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1. Introduction

The mass-critical nonlinear Schrodinger equation (NLS) is given by
4
iug + Au = pluldu = pF(u), u(0, z) = ug, u:I xR = C, w==+1, (1.1)

where I C R is an open interval with 0 € I. The case when p = 41 is the defocusing case, and the case
when p = —1 is the focusing case.
If w solves (1.1), then for any A > 0,
A 2u(N2t, Ax), (1.2)

also solves (1.1) with initial data A%/?ug(Az). The L? norm, or mass, is preserved under (1.2). Thus, (1.1)
is called L? or mass critical. The L? norm, or mass, is also conserved by the flow of (1.1). If u is a solution
to (1.1) on some interval I C R, 0 € I, then for any t € I,

M(u(t)) :/|u(t,x)\2dx:/|u(o,x)|2dx. (1.3)

It is well-known that the local well-posedness of (1.1) is completely determined by L2-regularity. In
the positive direction, [1,2] proved that (1.1) is locally well-posed on some open interval for initial data
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ug € L?(RY). Furthermore, if ug € H(R?) for some s > 0, [1,2] proved that (1.1) was locally well-posed on
an open interval (=T, T), where T'(|lug|lzrs) > 0 depends only on the size of the initial data. Finally, [1,2]
proved that there exists g > 0 such that if |Jug||;2 < €, then (1.1) is globally well-posed and scattering.

Definition 1 (Scattering). A solution to (1.1) that is global forward in time, that is u exists on [0, 00), is
said to scatter forward in time if there exists uy € L*(R?) such that

. itA _
lim flu(®) = €2y g2 gy = 0. (14)

A solution to (1.1) that is global backward in time is said to scatter backward in time if there exists
u_ € L?(R?) such that
. itA _
t\leEloo [u®) — " “u_|lp2(ra) = 0. (1.5)
Eq. (1.1) is scattering for any uy € L?(R%), or for ug in a specified subset of L2(R%), if for any ug € L?(R%)
or the specified subset of L2(R?), there exist (u_,uy) € L?(RY) x L2(R?) such that (1.4) and (1.5) hold,
and additionally, u_ and u; depend continuously on wy.

In the negative direction, [3] showed that local well-posedness fails for ug € H®, s < 0.
The qualitative global behavior for (1.1) in the defocusing case (i = +1) has now been completely worked
out. A solution to (1.1) has the conserved quantities mass, (1.3), energy,

E(u(t)) = %/|uz(t7m)\2d;v+ 2d“j4/|u(t,x)\”7“dx:E(u(o)), (1.6)
and momentum
P(u(t)) = Im/Vu(t,m)u(t@)dx = P(u(0)). (1.7)

When p = +1, (1.6) is positive definite, so if ug € H'(R?), then the energy gives an upper bound on ||u(t)]| ;1
for any ¢ € I. Since (1.1) is locally well-posed on an interval [—T,T], where T'(||ug|| 1) > 0, conservation of
energy implies that the local well-posedness result of [1,2] can be iterated to a global well-posedness result.
Later, (1.1) was proved to be globally well-posed and scattering for any initial data in vy € L*(R%) when
u=+1, see [4,5], and [6].

In the focusing case (u = —1), the existence of non-scattering solutions to (1.1) has been known for a
long time, see [7]. Let @Q(x) be the unique, positive, radial solution of the elliptic partial differential equation

AQ +1Q|1Q = Q. (1.8)

Such a solution is known to exist, see [3]. If @ solves (1.8), then e*Q(z) gives a global solution to (1.1) when
B = _17
tuy + Au = —|u|%u7 (0, x) = uo, uw:IxRY—C, (1.9)

which does not scatter in either time direction. Furthermore, if u(t, ) is a solution to (1.9), then applying
the pseudoconformal transformation to u,

o(tw) = —i(s, D)eir, (1.10)

1t| t’t

is also a solution to (1.9). Applying the pseudoconformal transformation to e**Q(z) gives a solution to (1.9)
that blows up in finite time.
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Furthermore, the mass ||Q||;2 represents a blowup threshold. In the case when |lug|lz2 < ||@Q| L2
and ug € H', [9] proved that (1.9) has a global solution using conservation of mass, energy, and the
Gagliardo—Nirenberg inequality,

244 d+2 ||f||L2(Rd)
aesy ~ d Q) 2

/1] )*IIVfIILz Rd)- (1.11)

Plugging (1.11) into (1.6) when p = —1,

4/d
1 ol

E(u(t)) > =||Vu()||?2(1 1.12
(u(t)) 2|| 721 = |\Q||4/d) (1.12)

For initial data ug € L? satisfying |jugl/z2 < [|Q]|1 2, where uy need not lie in H!, [10] proved global
well-posedness and scattering.

Less is known about the focusing problem when |lug| ;2 = ||Q|| 2. It is conjectured that u(t, z) = e*Q(z)
and its pseudoconformal transformation is the only non-scattering solutions to (1.9) when |lug||z2 = [|@|| 2,
modulo symmetries of (1.1). The symmetries of (1.1) include the scaling symmetry, which has already been
discussed (1.2), translation in space and time,

u(t — to, x — x0), to € R, zo € R4, (1.13)

phase transformation,
Vo, € R, ewou(t,x), (1.14)

and the Galilean transformation,

§
617'(1_70”11(25, x — &ot), & € R (1.15)

This conjecture was answered in the affirmative in all dimensions for finite time blowup solutions with
finite energy initial data. See [11] and [12]. This conjecture was also answered in the affirmative for a radially
symmetric solution to (1.9) in dimensions d > 4 that blow up in both time directions, but not necessarily
in finite time. See [13].

Remark 1. Throughout this paper, blowup refers to failure to scatter, and could mean either finite or in
infinite time, unless specified otherwise. From [1,2], failure to scatter forward in time is equivalent to

ull 2ea+2) = o0, (1.16)
L, .7 ((0.sup(]))xRd)

t,x

where [ is the maximal interval of existence of w.

Remark 2. The pseudoconformal transformation of the solution e Q(x) is a solution that blows up in one
time direction but scatters in the other. By time reversal symmetry, it is possible to assume without loss of
generality that the solution blows up forward in time. So [11] and [12] proved that a finite energy, finite time
blowup solution to (1.9) must be a pseudoconformal transformation of e®*Q(x). Meanwhile, [13] showed that
the only radial solution to (1.9) that blows up in both time directions in dimensions d > 4 is the soliton

eitQ.

More recently, [14] proved a sequential convergence result for radially symmetric solutions that may only
blow up in one time direction.
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Theorem 1. Assume thatu is a radial solution to the focusing, mass-critical nonlinear Schrodinger equation,
(1.9), with ||uol| 2 = ||Ql| 12, which does not scatter forward in time. Let (T~ (u), T (u)) be its lifespan, T~ (u)
could be —oo and TT(u) could be +o0o. Then there exist a sequence t, / TV (u) and a family of parameters
Ay Ve Such that

)\i/,fu(tm AnZ)e”1mm = Q, in L2 (1.17)

In fact, [14] proved Theorem 1 for a larger class of initial data, data which is symmetric across d linearly
independent hyperplanes. In one dimension, there is no difference between radial initial data and symmetric
initial data, but there is in higher dimensions.

In a previous paper, [15], we removed the symmetry assumption in dimension one. Here, we continue this
study and remove the symmetry assumption in dimensions d > 2. In doing so, we must allow for translation,
(1.13), and Galilean symmetries, (1.15), not just scaling and phase transformation symmetries.

Theorem 2. Assume u is solution to (1.1) with ||ug|| 2 = ||Q]| 2 which does not scatter forward in time.
Let (T~ (u), T"(u)) be its lifespan, T~ (u) could be —oc and T (u) could be +oco. Then there exist a sequence
tn S TT(u) and a family of parameters M n, Van, Exns Tan such that

)\f,/ﬁemg*vnu(tn, Ain® + x*m)e_”*’" - Q, in L2 (1.18)

When ||ugl|z2 > ||Q]|z2, one can easily construct solutions to (1.1) that blow up in finite time. Indeed,
using the virial identity for a solution to (1.1),

d2

ﬁ/|x|2\u(t,a:)|2dx = 16 (up), (1.19)

for ug € H', |||z|uollp2 < oo, E(ug) < 0, (1.19) implies that the variance [ |a|*|u(t,z)|*dz is a concave
function in time. Therefore, the variance can only be positive on some finite interval (=71, 75), where T},
T5 < oo, which implies that the solution to (1.1) with such initial data cannot exist outside the time interval
(—T1,Ty). Initial data ug = (1 + €)@ satisfies the above conditions for any ¢ > 0.

For initial data with nonpositive energy and mass slightly above the ground state

Q2 < lluollzz < 1Qlz2 + «, for some o >0  small, (1.20)

[16] proved that after acting on the solution with the appropriate symmetries, u(t, z) converges weakly to @
as t converges to the blowup time. Such solutions would include the above mentioned solutions with finite
variance and negative energy that satisfy (1.20).

This fact also holds for any solution to (1.1) that satisfies (1.20) and fails to scatter. Once again, we
generalize a result of [14] to the non-symmetric case in dimensions d > 2.

Theorem 3. Assume u is a solution to (1.1) with uy satisfying (1.20), which does not scatter forward in
time. Let (T~ (u), T (u)) be the lifespan of the solution. Then there exists a sequence of times t, /T (u)
and a family of parameters Ay n, Ven, Ex,ns Txn Such that

Af{geim'g*v”u(tn, M@ + Ty )P0 — Q, weakly in L. (1.21)
2. A preliminary reduction

The scattering result of [10] implies that a non-scattering solution to (1.1) with ||ug|l 2 = ||@]2 is a
minimal mass blowup solution to (1.1). Therefore, it is possible to make a reduction to an almost periodic

4
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solution in proving Theorem 2. Let t,, /* T (u) be a sequence of times. Making a profile decomposition,
after passing to a subsequence, for all J,

Zg [ AG] + (2.1

where g/ is the group action

ga! = XJeT IS g+ ), (22)
and
hm limsup [|e* 2w || a2eare) =0. (2.3)
n— 00 Lt,zd (]RX]Rd)
Since u is a minimal mass blowup solution, ¢/ = 0 for j > 2, ||¢'||,2 = | Q|| 12, and ||w;!|| 2 — 0 as n — oo.

See [17,18], or [19] for a detailed treatment of the profile decomposition for minimal mass blowup solutions.
Thus, it will be convenient to drop the j notation and simply write,

u(tn) = gnd + wy. (2.4)

Remark 3. The disappearance of eitnd in (2.4) will be explained soon.
Now let v be the solution to (1.1) with initial data ¢, and let I be the maximal interval of existence of v.

Since

lim [Jul| 2gt2) =o0, and  [jull 2g42) =oo Vn, (25)
T LT (T (w),tn) xRY) Ly, ((tn, T+ (u) xRY)
vl 2(a+2) = [Jv]| 2(a+2) = o0. (2.6)
L, % ([0sup(]))xRd) L, % ((inf(1),0]xR9)

Remark 4. Eq. (2.5) is also the reason that it is unnecessary to allow for the possibility of terms like
[eitnd¢J] in (2.1) in placej of ¢/, where tJ, — +oo. If #J, converges along a subsequence to some #} € R, then
¢’ can be replaced by e'0? g7

Theorem 4. To prove Theorem 2, it suffices to prove that there exists a sequence S, / sup(I), $m, > 0,
such that

9(sm)v(sm) = Q, in L2 (2.7)
Proof. Suppose g(sm)v(sm) — Q in L2, For any m let s, € I be such that
lg(sm)v(sm) — Qg2 <27 (2.8)
Next, observe that (2.1) implies
e T N2y () N4 1) = B, in L% (2.9)
and by (1.15) and perturbation theory, for a fixed m, for n sufficiently large,

) . .
||e_15n5m6’5”'“36”")&/2@&(% + )\ism, An@ + Ty — 28 A0 8m) — V(Sm) | 12
< C’(sm)||ei§"'””e””)\§ll/2u(tn, AnZ + xy) — Bl 2.
5

(2.10)
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Therefore, by (2.8), (2.10), and the triangle inequality,

||g(sm)()\Z/Qe_igis’”eign'xe”"u(tn + A2 50, A 4 Ty — 260 A08m)) — Q|| 12

o (2.11)
< Csm)||€m e Y 2ty A + ) — ¢l 2 +27™.
Since g(s.,) is also of the form (2.2), there exists a group action gy ., of the form (2.2) such that
g(sm)(/\Z/Qe_ifi“‘meign'ze”"u(tn + A28, AT + Ty — 26, 005m)) = Gnmt(tn + A2 8m, ). (2.12)
Eq. (2.11) implies
lim (| gnmu(tn + A2sm, ) — Q|2 = 0. (2.13)

m,n—co

Since t, /* TT(u) and s, > 0, t,, + A28, /" T7(u), which implies Theorem 2, assuming that (2.7) is
true. O

Now then, since v(s) blows up in both time directions, (2.6) holds, and ||v||;2 = ||@]| 2, we can use the
result of [19] to prove that v is almost periodic. That is, for all s € I, there exist A\(s) > 0, £(s) € R,
z(s) € R%, and v(s) € R such that

A(s) ™2 E3) () (5 =270 € K, (2.14)

where K is a fixed precompact subset of L?. Therefore, in the case when ||ug||;2 = ||Q||.2, it only remains
to prove sequential convergence to @ for this solution v.

Theorem 5. There exist a sequence s, / sup(I) and a sequence of group actions g(s,,) of the form (2.2)
such that

llg(sm)v(sm) — Qll2 — 0. (2.15)

The proof of this fact will occupy the next two sections. Since v is almost periodic, the tools used in [10]
are available in this case as well.

Remark 5. In order for notation to align with notation in prior works, such as [10], it will be convenient
to relabel so that v is now denoted u, and s now denoted t.

Similarly, when proving Theorem 3, we use Lemma 4.2 from [14] to reduce to an almost periodic solution.

Lemma 1. Letwu be a solution to (1.1) satisfying the assumptions of Theorem 3. Then there exists a sequence
tn 2T (u) such that u(t,) admits the profile decomposition in (2.1), and there is a unique profile ¢1, such
that |¢1]|r2 > ||Q|l L2 and the solution v to (1.1) with initial data ¢1 is an almost periodic solution to (1.1)
that does not scatter forward or backward in time.

In this case as well, it suffices to show that passing to a subsequence, g(s,,)v(s;,) — @, using similar
arguments as in the case when |lull;2 = ||Q]|;2. Indeed, by asymptotic orthogonality of the profile
decomposition (2.1), for n(m) sufficiently large,

J

(Qi)_lg(sm)u(tn + )‘ismv r) = g(Sm)v(sm) + Rn(m)ﬂn +9(sm) E gfz(m) P + g(sm)w,{, (2.16)
=2
6
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where || Ry, (m),mllz2 — 0 as m — oo, gi(m) @I are the solutions to (1.1) with data gi(m)qf)j or that scatter
forward or backward in time to ¢/, and w; is the solution to (1.1) with initial data w; . Furthermore,
asymptotic orthogonality implies that

J
9(sm) > G ® +9(sm)wl =0, in L7 (2.17)

j=2

which proves the reduction.

Remark 6. Since (2.1) is not a profile decomposition for a minimal mass blowup solution, it is possible
that t{L — 4o for j > 2.

3. Proof of Theorem 5 when A(t) =1 and d = 2

It will be convenient to begin by discussing the A(¢) = 1 case in dimension d = 2, before generalizing
the argument to higher dimensions and variable A(¢). When A(t) = 1, the solution w is global in both time
directions, I = R. Following [10] and [15], we will use the interaction Morawetz estimate

M) = [ [ 1rutt.p)PIm{EuV Ia)t2) - (o~ 9)(e — y)dady, (.1
where I is the Fourier truncation operator P<r, T = 2* for some k € Zx¢. As in [10], ¥(]x — y|) is a radial
function,

e = [ ot 32)
z/}:cfyzi/ o(s)ds, 3.2
[z =yl Jo
where ¢(|z|) is a radial function given by
1 9, T—Y—58, 9,8 1 90, T—8, 9,85—Y 1 9, T—8, 5,Y—38
oy = = TV 752 (S yas = = ds = — d
oo o) = g5 [P s = g [0 G s = g [P0 s,

(3.3)
where x is a radial, smooth, compactly supported function, x(z) = 1 for |z| < 1 and x(z) is supported on
|z| < 2. In addition, x(|z|) is decreasing as a function of the radius. R is a large, fixed constant that will be
allowed to go to infinity as T" — oc.

Remark 7. ¢ decreasing as a function of the radius implies that v is decreasing as a function of the radius.

By direct computation,

MO =2 [[ )P Relo Fudu 1l a) e )+ I oy
_ mlTud ITu mlTuds Tl (t. 2) 8t (2 — @ =)@ =k e e
2//1 (Fud L)1) Fu ) ,2) 800 — )+ PR -

1
45 [ 1T )P Tutt )36 — y) + A0~ y))dzdy
1
~ [ [ 1t )P ute, ) ot~ )+ 50 (@ - e = slldzdy + €.
where £ are the error terms arising from N,

ilug + Alu + F(Iu) = F(Iu) — IF(u) = N (3.5)
7
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It is known from [4] that

T
/ Ndt < Ro(T), (3.6)
0
and
sup |M(t)] < Ro(T). (3.7)
t€[0,T]

Therefore, choosing R oo sufficiently slowly,

. Ro(T)
Am = =0 (8:8)
By direct computation,
o) = = / 2 (R )ds ~ 1 (3.9)
“TRJNYVUR YR ’ '

for || < R, ¢(x) is supported on the set |x| < 4R, and ¢(z) is a radially symmetric function that is
decreasing as |x| — oco. Therefore, (3.2) implies that

R

l(x)] < T forall € R2 (3.10)
x
Also, by direct computation,
1 9, T—8, 9,8 1
A0() = 5 [ HCCTNCGs £ 5 (311)
Next, by the same calculations that give (3.10)
R
AY(z) S W7 (3.12)
x

so |AyY(x)| < % for |z| 2 R. By the fundamental theorem of calculus, since ¢’(0) = 0, by (3.2),

¥(r) / / t)dtds, (3.13)

so by (3.11), |AY(z)| < -7 for 2| < R. Therefore,

#
/ |Tu(t, )| Tut, y)*[Ad(z — y) + Az — y)ldady S Rﬂlﬂlliw (3.14)

Next, decompose

St(a—y)+ I E k5o y) bl —y) — dlo—g) + E YTk

|z -yl |z —yl
(3.15)
By (3.2),
(3:15) = Gy =) = el =yl (o =) + LI . (3.16)
Now then,
//Im Tudy Tu] Im[Tud; Tu]d;b(x — )dzder/ [Tu(t,y) |V Iu(t, z)[*¢(z — y)dedy
/ / Y= 5 Im[Tud; Iu}dy)(/ 2(9”—}_%8)Im[maj1u]dx)ds (3.17)

// Y= ru(t, y)| dy)(/ () Tu(t, o) d)ds
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Fix s € R?. For any £ € R? and j € Z,

/ X?(L;)Im[eiysmaj(eiyéfu)]dy - / X?(%)m[maﬂu]dwg / XQ(L;)\Iu(t,y)de, (3.18)

[ iofa =g [P

+2¢; / V() Il Lud; Tulda + / 2

Therefore, (3.17) is invariant under the Galilean transformation, so it is convenient to choose £(s) such that

and

(3.19)

]_%s)|6jlu\2da:.

(3.18) = 0. For notational convenience, let
vy = € EG) [y, (3.20)

Then by the fundamental theorem of calculus and (3.6)—(3.20), if R /oo as T oo,

2/0 7 [ Pan [

2/ |Iu(t,y)|2Re[6qu8kIu](t,x)[éjk|ac -yl (x —y) + Ww'(x —y)]dzdy

-2 // Im[Tud Iu)(t, y) Im[Tud; Iu](t, z)[6,k|z — y|v' (z — y) + ww'(m‘ —y)ldzdy  (3.21)

[ 3w

—= / / [Tu(t,y)|"[Y(z —y) — d(xz — y)]|[u(t,x)|4dxdydt < Ro(T).

)|V (vg) (t, @) 2 dsdi

Vs (t, ) [*dz)dsdt

Dleatto) ) [

Following the computations in [10] for the angular derivatives in dimensions d > 2,

2 [ rute. )P Refo; Fudu Lol — ol o — ) + S vy

-2 / / Im[Tudy Tu)(t, y) Im[Tud; Tu](t, z)[§k|x — y[¢' (x — y) + wvf’(z —y)|dzdy > 0.

|z =yl
(3.22)
Therefore, by (3.21),
[ 4 / / Do) ) [ V) 1) s
0
2, L — S 4
- %Yot ) Pdy) ([ X3 7)ot 2)| dz)dsdt (3.23)
0
1
= / / |1u<t,y>|2w<x —y) — 6z — )| Tu(t, )| dwdydt < Ro(T).
0
By the Arzela—Ascoli theorem and (2.14), for any 7 > 0, there exists C'(n) < oo such that
/ oo lult @) de <o, (3.24)
lo—a(t)12 54

By Hélder’s inequality, Strichartz estimates, and A(t) = 1, for n < 1,

a+1 a+1
[ Tutt)? [Vt dodydr+ [ [ rute )P Tu(t, )| dadyat
a ly=y()|>C(n) a |z—z(t)|>C(n)

2 4 3
S n ||UHL§Z([&7(L+1]><R2) + 77Hu||Lng([a,a+1]><R2) 5 1.
(3.25)
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Finally, by (3.2) and the fundamental theorem of calculus,

a+1
[ / Fult, o) Pl —y) — ole— ) Tult, ) eyt S Sty (o
ly—y()|<C(n) J|z—z(t)|<C(n)
(3.26)

Therefore,

1 7 > 1 < Cn)

3 [Pt - ) - o6 - it o) dsayar £ o7+ S, (3.21)
SO

)|V( ) (t, ) Pdx)dsdt

2/ e

st )] dy></ e

st ) Pdy)( [ (=
/ (3.28)

e

In [15], following [20], we used the fundamental theorem of calculus to obtain a bound on |u|® far away
from the interval |x — x(t)] < C(n). Here, we will use a computation from [12] in two dimensions. Let
f € H*(R?) be any function and fix some s € R2. By the fundamental theorem of calculus, since f € L?(-, z2)

and f € L?(z1,-) for almost every x1, x5 € R,
S e s < [([ 1w 3 o) <;1u€% (s
/ / @y, 22)? / B0 () f (e, 2) 2 e

T1,To x 1 o f (@1, 20)Pday)? 21 29) 2y .
//If ) )d ) - (/X(»T V210, £( )[2d )/2(/|f( 2day)V/2d

//'f (@1, /If 21, 72) [ dy ) davs.

Again by the fundamental theorem of calculus and Hélder’s inequality,

(3.29)

//|f L1522 ‘ X )dffl) (/X(x_S)2|3m1f($17932)|2d$1)1/2(/|f(x1,x2)|2d$1)1/2dx2
S ICEFVI@ el -sup [ 1fr,m0) P o)

T —s
S Ix(

=~V @)l le / ey 22) v, ) (D radrs) (330
V@22 - ( / (@1, 22) Py dir)

— 1 —
VIR 12 + IV 2l

el

S Ix(

Also by Hoélder’s inequality and the fundamental theorem of calculus,

J(] 1w

)dl’l)

(g [ Mooz 5 R||f||L2 sup/|f (@,

||f||L2+ HfII Y — 7 — ) fl .
(3.31)

NR2

For a fixed ¢, let f = (1 — X(wg(imn()t)))vs(t, x). By (3.24), || fllz2 <n, and by the product rule,

x —x(t)

GV < Il + g

sl < IVl + s (332)

10
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Therefore, since =5 [ ([ x*(45>)|vs(t, y)2dy)ds < w24,

o e
e

gRo(T)+nT+Cg)T+—T+—/ //

When n > 0 is sufficiently small,

e e

can be absorbed into the left hand side of (3.33), proving that

2/ // Do)l an)( [

r—S

) ve(t, v)| dy)(/xz( )V (0s)(t, ) |Pdx)dsdt

Tr—S
st )Py / s R st )i (333
r—x(t n

%Y v dy)(/XQ(:”};S)\V(vs)Fdx)dsdt.

V|V (vs)[2dz)dsdt (3.34)

)\V( o) (t,2)|Pdz)dsdt

r—s
- / i [P ot ) s
0 |z—2(t)|<2C(n) (3.35)
< cm),. n '
< Ro(T )+nT+TT+ﬁT
xr— S
[ et ran ot )t
|w—a()| <2C (n)
Now choose |z, — z(t)| < 4C(n) such that
Ty — S . rT—s
- f . 3.36
X(—¢—) \zﬂ@ﬁgcm)’(( 7 (3.36)
As in [15], the fundamental theorem of calculus implies that for |« — z(¢)| < 2C(n),
x—8 Ty — S C(n
e = e v o), (3.37)
Therefore,
2 xr— S 4
%) s (t, ) Pdy)( X (= )os(t, 2)] da)ds
e —a(t)| <20 (n)
Ty — S 4
< lou(t.) o) [ 2oyt o) *da)ds
=R / / lo—a(t)| <2C(n) R

+O<C§% ) = / ( / et y) Pay)( / (0 (£, 2)[da)ds

|z—a(t)|<2C(n)
T

—s C(n
lostt. ) Pas)( [ Dot a) s + 0L o2 ol ).
le—2(t)|<2C (n)
(3.38)

[
Plugging (3.38) into (3.35), and using Strichartz estimates as in (3.25) and (3.26),
2/ / A

,SRo(T)JrnTJng)TJr—TJr—/ //

Do) [ o3IV @) ) )

Ty — S
jus(t.9) ></ sy X st ) s
r—x n

) o 2dy)( / A
lz—x(t)|<2C (n)

L5 oy da)dsdt.

(3.39)

11
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1) <1, (3.25) and (3.26) also imply

/ // Lann N dy)(/| i< )X2(x];S)\vs|4dx)dsdt§772T. (3.40)
z—x(t)|<C(n

By definition of z, and yx, for R > C(n), X(Lg(t)) =1 when |z — z(t)| < 2C(n), so

[ //

| @ //

2w [
o L v

Integrating by parts,

Since x (%5

*) IV (0s) (¢, )| 2der)dsdt

%) st ) ></x2<”"

Ty — S
5o t.y) ></| sy P st @)
T—x n

(3.41)

Dlestt)PIEE) [EEDIV (w0 00 Pds)asar

s (t, y)] )(XQ(x*R_S)/X4(x_TéE(t))\vs(t7x)|4da:)dsdt.

— X r—T 2 xr—x r—x
[ e tae = [ 196D o+ g [ EE O EE D far. 342)

R? R R
Therefore,
Ti — 8 x —x(t)
[ / [t Pan e ) [ DIV @) ) Fds)dsar
—/0 / / ") os(ty) 1 dy) (x (x*];S)/X4(I_;(t))lvs(t,x)|4dx)dsdt (3.43)
_ Ty — S x —x(t) T
=1 5 [ / "ot )P A yasan + 0 ).
Here FE is the energy given by (1.6). Therefore, we have finally proved
Ty — S 9, — X 4
4/0 // %) s (£, ) Pdy)x*( =) EC( R(t))v)dsdtho( T) 40T + %T+%T
(3.44)

Choosing R " oo perhaps very slowly as T' * oo, and then 7\, 0 sufficiently slowly, the right hand side
of (3.44) is bounded by o(T).

On the other hand, when [s — 2(t)| < £, y(£:%) = 1 and

([Nt dy) = Sl (3.45)

Therefore, since the Gagliardo—Nirenberg inequality guarantees that F(u) > 0 when ||u|;2 < ||@Q] 2, the
left hand side of (3.44) is bounded below by

w32 /0 / B g T —;(t))vs)dsdt < o(T) (3.46)

12



B. Dodson Nonlinear Analysis 215 (2022) 112612

Thus, taking a sequence T,, » oo, R, / oo, n, \y 0, there exists a sequence of times ¢, € [%7Tn],

s — 2(tn)| < £2 such that

E(X(m)e”f(s")em(S”)PSTnu(tn,x)) — 0, (3.47)
n
(1 — x(E=2nyyeimslm)vsn) p u(t, 2) =0, in L2, (3.48)
(1 — Pot,)u(tn,z) — 0, in L7 (3.49)
and v
HX(Tn)em'g(s")eiV(S")PSTnu(tn,x)HL4 ~ 1. (3.50)
Now by the almost periodicity of u, (2.14), after passing to a subsequence, there exists ug € H* such that
tn) — Sne i ) ' .
X(%#)em g(sn)ezx(tn) é(sn)em(én)Pngu(tna T+ :C(tn)) — g, (3.51)
weakly in H', and
X(Hx(ﬁ#)e” £(sn) giz(tn) f(sn)PSTnu(tn, T+ I’(tn)) — g, (3.52)
strongly in L? N L% Also, by (3.47), (3.48), and (3.49), ||uol2 = [|Qll12, E(ug) < 0, and by the
Gagliardo—Nirenberg inequality, E(ug) = 0. Therefore,
up = AQ(A(z — xq)), (3.53)

for some A ~ 1 and |zg| < 1. This proves Theorem 5 when A(¢) = 1. O

4. Proof of Theorem 5 when A(t) = 1and d > 3

The proof of Theorem 5 when A(t) = 1 in higher dimensions is quite similar to the proof in two dimensions.
In this case as well, use the interaction Morawetz estimate

M(t) = // [Tu(t, )| Im[TuNV Tu)(t, z) - (z — y)¢(z — y)dady, (4.1)

where [ is the Fourier truncation operator P<p, T' = 2k ke Z>o. Again let

1 |z—y|
v) = o [ slsjas (4.2)

where ¢(]z|) is a radial function given by

1 9, T—Y—5, o, 8 1/2x—325—y 1/2x—32y—5
oo o) = g7 [0 s = g7 [ s = g [ s
(4.3)
where once again x is a radial, smooth, compactly supported function, x(z) = 1 for |z| < 1, x(z) is supported
on |z| <2, and x(|z|) is decreasing as a function of the radius.

By direct computation,

MO =2 [[ )P R0 Fudu 1t )t — ) + I oy
— m[IudpIu m[ITud; Tu)(t, ) [0k (x — @=9)i =y "z — x
2 [[ Emluo i) Tl 10 0. 2) 80— ) + S oyl dndy "

4y [ Iutt )Pl Tute. ) P26 - ) + (@ = 1) A0(e - y)dedy

/ / (Lu(t, )2 Tult, 2) [ [ — y) + o/ (2 — )| — ylldedy + €,

13
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where £ are the error terms arising from N,
ilug + Alu+ F(Iu) = F(Iu) — IF(u) = N. (4.5)

As in the previous section, it is known from [6] that

T
/ Ndt < Ro(T), (4.6)
0
and
sup |M(t)] < Ro(T). (4.7)
t€[0,T]

Therefore, choosing R 7 oo sufficiently slowly,
Ro(T
lim olT)

T—o00 T

= 0. (4.8)
The computations in (3.9)—(3.14) can easily be generalized to higher dimensions. Indeed,
1 9, L—8, 4,8
= )ds ~ 1 4.9
60) = g [ CETNE s ~ 1, (19)

for || < R, ¢(x) is supported on the set |x| < 4R, and ¢(z) is a radially symmetric function that is

decreasing as |z| — oco. Therefore, (4.2) implies that

lv(z)| < %, forall — zeR% (4.10)
Also, by direct computation,
B0(0) = g [ M) S g (a.11)
Next, by the same calculations that give (4.10),
Ayp(z) < |f|{3, (4.12)

s0 |Ay(x)| S 7z for |z| Z R. Also,

P(r) / / t)dtds, (4.13)

so by (4.11), |A¢(z)| < R2 for |z| < R. Therefore,

1
5 [ It PiTute. ) P20 - ) + A0 — y)ldody S 75 el (114)
Following the case when d = 2,

(z —y)j(z —

(z =)@ =y

5]]677[}(1:73/) + |$—y|

V(x—y) = dd(x —y) — djrle — y[¥'(lz —y|) +
and
- / / Im[Tudy Tu) Im[Tud; Tu,)8,,.0(x — y)dedy + / \Tu(t,y)|* |V Iu(t, z)[*¢(z — y)dzdy

= Rd / / Y= 5 Im[Tud; Tu)dy)( / 2(%)Immaj1u]dx)ds (4.16)

// Y= 1u(t, y)|2dy) (/ )V Tult, ) Pdr)ds

14
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so for a fixed s € R?, for any ¢ € R? and j € Z,
—s —_— —s — -5
[ e tuvs ety = [ iy rdy+ ¢ [ ) Py, (1.7

and

— S : 2 r—S
[ ofa =g [t

o ) . . (4.18)
+2§j/x2(T)Im[Iu8qu]dw+/Xg(T)WjIU\ dx.

So it is again convenient to choose ¢(s) € R? such that the (4.17) = 0 for any j € Z. Set
vy = ) [y, (4.19)

By the fundamental theorem of calculus,

2/0 7 (Rl e

+2/ [Tu(t, y)|2Re[3qu8kIu](t, z)[0jklx — ylY' (x — y) + Ww'(x —y)]dzdy

-2 // Im[Tud Iu)(t, y) Im[Tud; Iu](t, z)[6,k|z — y|lv' (z — y) + le(l‘ —y)|dzdy  (4.20)

_ﬁdZ/o / / L=l () )(/X2($]_%8)\vs(t7x)\@dx)dsdt

T
d—|—21) /0 /|Iu(t,y)|2[¢($ —y) — ¢z — y)l[Lu(t, )| 2 d:z:dydt < Ro(T) + %T.

NIV (0) (t, @) 2 dsdt

Again following [10] in higher dimensions,

2 [[ \rut.)Relo Tudr () 5juke = ol (o — ) + (Gl )F1Cal D7 A

]
—2// Im[IudIu)(t, y) Im[Tud; Iu](t, z)[0;x]7 — y|l¢' (z — y) + Ww’(a@ —y)]dzdy > 0.
(4.21)
Therefore,
2 [ [ et [ 3 I )0 P
-2 I3 / / o) Gl 0)FHdnyasar (422)

/ [ rute.w) x—y)—as(x—y)}uu(t,xn“%dxdydtsRo( 1)+ T

d+2

Again by the Arzela—Ascoli theorem, Holder’s inequality, Strichartz estimates, and A(¢) = 1,

a+1 ) 2+é a+1 9 2+A
/ / [Tu(t,y)] /|Iu(t,x)| ddl’dydt+/ /|Iu(t, y)| [Tu(t,z)|”" 4 dedydt
a ly—y(®)[>C(n) lz—z()[=C(n)

244 4
< 0 ull 2f +ndllul® a0
2

[a,a+1] xRd) L2032 ([a, a+1]><Rd)
(4.23)

15
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Finally, by (4.2) and the fundamental theorem of calculus,

(4.2)
a+1 4
/ / / Tu(t, )Pl — y) — o — y)) Tut, =) F dedydt
ly—y(t)|<C(n) J|z—z(t)|<C(n)

( )y 244
[u H aia (4.24)
d([a a+1]><]R2)

Therefore, letting o = 1nf{17 8}7

T 4
| it Pivte - o) - ot - pilrute o) ddyas < w07+ T (1.25)
2 [ [ ROl I P
s [ [ e e et >|vs<t,x>|@dx>dsdtsRo(T>+n0T+%T.
(4.26)

In dimensions d > 3, we will use the Sobolev embedding theorem, as in [12], to control |u(t,x)|2+% far
away from z(t). By the product rule, for any f € H*(R9),

[ @ e < I anLQ(Rd) JINE

=) N1
(4.27)

S ||f||L2(||X( )VfIILerRQIIfIIiz)-

For a fixed t, let f = (1 — X(xéﬁff)>)vs(t,x)- By (3.24), ||fllz2 <m, and by the product rule,

(=29l < (P2 ws||L2+C(n)|x'<x;(f7§“>vsLz<||x< IVl s (428)

Therefore, since — f X2 (

Rd )| dy)dS S Hu||L27

2/ //
//

SIEACEH )(/xz( %)V (0,) (¢, @) [*da)dsdt

— S 4
) st ) / ) (b, 2) P 4 do)dsat
|z—(t)|<2C (n) R

C
< Ro(T) 47T+ % Do) [ )V ) s
(4.29)
When 7 > 0 is sufficiently small,
xr—S
e[ s (130)
can be absorbed into the left hand side of ( 9), proving that
r— S
[ / / Dot ) [ 3 IV w0, 0) ) ass
T T —s 4
755 | & [ ></ o) da)dsar
|o—a(t)| <2C ()
(4.31)
op ., Ol T
S Ro(T) + 07T + =T+ e T
xr—S 4
e [ et st ) s
le—z(t)|<2C(n)

16
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The rest of the argument is identical to the d = 2 case. Choose |z, — x(t)| < 4C(n) such that

X(sc*R— s) _ ‘x_x(ti)f‘l;w(n)x x]; s)' (4.32)
For |z — z(t)| < 2C(n),
Xz(a:;s):XQ(a?*R—s)_FO(?). (4.33)

Therefore,

9, —5

4
Dleatt o)) [ ot )P s
[z—2(t)[<2C ()

w /(0
fRd//

1 2,y — S8 2 2+4 2)ds
vo(CW) / (et et dad

L

— S 4
N vs(t, )| )(/ X 7 YNos(t, 2)*Tddz)ds
|z—a(t)| <2C (n)

1 — s Ty — S 4 2+4
= Rd/(/XQ(yR)|Us(tay)|2)(/|mz(t)|<2C(n)X2( = )|Us(t,:c)‘2+dd$)d3+0( ( )” ||L2|| H 2_54).
(4.34)
Again using Strichartz estimates,
xr — S
2 / / / S ow(t, ) ) / =5V (0s) (¢, 2) Pda)dsd
Ty — S 4
A [ = ></ (o) d)dst
Jo—a(t)| £2C(n) \ (4.35)
2+4
< Ro(T) + o+ CWp 1y
~ R R?
/ / / Y= 5 1, 2dy)( / =5 o[ da)dst,
|z—a(t)| <2C () R
and
9L =8\ 244 < 2
%) os[2dy)( o PO P Ry S (4.36)
T—x n
By definition of x, and x, for R > C(n),
X S
2 / / / 5 loe(t ) ) / )V (00) ¢ 2) Pda)dsds
Ty — S 4
- // les(t. ) ></ o) d)dst
ljz_i(tESQC(n) x — x(t) (4.37)
>2/ Rd// Mles(t )0 >/x2< 0 9 01 0) P s
Ty — S 4 x—x(t 4
[ g [ et [t EE D ) s

Integrating by parts,

[t = [ 196 D o+ o [ EE O E D far (439)

17
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Therefore,

Ty — S

Dlentt )P [ER DIV 40 P s)asar

e
a ) w [

— S

R

et PIEE) [ D e dasasar (139

Tr — 8 x — x(t) T
- 4/0 / / % Jos(t,) P dy) X3 =) E((—5)v)dsdt + O(23).
Here F is the energy given by (1.6). Therefore, we have finally proved
Tx — 8 z—x(t
4/ / / Slest, )y ( 7 EOC( R( Vo )dsdt
0
4 (4.40)
S Ro(T) +n°T + Copy ey,
~Y R R2 .

Choosing R " oo perhaps very slowly as T' * oo, and then n Y\, 0 sufficiently slowly, the right hand side
of (4.40) is bounded by o(T).
Again, when [s — 2(t)] < &, y(£%) = 1 and

([ OOt ) Pdy) = 5l (1.41)

Therefore, since the Gagliardo—Nirenberg inequality guarantees that F(u) > 0 when ||ul|;2 < ||Q] .2, the
left hand side of (4.41) is bounded below by

s [ [ oy PO st 5 o) (1.42)

2

Thus, taking a sequence T,, / oo, R, oo, n, \, 0, there exists a sequence of times ¢, € [%,Tn],
|8, — z(tn)] < &2 such that

E(X(x];isn)e”'g(s”)ei'Y(S”)Pngu(tn,3:)) -0, (4.43)
(1= X)) een e Py, ufty,z) -0, in L2, (4.44)
(1— PzTn)Z(t,L,x) -0, in L2 (4.45)
and
(et S Py ultn, )] oo g ~ 1. (4.46)
Now by the almost periodicity of u, (2.14), after passing to a subsequence7 there exists ug € H' such that
x(—x + x(}t;) —n )e”f(s")ei‘”(t"){(S")em(S")PSTnu(tn, x4+ z(ty,)) — uo, (4.47)
n
weakly in H', and
X(—x + x(lt;) ~on Yelw€lsn) giz(tn)S(sn) P gyt x + 2(t,)) — uo, (4.48)
n
strongly in L% N L**i. Also, by (4.43), (4.44), and (4.45), ||uoll2 = [|@llz2, E(ug) < 0, and by the

Gagliardo—Nirenberg inequality, E(ug) = 0. Therefore,
ug = A2Q(\(x — x0)), (4.49)

for some A ~ 1 and |zg| < 1. This proves Theorem 5 when A(¢) = 1. O

18
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5. Proof of Theorem 5 for a general A(t)

Now suppose that A(t) is free to vary. Recall that |\ ()| < A(¢t)2. In this case,
A(t) : I — (0,00), (5.1)

where I is the maximal interval of existence of an almost periodic solution to (1.1).

Theorem 6. Suppose T,, € I, T,, — sup(I) is a sequence of times in I. Then

1 T
lim / A(t)dt = 4o0. 5.2
Tn—sup([l) SUP¢e[0,7h) )\(t) 0 ( ) ( )
Proof. Suppose that this were not true, that is, there exist a constant Cy < oo and a sequence T;, — sup(J)
such that for all n € Z>,
1

Tn
At)3dt < €. 5.3
SUPieo,Ty,] A(t) /0 (® (5:3)

This would correspond to the rapid cascade scenario in [5,10,14]. In those papers N(t) was used instead of
A(t). As in those papers, A(t) can be chosen to be continuous, so for each T, choose ¢, € [0,T},] such that

Atn) = sup  A(). (5.4)
t€[0,Ty]

Since I is the maximal interval of existence of u,

hm ||’LLH 2(d+2) = OQ. (55)
n—reo L. 9 ([0,Tn]xRd)

t,x

By the almost periodicity property of u and (2.14), there exist z(t,), {(tn), and y(¢,) such that if
em(tn)/\(tn)dﬂemf(tn)ei%tn)u(tna A(tn)z + 2(tn)) = v (), (5.6)

then v,, converges to some ug in LQ(Rd), where wug is the initial data for a solution u to (1.1) that blows up
in both time directions, A(t) < 1 for all ¢ < 0, and

0
/ At)Pdt < Co. (5.7)
Following the proof in [6] in dimensions d > 3 and [4] in dimension d = 2,

||UHLg°HS((—oo,0]de) Ss €6 (5.8)

for any 0 < s < 14 4. Combining (5.8) with (5.7) and |\ ()| < A(t)? implies

t\ljr}loo A(t) =0. (5.9)
Also, since
€'(1)] S M), (5.10)

Eq. (5.7) implies that £(t) converges to some £ € R? as t \, —0o. Make a Galilean transformation so that
&_ = 0. Then, by interpolation, (5.8) and (5.9) imply

t{%r_noo E(u(t)) =0. (5.11)

19
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Therefore, by conservation of energy, and convergence in L? of (5.6),
Blu)=0, and ol = |Qll - (5.12)
Therefore, by the Gagliardo—Nirenberg theorem,
up = \2Q(Mz — x0)), 0<A<oo, x€R? (5.13)
and @ is the solution to the elliptic partial differential equation
4Q+1Q1Q =Q. (5.14)
However, assuming without loss of generality that zo = 0 and A = 1, the solution to (1.1) is given by
u(t,z) = e Q(x), teR. (5.15)

However, such a solution definitely does not satisfy (5.3), which gives a contradiction.
In the case that ||ug||;2 > ||@Q|| 2, Theorem 7 implies that such a solution must blow up in finite time in
both time directions, which contradicts (5.7). O

Therefore, consider the case when

1 In
lim ————————— A(t)3dt = oo. 5.16
n—00 SuptE[O,Tn] )\(t) 0 ( )

Passing to a subsequence, suppose

1 /Tn 3 2
— [ A@)Pat =2 5.17
SUP¢ec(0,Ty] A1) Jo ( )

Then as in [10], replace M () in the previous section with,
M(t) = / [ Tu(t, y) | Im[TuV Iu(t ) - Mb)@ = y)p () (@ — y))dady, (5.18)

where A(t) is given by the smoothing algorithm from [10]. Then

%M(t) — 93 / / [ Fudp T (t, y) I Fud, Tul (£, 2)
<o) - ) + T e — )y
530 [ [ It Pl ») PA6GE) @~ ) + (@~ DAGREO @ - )dody -
+230) [ \rute.) P Relontud, e 500 - )+ E= PO R0 0 )y
0 [[ 1t ) Pitute, o) oGO - 1)+ v (@)@~ e - yldady + €
@) [[ ute.p)PIm{uv 10 2) - 630 - 1)@~ )dady,
e (310 T
sup  [M(1)] < Ro(22) - sup A(1). (5.20)

te[0,Tn] te[0,T]
20
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Next, since the smoothing algorithm guarantees that A(t) < A(t), following (3.14) and (4.14),

/ 15 / (Tu(t, )21 Tu(t, ) PLASG) @ — ) + (d — 1) AY(A(E) (& — y))|dedydt
0 (5.21)

T 2n
no_ 2
< = . MO dt < = - Al).

Since A(t) < A(t), following the analysis in (3.17)-(3.44) in two dimensions and (4.15)(4.40) in higher
dimensions,

s _ - N (z—y);@ =k 5
2 /O A / / ) I o 80 (8) & = ) + P (M0 — )y

s sy e E D s
w2 [ 30 [ [ 1rute. )P Relo; Fud 1, 2) 5,0 30 = ) + DI (00 = )yt
2
d+2

_4 /OT X(t>;<t>2 /( / e

T T )
R sup M)+ O ull ey [ Ao}, ) + O g | @ ;zdt)
0 0

Tn ~ 4 ~ ~
At) / [ut, y)*|u(t 2) T2 [dp (A (@ = y)) + &' (AB) (@ — )|z — yl|dedydt
(5.22)

O onelt )Py B D (0,0t

te[0,T] L,

(5.23)

Remark 8. The term v, ; is an abbreviation for

eia"g(s) €T
st = ——=lu(t, —), 5.24
Us,t A(t)d/Q U( A(t)) ( )
where £(s) € R? is chosen such that
At (z —s _

/ xz((l)%()\“)))lm[vs,tV(vs,t)]dx ~0. (5.25)

The error estimates can be handled in a manner similar to the previous section, see [10]. Therefore, it
only remains to consider the contribution of the term in (5.19) with A(¢). By direct computation,

i) / (Lu(t, )P ImlFu¥ Tl (1, 2) - S(A(0) (@ — 1) (& — y)dady

= S [ A= e Pa) [ 2O il ¥ 1l (2) - (@A) — s)dn)ds  (5.20)

[ =030 - it Pay - (2R i tuldsyas.

Now rescale,

= ;\(t) 2 Aty — At)s 1 2

= i O [ e gt )l
A)z = A\(®)s I = x 1 x TA(t) — sA(t)
x(/XQ( it @)V a5 g s

20y [([ A=A YUk /\(t))|/\( Lt 2 i)

(5.27)

RIX(t) A(t) (t) (t)
M)z — s\ 1 - iy 1 x
([ (t)m = ) 1y s )Y Gy (e 5 s
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Remark 9. Throughout these calculations, we understand that A\~%¢/2T u(§) refers to the rescaling of the
function ITu(x), not the I-operator acting on a rescaling of w.

For any ¢ € RY,

2

= a0 [ it s
«(f x2<x(”;;(§“’s>fm[ i )df Tt @)V( A(i;ﬂ (322 -
i / [ AL A A Af;;;lu(t,)\z(/ﬂ)fdy) |
< / 2 RA(t) MO, e ;()d; Tult, Ai))wmmu, %t)))}dx)ds.
In particular, if we choose € = £(s),
~ oo [([ AN,
([N 1,2 ) <W)dx>ds

= A1(.;)/(/><2(A(t])%(i/(t_)s))Ivs,tlzdy)(/><2(A(t]){(;c(t_)S))Im[vs,t(t,/\"ft))v(vsyt)] . ()‘(t))\(“é)_s))dx)ds.
(5.29)
Then by the Cauchy—Schwarz inequality,

< Tr? ([ pay Ay, 0y

1Rl A M)y — s) AO@—5). 2 MO@—3)
T NOAMD? ROND) /(/XZ(T()””SH dy)(/ (S Mol (T de)ds.

The first term in (5.30) can be absorbed into ( 3). The second term in (5.30) is bounded by

(5.30)

it A() e Wl

The smoothing algorithm from [10] is used to control this term. Recall that after n iterations of the smoothing
algorithm on an interval [0, 7], A(t) has the following properties:

(5.31)

(1) A1) < A1),

(2) TF A(t) £ 0, then A(t) = A(t),

(3) A()>2 A1),

(4) fo IA(t)|dt < L fo IA(2) igg dt, with implicit constant independent of n and T.
Therefore,

3 2

"l |~(t)| 2 " |/\()| 1132 "5
— 7 R*|u L2 dt < ull; R2 ——||u 4[ / HA(t)2dt.
/o nt A(E)A(8)? | ” P 4” H OOLQ/O A(t)? ‘/\( )t 2 n ot il L 0 ADAL)

Since sup;e(o 7, A(t) < 272" fOT" A(t)3dt,

R, sup |M(t)| < R,0(22")- sup A(t). (5.33)
t€[0,Th] t€[0,T]
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Therefore, it is possible to take a sequence 7, \,0, R, / 0o, probably very slowly, such that

1 R2 Tn - Tn -
”“HLOOL?/ \)\(t)\)\(t)2dt:on(1)/ MH)A(t)?dt, (5.34)
n nt 0 0
R, sup |M(t)] <o(2%)- sup A(t), (5.35)
t€[0,Tn) t€[0,7]
49,112 T 2+3 s 2
Okl ez [ MO 4d0 5 0,(1) [ Ar0Pae, (5.36)
and
( n) s 243 s 2
(¢~ llu ullZeer2 ; AONu@I 54 dt) < on(1) ; A)A(E)"dt. (5.37)
Ll’

Therefore, these terms may be safely treated as error terms, and repeating the analysis in sections three
and four for (5.23), there exists a sequence of times ¢, * sup(I) such that

(x—m( tn))A(tn)
nA(tn)
)A(t

M
RpA(tn)
Vs tnllzz 7 QL2 (5.40)

E(x( Vs, tn) — 0, (5.38)

(1 = x( Vs tnll2 =0, (5.39)

and -
(x — x(tn)))‘(tn)
Hx(—RnA(tn)

In this case as well, we can show that this sequence converges in H' to

uy = A72Q(\(z — ). (5.42)

This proves Theorem 5 for a general A(t). O

sl o4 ~ 1. (5.41)

6. Proof of Theorem 3

The proof of Theorem 3 uses the argument used in the proof of Theorem 2, combined with some reductions
from [14]. First recall Lemma 4.2 from [14].

Lemma 2. Let u be a solution to (1.1) that satisfies the assumptions of Theorem 3. Then there exists a
sequence t, /* TT(u) such that u(t,) admits a profile decomposition with profiles {¢;,{x;ns Njn,Ejnstins
Yin}}, and there is a unique profile, call it ¢1, such that

(1) lloallrz = QI L2,

(2) The nonlinear profile ®1 associated to ¢1 is an almost periodic solution in the sense of (2.14) that does
not scatter forward or backward in time.

Now consider the nonlinear profile @;. To simplify notation relabel &; = u, and let v, be as in (5.24).
Using the same arguments as in the proof of Theorem 2, there exists a sequence t,, T (u), R, / oo,
s, € R4 A(t) < A(t), such that

E(X( (aj B x<t’ﬂ)))‘(tn)

Bod(tn) V) 70 (6.1)
10 - X o, 2z 0, (62)
(Vs tnllzz 7 ull 2, (6.3)
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and -
(x — x(tn)))‘(tn)

[Ix( RNt

)Ivsnytn ||L2+% ~ ]' (64)
Therefore, by the almost periodicity of v, there exists a sequence ¢(t,,) given by (2.2) such that
gt )vlts) > ug, i LA, (6.5)

where F(ug) = 0 and |lugl/z2 > || Q|| 12-
Next, utilize a blowup result of [16,21-23]. We will state it here as it is stated in Theorem 3 of [16]. See
also Theorem 3.1 of [14].

Theorem 7. Assume u is a solution to (1.1) with H' initial data, non-positive energy, and satisfies (1.20).

If u is of zero energy, then u blows up in finite time according to the log—log law,

1 xr — x(t) iy (t) d
u(t,z) = W(Q + 6)(W)e” , z(t) € R, ~v(t) € R, A(t) > 0, llell g < d(a), (6.6)
with the estimate
Tt
N 6.7
and
lim [ (|Ve(t,z))* + |e(t, z)|Pe”1*Ndz = 0. (6.8)
t—>T
Let u be the solution to (1.1) with initial data ug. If ||ugll2 = ||Q|lz2 then we are done, using the

analysis in the previous section. If |Jug||;2 > ||@]/ 2, then Theorem 7 implies that u must be of the form
(6.6). Furthermore, by perturbative arguments, for any fixed ¢ € R, (6.5) implies that there exists a sequence
g(tn,t') such that

g(tn, oty + )\(15;)2) —u(t), in L2 (6.9)

In fact, perturbative arguments also imply that there exists a sequence t), 0o, perhaps very slowly, such
that

/

ot )olta + 55) — ulthllz 0. (6.10)

Furthermore, Theorem 7 implies that there exists a sequence g(t],) such that

gt u(t)) — Q, weakly in  L?. (6.11)
Combining (6.10) and (6.11),
t/
g(t)g(tn, t,)v(tn + /\(tn)z) —Q, weakly in  L°. (6.12)

This completes the proof of Theorem 3.
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