivative couplings.

The logic of dispersive sum rules explained above then leads to bounds on the higher-
derivative couplings. The bounds are nontrivial functions of Ag,p. This is because by
placing a theory in AdSs with finite radius, we introduce a new dimensionless parameter
into the problem. Ag,, is this parameter. We will see that in the regime Ag,, > 1,
our bounds agree with the flat space results. In particular, the couplings are suppressed
by the expected inverse powers of Ag,,. Unlike in the case of higher dimensions, it will
be manifest that the AdSy bound can not be improved beyond the flat-space bound (at
the leading order in 1/Ag,;,) without considering other correlation functions. We will also
compute the universal leading correction to the bounds coming from finite size of AdS.

The rest of this note is organized as follows. In section 2, we review dispersive ar-
guments in the context of scattering in 2D flat space. In section 3, we review the kine-
matics of AdSy/CFTy, give a general construction of dispersive sum rules and construct
higher-derivative contact Witten diagrams. Our main results appear in section 4, where
we construct the Cy sum rules, and use them to prove bounds on higher-derivative cou-
plings in AdSs. We conclude in section 5. Appendix A includes an explicit formula for the
anomalous dimensions in higher-derivative contact Witten diagrams in AdSs.

Note added. We are coordinating our submission with [46], which studies complemen-
tary aspects of scattering in 1+1 dimensions using the conformal bootstrap in 1D CFTs.

2 Flat space bounds from dispersion relations

2.1 2D S-matrices

We will start by reviewing several well-known facts about relativistic two-to-two scattering
in 141 dimensions. Particles in 14+1 dimensions do not carry spin, but can possess either
bosonic or fermionic statistics. We will consider both possibilities.

Let |p) be the one-particle state of a stable particle of mass m and spatial momentum
p. The states carry the standard relativistic normalization

(glp) =4TES(p — q), (2.1)

where E(p) = /p?> + m2. One can define the scattering in states and out states of two
identical particles |p1,p2)in, |P1,P2)out- They satisty |p1, p2)in = £|p2, P1)in, where here and
in what follows, the upper and lower sign corresponds respectively to bosons and fermions.
They are normalized as tensor products of one-particle states

in(P3, pa|p1, P2)in = (47)°E1 E2[8(p1 — p3)8(p2 — pa) £ 6(p1 — pa)d(p2 — p3)] - (2.2)
The S-matrix S is the operator carrying out states to in states
[p1,P2)in = SIp1, p2)out - (2:3)
It is standard to write S as follows

S=1+iT, (2.4)



where iT' is the connected amplitude. We are interested in the matrix elements of S between
in states. Poincaré invariance implies that

in (D3, paliT |p1, po)in = i(27)26(Ey + By — E3 — E4)8(p1 + pa — p3 — pa)T(pi) (2.5)

where T'(p;) is defined on the support of the delta functions, is Lorentz-invariant, and
satisfies

T'(p1,p2,p3,p4) = £T(p2, p1,p3,p4) = £T(p1, P2, P4, p3) = T'(p2, 1, P4, P3) - (2.6)

The energy-momentum conserving delta functions in (2.5) are supported in the region
(p1 = p3 and py = pg) or (p1 = pg and pa = p3). Thus two-to-two scattering is fully
encoded in T'(p1, p2, p1,p2). Symmetry under p; <> p2 and Lorentz invariance imply

T'(p1,p2, p1,p2) = M(s), (2.7)

where

s=—(p1 +p2)?, t=—(p1 —ps)® =4m? — s, u=—(p1 —p3)*=0. (2.8)

It follows that the S-matrix elements take the form

in(p3, pa|S|p1, pa)in = (4m)2E1Eo[5(p1 — p3)d(pa — pa) £ 8(p1 — pa)d(pa — p3)]S(s), (2.9)

where
iM(s)
2\/s(s — 4m?)

The square root in the denominator comes from the Jacobian transforming between the

S(s) =1+ (2.10)

two types of delta-functions.

Physical scattering occurs for s > 4m? but S(s) admits an analytic continuation to
the complex s-plane. The analytic continuation exhibits a pair of branch cuts for s >
4m? and s < 0, corresponding to s- and t-channel scattering. The physical scattering
amplitude (2.10) is the limiting value of S(s) as we approach the s-channel branch cut
from Im(s) > 0. S(s) is meromorphic away from these cuts. Its poles must all be simple
and are only allowed to occur for real s with 0 < s < 4m?. They correspond to bound
states of the two scattered particles.

Crossing symmetry is the statement that S(s) below the t-channel cut computes the
physical scattering amplitude of particle-antiparticle scattering. In the rest of this note, we
will assume that the scattered particles are their own antiparticles. In that case, crossing
symmetry becomes the statement

S(s) = S(4m? —s). (2.11)

Note that there is no overall minus sign here even for identical fermions.
The S-matrix is a unitary operator

STS =1. (2.12)



By computing the matrix element of this identity between two-particle in states, and in-
serting a complete set of in states between ST and S, we recover the upper bound

1S(s)? <1 (2.13)
valid in the physical region s € [4m?, o). Using (2.10), it becomes the following statement

about M(s)

(M(s)[?
ImM(s)] > —F————e=.
mM(s)] 2 4./s(s — 4m?)
In particular, Im[M(s)] > 0 for s € [4m?, 00) + ie.
Analyticity away from the real axis and the bound |S(s)| < 1 for s > 4m? imply that

(2.14)

|S(s)| is bounded by a constant in the complex s plane, for sufficiently large |s|. Hence
IM(s)| = O(]s|) as s — oo along any direction in the complex plane. We will only need
the weaker condition

M(s)

2

—0 as s— 0. (2.15)
s

2.2 Dispersion relations

Analyticity of M(s) away from the real axis, together with the bound (2.15), allows one
to relate scattering at low and high energy. Concretely, this is achieved through dispersion
relations. We obtain an infinite family of dispersive sum rules C; with k = 2,4,6,... by
noting that, by virtue of the bound (2.15), the following contour integral vanishes

Cr:

ds 1
_ sl M) gy k—o4.. (2.16)
2

J 21t s [s(s — 4m?2)]

The contour is an infinitely large circle in the complex s-plane, see the left half of figure 1.
Next, we choose an energy M > 2m, and deform the contour as shown in the right half of
figure 1. The contour deformation leads to the identity

— Cilir = Ciluv, (2.17)
where
41 Mo

. % (2.18)
2mi s [s(s — 4m?2)]2

= Crlir =
M2
corresponds to the pair of arcs connecting s = M? and s = 4m? — M?. The contour on the
r.h.s. of (2.18) runs in the counterclockwise direction. This is the low-energy contribution

to the sum rule. On the other hand,

[e.e]
ds 2(s —2m?)
T k+2

™ [s(s — 4m2)] T

Crluv = Im[M(s)] (2.19)

M2

comes from the segments connecting s = M? with s = +0c and s = 4m? — M? with s = —oc0

along the real axis. We used crossing symmetry of M(s) together with M(3) = M(s) to
combine them to a single integral.



[s] = o0 \i \i
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Figure 1. The contour deformation implementing the dispersive sum rule C, defined in (2.16).

We will refer to the r.h.s. of (2.18) as the arc at the scale M, and denote it by
Ap(M) = —Cylir - (2.20)

The dispersion relation (2.17) states that Ay (M) is equal to the moment of Im[M(s)]
shown on the r.h.s. of (2.19).

The arcs A (M) satisfy various inequalities as a result of UV unitarity Im[M(s)] > 0.
On the other hand, they can be computed using the low-energy effective field theory (EFT),
provided the EFT is valid up to the scale M. In this way, dispersion relations lead to
interesting bounds on the parameters of the EFT as a consequence of UV consistency.

For concreteness, let us assume that the tree-level approximation in the EFT is valid
up to scale M. This can be made rigorous by considering a one-parameter family of S-
matrices which are becoming arbitrarily weakly coupled. Let us also assume for simplicity
that ¢ (or ¢ in the fermionic case) is the only particle in the EFT and that the theory
is invariant under ¢ — —¢, to prevent cubic self-interaction. The most general tree-level
amplitude then takes the form

MEpr(s) = fj gi[s(s — 4m?)]? | (2.21)
k=0

k even

where g are the EFT couplings, and gg = 0 in the fermionic case. In the bosonic case,
the term gi[s(s — 4m2)]§ comes from a contact diagram with four ¢s and 2k derivatives,
i.e. it has the schematic form g;(¢0*¢)? and k = 0,2,4,... . For fermions, it corresponds
to an interaction with four vs and 2(k — 1) derivatives, i.e. gp(10"19)2, and we have
k=246,....1

'For this to hold, we should also subtract multiples of lower-derivative contact diagrams to make the
amplitude go like (s — 4m2)% as s — 4m?. In what follows, we parametrize the couplings using their
S-matrix elements as in (2.21). We will not need the precise form of the vertices corresponding to g
appearing in the Lagrangian.



Assuming the amplitude (2.21) provides a reliable approximation to the true amplitude
up to s = M?, a residue calculation gives a very simple answer for the arcs

Ap(M) = gy. (2.22)

In fact, this was the main motivation for choosing the dispersion relation kernels as in (2.16).
Since k > 2, the only coupling which is not captured by UV-computable arcs is gg. It is
only present in the bosonic case. Additional light matter fields in the EF'T would not affect
the result (2.22). This is because the sum of tree-level exchanges

1 1 1

2.23
s—m%+t—m%+u—m% ( )

does not grow as s — oo, and thus its A vanishes, as can be seen by deforming the contour
to s — oo.

2.3 Bounds satisfied by the arcs

Let us discuss bounds on the arcs in more detail. Unless stated otherwise, we do not assume
the validity of any specific EFT description, such as (2.21).
First of all, positivity of the integrand in (2.19) immediately implies

Ag(M) >0 forall k=2,4,... and M >2m. (2.24)

To obtain more refined bounds, let us perform the change of variables

= 225

to arrive at )
[M2(M? — 4m?))5 Ap (M) = / do "5 W . (2.26)

0

In other words, [M?(M? — 4m2)]§Ak(M ) are moments of a measure in the unit interval.
The question of determining a necessary and sufficient condition for a sequence of positive
numbers to arise as moments of a measure in a compact interval is known as the Hausdorff
moment problem. It has a known solution, reviewed in [21]. More generally, we can ask
for the complete set of constraints on a finite subset of moments. This too has a known
solution in terms of Hankel matrices [21, 22].

Here, we will confine ourselves to reviewing the complete set of bounds on a pair of arcs
Ak(M), Ag(M), where k, ¢ are positive even integers with ¢ > k. First, let us introduce
the normalized arcs

Ap(M) = [M*(M?* — 4m?)] = (D) (2.27)
From (2.26), we have
1 1
Ap(M) = /dw w(x)x% , where w(z)>0 and /dx w(z) =1. (2.28)
0 0



Clearly, 0 < A,(M) < 1 for all k. Furthermore, Aj(M) for a fixed k > 2 can take any
value between 0 and 1 by setting w(z) = d(z — 20) and varying zo. For a fixed Ay (M),
A\g(M ) must satisfy the lower and upper bounds

~

[ﬁk(M)]% < Ay(M) < Ap(M) for £> k. (2.29)

-2

The upper bound follows from a7 <z 2 forall v € [0,1]. The bound is sharp since it
is saturated by the measure w(z) = A\d(x) + (1 — A\)d(x — 1) with varying A\. On the other
hand, the lower bound is saturated by the measure w(z) = §(x — xo) with varying xo. We
give two proofs of the lower bound. The first proof uses the Holder inequality

/dm|f [/dw\f ] [/d:v[g ] where p,q>1, ;—i—;:l.

(2.30)
The lower bound follows immediately after setting
=k k=2 ko (-2 -2
fl@) = w@) ™2, ga) = w@) 2T, p= a= (2:31)

-k’ k-2
The second proof of the lower bound is a direct application of Jensen’s inequality. Let

w(z) be a probability measure in the unit interval as above, let f(x) be a convex function
and let g(x) be any (measurable) real-valued function. Jensen’s inequality states

1 1
s ( / da:w(x)g(x)) < [dru(@fg@)). (232
0 0

The lower bound in (2.29) follows from this after setting

flx) = xﬁ , g(x) = el (2.33)

Since ¢ > k, f(x) is indeed convex as required. It is the second proof which will generalize
to the AdS case.

When the tree-level EFT description (2.21) is valid, the above bounds translate into
bounds on the four-point couplings gi. We get the strongest bounds by choosing the largest
possible M where (2.21) converges. Thus M is the mass of the lightest state not included
in the EFT. Firstly, we have gy > 0 for all k > 2. The bound Ay(M) < A(M) for all
2 < k </ becomes

1
0<% < — for 2<k<{. (2.34)
Gk [M*(M? —4m?)] T

Thus, these ratios are bounded by inverse powers of the UV cutgfg dictated by the di-
mensional analysis. On the other hand, the lower bound [/Tk(M )F2 < ./Zl\g(M ) for £ > k

becomes

g k—2 ak 0—2

() > <> for 2<k</, (2.35)
g2 g2

with no M-dependence. These inequalities can be tested by performing low-energy mea-
surements without knowing the UV cutoff M.



2.4 Bounds at one loop

We will conclude this section by a discussion of how the bounds are corrected by one-loop
effects in the EFT. For simplicity, we will focus on scattering of massless particles, i.e.
m = 0, and suppose that they are derivatively coupled, i.e. gg = 0. This is automatic in
the fermionic case. In the bosonic case, this set-up applies to scattering of excitations on a
flux tube in three dimensions. The flux-tube theory is weakly-coupled in the limit of a large
number of colors. Bootstrap of the flux-tube S-matrix at finite coupling was performed in
the interesting recent papers [47, 48].
At one loop, the tree-level amplitude (2.21) gets corrected to

[e.e] . oo
i _
Mgrpr(s) = Y grst + 1 > grgestT for Im(s) > 0. (2.36)
k=2 ko (=2
k even k.l even

This can be seen most quickly from (2.14) by noting that at one loop in the EFT, the
inequality becomes an equality. The expression in the lower half-plane follows from M (35) =
m. The upper and lower half-planes are seperated by a branch cut that now extends
along the entire real axis

The one-loop effects modify the expression for the arcs in terms of the low-energy

couplings
1 < 9i9j -
7':2
i,ljjeven

We would like to analyze the effect of this correction on the bounds in the space of the
g couplings. Let us focus on the first three couplings g2, g4, g¢. Using the UV cutoff M,
we can form the dimensionless combinations
Mgy M®gq
92 92

Y4

The tree-level bounds on y,, yg derived in the previous subsection are 0 < yy < 1,0 < yg <
1, together with

vi <yo <1 (2.39)

To find the one-loop corrections to these bouds, we can use the following inequalities
satisfied by the arcs Ao, A4 and Ag

M*Y*Ay — Ag >0, Ag Az — AZ >0 (2.40)

The one-loop bounds are shown in figures 2 and 3. To produce the plots, we truncate the
expansion of the arcs (2.37) to finitely many couplings g with & = 2,4, ..., kyax and ask if
the inequalities (2.40) are satisfied. Note that since the one-loop arcs are not homogeneous
in the couplings, the bounds have a nontrivial dependence on the value of go.

As expected, for very small go, the region differs very little from the tree-level result.
The one-loop corrections weaken the tree-level bounds. Importantly, they now allow for
slightly negative g4 and gg. A lower bound on g4 for go was found in [47, 48] using non-
perturbative methods. This gives g4 > —%, which is saturated by the following S-matrix:

~10 -



0.5

0.4

0.3

geM®
92

0.2

0.1

0.0

kmax =14
Kmax =12
Kmax =10
Kmax =8
Kmax =6
tree-level

Figure 2. Exclusion plot of gs against g4 for go = 0.5 including couplings up to g
bound for reference. The allowed region is within the banana shape.
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Figure 3. Exclusion plot of gg against g4 for various values of go, tree-level bound for reference.
To produce the bounds, we set g = 0 for all k > 14.

i8—s

5(s) = &5

tree-level bound.

The one-loop bound found here includes this point, in contrast with the

3 Scattering in AdS,

3.1 1d CFT kinematics

We now wish to study the same scattering processes in AdS space. We imagine placing the
QFT in AdS; of radius R. This defines a consistent 1d CFT [39]. By a 1d CFT we mean
the following. The space of states is a unitary representation of the Lorentzian conformal
group §6(2, 1). Each of its irreducible components gives rise to a primary operator which

- 11 -



can be inserted on the AdS boundary. These operators admit a standard operator product
expansion and their correlators satisfy the constraints of conformal invariance, unitarity
and crossing symmetry. Compared to gravitational holography, the main difference is
the absence of a boundary stress tensor. However, this distinction does not preclude a
successful application of the conformal bootstrap to these theories.?

Let us vary the AdS radius R while keeping the masses and couplings of the bulk theory
fixed. We obtain a continuous 1-parameter family of 1d CFTs. The flat-space theory is
encoded in the large- R properties of this family. If the flat space theory contains a particle

of mass m, the CFT contains a primary operator of dimension A > 0, satisfying
A(A —1) =m?R?. (3.1)

Thus, A ~ mR as R — cc.

To compare with our flat-space analysis, we will study scattering of identical particles
of mass m in AdSy. When the scattered particles are bosons, we will denote their dual
primary operator ¢, and 1 when they are fermions. Two-to-two scattering is encoded in
the four-point functions (@), (Vip)).

We will first discuss the four-point functions in Euclidean kinematics. This means that
we consider the bulk theory in the upper half-plane, parametrized by coordinates x,y € R
with y > 0 and endowed with the metric

o da? + dy?

2 _
ds* =R 7

(3.2)

The operators of the dual 1d CFT live on the boundary y = 0 and are parametrized by
the Euclidean coordinate . Due to conformal invariance, their four-point functions take

the form
(P(21)9(22)P(x3)P(24)) = (H(21)P(23))(P(22)P(24))TB(2) (3.3)
(1) (z2)(zs)b(za)) = (D(z1)Y(23)) (Y(22) b (24)) G (2) -
Here and in the following, the B, F label stands for boson, fermion. We have
(P(zi)p(z))) = %v (i) (z;)) = @755), (3.4)
|zij[*5¢ o
where z;; = z; — x;, and
g = 27 (3.5)
T13%T24

is the cross-ratio. Without loss of generality, we can focus on the ordering x; < x2 <
x3 < x4, which corresponds to 0 < z < 1. Permutation symmetry under xo <+ x4 leads to
crossing symmetry

gr(z) =Gp(l —2), Gr(z) = Gr(1 —2) (3.6)

for all z € (0,1). Note that there is no minus sign in the fermionic case.

2Reference [39] reserves the term conformal field theory to theories with a stress tensor, and refers to
the present case without a stress tensor as conformal theory.
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The four-point function can be expanded using the s-channel OPE

Gu(2) = Y (cop0)2Cal (2),  Gr(2) = Y (cpuo)?GRY (2), (3.7)
O (@)

where the sums run over primary operators in the respective OPEs, cg¢0, cyypo € R are
the OPE coefficients and

Ay
Ga

(2) = 227220, F1 (A, A; 24, 2) (3.8)
are the sla(R) conformal blocks. A standard argument using the p-coordinate [49] and
positivity of (css0)?, (cppo)? shows that the s-channel OPE (3.7) converges away from the
t-channel branch cut z € [1,00), and that the analytic continuation of Gg(z), Gr(z) to the
cut plane C\(—o00,0] U[1,00) is holomorphic.

Combining crossing symmetry with the OPE leads to the conformal bootstrap equa-

tions
S (eo00)? [GA% (2) = G4 (1 - 2)] =0
© N N (3.9)
> (epuo)? [Gab(2) = Gl (1= 2)] =0.
(@]

These equations hold in the Euclidean region 0 < z < 1, as well as everywhere in the cut
plane z € C\(—00,0] U [1,00). As we will review in the following subsection, the analytic
continuation of G(z) to z < 0 corresponds to Lorentzian kinematics. Studying the crossing
equation in this kinematics will allow us to derive the AdS analogue of dispersive sum rules
of section 2.

3.2 The double commutator

The defining property of flat-space dispersive sum rules is that the heavy states enter
through the discontinuity of the amplitude. It is well-understood that the notion which
plays the role of the discontinuity in the context of AdS scattering is the double commutator
of the boundary correlation function [50].

To construct the double commutator on the boundary of AdSs, we can consider
Lorentzian AdSs in global coordinates (t, 6), see figure 4. Here ¢t € R is the global Lorentzian
time and 6 € (—7/2,7/2) is the spatial coordinate. The metric takes the form

—dt? + d6?

ds* = R?
y cos2 6

(3.10)

Thus, global AdSs is an infinite strip with timelike boundaries at § = +m /2. Let us consider
the double commutator with a pair of operators on each boundary

(Ql[¢r(ts), dr(ta)][AL(t1), L (t2)][€2) - (3.11)

Here ¢r,(t1), ¢1(t2) are inserted at § = —7/2 and ¢r(t3), ¢r(ts) at 6 = w/2. Let us
assume t; > to, t4 > t3, t1 —t3 < W, t4 — ty < m, so that all pairs except for 12 and
34 are spacelike separated through the interior of AdSy. The analytic continuation of the
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t
or(t1) ®r(ta)
b1 (t2) or(t3)

Figure 4. Kinematics in which we define the double commutator on the boundary of AdS,.

Euclidean four-point function Gg(z) encodes arbitrary Wightman four-point functions. To
evaluate (3.11) in terms of Gg(z), we can transform back to the Euclidean coordinates

x=¢e"sinf, y=ce"cosh, (3.12)

where 7 = it is the global Euclidean time. After some care with the ie prescription, we find

5 (Qlow(0), 61 [6r (1), dn (00)]|90) =

(3.13)
(QUon(tr)¢r(t3)[2) (2w (t2)dr(1a)[82) dDiscGr(2) ,
where z € (—00,0) and the double discontinuity is defined as follows
1 1
ADiscdn () = ~ 505 (2) — 503 () + (1~ 2) 4G (Z z 1) . (3.14)

The arrows show the path of analytic continuation from z € (0,1) to z < 0. For complete-
ness, let us record the cross-ratio in terms of the global times

~
~+

sin (3) sin (4

cos (1) cos (1) € 7200 (3.15)

z =

~+

In the fermionic case, the double commutator is replaced by the double anti-commutator,
leading to

S QUL (1), V(1) Hom 1), o (00)}19)

= (QYL(t1)Yr(t3)[€2) (Qr(t2)Yr(t4)[S2) dDiscpGr(2)

(3.16)
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where

ADiscrGr(2) = 50 (2) + 30¥'(2) + (1 — 2) 224G (Z z 1) . (3.17)

The double discontinuity of a correlator can be evaluated using the s-channel OPE. Its
action on individual conformal block is

A

dDiscBGi¢(z) = 2sin? B(A - 2A¢>)] éA¢(z)
(3.18)
dDiSCFGﬁw (z) = 2cos? B(A — QAzp)] éﬁw('z) )
where
éﬁd) (Z) = (_Z)A72A¢2F1 (Av Av 2A7 Z) . (319)

Crucially, dDisc exhibits double zeros on the double-trace dimensions of mean field theory,
namely AP = 2A, + 2n for bosons and AY = 2A,, + 2n + 1 for fermions.

3.3 Dispersive sum rules

Dispersive sum rules arise by applying suitable linear functionals to the conformal bootstrap
equation (3.9). The functionals are constructed so that all sufficiently heavy operators
enter only through their dDisc. In d > 1 CFTs, this can be achieved by integrating the
Lorentzian crossing equation (Q|¢(z4)[é(3), ¢(x1)]p(x2)|2) = 0 with respect to x; and
xs along spacelike separated null rays [28, 37, 38]. While there are no null rays in 1d
spacetime, it is nevertheless possible to construct dispersive functionals for 1d CFTs by
integrating (3.9) in the complex z plane against judiciously chosen kernels [29-31]. Let us
quickly review the construction. We refer the reader to [30] for details.

Consider a linear functional w acting on functions G(z) in the cut plane. Suppose w
is antisymmetric under crossing, i.e. w[G(z)] = —w[G(1 — 2)] for all G(z).? Tt follows that
if G(z) = G(1 — z), we must have w[G] = 0. Provided w commutes with the sum over
conformal blocks, we get the sum rule?

S (c00)?w[GRE] = 0. (3.20)
@]

We say that w is dispersive if w[Gﬁ‘i’] has a double zero on double trace dimentions
A = 2A4 + 2n for sufficiently large n, ie. all n > n,. Reference [30] gave a general
construction of w such that it commutes with the OPE and such that w is dispersive. The
general form of a dispersive functional is

%+ioo —7100

/dzf(z :I:f / dzf(z /dzg (z)—l—/odzg(l—z)g(z).

2

(3.21)

3For example, w can be a linear combination of derivatives of odd order at z = 1/2, which is the standard
choice in the numerical conformal bootstrap.

4From now on, we will treat the bosonic and fermionic cases in parallel, but will only give explicit
formulas for bosons, unless the fermionic case is different.
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Figure 5. The contours defining the general dispersive functional (3.21).

The contours are shown in figure 5. The top and bottom sign applies respectively to bosons
and fermions. f(z), g(z) are a pair of kernels related as follows

g(z) _ {(1 — Z)2A¢—2f (Til) (bOSOns)

3.22
(1 — 2)2Pe=2f (z—fl) (fermions) . (322

f(2) is holomorphic away from a branch cut at z € [0, 1] and satisfies the symmetry

fz)=f(1-2) (3.23)
as well as the identity

Z2Re=2f (i) + (1 —2)2Pe2f (112) + Re[f(2)] =0 (bosons)

RINEY: C) b (1= 2)2Ae2g ( -

for z € (0,1). The logic behind (3.21) and properties (3.22), (3.23) and (3.24) is the
following. Firstly, symmetry (3.23) guarantees that the functional is antisymmetric under
crossing, i.e. w[G(z)] = —w[G(1 — z)] as required. Secondly, the identities (3.22) and (3.24)
guarantee that the action of w on a general function G(z) can be written as an integral of
dDisc G weighted by f(z)

(3.24)

1_2) —Re[f(z)] =0 (fermions)

0
w[G] = / dzf(z) dDisc G(2). (3.25)

This can be shown by deforming the vertical contours in (3.21) to the left-hand branch

cut. In particular, the action on the conformal blocks is

(3.26)
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where @ﬁd’ is a transformed conformal block defined in (3.19). The integral converges for
all A > A,, manifesting the fact that w is dispersive. The value of A, depends on the
strength of the singularity of f(z) at z = 0.

3.4 The Regge moments

An important quantity attached to a dispersive functional is its Regge spin k. We say that
the functional (3.21) has Regge spin k if f(z) ~ bz~* as z — ico for some b # 0. Similarly,
we say that a four-point function G(z) has Regge spin J if

G(z) ~bz?™l as 2z —ico (3.27)

for some b # 0. The reason for this terminology is that the limit z — ico is analogous to
the u-channel Regge limit of four-point functions in d > 1 CFTs. When G(z) arises from a
d > 1 correlator by restricting the operators to lie on a line, then z — 400 is literally the
u-channel Regge limit. In that case, the notion of the Regge spin defined here agrees with
the standard notion of Regge spin in d > 1.

Let w be a functional of Regge spin k and G(z) a crossing-symmetric four-point function
of Regge spin J. If K > J, then w can be swapped with the conformal block expansion
of G(z) and we get the sum rule (3.20). Nonperturbative four-point functions in unitary
theories satisfy J < 1, so only functionals of Regge spin k > 1 generally lead to valid sum
rules. Note that since f(z) = f(1 — z), the Regge spin of the dispersive functional (3.21)
is always an even integer. Requiring the swapping property with physical correlators then
restricts the possible values of k to positive even integers.

The Regge spin of a dispersive functional translates to a specific power-law suppression
of its action on heavy conformal blocks. Let w be a functional of the form (3.21) such that
f(2) ~b-27% as z — ico for some b # 0. The leading asymptotics of its action reads

MFT Ay 2
pa - wlGL'] 2T RAp+E—1)7 1 o
Zsin? [Z(A — 220,)] b (2A,)? A as A — o0o. (3.28)

We multiplied the action by pXIFT, which is the density of squared OPE coefficients in

mean field theory ,
LA T(A+2A45—1)
MFT _ ¢
PA T TRA - DTQRAL)T(A — 20+ 1)

(3.29)

It is known that the asymptotic OPE density of heavy operators must be equal to that
of mean field theory on average [51, 52|. It follows that the heavy contributions to the
sum rule (3.20) generally go like the power law A'~2% at large A. Thus, the sum rule is
convergent only if £ > 1, as anticipated.

It will be convenient to define the heavy density w[A] associated to the functional w
as the Lh.s. of (3.28)

MET | rrBe 0 R
ol8) = s gy AT [ 4G (3.30)
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The contribution of operators with A > Ag,,, to the sum rule (3.20) is then

MFT

2
ooy = Y L0y g [g(AO - 2A¢)} W[Ao]. (3.31)
Ao>Agap pAO

The definition of w[A] for fermionic functionals is the same, with cos instead of sin.

The preceding discussion can be conveniently extended to a systematic expansion
around the Regge limit by introducing the Regge moments. Following [38], we define
the kth Regge moment of G(z) as the weighted integral of dDisc G(z)

1
11,[G] = / dpp"~2dDisc G(2(p)) . (3.32)
0

Here p is the standard u-channel rho-coordinate [49], which is related to z as follows

B 1 _ (=py
)= T = (3.33)

4p
Any dispersive functional w of Regge spin k has a formal expansion in the Regge moments

g, Meqo, Mg, (3.34)

To see this, note that the measure f(z)dz of the dispersive functional (3.25) can be ex-
panded in the Regge moment measures p*~2dp

o
f(z)dz = Z by P2 2dp (3.35)
n=0
which is just the Taylor series around the Regge limit z = —oo. Since f(z) = f(1 — z2),
only even moments appear. The expansion of w into Regge moments encodes the large-A
asymptotics of the heavy action w[A]

N-1
W[A] = > by Mjpon[A] + O(AT27N) as A — 0. (3.36)
n=0

It is important to stress that Il is not a genuine functional, i.e. it does not give rise
to an exact sum rule. This is because the kernel f(z) corresponding to II; does not satisfy
the functional equation (3.24). However, we will see that II; can be approximated using
genuine functionals to arbitrarily high order around the Regge limit, effectively inverting
the expansion (3.36).

3.5 AdS; contact diagrams from Mellin space

The flat-space dispersive sum rules C, were chosen to be dual to the flat-space contact
diagrams with amplitudes My(s) = [s(s — 4m2)]§. One of our main goals is to construct
analogous CFT; sum rules which are dual to the corresponding contact diagrams in AdSs.
These diagrams were analyzed previously in the nice paper [53]. Here we will review the
constructions and OPE of these diagrams.
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AdSs contact diagrams are precisely the four-point functions which are crossing-sym-
metric and admit an OPE of the form

Z [0a, Ga, (2) + anm0aGa, (2)] (3.37)

with the anomalous dimensions v, bounded by a power of n. Here a,, are the squared OPE

NFT - where pl\A/[FT is the OPE density of mean

MFET

coeflicients in mean field theory, i.e. ap, = 2p’

field theory, given in (3.29). The formula an = 2p

substitution Ay — Ay and A, = 2A, +2n + 1.
We will define Di(z) to be the contact diagram that goes like spin & in the Regge limit.

applies also for fermions after the

For bosons, Dy (z) corresponds to the bulk interaction with four ®s and 2k derivatives, i.e.
(®0k®)?, where k = 0,2,4,.... For fermions, it corresponds to an interaction with four
Us and 2(k — 1) derivatives, i.e. (¥~ 1W)2 and we have k = 2,4,6,... . As k ranges over
these values, Dj(z) produces a complete set of contact diagrams. Saying that Dy (z) goes
like spin k leaves the ambiguity of adding linear combinations of contact diagrams with
smaller k. We will fix this ambiguity by demanding

DP(z2) : n=0foralln=0,...

|
—

(3.38)
Df (2) : Y =0foralln=0,...

|
)

N o

These conditions correspond to the fact that My(s) = [s(s —4m2)}§ has a zero of order k/2
at the threshold s = 4m?. Finally, we will fix the overall normalization of D), by demanding
it goes to My(s) in the bulk-point limit n — oco. At large n, the energy squared of the
intermediate bulk state goes like R?s ~ 4n?. At the same time, the scattering phase shift
is related to the anomalous dimensions through the formula

iM(s)

Sl =1+ 2./s(s — 4m?)

e~ (3.39)
It follows that the anomalous dimension dual to the interaction gpMy(s) go like

Yo~ —gpR¥F 5 — 0?2 as n— 0. (3.40)

2k=2 55 n — 0o. Note that in this

Thus, we will normalize Dy, to satisfy v, ~ — (2273 /7)n
argument, we are not taking the flat space limit R — oo but rather the bulk-point limit
n — oo at fixed AdS radius.

Contact diagrams D,E’(z), D,E(z) satisfying these properties can be conveniently rep-
resented as Mellin integrals. The general Mellin representation of bosonic AdSs contact

diagrams takes the form

dsdt s_a. s s\ 2 £\ 2 u)?
DB(2) = // i Sepiar <A¢ - 2) T (A¢ - 2) T <A¢ _ 2) MB(s, 1),
(3.41)
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where we restrict to 1D CFT kinematics u = 22, v = (1 — 2)2. The Mellin variables satisfy
s+t +u=4A,4. The Mellin amplitude MB(s,t) is a polynomial satisfying

MB(s,t) = MB(t,s) = MB(s,u). (3.42)

The first equality ensures that DB(2) is crossing symmetric, and the second one ensures
it only contains double-trace dimension AP in its OPE (otherwise, it would also contain
conformal blocks with dimensions 2A4 + n with n odd).

There is no problem with using the two-variable Mellin representation (3.41) to describe
1D correlators, which only depend on a single cross-ratio. The absence of a unique inversion
D(z) — M(s,t) is of no concern here since we only use (3.41) as a convenient representation
of D(z).

The Mellin amplitude which gives rise to the contact diagram D (z) is

MB(s,t) = B (A - ;)k <A¢ - ;)k (A - ;)k . (3.43)

The Pochhammer symbols ensure the vanishing of the first k/2 anomalous dimensions as
required by (3.38). CE is a normalization ensuring the correct flat-space limit

40 4+3k—5 _ 3k _ 1
PR P20 +k— 1T (284 + 3 — 1)
k m3/20(2A4)2T (284 + 2k — 1)

(3.44)

In AdSs, the amplitude M, k,B(s, t) gives rise to a contact diagram with 2k derivatives. This
is in contrast with AdSp~s, where it would have 3k derivatives. The difference is explained
by noting that the Mandelstam variable u vanishes in 2D flat space and therefore the last
factor in (3.43) does not contribute to the bulk mass dimension in D = 2.

Fermionic contact diagrams can be treated almost identically. Their general Mellin
representation reads

dsdt s_ s 1—-5)\2 1—t)2 1—u)?
DF(Z):// (ari)? w2 Bvys—Aer (A¢+ 5 > F(A¢+T> F<A¢+T> MF(S,t),

where u = 22, v = (1 — 2)? and M¥(s,t) = M¥(t,s) = MF(s,u). The Mellin amplitude
giving rise to D} (z) reads

1—s 1-t 1—-u
M (s,t) = c} <A¢+ 5 )k_Q (A¢+2>k_2 <A¢+ 5 )H, (3.46)

2 2 2
with normalization
44y +3k—5 _ 3k 1
) (_1)§+12 sTIST (20 + k — )T (284 + % — 1) |
m3/2(20y + k — 1)T(2A4)2T (24, + 2k — 2)

c (3.47)
In appendix A, we give closed formulas for the anomalous dimension ~, of the contact
diagrams DE(z) and DY (z) for general k,n. The formulas are in agreement with results

obtained in [53].
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4 Dispersive sum rules and bounds in AdS,

4.1 The C} dispersive functionals

Let us now explain how to construct the dispersive functionals Cj, which will play the
same role for AdSs scattering as the S-matrix sum rules Cy play in flat space. Thus Cj
should have Regge spin k and satisfy

Here the notation w(G) means that we expand G using the OPE and swap the sum over
conformal blocks with the action of w. Thus in general we have w(G) # 0 even if G is
crossing symmetric, since w may not commute with the OPE of G. Since Cj has Regge
spin k and Dy has Regge spin ¥/, it follows that C(Dy/) = 0 automatically for k > k', but
not for k < k'

To construct Cj satisfying the above properties, we can proceed as follows. In [31],
it was shown that there is a basis for the space of functionals for the 1D crossing equa-
tion (3.9), consisting of dispersive functionals a,,, ,. These functionals are dual to the
double trace conformal blocks and their derivatives. In the bosonic case, this means

A A
aE@[GAg] = dmn /BT%[GAE] =0
5 A: 5 A: (4.2)
am[é?AGAE] =0 ﬁm[ﬁAGA%] = Smn
where we use the notation OAGiﬁ = (OAG§¢)| A=aB- Similarly, in the fermionic case,
we have A A
QE[GAﬁ] = Omn 5};[GA#] =0
F AZ F AZ (43)
am[aAGAE] =0 ﬁm[aAGAg] = dmn -

The functionals o and 82 have Regge spin k = 0 while of and 3 have Regge spin k = 2.
We will construct C’,]j’ and C}j as finite linear combinations of the 3, functionals

L3 k=2
2 2
B B B F F F
Ck = Z ‘Tk:,n n Ck = Z mk,nﬂn . (44)

The expansion coefficients :c,]?n, :1:1,:? ,, are uniquely fixed by the conditions (4.1). For example,
the k = k' conditions imply
1 P 1

B B Tk,(k—2)/2 = — ) (4.5)
“5/271]3/2 (k=2)/ a(Fk—2)/27(Fk—2)/2

B _
Lrk/2 = —

where 7,13’/2 is the first nonvanishing anomalous dimension of DE, and ’VEFk—z) /2 the first
nonvanishing anomalous dimension of DE . The remaining zy, can be fixed by demand-
ing (4.1) for k' < k, or equivalently by demanding that C} has spin k in the Regge limit,
i.e. f(z) = O(z7%). In both cases, the number of constraints equals the number of un-
knowns, and there is a unique solution. Note that (4.1) for ¥’ > k is automatic thanks to
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our definition of the contact diagrams, see (3.38). C’,]f exists for k = 0,2,4,... but only
gives a nonperturbatively valid functional for £ > 0. On the other hand C,E only exists
for k=2,4,6,....

We will present the explicit construction of CP and C} using the f(z) kernel appearing
in (3.21). Let f2(2) and ff(2) be the kernels defining CP and C}. We found

20 (284)T(Ap + BT (Ap+k+3)  1-22

B
zZ) = X
fi(2) (28 + k- 1) [z(z—l)]%
~ [ k+1 k+3 3k—3 k—1 11
By (—21= 212 aA (A A S
X{3 2( g g et Ty iRt o ‘15+k+2’4z(1—;/;)>4r
3(k+1)(k+3) ~( k—1 k+5 3k—1 k+1 31 >}
- 2A LA A S
162(z—1) °°? T I AT T e A T qurI“/’J“2’4,z(1fz)
(4.6)
and
fF(Z)_2F(2A¢)QF(A¢+§)F(A¢+I<:) 1-22
k mL(2Ay +k—1)2 [z(zfl)]%
=/ k=1 k+1 3k—3 k 1
><{3F2(—T,T,2A¢+T,A¢+§,A¢+k,m)+
3(k—1)(k+1) ~< k—3 k+3 3k—1 k+2 ! )}
162(z — 1) 3F2 SR i U N e ’Aw+k+1’4z(1—z) '
(4.7)

Here 5[ is the regularized hypergeometric function. These formulas are valid for z < 0
and are extended from there by analytic continuation. The analytic continuation satisfies
f(2) = f(1 — 2) as required. These results generalize the construction of C3 ~ Bf, given
in [30]. In practice, the formulas were found in the same manner as the f(z) kernel for 5§
was found in [30]. Namely, we first constructed f(z) for many discrete values of Ay € N and
Ay € N+ % by explitly solving the constraints. Next, we performed a Mellin transform
of f(z) and noticed that it admits a simple analytic continuation to general Ag, Ay.
Formulas (4.6), (4.7) were then obtained by the inverse Mellin transform. See [30] for more
details. One can check a posteriori that (4.6) and (4.7) satisfy all the constraints.
An important property of f£(z) and ff (2) is positivity

fB(z)>0 and ff(z)>0 forall ze (—o0,0). (4.8)

We expect this to be valid for all Ag, Ay > 0 and all k£ > 2. Although we have not found a
general proof of positivity, we were able to verify it by numerically computing the kernels
in many cases, and also by observing positivity of coefficients in their Taylor expansion
around z = oo. A direct consequence of positivity of f(z) is positivity of action of C% on

heavy conformal blocks. Indeed, it follows from (3.26) and f(z) > 0 that
CBIGX?] >0 forall A>2A,+k ws)
CEIGRY1 >0 forall A>2A,+k—1. '

In summary, CP [Gﬁ‘ﬂ has simple zeros at A = 2A4 + 2n for all 0 < n < k/2, double zeros
on all higher double traces, and is nonnegative for A > 2A4 + k. Similarly, C} [Giw] has
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simple zeros at A = 2Ay +2n + 1 for all 0 < n < (k — 2)/2, double zeros on all higher
double traces, and is nonnegative for A > 2A,, + &k — 1.

In many applications, such as to prove the bounds at large Ay, later in this section,
it is sufficient to use positivity of f(z) at the leading order as z — —oo, which is manifestly
true in (4.6) and (4.7).

4.2 AdS, arcs

Having defined functionals C}, we can proceed in parallel with the flat-space discussion of
section 2.2. The application of Cj to the OPE of a crossing-symmetric correlator leads to

the sum rule

— Cilir = Ckluv - (4.10)
Here A
Cilr = Y (cp0)*CrlGAL]
A@<Agap (4 11)
_ 2 Ay ’
Celuv = Y (cop0)’CrlGAY].
AOZAgap

Agap is a scaling dimension defining the split between what we call light and heavy opera-
tors. It is related to the scale M of section 2.2 by M2R? = Agap(Agap — 1). We demand
Agap > 2A4+FE so that (3.26) converges for all A > Agyp, ie. Cy, [Gi‘ﬂ > 0 forall A > Agap
and Ck[Gﬁd’] has double zeros on all double-trace dimensions above Agy,p,.

It is now natural to define the AdSs analogue of the arc variables A (M) as minus the
IR contribution to the Cj sum rule

AB(Dgap) = — 3 (cpp0)’CRIGRY]. (4.12)

Ao <Agap

The arcs AZ(Agap) of any unitary solution to the 1d bootstrap equation (3.9) satisfy various
bounds as a result of the dispersive sum rule (4.10) and positivity of the UV contributions.

Before discussing these bounds in detail, let us explain how AE(Agap) can be computed
in terms of an EFT in AdS,. Let us assume that the physics up to scale Ag,, is captured by
an EFT containing a single bulk scalar field ® dual to a boundary primary operator ¢. This
means that the only primary states with dimensions A < Ag,, are the identity, and multi-
trace operators built out of ¢ and derivatives. Furthermore, if the EFT is weakly-coupled
up to scale Agap, the ¢ X ¢ OPE has a simple structure. At the zeroth order in the coupling,
it contains only the identity and double-trace operators [¢¢],, with dimensions 2A4 + 2n.
At the first order, the double traces acquire anomalous dimensions and anomalous OPEs.
The most general tree-level four-point function is a combination of bulk contact diagrams
DE’, discussed in section 3.5

gB(Z)’tree = Z ngE(Z) . (413)
k=0
k even

It follows directly from the definition of the Cj functionals (4.1) that at tree-level

AR (Agap) = gk » (4.14)

~93 -



provided Ag.p > 2A4 + k. In other words, the arc extracts the bulk four-point coupling
gk- At one-loop, the arc (4.12) receives contributions linear in one-loop anomalous dimen-
sions, as well as quadratic in the tree-level anomalous dimensions. The latter come from
expanding C’}?[Gﬁﬂ to the second order around the double zeros at A = 2A4 + 2n. In flat
space, these correspond to the imaginary part of M(s) for 4m? < s < M?, which indeed
appears at one loop. Even at finite coupling, (4.12) is a well-defined expression for the AdS
arc in terms of quantities measurable by an observer who has access to bulk physics up to
energy Agap/R.

Let us conclude this subsection by giving a formula for the action of a general dispersive
functional w on a general tree-level correlator G(z). Thus, let w be given by (3.21) and let
G(z) be a crossing-symmetric combination of contact and exchange Witten diagrams. This
means that w(G) only receives contributions from the finitely-many double-traces where
w does not have a double zero, as well as from the finitely-many single-trace operators
coming from exchange diagrams. By deforming the contour in the z-plane from the left-
hand branch cut to the right-hand branch cut, we get

w(G) = —w(G) + 2mi[f(2)G(2)].-1, (4.15)

where the second term on the r.h.s. is the contribution from the residue at z = ico and the
upper and lower sign corresponds to bosons and fermions. Notation [f(z)G(z)],-1 means
the coefficient of z2~! as z — oo in the upper half-plane. Thus,

w(G) = in[f(2)G(2)].s (4.16)

This formula is the AdS analogue of evaluating the tree-level contributions to the flat-space
arc (2.18) as a residue at s = oo. In particular, we must have

iﬂ[f,?(z)DE’/(z)]zq = — Ok ’L.ﬂ'[f]f(Z)DE/(Z)]Zfl = Ok , (4.17)

which is a nontrivial statement about the z — 700 expansion of the contact diagrams. It
is also immediate from (4.16) that tree-level couplings of ® to other light matter fields do
not contribute to the arcs. This is because exchange Witten diagrams in AdSs have Regge
spin 0, and thus the residue (4.16) vanishes.

4.3 Action on heavy blocks

Having discussed the light contributions to dispersive sum rules, let us turn to the con-
tributions of heavy operators. We can use the explicit expressions (4.6), (4.7) to find the
expansion of CP, C,E into Regge moments to an arbitrary order. At the leading order,

we have N ( )2
4T (2A
B ) B B
— I I
Ci 20y +k—1)2 F + Ol 12)
(2,7 (4.18)

45T (2

Cf = O T+ O(I ) -

FF(2A¢ + k- 1)2
The notation O(Ilx42) refers to suppression in the limit A — oo, see (3.36). We see that
arbitrary Regge moments with k& = 2,4,... can be approximated by linear combinations
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of functionals C) up to corrections which can be made arbitrarily small as A — oo by
inverting the expansion (4.18). However, there is nothing particularly special about our
definition Regge moments (3.32). We may have also defined the Regge moments to be
precisely C’E, C’,f, which have the advantage of being physical functionals.

It is instructive to evaluate the action of C’E, C’,f on heavy conformal blocks

_ _ 3
4.19
_ _ 3
CF[A] = Y 8 ] [1 48A¢(A¢241)(k 4f;) TAk+3 o _4)] |

Here w[A] is the heavy density of w, defined in (3.30). One can check that the expansion
proceeds in inverse powers of the Casimir A(A —1). While CP[A] and Cf [A] agree with
each other to the order shown here, they differ already at the next order.

At the leading order as A — oo, C,E’ and C,Ij exactly agree with the flat-space sum
rules Cg. To see this, recall that the contribution of heavy states to Cy, is

[ds  2(s —2m?)

Crluv = Im[M(s)]. (4.20)
o T [s(s — am2))EH
If M > m, we can approximate this by
T ds 4
Culov ~ [ Rl = 5(5)), (4.21)
M2

where we used (2.10). On the other hand, from (4.19) we get for Agap, > 1

c 2 T
CPlov= 3 o0l an? [2(80 - 280)] CPlao] ~
BB TR0 (4.22)
Z (C¢>¢O)22Sin2 |:7T(AO B 2A¢)} 8 .
MFT 2k—1°
Ao>Agp Pho 2 AL

This precisely agrees with (4.21) since s ~ A2 and thus ds ~ 2A dA. Furthermore, the
S-matrix S(s) corresponds to the local average of e~ im(B0=284) weighted by the normalized
OPE density (cpp0)?/ pIXIg T i.e. for sufficiently large e

2
N
€ DA
s—e<A s+e o
) VmesBosys o)’ (4.23)
CgO 2| T
= Rel-SE)~a Y 90)” 5 sin [2(A0—2A¢)] .

€
Vs—e<Ap<+/ste Pao

It should not be a surprise that Cj agrees with C in the bulk-point limit since we have
normalized the action of C} on AdS contact diagrams to agree with the action of C; on
flat-space contact diagrams (4.1), and our AdS contact diagrams have the correct flat-space
normalization (3.40).
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4.4 Bounds on EFT couplings

We are ready to derive bounds satisfied by the AdS arcs Ay (Agap) as a consequence of the
dispersive sum rules (4.10) and UV unitarity. For notational simplicity, we will assume
that the tree-level approximation to the EFT is valid, and thus Ag(Agap) = gx. All the
bounds quoted remain valid at finite coupling after the replacement g, — Ap(Agap)-

It is an immediate consequence of positivity C’k[Gﬁd’] > 0 for A > Ag,p, that

gk 2 0. (4.24)

This bound is only saturated if all primary operators with A > Ag,;, sit exactly at double-
trace locations. Next, assuming Ag,, is sufficiently large, so that the leading-order be-
haviour (4.19) can be trusted, we have

0< ge < Ce[Agap)

for 2<k</¢. 4.25
9k Ck[Agap] ( )
This bound is saturated by a single state at A = Agz,, and follows from

ClAl _ GilA)
Co[Agap] ~ Cr[Agap]

for E</{ and A > Agy. (4.26)

Let us expand the upper bound (4.25) at large Ag,;, using (4.19)

_ _ 1.2 _ 92
o< 1 14 U=R)A286(Ag — 1) — k7 — kb - +1)

gk M2(—F) 602

+O(M™)| . (4.27)

Here M? = Agap(Dgap — 1), i.e. we set Rags = 1. To this order in 1/M?, the fermionic
result is the same after Ay, — Ay. We see that the bound agrees with the flat-space
bound (2.34) at the leading order in the bulk-point limit. The subleading order in (4.27)
constitutes a universal correction coming from the finite size of AdS.

We expect that (4.25) exactly reproduces (2.34) at finite M and m by taking the
flat-space limit Ag, Agap — 00, wWith Ay/Agap = m/M. Indeed, the piece containing
Ap(Ay — 1) =m? in (4.27) agrees with the leading correction in m?/M? of (2.34).

We can also derive the AdS version of the flat-space bound (2.35). To do that, note
that the dispersive sum rules can be stated as

%: / dA w(A)CL[A], where w(A)>0 and / dAw(A) =1,  (4.28)
2
Agap Agap

where C,[A] = Ci[A]/C2[A]. In the limit of A — oo, Cj,[A] takes the following form:

~ 1 <1+6+12A¢(A¢,—1)(k—2)+k:—k3

CylA] = N 6A(A — 1) + O(A4)> . (4.29)

Suppose 2 < k < £ and Agap > 1, so that (4.27) implies gr/g2 < 1 and g¢/g2 < 1.
Now consider the function Cy o C; 1, where é,; Uis the inverse of Cx[A]. This function is
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approximately equal to

SN - —2)( - 2
Cgngl(m):x% 1—(€ IC ?(k+€+ )mﬁ+0(x£) as x — 0.

(4.30)

Within the sum rules the z — 0 limit corresponds to the [A(A — 1)] — oo limit.
~ ~ ~ £—2
Therefore, for Agap > 1, Cpo Cp 1'is convex on the range of Cj since x#—2 is convex.

Jensen’s inequality, reviewed around (2.32), then implies the bound

(W)H N (gk)“ [1_ (k—2)(t—=2)(t—k)(k+1+2) <gk)k12+0(M_4)] '

g2 T \g 6 92

(4.31)

We can see that the leading finite AdS radius correction slightly weakens the flat-space
bound (2.35). The bound is saturated by a single state with varying dimension A > Agyp.

5 Conclusions and future directions

In this note, we studied 1D CFTs dual to 2D QFTs in AdS. We developed dispersive meth-
ods that allowed us to extract and put bounds on higher-derivative contact interactions.
This was done by constructing a set of CFT functionals C}, labelled by their Regge spin
k. When we apply functional C} to a tree-level correlator in AdSs, it extracts the bulk
coupling of (PO*®)? in the bosonic case and (F¥O*~1¥)? in the fermionic case.

The action of the dispersive functionals C on a general 1D CF'T correlator is given by

0
Cy[G] = / dz fy(2) dDisc G (2) | (5.1)

where the kernels fy(z) appear in (4.6) and (4.7). This formula demonstrates that the
functionals are dispersive, i.e. that they compute moments of the double commutator.

If we assume that the bulk theory is described by an EFT up to scale Ag,p,, the ap-
plication of C}y to the conformal bootstrap equation relates the bulk higher-derivative
couplings to positive averages of the heavy OPE density for A > Ag,,, weighted by
sin?[Z(A —2A,)]A72F at large A, see (4.22). This leads to bounds on ratios of the higher-
derivative couplings depending on Agap. As Agap — 00, these bounds reproduce the flat
space bounds following from unitarity and causality of the S-matrix. We computed the
first subleading correction to the bounds at large Ag,p,, coming from the finite size of AdS,
see (4.27) and (4.31).

We conclude by several suggestions for further work. We have studied the bounds in
the bulk-point limit Ag,, — oo at fixed Ay. This corresponds to high-energy scattering in
AdS of finite size. It would be interesting to consider also the flat-space limit Ag,p,, Ay — 00
at fixed Ay/Agap = m/M. We expect that in this limit, the AdS bound (4.25) will exactly
reproduce the flat-space bound (2.34) and the leading correction away from the flat space
limit should be computable.
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It would also be interesting to come up with a more conceptual derivation of the
dispersive kernels fi(z) given in (4.6) and (4.7). In higher dimensions, dispersive sum rules
arise by integrating the crossing equation along a pair of null rays. While there are no null
rays in 1D CFTs, there are null rays in AdS,. Could the relatively complicated formulas
for fr(z) admit a simple representation as integrals in AdSs? In a similar spirit, dispersion
relations in higher-dimensional CFTs take a simple form in Mellin space [34, 36, 37]. Can
the Mellin space derivation be extended to 1D CFTs?
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A Anomalous dimensions in general contact diagrams

One can find the anomalous dimensions of the contact diagrams (®9*®)2 and (W9F~ )2,
starting from their Mellin representations (3.41), (3.45) as follows. First, we close the s
contour to the right, picking terms proportional to log(z) from the double poles at s =
2A4 + 2n. For each residue, the remaining integral over t can be evaluated in terms of
a of hypergeometric function. The final step is to reorgranize the sum over n in terms
of 1D conformal blocks to read off the anomalous dimensions. By computing +, in this
manner explicitly in many examples, we were able to guess the formula for ~, of a general
contact diagram. The anomalous dimension of DP(z) are

B

T (Ag+5)0@A;+ k-1 (284 + % — 1)
B

2Bt /Al (Ag + k- })
F(”+%)F(A¢+H)F(A —%-Fn)F(QAd,—F%—I-n—%) (A1)
T(n—5+1)T (Ag+n+3)TRA+m) (Mg + 5 +n+1)

X

~ 1 k k1
X 4k (—k,—n,2A¢+k—1,2A¢+n—2;A¢,A¢—2,2A¢+2—2;1) .

Here 4F} is the regularized hypergeometric function. The anomalous dimension of Dg (z) are
e T(Ap i) reA, + k- DT (22, + % - })
Tn = 2280 F8 Sl (g + ki — 1)
F(n—i—%)I‘(Aw—i—rH-%)F(A —%—i—n—i—%)F(QAw—i-g—i—n—%) (A.2)
T (n—%+2)T(Ay +n+ )PEA, +n)T (Ay+ 5 +n+1)

X

x [n(48y + 20+ 1)(4Ayk — 2 + 2k — 4k + 3)A + 2244 + 1)B] |
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where

~ 3 3 3—k k+1
A= 4F3 <1—k‘,1—n,2A¢—|—n—|—2,2A¢+k—1;A¢+2,A¢+2,2A¢+;—;1>
~ 1 1 1-— -1
B = 4F;s <—k,—n,2A¢+n+2,2A¢+k—2;A¢+2,A¢+2]{:,2A¢+k2;1> .
(A.3)
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