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ABSTRACT
We give a comprehensive characterisation of the computational
power of shallow quantum circuits combined with classical compu-
tation. Specifically, for classes of search problems, we show that the
following statements hold, relative to a random oracle:
(a) BPPQNCBPP

≠ BQP. This refutes Jozsa’s conjecturein the ran-
dom oracle model. As a result, this gives the first instantiatable
separation between the classes by replacing the oracle with a cryp-
tographic hash function, yielding a resolution to one of Aaronson’s
ten semi-grand challenges in quantum computing.
(b) BPPQNC ⊈ QNCBPP and QNCBPP ⊈ BPPQNC. This shows that
there is a subtle interplay between classical computation and shal-
low quantum computation. In fact, for the second separation, we
establish that, for some problems, the ability to perform adaptive
measurements in a single shallow quantum circuit, is more useful
than the ability to perform polynomially many shallow quantum cir-
cuits without adaptive measurements. We also show that BPPQNC

and QNCBPP are both strictly contained in BPPQNC
BPP .

(c) There exists a 2-message proof of quantum depth protocol. Such a
protocol allows a classical verifier to efficiently certify that a prover
must be performing a computation of some minimum quantum
depth. Our proof of quantum depth can be instantiated using the
recent proof of quantumness by Yamakawa and Zhandry.

CCS CONCEPTS
• Theory of computation → Quantum complexity theory;
Circuit complexity; Complexity classes; Cryptographic pro-
tocols.
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Hybrid classical-quantummodels of computation, proof of quantum
depth, random oracle model
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1 INTRODUCTION
High depth circuits are believed to be strictly more powerful than
low depth circuits, in the sense that having deeper circuits allows
one to solve a larger set of problems. Indeed, this is a well established
fact for both classical and quantum circuits of depth sub-logarithmic
in the size of the input [5, 6, 30, 32, 41]. However, for circuits of
(poly)logarithmic depth and general polynomial depth, proving any
sort of unconditional separation is challenging [39]. In fact, there is
not even an unconditional proof that the set of problems that can
be solved by polylog-depth classical circuits, NC, is a strict subset
of the set of problems solvable by poly-depth classical circuits, P
(or BPP when allowing for randomness). The same is believed to
be the case for the quantum analogues of these classes, QNC and
BQP, respectively. Nevertheless, the strict containments NC ⊊ P
and QNC ⊊ BQP are known to hold in the oracle setting and,
in particular, relative to a random oracle [35].1 This is a strong
indication that there are problems in P (BQP) which cannot be
parallelised so as to be solvable in NC (QNC). Under the random
oracle heuristic, by replacing the randomoraclewith a cryptographic
hash function, one can even provide concrete instantiations of
such problems. A further indication of the separation between low
and high depth computations is provided by certain inherently
sequential cryptographic constructions such as time-lock puzzles
and verifiable delay functions [16, 40].

The study of circuit depth can also yield insights into the subtle
relationship between quantum and classical computation by con-
sidering hybrid circuit models that combine quantum and classical
computation [11, 21, 28, 31]. In this setting, one can ask the question:
how powerful are poly-depth classical circuits, when augmented
with polylog-depth quantum circuits? Could it be the case that
interspersing BPP with QNC computations captures the full power
1Technically [35] only shows the strict containment NC ⊊ P, relative to a random
oracle. However, the quantum version QNC ⊊ BQP can also be shown as a straight-
forward extension of that result. That containment also follows from [24].
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of BQP computations? Jozsa famously conjectured that the answer
is yes [33]. Indeed, there is some evidence to support this conjec-
ture, as the quantum Fourier transform, a central building block
for many quantum algorithms, was shown to be implementable
with log-depth quantum circuits [25]. This also implies that Shor’s
algorithm can be performed by a BPPQNC machine, a polynomial-
time classical computer having the ability to invoke a (poly)log
depth quantum computer.2 Moreover, in the oracle setting, a num-
ber of problems yielding exponential separations between quantum
and classical computation require only constant quantum-depth to
solve, providing further support for Jozsa’s conjecture [1, 3, 42].

Despite the evidence in support of Jozsa’s conjecture, it was
recently shown that, in the oracle setting, the conjecture is
false [21, 28]. Specifically, the results of [21] (hereafter referred to
as CCL) and [28] (hereafter referred to as CM) considered two ways
of interspersing poly-depth classical computation with 𝑑-depth
quantum computation. The first is BPPQNCd , denoting problems
solvable by a BPP machine that can invoke 𝑑-depth quantum cir-
cuits (whose outputs are measured in the computational basis). The
second, QNCd

BPP, denotes problems solvable by a 𝑑-depth quan-
tum circuit that can invoke a BPPmachine at each layer in the com-
putation.3 Later, borrowing terminology from [11, 21], we will refer
to the former circuit model as CQd and the latter as QCd. However,
for the purposes of this introduction, we will stick to the more fa-
miliar notation using complexity classes. Intuitively, BPPQNCd cap-
tures the setting of a classical computer that can invoke a 𝑑-depth
quantum computer several times. Examples of this include quan-
tum machine learning algorithms such as VQE or QAOA [29, 37],
though as mentioned, Shor’s algorithm is also of this type. On
the other hand, QNCd

BPP captures a 𝑑-depth measurement-based
quantum computation [18, 38], where intermediate measurements
are performed after each layer in the quantum computation. The
outcomes of those measurements are processed by a poly-depth
classical computation and the results are “fed” into the next quan-
tum layer. CCL and CM showed that there exists an oracle relative
to which BPPQNCd ∪ QNCd

BPP ⊊ BQP, for any 𝑑 = polylog(𝑛),
with𝑛 denoting the size of the input. Notably, each work considered
a different oracle for showing the separation. For CM, the oracle
is the same one as for Childs’ glued trees problem [23]. For CCL,
the oracle is a modified version of the oracle used for Simon’s prob-
lem [42], where the modification involves performing a sequence
of permutations, allowing them to enforce high quantum depth.

CCL and CM were the first results to provide a convincing coun-
terpoint to Jozsa’s conjecture. However, the main drawback of the
CCL and CM results is that they are relative to oracles that are
highly structured and it is unclear if they can be explicitly instanti-
ated based on some cryptographic assumptions. Indeed, in his “Ten
Semi-Grand Challenges for Quantum Computing Theory”, Aaron-
son emphasizes this important distinction, and asks whether there
is some instantiatable function that separates the hybrid models
from BQP. In this work, we resolve Aaronson’s question in the
affirmative for the search variants of these classes.

2Note that here and throughout the paper, the QNC oracle can output a string, unlike
a decision oracle which outputs a bit.
3Note that the BPP oracle is not invoked coherently. Instead, it is invoked on outcomes
resulting from intermediate measurements performed in the layers of the QNCd
circuit.

In contrast to separations between different models of computa-
tion running in polynomial time, such as P andNP or BPP and BQP,
where several plausible candidates exist for separating the classes,
the case for depth separations is much more subtle. As was already
observed in [14], no standard cryptographic assumption is known
to yield a separation between NC and P. The best candidates for
such a separation are sequential compositions of hash functions (un-
der the random oracle heuristic) as shown in [35] and the iterated
exponentiation scheme of Rivest, Shamir and Wagner [40]. Thus,
informally, the best we could hope for in terms of an instantiatable
separation between the hybrid models and BQP is a separation in
the random oracle model which could then be instantiated using
cryptographic hash functions. We note that while there are known
counterexamples to the random oracle heuristic [20], these are gen-
erally contrived and do not apply to protocols where the random
oracle heuristic has been used in practice (and, in particular, are
not known to apply to the setting we consider here). Indeed, it has
been shown that certain protocols proven secure with respect to a
random oracle can also be concretely instantiated using correlation
intractable hash functions [19, 34]. We also note that separating the
hybrid models from BPP, rather than BQP, in the random oracle
model already follows from Aaronson’s Fourier Fishing problem [1].
That problem, of sampling from the Fourier spectrum of the random
oracle, is solvable in4 QNC but not in BPP. Implicitly, this means
that the hybrid search classes BPPQNC and QNCBPP are strictly
larger than BPP relative to a random oracle.

Our work is concerned not only with separations between the
hybrid models and BQP in the random oracle model, but also
with giving a comprehensive characterization of quantum depth
in that model. To that end, we first re-examine Jozsa’s conjecture
and argue that the natural class associated to “𝑑-depth quantum
computation combined with polynomial-time classical computa-
tion” is not BPPQNCd ∪ QNCd

BPP, but BPPQNCd
BPP . This is be-

cause, if one has the ability to perform QNCd
BPP computations,

certainly it should also be possible to repeat this polynomially-
many times as well as perform classical processing in between
the runs. Note that BPPQNCd ∪ QNCd

BPP ⊆ BPPQNCd
BPP (in fact,

we show strict containment). The separation we then obtain, rel-
ative to a random oracle, is BPPQNCd

BPP
⊊ BQP, for any fixed

𝑑 ≤ poly(𝑛). Going beyond this separation, we also show that
the hybrid models BPPQNCd and QNCd

BPP are separate from each
other in both directions, relative to a random oracle (in fact, we show
that BPPQNCO(1) ⊈ QNCd

BPP andQNCBPP
O(1) ⊈ BPPQNCd ), illustrat-

ing the subtle interplay between short-depth quantum computation
and classical computation. Lastly, by combining the techniques that
we develop with previous results on proof of quantumness protocols,
we obtain proof of quantum depth protocols—protocols in which
a BPP verifier, exchanging 2 messages5 with an untrusted quan-
tum prover, can certify that the prover has the ability to perform
quantum computations of a minimum depth.

1.1 Main Results
We now state our results more formally and provide some intu-
ition about the proofs. We abuse the notation slightly and use the
4In fact in QNC0 , since queries to the oracle are assumed to have depth 1.
52 messages in total or a 1 round protocol.
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Figure 1: The four hybrid quantum depth classes we consider.
Blue wires carry qubits, black wires carry bits. Measurements
are implicit and performed in the standard basis. 𝑈𝑖s denote
depth 1 unitaries, A𝑖 and A′

𝑖
denote poly time classical algo-

rithms.

standard decision complexity class names to refer to their search
variants.

1.1.1 Lower Bounds on Quantum Depth. We first show the follow-
ing separation.

Theorem 1 (informal). Fix any function 𝑑 ≤ poly(𝑛). Then, relative
to a random oracle,6 it holds that BPPQNC

BPP
𝑑 ⊊ BQP.

As motivated earlier, we take the class BPPQNCd
BPP to capture

computations performed by a combination of 𝑑-depth quantum
6Here, as well as in all subsequent results, the statements hold with probability 1 over
the choice of the random oracle. In addition, queries to the oracle are viewed as having
depth 1 (discussed later).

computation and polynomial-depth classical computation. The in-
terpretation of our result is that BPPQNCd

BPP can be separated from
BQP using the least structured oracle possible, a random oracle. To-
gether with the (quantum) random oracle heuristic, by instantiating
the oracle with a cryptographic hash function like SHA-2 or SHA-3,
this yields the first plausible instantiation of a problem solvable in
BQP but not in BPPQNCd

BPP . This provides a resolution to Aaron-
son’s challenge. The main technical innovation that allows us to
achieve the separation is a general lifting lemma that takes any
problem separating BPP from BQP in the random oracle model,
which additionally satisfies a property that we call classical query
soundness, and constructs a problem separating BPPQNCd

BPP and
BQP. We show that several known problems satisfy this property.
Our lifting lemma is inspired by [21], and crucially extends their
analysis beyond highly structured oracles. We describe this lifting
lemma more precisely in Subsection 1.2.1.

1.1.2 Proofs of Quantum Depth. It is natural to wonder whether
Theorem 1 yields an efficient test to certify quantum depth, i.e.
a proof of quantum depth. A proof of quantum depth is a more
fine-grained version of a proof of quantumness: rather than distin-
guishing between quantum and classical computation, a proof of
quantum depth protocol can distinguish between provers having
large or small quantum depth. We show that instantiating our lift-
ing lemma with a problem whose solution is efficiently verifiable
immediately yields a proof of quantum depth. One such problem7

is due to Yamakawa and Zhandry [43]. More precisely, we have the
following.

Theorem 2 (informal). Let 𝑛 be the security parameter and fix any
function 𝑑 ≤ poly(𝑛). In the random oracle model, there exists a
two-message protocol between a poly-time classical verifier and a
quantum prover such that,

• Completeness: There is a BQP prover which makes the verifier
accept with probability at least 1 − negl(𝑛)

• Soundness: No malicious BPPQNC
BPP
𝑑 prover can make the ver-

ifier accept with probability greater than negl(𝑛).

We emphasise that considering protocols with more than two
messages leads to difficulties in formalising the notion of quantum
depth. For instance, one can construct protocols where the prover
is forced to hold 𝑟 single qubit states and subsequently measures
them. Information about the basis in which to measure each of these
qubits is sent one at a time by the verifier over 𝑟 messages (the
verifier waits for the response to each measurement, before sending
the next basis). The measurement results are used by the verifier to
ensure soundness (each qubit is measured in its preparation basis
and so the outcomes are completely determined). It is not hard to
show that if the prover measures these qubits without knowing
the measurement basis, it cannot succeed except with negligible
probability. If one attempts to model the prover as a BPPQNC𝑑 or
QNCBPP

𝑑
circuit, then, because of the delay between messages, it

appears that 𝑑 ≥ 𝑟 is necessary. However, this can be seen as an
artefact of the modelling choice: in practice, the prover only needs

7We remark that, if one is only concerned with the complexity-theoretic separa-
tion of Theorem 1, and not with efficient verification, then a much simpler problem
(CollisionHashing described later) suffices.
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𝑑 single qubit quantum computers with quantum depth 1where the
last gate can be delayed until the appropriate message is received
in order to pass the test. Essentially, this approach only tests the
prover’s ability to maintain the coherence of the qubits it received,
without actually testing the depth of the circuit it has to perform.
In Subsection 1.3, we discuss a possible resolution that captures
quantum depth in the interactive setting.

1.1.3 Tighter Bounds. While Theorem 1 establishes that
BPPQNC

BPP
𝑑 does not capture the computational power of BQP

for any fixed 𝑑 ≤ poly(𝑛), it is not a priori clear if, for instance,
BPPQNC

BPP
2𝑑+O(1) is strictly larger than BPPQNC

BPP
𝑑 . Indeed, we show

that the answer is affirmative.

Theorem 3 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a
random oracle, it holds that8 BPPQNC

BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) .

Formally, the theorems treat a call to the quantum random oracle
as a depth-1 quantum gate. In practice, if instead the gate requires
depth ℓ , then 𝑑 can be replaced by 𝑑ℓ . We remark that there exist
hash functions that are thought to be quantum-secure which require
only logarithmic depth to evaluate [7, 36]. Further, there is reason
to believe that such hash functions could also be constructed in
ℓ = O(1) depth. In particular, if one is only concerned with specific
cryptographic properties (such as collision resistance), then generic
constructions are known which convert log-depth hash functions
into ones that require only constant depth [9].

1.1.4 Separations between Hybrid Quantum Depth Classes. While
both BPPQNC and QNCBPP capture some notion of a hybrid be-
tween efficient classical computation and shallow quantum compu-
tation, the relationship between the two is not immediately clear.
To get a slightly better intuition about the two models, one can
think of BPPQNC as capturing an efficient computation that con-
tains polynomially many shallow quantum circuits (separated by
measurements and classical computation). On the other hand, one
can think of QNCBPP as a single shallow quantum circuit, where
one is allowed to make partial measurements of some of the wires,
and choose the next gates adaptively. While it may not be surprising
that there exist problems that can be solved in BPPQNC but not in
QNCBPP, it turns out that the two classes are in fact incomparable—
each class contains problems that the other does not, relative to a
random oracle.

Theorem 4 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a
random oracle, it holds thatBPPQNCO(1) ⊈ QNCBPP

𝑑
andQNCBPP

O(1) ⊈

BPPQNC𝑑 .

The second separation is arguably more surprising. It says that,
relative to a random oracle, there are problems that can be solved
by a single shallow (in fact, constant-depth) quantum circuit with
adaptive measurements but cannot be solved by circuits with poly-
nomially many shallow quantum circuits without adaptive measure-
ments. The problem that shows QNCBPP

O(1) ⊈ BPPQNC𝑑 is a variant
of the proof of quantumness from [17]. The key technical innova-
tion to achieve this separation is a theorem that characterises the

8and more generally, that QNC2𝑑+O(1) ⊈ BPPQNC
BPP
𝑑 .

structure of strategies that succeed in the protocol of [17] (this is dis-
cussed further in Section 1.2.2 ). This “structure theorem” crucially
strengthens a similar theorem from [26], andmay be of independent
interest.

Finally, we examine the relationship between BPPQNC𝑑 ∪
QNCBPP

𝑑
and BPPQNC

BPP
𝑑 . By definition, it is manifest that

BPPQNC𝑑 ∪ QNCBPP
𝑑

⊆ BPPQNC
BPP
𝑑 . Even though QNCBPP

𝑑
and

BPPQNC𝑑 are incomparable, it is conceivable that their union cap-
tures any reasonable notion of quantum depth 𝑑 . We show that this
is not the case.

Theorem 5 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a
random oracle, it holds that BPPQNC

BPP
O(1) ⊈ BPPQNC𝑑 ∪QNCBPP

𝑑
.

In words, the latter theorem asserts that a computation consisting
of polynomially many layers of constant-depth quantum circuits
with adaptive control cannot be simulated by quantum circuits
with 𝑑 depth which are either adaptive (but consisting of a single
𝑑-depth quantum circuit) or consisting of many 𝑑-depth quantum
circuits (but without adaptive control).

1.1.5 Summary . Table 1 lists our lower bounds on quantum depth,
and Table 2 lists the separations among the hybrid classes.

1.2 Main Technical Contributions
1.2.1 Lifting Lemmas. One of the main technical contributions of
our work is to prove two general lifting lemmas. These lemmas take
problems, defined relative to a random oracle, that are classically
hard (in a stronger sense, defined next) and create new problems
which are, in addition, hard for specific hybrid quantum depth
classes. We describe these lifting lemmas a bit more precisely.

We say that a problem (definedwith respect to the random oracle)
is classical query sound if the following holds: any (potentially
unbounded time) algorithm which makes only polynomially many
classical queries to the random oracle (i.e. no superposition queries),
succeeds at solving the problem with at most negligible probability.
It turns out that the problem introduced by YZ satisfies this property.
Another problem which satisfies this property is inspired by the
proof of quantumness protocol defined by Brakerski et al. [17]
(hereafter referred to as BKVV).9 For such problems, the following
holds.

Lemma 6 (informal, simplified). There is a procedure10 that takes a
classical query sound problem P ∈ BQP and creates a new problem
P′ := 𝑑-Rec[P], such that P′ ∉ BPPQNC

BPP
𝑑 and P′ ∈ BQP.

Observe that this lemma makes the problem hard for the most
general notion of quantum depth we have considered. To give some
intuition about how it is derived, suppose we have a problem P

which is classical query sound and denote the random oracle as 𝐻 .
Then P′ = 𝑑-Rec[P] is the same problem, defined with respect to
a sequential composition of 𝑑 + 1 random oracles, 𝐻̃ = 𝐻𝑑 ◦ · · · ◦ 𝐻0.
In essence, we have substituted 𝐻 with 𝐻̃ . This new problem will
retain classical query soundness, as 𝐻̃ behaves like a random oracle.
But in addition, we have now made it so that querying 𝐻̃ effectively
requires depth 𝑑 + 1. As QNC𝑑 has depth 𝑑 , only the BPP parts
9Which we refer to as CollisionHashing later.
10𝑑-Rec[ ·] is meant to be short for 𝑑-Recursive.
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Table 1: (Simplified) Bounds on quantum depth. Separations are with respect to the random oracle and 𝑑 ≤ poly(𝑛) is any fixed
function of the input size.

Result Remarks

BPPQNC
BPP
⊊ BQP Refutes Jozsa’s conjecture in the random oracle model

BPPQNC
BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) Fine grained advantage of quantum depth

Table 2: (Simplified) Separations of hybrid quantum depth with respect to the random oracle. The results hold, not only for log
but for any fixed polynomially-bounded function.

Result Physical Interpretation

BPPQNCO(1) ⊈ QNCBPP Running poly many constant depth quantum circuits (with no adaptive
measurements) cannot be simulated by running a single log depth
quantum circuit with adaptive measurements.

QNCBPP
O(1) ⊈ BPPQNC Running a single constant depth quantum circuit with adaptive

measurements cannot be simulated by running poly many log depth
quantum circuits (with no adaptive measurements).

BPPQNC
BPP
O(1) ⊈ BPPQNC ∪QNCBPP Evidence that it is not enough to consider BPPQNC and QNCBPP when

studying quantum depth.
Running poly many constant depth quantum circuits with adaptive
measurements cannot be simulated using either (a) poly many log
depth quantum circuits with no adaptive measurements, or by (b) a
single log depth quantum circuit with adaptive measurements.

of BPPQNC
BPP
𝑑 will be able to query 𝐻̃ . We can therefore simulate

the BPPQNC
BPP
𝑑 algorithm with an exponential time algorithm that

is limited to polynomially many queries to 𝐻̃ . By classical query
soundness, such an algorithm cannot solve P′, which yields the
desired result.

This was a simplified description of our result. In fact, we show a
more refined statement that relates the depth required to solveP′ to
the depth required to solve P. In addition, arguing that 𝐻̃ behaves
like a random oracle and that QNC𝑑 cannot query 𝐻̃ requires a
careful and more involved analysis. We use Lemma 6 to establish
Theorem 3.

Our second lifting lemma produces a problem that is hard for
QNCBPP

𝑑
, starting from a problem that satisfies what we call offline

soundness. Consider a two phase algorithm consisting of: an online
phase which is a poly-time classical algorithm with access to the
random oracle followed by an offline phase which is an unbounded(-
time) algorithm with no access to the random oracle. Then, offline
soundness requires that no such two phase algorithm succeeds at
solving the problem with non-negligible probability. It turns out,
again, that both YZ and BKVV satisfy this property.

Lemma 7 (informal). There is a procedure11 which takes a problem
P ∈ QNCO(1) with offline soundness and creates a new problem
P′ := 𝑑-Ser[P] such that P′ ∉ QNCBPP

𝑑
and P′ ∈ BPPQNCO(1) .

Again, we actually show a slightly more general upper bound
which depends on the depth required to solve P. We use Lemma 7

11𝑑-Ser[ ·] is meant to be short for 𝑑-Serial.

to establish BPPQNCO(1) ⊈ QNCBPP
𝑑

(first separation of Theorem 4).
Establishing the other direction (QNCBPP

O(1) ⊈ BPPQNC𝑑 ) is quite
involved and relies heavily on the structure of the problem we con-
sider (explained below). Consequently, it is unclear whether there
exists a general lifting lemma that yields hardness for BPPQNC𝑑 .

We remark that, by using Lemma 7 to lift the problem that yields
QNCBPP

O(1) ⊈ BPPQNC𝑑 , we also obtain Theorem 5, i.e.BPPQNCBPP
1 ⊈

BPPQNC𝑑 ∪QNCBPP
𝑑

.

1.2.2 A Structure Theorem for [17]. Another technical contribution
of this work, which may be of independent interest, is to prove a
theorem characterizing the structure of strategies that are successful
at the proof of quantumness from [17]. This theorem is a crucial
strengthening of a theorem from [26]. We employ this theorem as
an intermediate step to establish the hybrid separation,QNCBPP

O(1) ⊈

BPPQNC𝑑 .
Recall, informally, that the proof of quantumness from [17] re-

quires the prover to succeed at the following task: given access to a
2-to-1 function 𝑔, and to a random oracle 𝐻 with a one-bit output,
find a pair (𝑦, 𝑟 ) such that

𝑟 · (𝑥0 ⊕ 𝑥1) ⊕ 𝐻 (𝑥0) ⊕ 𝐻 (𝑥1) = 0 ,

where {𝑥0, 𝑥1} = 𝑔−1 (𝑦). This can be solved in QNCO(1) as follows:
(i) Evaluate 𝑔 on a uniform superposition of inputs, yielding∑

𝑥 |𝑥⟩ |𝑔(𝑥)⟩,
(ii) Measure the image register obtaining some outcome 𝑦 and a

state ( |𝑥0⟩ + |𝑥1⟩) |𝑦⟩,
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(iii) Query a phase oracle for 𝐻 to obtain ((−1)𝐻 (𝑥0) |𝑥0⟩ +
(−1)𝐻 (𝑥1) |𝑥1⟩) |𝑦⟩,

(iv) Make a Hadamard basis measurement of the first register,
obtaining outcome 𝑟 .

Informally, our structure theorem establishes that querying at a
superposition of pre-images is essentially the only way to succeed
(provided finding a collision for 𝑔 is hard—this is the case when
𝑔 is a trapdoor claw-free function, as in [17], but more generally
our theorem also holds e.g. when 𝑔 is a uniformly random 2-to-1
function). Denote by 𝑛 the bit-length of strings in the domain of 𝑔.

Theorem 8 (informal). Let 𝑃 be any BQP prover that succeeds with
1 − negl(𝑛) probability at the proof of quantumness protocol from
[17], by making 𝑞 queries to the oracle 𝐻 . Then, with 1 − negl(𝑛)
probability over pairs (𝐻,𝑦), the following holds. Let 𝑝𝑦 |𝐻 be the
probability that 𝑃𝐻 outputs 𝑦, and let 𝑥0,𝑥1 be the pre-images of
𝑦. Then, for all 𝑏 ∈ {0, 1}, there exists 𝑖 ∈ [𝑞] such that the state
of the query register of 𝑃𝐻 right before the 𝑖-th query has weight
1
2𝑝𝑦 |𝐻 · (1 − negl(𝑛)) on 𝑥𝑏 .
Note that a version of the above theorem that applies to provers

who win with probability non-negligibly greater than 1
2 also holds

(but we stated the close-to-ideal version for simplicity). We provide
a sketch of how this theorem is used in the proof of QNCBPP

O(1) ⊈

BPPQNC𝑑 in Subsection 2.2.2.

1.3 Discussion and Open Problems
Separations of decision classes and going beyond the random oracle

model. Our separations are with respect to search classes. What
about decision classes? The Aaronson-Ambainis conjecture [2]
states that one cannot separate the decision versions of BPP and
BQP in the random oracle model. Assuming the conjecture is true,
this also implies that there cannot be a separation between the deci-
sion versions of BPPQNC

BPP
𝑑 and BQP in the random oracle model.

Thus, for the case of decision classes, it would be interesting to see
whether there exists some structured oracle separation for which
the oracle can be instantiated based on a suitable computational
assumption. Both [21] and [28] suggested the possibility of using
either virtual black-box (VBB) obfuscation or indistinguishability
obfuscation (iO) to instantiate their oracles. For the former, one
difficulty is that it is known that one cannot VBB obfuscate general
functions [12, 13]. Irrespective of this fact, however, there is a more
general obstacle that applies to either type of obfuscation. As we
mentioned in the introduction, it was noted in [14] that no standard
cryptographic assumption (not even the existence of iO) is known
to imply a depth separation (even between P and NC). It therefore
seems that one either has to use non-standard assumptions to prove
the separations or make a significant advancement either in refut-
ing the Aaronson-Ambainis conjecture or in proving P ≠ NC from
a standard cryptographic assumption.

The limitations of using cryptographic assumptions to prove
depth separations also apply to the search classes. In some sense,
separations with respect to a random oracle are the best we can
hope for, given the current techniques in computational complex-
ity theory. This is peculiar, since one would imagine that using
more structured non-oracular problems would allow one to prove
stronger separations. The random oracle is the least structured

type of oracle, but the fact that it is an oracle helps in establishing
provable lower bounds.

Further questions in the random oracle model. Recall that our
lifting lemma, turning a classical query sound problem into a prob-
lem which can separate BPPQNC

BPP
𝑑 and BQP in the random ora-

cle model, could be instantiated with the proof of quantumness
from [43]. The resulting problem inherits the property that solu-
tions can be publicly verified. We thus obtain a proof of quantum
depth that is publicly verifiable. Unlike a proof of quantumness,
the proof of quantum depth is sound against a family of quantum
provers (in this case BPPQNC

BPP
𝑑 provers). Can we further push

this quantum soundness to obtain verification of BQP with a BPP
verifier relative to a random oracle?

We have also seen that making use of a problem inspired by the
Brakerski et al. [17] proof of quantumness allows us to prove more
fine grained separations between hybrid classes. It is then natural
to ask, whether these separations also yield finer grained proofs of
quantum depth (which are sound against BPPQNC

BPP
𝑑 provers and

complete for a BPPQNC
BPP
2𝑑+O(1) prover). This does not immediately

follow from our results, as the problem we construct from BKVV is
not efficiently verifiable, and our current techniques do not directly
extend to the computationally-bounded setting. We therefore leave
this as an open problem.

Generalizing beyond BPPQNC
BPP
𝑑 . We have argued that

BPPQNC
BPP
𝑑 is the most natural class capturing the notion of

𝑑-depth quantum computation, combined with polynomial-depth
classical computation. However, for the purpose of certifying
quantum depth, as we have mentioned earlier (and as we discuss
in more detail in Example 12), the situation becomes more subtle
when the certification protocol involves interaction. We therefore
propose that any protocol which establishes quantum depth 𝑑 and
uses 𝑟 rounds of interaction should be sound against at least an
𝑟 level generalization of BPPQNC

BPP
𝑑 (e.g. a 2 level generalization

with quantum depth 𝑑 would be BPPQNC𝑑
BPP

QNCBPP
𝑑

— here 2
counts the number of times QNC𝑑 appears in the tower of
complexity classes, so that an 𝑟 level generalisation would have
𝑟 appearances of QNC𝑑 ). In our case, since the proof of depth
protocols are single-round, we show the necessary soundness
against a BPPQNC

BPP
𝑑 prover.

Of course, there are other possible ways to define hybrid 𝑑-depth
quantum-classical computation. For instance, one can define the
class QDepth𝑑 of problems solved by polynomial sized circuits
with quantum and classical gates where the key constraint is that
the longest path connecting quantum gates (with quantum wires)
is at most 𝑑 . We expect our separating problems (and 𝑑-Rec[P]
in general, for classical query sound P) to not be contained in
QDepth𝑑 . We also expect that Q𝑑H ⊊ QDepth𝑑 , but we leave the
proof as future work.

1.4 Previous Work
We compare our results to the previous works [21], [28], [11], and
[22].
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Comparison to [21], [28] and [11]. Compared to previous work
on the topic, our work gives a comprehensive treatment of the
complexity of hybrid quantum-classical computation.

As mentioned earlier, the primary difference compared to [21]
and [28] is that all of our separations are with respect to a random
oracle, rather than with respect to highly structured oracles. How-
ever, one caveat is that our separations are for search problems.
Our contribution is also conceptual. We propose BPPQNC

BPP
𝑑 as

the appropriate model to capture “𝑑-depth quantum computation
combined with polynomial-time classical computation”. While [21]
and [28] showed that BPPQNC𝑑 ∪ QNCBPP

𝑑
⊈ BQP, we show the

stronger result that BPPQNC
BPP
𝑑 ⊈ BQP.

Our work also shows separations between different hybrid mod-
els. Such separations were considered in [11], where they are again
proven only with respect to highly structured oracles.

In terms of techniques, we take inspiration and ideas from both
[21] and [11]. In particular we build on two key ideas—the sampling
argument and domain hiding. One of the main contributions of
our analysis is to abstract and generalise these techniques beyond
their original scope which was tailored to specific promise prob-
lems. While most of our results build on these techniques, we also
point out that to prove the separation between the hybrid models
QNCBPP

O(1) ⊈ BPPQNC𝑑 we use entirely different ideas. In particular,
as an intermediate step, we establish a theorem that characterizes
the structure of strategies that succeed in the proof of quantumness
of BKVV, which may be of independent interest.

Comparison to [22]. The work of [22] was the first to consider
proofs of quantum depth. However, the notion of soundness that
they propose, and their corresponding protocol (in the single prover
setting), suffers from the issues that we discussed after Theorem 2
(and in Example 12 below).

In particular, their protocol can be spoofed by a 𝑑 level tower of
BPPQNC

BPP
O(1) (as described in Subsection 1.3). In practical terms, this

means that it can be spoofed by running several constant depth
quantum computers in parallel, provided the “idle coherence time”
of each quantum computer is longer than the time that elapses be-
tween messages in the protocol. In contrast, our proof of depth pro-
tocol does not suffer from this issue and can be used to certify that
the prover is able to perform computations “beyond” BPPQNC

BPP
𝑑 .

2 TECHNICAL OVERVIEW
Here we give a high level technical overview of the paper.

2.1 Bounds on Quantum Depth
In this subsection, we describe the proof of Theorem 1. As men-
tioned previously, our main technical contribution is a general
lifting lemma that takes any problem separating BPP from BQP in
the random oracle model, which additionally satisfies a property
that we call classical query soundness, and constructs a problem
separating BPPQNCd

BPP and BQP. We first explain the key idea
behind this construction. To be concrete, after describing the key
idea, we restrict to an NP search problem due to Yamakawa and
Zhandry [43], which satisfies classical query soundness (this prob-
lem is particularly appealing because it is in NP, and thus solutions

can be publicly verified, however we emphasize that other known
search problems that are not in NP can also be used for the sep-
aration). We then build towards a proof that this problem is not
in BPPQNC

BPP
𝑑 by considering hardness for the three special cases

QNC𝑑 , QNCBPP
𝑑

and BPPQNC𝑑 . The desired result is obtained by
combining the ideas in these three cases.

Let P be a (search) problem, defined relative to a random oracle
𝐻 , that separates BPP from BQP. Suppose that P is such that it re-
quires quantum access to𝐻 in order to be solved with polynomially
many queries (classical query soundness will eventually require a bit
more than this). As mentioned in Subsection 1.2.1, the first natural
idea to lift this to a separation between low quantum depth and
polynomial quantum depth is to replace the evaluation of 𝐻 with a
sequential evaluation of random oracles. For example, suppose that
originally 𝐻 : Σ → {0, 1}𝑛 . Then, let 𝐻0, . . . , 𝐻𝑑−1 : Σ → Σ, and
𝐻𝑑 : Σ → {0, 1}𝑛 be random oracles. Define 𝐻̃ = 𝐻𝑑 ◦ · · ·◦𝐻0. Now,
let P′ be the problem that is identical to P except that it is relative
to 𝐻̃ . Then, it is natural to imagine thatP′ requires quantum depth
at least 𝑑 + 1 to solve. This idea does not quite work right away,
since 𝐻̃ , as defined, is not actually a uniformly random oracle any
more. This is because with every 𝐻𝑖 that is added, the number of
collisions in 𝐻̃ increases (on average). To remedy this, one could
assume that 𝐻0, . . . , 𝐻𝑑−1 are random permutations (although note
that random permutations cannot be generically constructed from
random oracles). A similar idea works in a different setting, for
arguing about the post-quantum security of “proofs of sequential
work” [15]. However, in our case, the analysis is complicated by the
fact that we consider hybrid models. CCL were the first to consider
a variant of sequential hashing (sequential permutations), in the
context of hybrid models. However, their analysis only works for
certain structured oracles. In this work, we adapt their ideas to the
random oracle setting and overcome these difficulties.

Lifting P ∉ BPP to P̃ ∉ BPPQNC
BPP
𝑑 . Given a problem Pwith

respect to 𝐻 , we define the problem P̃ = 𝑑-Rec[P] to be Pwith
respect to 𝐻̃ = 𝐻𝑑 ◦ · · · ◦ 𝐻0 where 𝐻0, . . . , 𝐻𝑑 are independent
random oracles with the following domains and co-domains: 𝐻0 :
Σ → Σ𝑑

′ , 𝐻𝑖 : Σ𝑑′ → Σ𝑑
′ for 𝑖 ∈ {1 . . . 𝑑 − 1}, and 𝐻𝑑 : Σ𝑑′ →

{0, 1}𝑛 with 𝑑 ′ = 2𝑑 + 5.
Notice that 𝐻0 is not surjective, as its codomain is much larger

than its image.12 In fact, this is also true for 𝐻𝑖 ◦ · · · ◦ 𝐻0, for all
𝑖 < 𝑑 . This and the fact that the 𝐻𝑖 functions are random, have two
important consequences. First, it means that with high probability
𝐻𝑑−1 ◦ · · · ◦𝐻0 is injective and so 𝐻̃ behaves like a random oracle.
Consequently, P′ inherits the soundness and completeness of P.
Second, it means that one can apply a “domain hiding” technique,
which, at a high level, works as follows. One way of evaluating 𝐻̃
at 𝑥 ∈ Σ is to sequentially compose 𝐻0, 𝐻1, . . . , 𝐻𝑑 which would
require depth 𝑑 +1. Intuitively, it seems unlikely that there is a more
depth efficient way of evaluating 𝐻̃ because the domain on which
the𝐻𝑖 ’s need to be evaluated (which is𝐻𝑖−1 ◦ · · · ◦𝐻0 (Σ)) is getting
shuffled and lost in an exponentially larger domain (which is Σ𝑑′ ).
Therefore, even though one has access to all L = (𝐻0, 𝐻1, . . . , 𝐻𝑑 )
oracles at the first layer of depth, one only knows that 𝐻0 needs to
be queried at Σ but the algorithm has no information about where
12We sometimes refer to this fact by saying that the function is “expanding”.
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the relevant domains of 𝐻1 . . . 𝐻𝑑 are. At the second depth layer,
the algorithm can learn 𝐻0 (Σ) and so learns where to query 𝐻1
but, and this needs to be shown, it still does not know where the
relevant domains of 𝐻2, . . . 𝐻𝑑 are. By starting with a sufficiently
large expansion, i.e. a sufficiently large 𝑑 ′ > 𝑑 , this argument can be
repeated until depth𝑑 where the relevant domain of𝐻𝑑 still remains
hidden. Thus, even though P′ can potentially be solved with 𝑑 + 1
depth, it cannot be solved with depth 𝑑 . This is the basic idea behind
why the problem is not in QNC𝑑 . Instead of working with P and
𝑑-Rec[P] abstractly, we consider the following concrete problem.

2.1.1 𝑑-CodeHashing | The problem. We refer to the problem in-
troduced by Yamakawa and Zhandry [43] as CodeHashing in this
work. The problem is stated in terms of a family of error-correcting
codes called suitable codes. For our purposes, it suffices to think of
suitable codes as a family of sets {𝐶𝜆}𝜆 where each 𝐶𝜆 is a set of
codewords {(x1, . . . x𝑛)}with each coordinate x𝑖 belonging to some
alphabet Σ. The size of this alphabet, |Σ| = 2𝜆Θ(1) is exponential in
𝜆, and the number of components 𝑛 = Θ(𝜆) essentially equals 𝜆.
CodeHashing is defined as follows.

Definition 9 (CodeHashing; informal). Let {𝐶𝜆}𝜆 be a suitable
code and let 𝐻 : {0, 1}log𝑛 × Σ → {0, 1} be a random oracle. Given
a description of the suitable code (e.g. as parity check matrices) and
oracle access to 𝐻 , on input 1𝜆 , the problem is to find a codeword
x = (x1 . . . x𝑛) ∈ 𝐶𝜆 such that13 𝐻 (𝑖 | |x𝑖 ) = 1 for all 𝑖 ∈ {1 . . . 𝑛}.

Note that CodeHashing is an NP search problem, since from, e.g.
the parity check matrix of the code, it is easy to verify that x is
indeed a codeword and with a single parallel query (𝑛 queries in
total) to 𝐻 , one can check that it hashes correctly.

YZ shows that CodeHashing satisfies the following two proper-
ties.

Lemma 10 (Paraphrased from YZ). The following hold.
• Completeness: There is a QPT machine which solves
CodeHashing with probability 1 − negl(𝜆) and makes only
one parallel query to 𝐻 .

• Soundness: Every (potentially unbounded time) classical cir-
cuit which makes at most 2𝜆𝑐 queries to 𝐻 , with 𝑐 < 1, solves
CodeHashing with probability at most 2−Ω (𝜆) .

The fact that soundness holds against unbounded time classical
circuits which make only poly-many queries to the random oracle
is essential in proving that BPPQNCBPP

⊊ BQP. Applying our lifting
map, 𝑑-Rec[P] on CodeHashing we obtain the following.14

Definition 11 (𝑑-CodeHashing; informal). Let {𝐶𝜆}𝜆 be a suit-
able code, and 𝐻̃ := 𝐻𝑑 ◦ · · · ◦ 𝐻1 ◦ 𝐻0, where 𝐻0, . . . , 𝐻𝑑 are as
in Section 2.1. Given a description of the suitable code, access to
random oracles L = (𝐻0 . . . 𝐻𝑑 ), on input 1𝜆 , find a codeword for
all 𝑖 ∈ {1 . . . 𝑛}.

To convey the key ideas behind the proof that 𝑑-CodeHashing ∉

BPPQNC
BPP
𝑑 , we first consider the QNC𝑑 case in some more detail,

and extend the analysis toQNCBPP
𝑑

. We then analyse the BPPQNC𝑑

case, which uses a technique called the “sampling argument” due
13We use 𝑎 | |𝑏 to mean concatenation of 𝑎 and 𝑏.
14We used biti [H̃( ·) ] = 1 instead of 𝐻̃ (𝑖 | | ·) = 1 for notational convenience later.

to [27]. These ideas were first considered in the structured oracle
setting by [21] and [11]. We adapt them to show 𝑑-CodeHashing ∉

BPPQNC
BPP
𝑑 relative to a random oracle.

2.1.2 𝑑-CodeHashing ∉ QNC𝑑 .

Base sets. We started our discussion in Subsection 2.1 by ob-
serving that the analysis is simplified by taking 𝐻0 . . . 𝐻𝑑−1 to be
injective functions. However, for a large enough 𝑑 ′, it is not hard
to see that this is indeed the case on an appropriately restricted
domain. The sets which describe this restricted domain are chosen
randomly. We call them base sets and denote them by 𝑆01, . . . 𝑆0𝑑
(corresponding to 𝐻1, . . . 𝐻𝑑 respectively). Observe that 𝐻0 maps Σ
to Σ𝑑′ (which is exponentially larger than Σ; recall that |Σ| = 2𝜆Θ(1) )
and, since 𝐻0 is a random function, the probability that this map-
ping is injective is 1 − negl(𝜆). Pick any set 𝑆01 ⊆ Σ𝑑

′ uniformly
at random in the domain of 𝐻1 subject to two constraints: (1) it
includes 𝐻0 (Σ), i.e. the domain of 𝐻1 on which the value of 𝐻̃ de-
pends, and (2) its size is |𝑆01 | = |Σ|𝑑+2. The first constraint ensures
that the domain we care about is included in the base sets and the
second ensures that: (a) |𝑆01 | is exponentially smaller than |Σ|𝑑′ and
(b) |𝑆01 | is large enough for applying “domain hiding” as mentioned
above. Define 𝑆0𝑖 := 𝐻𝑖−1 (. . . 𝐻1 (𝑆01) . . . ) to be the image of 𝑆01
through the first 1 to (𝑖 −1)’th oracles for 𝑖 ∈ {2 . . . 𝑑}. Let 𝐸 denote
the event that 𝐻0 is injective and 𝐻1 . . . 𝐻𝑑−1 are injective on the
base sets. We show that 𝐸 (given our choice for 𝑑 ′), occurs with
overwhelming probability. In the subsequent discussion, we assume
that base sets have been selected and that 𝐸 occurs.

Proof idea. We describe the proof that 𝑑-CodeHashing ∉ QNC𝑑

in some more detail, which implements the previously described
“domain hiding” idea and proceeds via a hybrid argument. De-
note a QNC𝑑 circuit that makes 𝑑 parallel calls to the oracle
L = (𝐻0, . . . 𝐻𝑑 ) by𝑈𝑑+1 ◦L◦𝑈𝑑 . . .𝑈2 ◦L◦𝑈1 ◦ 𝜌0. Here, 𝜌0 is
some initial state, 𝑈𝑖 are single layered unitaries, and the composi-
tion is meant to act as conjugation, i.e.𝑈1 ◦ 𝜌0 = 𝑈1𝜌0𝑈

†
1 . We show

that the behaviour of such a circuit, i.e. its probability of outputting
a valid answer, is negligibly close to the behaviour of another circuit
𝑈𝑑+1 ◦M𝑑 ◦𝑈𝑑 . . .𝑈2 ◦M1 ◦𝑈1 ◦𝜌0 whereM1, . . .M𝑑 are “shadow
oracles” corresponding to L that contain no information about the
values taken by 𝐻̃ on Σ. Clearly then, this circuit cannot be solving
𝑑-CodeHashing because it never queries 𝐻̃ . This in turn means that
the original circuit also cannot solve 𝑑-CodeHashing, which im-
plies 𝑑-CodeHashing ∉ QNC𝑑 . It remains to define M1 . . .M𝑑 and
to argue that the two circuits have essentially the same behaviour.
Using a hybrid argument, one can establish the latter by showing
that the following are close in trace distance: (1) L◦𝑈1 ◦ 𝜌0 and
M1 ◦𝑈1 ◦ 𝜌0, (2)L◦𝑈2 ◦M1 ◦𝑈1 ◦ 𝜌0 and M2 ◦𝑈2 ◦M1 ◦𝑈1 ◦ 𝜌0,
and so on. To convey intuition, we sketch these steps one at a time,
and we define M1 . . .M𝑑 as we proceed. We restrict to base sets
𝑆01 . . . 𝑆0𝑑 as described above.

Hybrid 1. L◦𝑈1 ◦ 𝜌0 ≈ M1 ◦𝑈1 ◦ 𝜌0.
Let 𝑆11 ⊆ 𝑆01 be a random subset of 𝑆01, subject to the constraints
that (a) it includes 𝑆1 := 𝐻0 (Σ) and (b) |𝑆11 |/|𝑆01 | = 1/|Σ| = negl(𝜆).
Let 𝑆1𝑗 := 𝐻 𝑗−1 (𝑆1, 𝑗−1) be the propagation of 𝑆11 through 𝐻1 to
𝐻 𝑗−1. Here, we are trying to define a sequence of sets (𝑆11, . . . 𝑆1𝑑 )
on which we require that M1 outputs ⊥ and outside of these sets,
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we require that M1 behaves just like L, i.e. if one denotes M1 =

(𝐻0, 𝑀11, . . . 𝑀1𝑑 ), then we require that𝑀1𝑖 behaves as 𝐻𝑖 outside
𝑆1𝑖 and outputs ⊥ inside 𝑆1𝑖 . To be concise, we will say that M1
is a shadow oracle of Lwith respect to (𝑆11 . . . 𝑆1𝑑 ). Why do we
want this behaviour? For 𝑆𝑖 := 𝐻𝑖−1 (. . . 𝐻0 (Σ) . . . ), M1 clearly
contains no information about 𝐻̃ on Σ, since 𝑆 𝑗 ⊆ 𝑆1𝑗 . But why
couldn’t we just have chosen (𝑆1 . . . 𝑆𝑑 ) instead of (𝑆11 . . . 𝑆1𝑑 ) to
defineM1? Briefly, this is because choosing to hide an exponentially
larger set (note that |𝑆11 | = |Σ|𝑑+1 while |𝑆1 | = |Σ|) allows us to
easily apply similar arguments in the subsequent hybrids. This will
become evident shortly. Recalling our goal, we want to establish
that L ◦𝑈1 ◦ 𝜌0 and M1 ◦𝑈1 ◦ 𝜌0 are close in trace distance. To
do this, we use the so-called one-way to hiding (O2H) lemma [8].
Informally, the lemma, as applied to our situation, says that if (a)
the input state 𝜌0 contains no information about the set where
L and M1 behave differently, and (b) the probability of finding
any element inside this set is negligible, then the trace distance
between the two states of interest is negligible. The lemma clearly
applies in our case because (a) initially the algorithm contains no
information about L (it has not yet made any queries) and (b) the
probability of finding any element in the set 𝑆1𝑖 where L and M1
behave differently, without knowing anything about L, is at most
|𝑆1𝑖 |/|𝑆0𝑖 | = negl(𝜆), for each 𝑖 ∈ {1 . . . 𝑑}, and thus still negligible
by a union bound.

Hybrid 2. L◦𝑈2 ◦ 𝜌1 ≈ M2 ◦𝑈2 ◦ 𝜌1 where 𝜌1 = M1 ◦𝑈1 ◦ 𝜌0.
In this step, we will see the advantage of having chosen a sequence
of sufficiently large sets (𝑆11, . . . 𝑆1𝑑 ) where M1 outputs ⊥. Let us
begin with examining the information contained in 𝜌1 about L.
In the previous case, 𝜌0 contained no information about L. Since
𝜌1 only learns about L by querying M1, it suffices to examine the
information contained in M1. Since M1 does not hide any infor-
mation about 𝐻0, 𝜌1 could have learnt 𝑆1 = 𝐻0 (Σ). Recall also that
𝑆1 ⊆ 𝑆11. This means that if one were to takeM2 equal toM1, then
one cannot expectL◦𝑈2 ◦ 𝜌1 to be close toM2 ◦𝑈2 ◦ 𝜌1 in general
because 𝑈2 could query the oracle at 𝑆1 and the outputs of the two
circuits would be different with probability one—M1 outputs ⊥
whileLdoes not. Consequently, when constructing M2, we do not
hide anything about 𝐻1. As for 𝐻2 . . . 𝐻𝑑 , note that, M1 contains
no information about the behaviour of L inside 𝑆12, 𝑆13 . . . 𝑆1𝑑 . We
can therefore, treat 𝑆12 . . . 𝑆1𝑑 as the new “base sets” and proceed
analogously. Let 𝑆22 ⊆ 𝑆12 be a random subset of 𝑆12, subject to the
constraint (as before) that (a) it includes 𝑆2 = 𝐻1 (𝐻0 (Σ)) and (b)
|𝑆22 |/|𝑆12 | = 1/|Σ| = negl(𝜆). Defining M2 to be the shadow oracle
of Lwith respect to (∅, 𝑆22, . . . 𝑆2𝑑 ), one can again apply the O2H
lemma to conclude that L◦𝑈2 ◦ 𝜌1 and M2 ◦𝑈2 ◦ 𝜌1 are close in
trace distance. Note that it is crucial that |𝑆12 | is sufficiently large
such that condition (b) above is satisfied.

Generalising the argument above, one sees that the sets 𝑆𝑖 𝑗 con-
stitute a triangular matrix (where the 𝑖-th row corresponds to sets
on which M𝑖 outputs ⊥)



𝑆11 𝐻1 (𝑆11) 𝐻2 (𝐻1 (𝑆11) . . . 𝐻𝑑 (. . . 𝐻1 (𝑆11) . . . )
∅ 𝑆22 𝐻2 (𝑆22) . . . 𝐻𝑑 (. . . 𝐻2 (𝑆22) . . . )
∅ ∅ 𝑆33 . . . 𝐻𝑑 (. . . 𝐻3 (𝑆33) . . . )

. . .

∅ ∅ ∅ 𝑆𝑑𝑑



which clarifies why the argument can only be applied for 𝑑 steps (as
we expect). To see this, note that at the 𝑑th step, all oracles except
the last have been completely revealed (last row). Crucially, the last
oracle is blocked at 𝑆𝑑 ⊆ 𝑆𝑑𝑑 and therefore reveals no information
about 𝐻̃ (Σ). If one proceeds with the (𝑑 + 1)-th step, all oracles are
revealed and one can no longer argue that the algorithm does not
access 𝐻̃ (Σ).

Observe that so far, we have not used the fact that CodeHashing
is classically hard, only that without access to the oracle, the prob-
lem cannot be solved. The classical hardness comes into play once
BPP computations are allowed.

2.1.3 𝑑-CodeHashing ∉ QNCBPP
𝑑

. We now sketch how
one goes from arguing 𝑑-CodeHashing ∉ QNC𝑑 to arguing
𝑑-CodeHashing ∉ QNCBPP

𝑑
. Denote circuits corresponding to

QNCBPP
𝑑

byA𝑑+1◦BL
𝑑
◦· · ·◦BL

1 ◦𝜌0 whereBL
𝑖

:= Π𝑖◦L◦𝑈𝑖◦AL
𝑖
,

AL
𝑖

denotes a classical algorithm, andΠ𝑖 denotes a (possibly partial)
measurement. The analogous circuit with shadow oracles is denoted
by A𝑑+1 ◦ B

M𝑑

𝑑
◦ . . .BM1

1 ◦ 𝜌0 where BM𝑖

𝑖
:= Π𝑖 ◦M𝑖 ◦𝑈𝑖 ◦ AL

𝑖
.

The idea, again, is to establish, via a hybrid argument, that the two
circuits are close in trace distance. In the QNC𝑑 case, thanks to
the depth of the circuit being 𝑑 , we were able to argue that any
QNC𝑑 algorithm behaves equivalently if we take away its access
to 𝐻̃ . When trying to argue that a QNCBPP

𝑑
algorithm cannot solve

the problem, we have to be more careful because the BPP part has
sufficient depth to make queries to 𝐻̃ . In our argument, this will
affect how the shadow oracles M𝑖 are defined.

In some more detail, we allow the classical algorithm to make
“path queries”—which intuitively just means that if 𝐻𝑖 is queried
at 𝑥𝑖 , the algorithm also learns (𝑥0, 𝑥1 . . . 𝑥𝑑 ) such that15 𝑥 𝑗+1 =

𝐻 𝑗 (𝑥 𝑗 ) for all 𝑗 . This of course can only help the algorithm.
The key idea is that we account for the “paths” that have been

queried classically until depth 𝑖 and defineM𝑖 to be consistent with
those (i.e. it never outputs ⊥ on these paths). As before, we can
replace queries to Lwith queries to M𝑖 that contain no informa-
tion about 𝐻̃ except for the paths which were classically queried.
Appealing to the soundness of CodeHashing, such an algorithm
cannot succeed. This is because CodeHashing has the property that
even an unbounded classical algorithm cannot succeed if it only
makes polynomially many queries to the oracle.

2.1.4 𝑑-CodeHashing ∉ BPPQNC𝑑 . Observe that a poly depth
quantum circuit can access 𝐻̃ and since a BPPQNC𝑑 circuit has
poly many QNC𝑑 circuits, it is not a priori clear that BPPQNC𝑑

cannot also access 𝐻̃ . This is why the approach we used to prove
that 𝑑-CodeHashing ∉ QNC𝑑 cannot be applied directly. Crucially,
to argue that the problem is not in BPPQNC𝑑 , one must use the
fact that the contents of each QNC𝑑 circuit are measured entirely,
and that each QNC𝑑 circuit takes only classical inputs. In order to
handle the classical information that each QNC𝑑 circuit receives
as input, we use a technique called the “sampling argument”. In
essence, this says that if Lhas high entropy (which is to say that
the oracles being queried are sufficiently random), then conditioned
on any string 𝑠 correlated with it, the resulting L|𝑠 behaves as a
15Two caveats: (1) 𝐻0 : Σ → Σ𝑑

′ therefore some of the paths will not have well
defined first components and (2) we only care about queries made inside the base sets
where conditioned on 𝐸, 𝐻1 . . . 𝐻𝑑−1 behave as permutations.
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“convex combination” of high entropy distributions with a small
fraction of their values completely fixed. This allows us to reduce
the analysis to that of a particular set of paths being exposed, which
we can handle by proceeding as in the QNCBPP

𝑑
case.

A similar argument was used by CCL to establish that a prob-
lem is not in BPPQNC𝑑 with respect to a (structured) oracle. Their
analysis used a sequence of permutation oracles and was simplified
by viewing the oracles, equivalently, as distributions over paths (as
opposed to a sequence of functions assigning values to individual
points). The paths viewpoint was particularly helpful when con-
sidering the “sampling argument” (the version we use is derived
from [27]). [11] showed that such a sampling argument can be ob-
tained for almost any oracle which can be viewed as a distribution
over paths. In our setting, since the oracles are random, paths can
collide. Thus, one needs to define a suitable notion of “paths” in
this setting. We provide more details in the next three paragraphs.
However, since these are relatively more technical, one may wish
to skip directly to Subsection 2.1.5 on a first read.

Sampling argument for Permutations. Suppose 𝑡 is a permutation
over 𝑁 elements labelled {0, . . . , 𝑁 − 1}. This permutation 𝑡 is
ordinarily viewed as a function, 𝑡 (𝑥) specifying how 𝑥 is mapped.
However, one could equivalently view 𝑡 as a collection of pairs (or
tuples later) (𝑥,𝑦) such that 𝑡 (𝑥) = 𝑦. We call such a pair a “path”.

Now consider distributions over permutations. Let’s begin with
a uniform distribution F over all permutations 𝑢. One may char-
acterise F as follows: for any 𝑢 ∼ F, i.e. any 𝑢 sampled from F, it
holds that Pr[𝑢 (𝑥) = 𝑦] = Pr[(𝑥,𝑦) ∈ paths(𝑢)].

We first state a basic version of the sampling argument. To this
end, we define a (𝑝, 𝛿) non-uniform distribution, F(𝑝,𝛿) , which is
closely related to the uniform distribution F. At a high level, F(𝑝,𝛿)
is “𝛿 close to” F with at most 𝑝 many paths fixed. What does “𝛿
closeness” mean? Let Pr[𝑆 ⊆ paths(𝑢)] denote the probability
that a collection 𝑆 of (non-colliding) paths is in 𝑢. Then, for any
distribution G (over permutations), a distribution G𝛿 is 𝛿 close
to it if the following holds: when 𝑡 ′ ∼ G𝛿 and 𝑡 ∼ G, one has
Pr[𝑆 ⊆ paths(𝑡 ′)] ≤ 2𝛿 |𝑆 | Pr[𝑆 ⊆ paths(𝑡)] for all 𝑆 .

We are almost ready to state the basic sampling argument. We
need the notion of a “convex combination” of random variables.
We say a random variable (such as our permutation) 𝑡 is a convex
combination of random variables 𝑡𝑖 , denoted by 𝑡 ≡ ∑

𝑖 𝛼𝑖𝑡𝑖 (where∑
𝑖 𝛼𝑖 = 1 and 𝛼𝑖 ≥ 0), if the following holds for all 𝑡 ′: Pr[𝑡 = 𝑡 ′] =∑
𝑖 𝛼𝑖 Pr[𝑡𝑖 = 𝑡 ′].
Informally, the basic sampling argument is a statement about a

uniform permutation 𝑢 ∼ F and how the distribution F changes if
we are given some “advice” about this permutation which is simply
a function 𝑔(𝑢). Roughly speaking, given that 𝑔(𝑢) evaluates to 𝑟
with probability at least 2−𝑚 , the distribution F conditioned on 𝑟 is
a convex combination16 of F(𝑝,𝛿) distributions where the number
of paths fixed is at most 𝑝 = 2𝑚/𝛿 . Here 𝛿 is a free parameter. We
slightly abuse the notation and write this basic sampling argument
as

F|𝑟 ≡ conv(F(𝑝,𝛿) ).

16In the convex combination, there is a small component, of weight at most 2−𝑚 , of
some arbitrary distribution.

If we view 𝑔(𝑢) as the output of the first quantum part of the
circuit for BPPQNC𝑑 , and 𝑢 as the oracle of interest (details are in
the next section), it is suggestive that 𝑢 |𝑔(𝑢) will be the oracle for
the second quantum part of the circuit. We can use the sampling
argument above and re-use our analysis because F and F(𝑝,𝛿) have
very similar statistical properties. However, it is unclear how to use
the sampling argument thereafter as the basic sampling argument
seems to only apply to F (and not to F(𝑝,𝛿) ). It turns out that one
can extend the sampling argument to obtain

F(𝑝
′,𝛿′) |𝑟 ≡ conv(F(𝑝+𝑝

′,𝛿′+𝛿) ).
Consequently, if the procedure is successively applied 𝑛̃ ≤ poly(𝑛)
times (starting with F), the convex combination would be over
distributions of the form F(𝑛̃𝑝,𝑛̃𝛿) . The parameters can be appropri-
ately chosen to ensure that at most polynomially many paths are
exposed but we omit the details in this overview.

Sampling argument for Injective Shufflers. The proofs of the pre-
viously mentioned statements do not rely on any special prop-
erty of the distribution F nor do they depend on the fact that we
were considering permutations. Any object for which we can de-
scribe a “reasonable” notion of “paths” admits such a sampling
argument. Therefore, as we did for permutations, to describe the
sampling argument, we change our viewpoint and consider “paths”
in L = (𝐻0, . . . 𝐻𝑑 ) instead of individual values taken by the 𝐻𝑖 ’s.
Recall that a “path” was a tuple of the form (𝑥0, 𝑥1 . . . ) such that
𝑥𝑖 = 𝐻𝑖−1 (𝑥𝑖−1) for all 𝑖 .

This viewpoint is inadequate for capturing the probabilistic be-
haviour of L due to two reasons (which are not hard to rectify).
First, since 𝐻0 : Σ → Σ𝑑

′ , it is clear that at least
���Σ𝑑′−1

��� many
points will never be contained in any “path” as described above.
Therefore the behaviour of most points in 𝐻𝑖 (for 𝑖 ∈ {1 . . . 𝑑}) will
not be captured by the “paths” viewpoint. Second, even though 𝐻𝑖

maps Σ𝑑′ → Σ𝑑
′ for 𝑖 ∈ {1, . . . 𝑑 − 1}, 𝐻𝑖 may not be injective and

therefore the paths might collide, which again would mean the
behaviour of many points would not be captured by the “paths”
viewpoint.

To rectify the second issue, we can select base sets (𝑆01, . . . 𝑆0𝑑 ) =:
𝑆0 and condition on the event 𝐸. Since in our proofs, we only care
about the behaviour of L on 𝑆0, it suffices to restrict our attention
to 𝑆0. Recall that L|𝐸 behaves as a permutation on 𝑆0. Therefore
no “path” inside 𝑆0 collides. To rectify the first issue, we consider
two kinds of paths—Type 0 paths and Type 1 paths.17 A Type 0 path
is what we described earlier: a tuple of the form (𝑥0, 𝑥1 . . . ) such
that 𝑥𝑖 = 𝐻𝑖−1 (𝑥𝑖−1) for all 𝑖 . A Type 1 path is a tuple of the form
(⌞⌟, 𝑥1, 𝑥2 . . . ) such that 𝑥1 ∉ 𝐻0 (Σ) (i.e. �𝑥0 st 𝐻0 (𝑥0) = 𝑥1) and
𝑥𝑖 = 𝐻𝑖−1 (𝑥𝑖−1) for all 𝑖 ∈ {2, 3 . . . }.

Observe that, restricted to 𝑆0 and conditioned18 on 𝐸, we have
the following equivalence: given Pr[𝐻𝑖 (𝑥) = 𝑥 ′] for all 𝑖 , 𝑥 and
𝑥 ′, one can compute the probability associated with both types of
paths and conversely, given probabilities associated with the paths,
one can compute Pr[𝐻𝑖 (𝑥) = 𝑥 ′] for all 𝑖 , 𝑥 and 𝑥 ′.

As is evident, working with L directly is cumbersome and we
therefore define a simpler object, the injective shuffler. Fix sets
17The 0 and 1 represent where the first non-⌞⌟ component sits.
18Recall, 𝐸 is the event that the oracles 𝐻0 and 𝐻1 . . . 𝐻𝑑 are injective on Σ and 𝑆0
resp.
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𝑆0𝑖 ⊆ Σ𝑑
′ of size |Σ𝑑+2 | for all 𝑖 ∈ {1, . . . 𝑑}. Let 𝐻 ′

0 : Σ → 𝑆01,
𝐻 ′
𝑖
: 𝑆0𝑖 → 𝑆0,𝑖+1 for all 𝑖 ∈ {1, . . . 𝑑 − 1} be injective functions and

let 𝐻 ′
𝑑
: 𝑆0𝑑 → {0, 1}𝑛 ∪ {⊥} (which may not be injective) such

that 𝐻 ′
𝑑
outputs ⊥ for all paths originating from Σ (and no other).19

We define the injective shuffler, Kas (𝐻 ′
0, . . . 𝐻

′
𝑑
).

Think of K as a simpler way to denote the relevant object as-
sociated with L|𝐸. What do we mean by the relevant object—not
only is it injective, it also never reveals any information20 about
the values taken by 𝐻̃ in Σ. As alluded to at the beginning of this
subsection, since the strings 𝑠𝑖 arise from quantum parts which
only get access to L via shadow oracles, the sampling argument
only needs to be applied to parts of L outside of paths in 𝐻̃ .

To state the sampling argument for the injective shuffler, we
define (𝑝, 𝛿) non-𝛽-uniform distributions F(𝑝,𝛿) |𝛽inj for the injective
shuffler (analogous to the way we defined them for permutations).
We begin with the uniform distribution—it is simply a distribu-
tion which assigns equal probabilities to all the possible injective
shufflers, given the sets (𝑆0𝑖 )𝑖 . As for 𝛽-uniform distributions, F |𝛽inj,
we first need to define the “paths”, 𝛽 . Here, 𝛽 will again be a set
of “non-colliding paths” but formalising this requires some care
(details in the full version [10]). Then a 𝛽-uniform distribution is
the same as the uniform distribution except that the paths in 𝛽

are fixed. Omitting further details, one can define F(𝑝,𝛿) |𝛽 to be a
distribution which is “𝛿 close to” the 𝛽-uniform distribution with
at most 𝑝 many paths fixed (in addition to 𝛽).

The sampling argument for injective shufflers is the following.
Suppose we start with 𝑡 ∼ F𝛿

′ |𝛽
inj (i.e. a distribution which is “𝛿 ′

close to” 𝛽-uniform) and are given some advice ℎ(𝑡) which happens
to be 𝑟 with probability at least 2−𝑚 . Then the distribution F𝛿

′ |𝛽
inj

conditioned on 𝑟 is, roughly speaking, a convex combination21

of F(𝑝,𝛿+𝛿
′) |𝛽

inj distributions where the number of paths fixed (in
addition to 𝛽) is at most 𝑝 = 2𝑚/𝛿 and 𝛿 again is a free parameter.
Using the previous shorthand, we have

F
𝛿′ |𝛽
inj |𝑟 ≡ conv(F(𝑝,𝛿+𝛿

′) |𝛽
inj ).

Stitching everything together. As asserted before we described
the sampling argument, one can replace all the oracles L in
the quantum part of the circuit for BPPQNC𝑑 with appropriate
shadow oracles. Let M11, . . .M1𝑑 denote the shadow oracles for
the first quantum part, M21 . . .M2𝑑 for the second quantum part
and so on. Suppose the paths queried by the 𝑖th classical part were
𝛽𝑖 , the string outputted by the 𝑖th quantum part be 𝑠𝑖 . Suppose
M11 . . .M1𝑑 . . .M𝑖−1,1 . . .M𝑖−1,𝑑 have been specified. Now, condi-
tioned on 𝑠𝑖 , the sampling argument says L|𝑠𝑖 behaves as a convex
combination of injective shufflers with certain paths exposed, when
restricted to base sets. Let 𝛽 (𝑠𝑖 ) be the random variable which speci-
fies these paths and occurs with the weights specified in the convex
combination. One can define M𝑖1 . . .M𝑖𝑑 as in the QNC𝑑 case, en-
suring the paths 𝛽1 . . . 𝛽𝑖−1 and 𝛽 (𝑠1) . . . 𝛽 (𝑠𝑖−1) have been exposed.
Note crucially that 𝑠𝑖 is obtained by a quantum part which only had

19i.e. 𝐻 ′
𝑑
(𝑥𝑑 ) =⊥ iff (𝑥0, 𝑥1, . . . 𝑥𝑑 , 𝑥𝑑+1) is a Type 0 path (therefore 𝑥𝑑+1 =⊥).

20Except for polynomially possibly many paths exposed by classical queries; we handle
these shortly.
21Again, neglecting a component with weight at most 2−𝑚 .

access toLvia shadow oracles so it does not change the distribution
over 𝐻̃ (except for polynomially many paths which were already
exposed, 𝛽1 . . . 𝛽𝑖−1 and 𝛽 (𝑠1) . . . 𝛽 (𝑠𝑖−1)). Using a hybrid argument
as in the QNC𝑑 case, and using properties of the injective shuffler
which is “𝛿 close” to being uniform, one can apply the O2H lemma
and conclude that the hybrids (again, defined as in the QNC𝑑 case)
are close in trace distance. Eventually, this yields that the initial
circuit is close in trace distance to the circuit which only accesses
L via the shadows M11 . . .M1𝑑 . . .M𝑚1 . . .M𝑚𝑑 in the quantum
part (denote the number of quantum parts by𝑚 ≤ poly(𝜆)). The
latter circuit cannot solve 𝑑-CodeHashing again, because 𝐻̃ is only
accessed by the classical parts of this circuit. More precisely, 𝐻̃ is
only queried at at most |𝛽1 ∪ . . . 𝛽𝑚 ∪ 𝛽 (𝑠1) ∪ . . . 𝛽 (𝑠𝑚) | ≤ poly(𝜆)
locations and therefore the whole circuit can be simulated while
only making polynomially many classical queries to 𝐻̃ . From the
soundness of CodeHashing, this entails 𝑑-CodeHashing cannot be
solved.

2.1.5 𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑 . Just as the analysis of

the BPPQNC𝑑 case built on the QNC𝑑 case, one can analyze the
BPPQNC

BPP
𝑑 case by building on the QNCBPP

𝑑
case. While the high

level idea stays the same, the details are more involved. This is
partly because, in the QNC𝑑 case, one could construct the shadow
oracles M1 . . .M𝑑 “all at once” since we were assuming the “worst
case”, i.e. the quantum algorithm learns everything there is to learn
from the shadow oracles. However, in the QNCBPP

𝑑
case, to define

M𝑖 , one had to know the behaviour of the classical algorithms in
the hybrid circuits which involved M1 . . .M𝑖−1 (in particular one
has to know the “paths” that have been exposed). We show how
one can account for this, but we leave the details to the main body.

2.1.6 Proof of Quantum Depth. In this subsection, we discuss how
our complexity-theoretic separations also yield protocols for certi-
fying quantum depth, i.e. proofs of quantum depth, in a way that is
insensitive to classical polynomial depth. First, let us be a bit more
precise about what we mean by proof of quantum depth.

Definition (informal). A proof of 𝑑 quantum depth is a two-
message protocol involving two parties, a verifier and a prover.
Both parties are assumed to have access to the random oracle 𝐻 .
The verifier is a PPT machine. The protocol satisfies the following,
where 𝜆 is the security parameter.

• Completeness: There is a prover in BQP which makes the
verifier accept with probability 1 − negl(𝜆).

• Soundness: No prover in BPPQNC
BPP
𝑑 makes the verifier ac-

cept with probability more than negl(𝜆).

A1

β1

L

~U1

s1

β∗(s1)

~M1

A2

β2

L

~U2

s2

β∗(s2)

~M2

Am+1

L

Figure 2: Here ®M𝑖 denotes the shadow oracles (M𝑖1, . . .M𝑖𝑑 ).
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Let 𝑑 be at most a fixed polynomial. Since 𝑑-CodeHashing is in
NP, it immediately yields a proof of 𝑑 quantum depth.

We conclude this discussion by illustrating the subtlety of con-
sidering proofs of quantum depth with more than two messages.
Consider the following protocol.

Example 12. The verifier, Alice, prepares BB84 states |𝑏𝑖 ⟩𝜃𝑖 :=
𝐻𝜃𝑖 |𝑏𝑖 ⟩ (𝑏𝑖 , 𝜃𝑖 are both chosen uniformly at random) for 𝑖 ∈
{1, . . . 𝑛} where 𝐻 is the Hadamard operation (not to be confused
with the random oracle). She sends them all to the prover, Bob.

Alice and Bob then engage in an 𝑛 round protocol. In the 𝑖-
th round, Alice sends 𝜃𝑖 and Bob sends 𝑏 ′

𝑖
. Alice accepts if 𝑏1 =

𝑏 ′1, . . . 𝑏𝑛 = 𝑏 ′𝑛 .

In this example,22 it is not hard to see that Bob has to have 𝑛
layers of unitaries. Could this simple construction already constitute
a proof of quantum depth? Consider the following observations.

• Spoofed by𝑛 single quantum depth devices. It is easy to see that
Bob can pass this test using 𝑛-many single-qubit quantum
devices, each ofwhich need only apply one quantum gate and
make one computational basis measurement. The protocol
works by simply delaying the application of the quantum
gate and subsequent measurement. It is therefore difficult to
call this a proof of quantum depth in any meaningful way.

• Interaction seems superfluous. The only use of the interaction
is to introduce a delay. The same effect could be achieved
with a single round protocol where Alice delays sending her
message. Therefore, this procedure, at best, certifies “idle
coherence” time.

The example shows how defining quantum depth in interactive set-
tings can be quite subtle. We refer the reader back to the discussion
in Section 1.3 for our proposal of what this definition should be.

2.1.7 Tighter Upper Bounds. Ideally, one would like to show the
more fine-grained separation BPPQNC

BPP
𝑑 ⊊ BPPQNC

BPP
𝑑+1 . Since the

best known algorithm for solving YZ’s CodeHashing uses poly-
nomial depth, 𝑑-CodeHashing inherits this limitation. By using
a different problem, we overcome this limitation and show the
following.

Theorem 13. Relative to a random oracle, QNC2𝑑+O(1) ⊈

BPPQNC
BPP
𝑑 which implies BPPQNC

BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) .

We obtain the above by instantiating our lifting procedure,
𝑑-Rec[·], with a variant of the proof of quantumness from [17],
which we refer to as CollisionHashing. It is straightforward to
show that CollisionHashing also satisfies classical query soundness
by using the main argument in [17] and the query lower bound for
finding collisions proved in [4].

Let 𝑔 be a 2 → 1 function for which it is hard to find a collision.
Then, the (slightly simplified) problem is to produce a pair (𝑦, 𝑟 )
such that 𝑟 · (𝑥0 ⊕𝑥1) ⊕𝐻 (𝑥0) ⊕𝐻 (𝑥1) = 0where {𝑥0, 𝑥1} ∈ 𝑔−1 (𝑦).
This problem can be solved in QNCO(1) (assuming that calls to 𝑔
take only depth 1) by preparing the superposition

∑
𝑥 |𝑔(𝑥)⟩ |𝑥⟩,

22While we used quantum communication in the protocol, one could (using known
results) delegate the production of these states to the prover (under computational
assumptions) and run a similar protocol using classical communication.

measuring the second register in the standard basis, and the first in
the Hadamard basis (detailed later).

We said simplified because in CollisionHashing, 𝑔 is in fact a uni-
formly random function𝑔 (treated as an oracle) with a domain twice
as large as the co-domain. Note that this is not a 2 → 1 function in
general. However, with overwhelming probability, a constant frac-
tion of the elements in the co-domain has exactly two pre-images.
Then, we require a pair (𝑦, 𝑟 ) such that either 𝑦 has exactly two
pre-images and (𝑦, 𝑟 ) satisfies the “equation”, or 𝑦 does not have
exactly two pre-images. The limitation of CollisionHashing is that
solutions to the problem are not verifiable, so the problem cannot
be used to obtain a fine-grained proof of quantum depth.

2.2 Separations Of Hybrid Quantum Depth
Classes

2.2.1 Establishing BPPQNCO(1) ⊈ QNCBPP
𝑑

. We describe our sec-
ond lifting procedure, called 𝑑-Ser[·]. This takes any problem
P ∉ BPP (relative to a random oracle) that satisfies offline sound-
ness, and produces a new problem 𝑑-Ser[P] ∉ QNCBPP

𝑑
(see

Lemma 7).
Denote by 𝑅𝐻 the set of solutions to P (defined with respect

to 𝐻 ). Then, the key idea is simple. The problem 𝑑-Ser[P] is to
return a tuple (𝑐0, 𝑐1, . . . , 𝑐𝑑 ) such that: 𝑐0 is a solution to P, i.e.
𝑐0 ∈ 𝑅𝐻 ( ·) ; 𝑐1 is a solution to P but with respect to 𝐻 (𝑐0 | |·), i.e.
𝑐1 ∈ 𝑅𝐻 (𝑐0 | | ·) , and similarly until 𝑐𝑑 , which should be such that
𝑐𝑑 ∈ 𝑅𝐻 (𝑐0 ...𝑐𝑑−1 | | ·) .

To be a bit more concrete, take P to be CollisionHashing.
We know CollisionHashing ∈ QNCO(1) . Clearly,
𝑑-Ser[CollisionHashing] ∈ BPPQNCO(1) . This is because
BPPQNCO(1) allows one to run polynomially many QNCO(1)
circuits. Consequently, one can use the first circuit to ob-
tain the classical output 𝑐0, use the second circuit to find 𝑐1
and so on. On the other hand, intuitively, we expect that
𝑑-Ser[CollisionHashing] ∉ QNCBPP

𝑑
. This is because to solve the

(𝑖+1)-th sub-problem, one seems to require the solution to all of the
previous 𝑖 sub-problems. Since there are 𝑑 + 1 sub-problems in total,
QNCBPP

𝑑
does not seem to suffice (here of course we are implicitly

using the fact that P ∉ BPP). Formally, the argument proceeds in a
similar way as for the lifting map 𝑑-Rec in Subsection 2.1.3, except
for one subtlety which is handled by requiring that the problem
P satisfies the extra property of offline soundness. We refer the
reader to the main text for more details. We remark that offline
soundness follows from classical query soundness and therefore
both CollisionHashing and CodeHashing satisfy it.

The immediate consequence of the existence of the lifting map
𝑑-Ser[·] is that BPPQNCO(1) ⊈ QNCBPP

𝑑
(first part of Theorem 4).

However, we can also leverage 𝑑-Ser[·], together with the sep-
aration from the next subsection, to show that BPPQNC

BPP
O(1) ⊈

BPPQNC𝑑 ∪QNCBPP
𝑑

(Theorem 5). This is done as follows.
In Subsection 2.2.2, we introduce the problem

𝑑-hCollisionHashing (which also satisfies offline soundness),
and argue that it is in QNCBPP

O(1) , but not in BPPQNC𝑑 . Now,
applying the lifting map to it gives 𝑑-Ser[𝑑-hCollisionHashing] ∉
BPPQNC𝑑 ∪ QNCBPP

𝑑
. To obtain the containment, notice that

𝑑-Ser yields a problem that can be solved by solving 𝑑 + 1
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many instances of the original problem. Thus, it follows that
𝑑-Ser[𝑑-hCollisionHashing] ∈ BPPQNC

BPP
O(1) .

2.2.2 EstablishingQNCBPP
O(1) ⊈ BPPQNC𝑑 . This is the more surpris-

ing of the two hybrid separations, and its proof is more involved.
In this section, we fix 𝑑 ≤ 𝑝𝑜𝑙𝑦 (𝜆). The problem that yields this
separation is the following variation on CollisionHashing: given
access to a 2-to-1 function 𝑔 23, and to 𝐻0, . . . 𝐻𝑑 (which specify ℎ
as ℎ = 𝐻𝑑 ◦ · · · ◦ 𝐻0), find a pair (𝑦, 𝑟 ) such that

𝑟 · (𝑥0 ⊕ 𝑥1) ⊕ 𝐻 (ℎ(𝑦) | |𝑥0) ⊕ 𝐻 (ℎ(𝑦) | |𝑥1) = 0 ,

where {𝑥0, 𝑥1} = 𝑔−1 (𝑦). We refer to the new problem as
𝑑-hCollisionHashing.

Without relying on ℎ (that is, requiring that the equation to be
satisfied is just 𝑟 · (𝑥0 ⊕ 𝑥1) ⊕ 𝐻 (𝑥0) ⊕ 𝐻 (𝑥1) = 0), this problem is
the same as CollisionHashing. This can be solved in QNCO(1) as
follows:

(i) Evaluate 𝑔 on a uniform superposition of inputs, obtaining∑
𝑥 |𝑥⟩ |𝑔(𝑥)⟩,

(ii) Measure the image register obtaining some outcome 𝑦 and a
state ( |𝑥0⟩ + |𝑥1⟩) |𝑦⟩,

(iii) Query a phase oracle for 𝐻 to obtain ((−1)𝐻 (𝑥0) |𝑥0⟩ +
(−1)𝐻 (𝑥1) |𝑥1⟩) |𝑦⟩,

(iv) Make a Hadamard basis measurement of the first register,
obtaining outcome 𝑟 .

At a high level, in order to solve the new problem, which in-
cludes the evaluation of ℎ as an input to 𝐻 , one needs the ability to
perform a (classical) depth 𝑑 computation to evaluate ℎ(𝑦) (since
this requires the sequential evaluations of 𝐻0, . . . , 𝐻𝑑 ). Note that a
QNCBPP algorithm can solve this problem: the only modification to
the algorithm described above is that, at step (iii), the algorithm first
computes ℎ(𝑦) (using polynomial classical computation), and then
queries the oracle 𝐻 on a superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1).
One can easily verify that this leads to a valid (𝑦, 𝑟 ) for the problem.

Next, we sketch how one can argue that the problem cannot
be solved in BPPQNC. The key technical ingredient is a “struc-
ture theorem” that characterizes the structure of efficient quantum
strategies that are successful at CollisionHashing. Our structure
theorem applies equally to the proof of quantumness protocol from
[17] (recall that the latter is just a version of collision hashing where
𝑔 is replaced by a 2-to-1 trapdoor claw-free function).

Theorem 14 (informal). Let 𝑃 be any BQP prover that succeeds
with 1 − negl(𝑛) probability at the proof of quantumness protocol
from [17], by making 𝑞 queries to the oracle𝐻 . Then, with 1−negl(𝑛)
probability over pairs (𝐻,𝑦), the following holds. Let 𝑝𝑦 |𝐻 be the
probability that 𝑃𝐻 outputs 𝑦, and let 𝑥0,𝑥1 be the pre-images of
𝑦. Then, for all 𝑏 ∈ {0, 1}, there exists 𝑖 ∈ [𝑞] such that the state
of the query register of 𝑃𝐻 right before the 𝑖-th query has weight
1
2𝑝𝑦 |𝐻 · (1 − negl(𝑛)) on 𝑥𝑏 .

23Since we want our problem to be relative to a uniformly random oracle, in the formal
description of the problem in the main text, we will not assume that 𝑔 is exactly 2-to-1.
Rather we will take 𝑔 to be a uniformly random function with domain twice as large
as the co-domain, and simply restrict our attention to 𝑦’s in the co-domain that have
exactly two pre-images (this is a constant fraction of the elements of the co-domain
with overwhelming probability).

See the full version [10] for a formal statement of this result. This
is a crucial strengthening of a Theorem from [26], and employs the
compressed oracle technique [44]. A slight adaptation of this to our
problem asserts that a successful strategy must be querying the
random oracle 𝐻 at a (close to) uniform superposition of (ℎ(𝑦), 𝑥0)
and (ℎ(𝑦), 𝑥1).

Now let 𝐴 be a BPPQNC algorithm that succeeds at
𝑑-hCollisionHashing with high probability and let 𝑞 be the total
number of queries to ℎ made by the algorithm.

Then, one can show that, since the QNC part of the algorithm
does not have sufficient depth to evaluate ℎ (which is a sequential
evaluation of𝐻0, . . . , 𝐻𝑑 ), we can assume, without loss of generality,
the QNC part of 𝐴 has no access to ℎ. In other words, all of the
queries to ℎ are classical.

Now, Theorem 14 says essentially that, for any 𝑦, the only way
to succeed with high probability (conditioned on that 𝑦 being the
output) is to query (with as much weight as the probability of
outputting 𝑦) a uniform superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1).
However, observe that, for any 𝑦, the only way for 𝐴 to query 𝐻

(with a high weight) at a uniform superposition of (ℎ(𝑦), 𝑥0) and
(ℎ(𝑦), 𝑥1) is to correctly guess the value of ℎ(𝑦). Since this value is
uniformly random for any algorithm that has not queried ℎ at 𝑦, it
follows that querying 𝐻 at the uniform superposition of (ℎ(𝑦), 𝑥0)
and (ℎ(𝑦), 𝑥1) must necessarily happen after the algorithm has
already queried ℎ on 𝑦.

This implies that there must exist an 𝑖∗ ∈ [𝑞] such that, with
high probability,𝐴 outputs 𝑦, 𝑟 such that 𝑦 is contained in the list of
classical queries made to ℎ up to the 𝑖∗-th query. Denote such a list
by 𝐿𝑖∗ . Moreover, with high probability over 𝐿𝑖∗ , the continuation
of 𝐴 (from that point on) queries 𝐻 at a uniform superposition of
(ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1) for some 𝑦 ∈ 𝐿𝑖∗ . We show that such an
algorithm 𝐴 can be leveraged to extract a collision for 𝑔.

The key observation is that, since 𝐴 is a BPPQNC algorithm, and
all of the queries to ℎ happen in the BPP portion of 𝐴, the “state”
of algorithm 𝐴 right after the 𝑖∗-th query to ℎ is entirely classical.
Thus, one can take a “snapshot” of the state of 𝐴 at that point
(i.e. copy it), and simply run two independent executions of 𝐴 from
that point on (with independent classical randomness). By what
we argued earlier, with high probability, there exists 𝑦 ∈ 𝐿𝑖∗ , such
that the execution of 𝐴 from that point on, queries 𝐻 at a uniform
superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1). Since the two executions
are identical and independent, it follows that measuring the query
registers of 𝐻 in both executions will yield distinct pre-images of 𝑦
with significant probability.

Finding collisions of 𝑔 is of course hard (for any query-bounded
quantum algorithm) [4]. Hence, this yields a contradiction. For
details, we refer the reader to the full version [10].
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