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A DETERMINATION OF THE BLOWUP SOLUTIONS TO THE FOCUSING
NLS WITH MASS EQUAL TO THE MASS OF THE SOLITON

BENJAMIN DODSON

ABSTRACT. In this paper we prove rigidity for blowup solutions to the focusing, mass-critical
nonlinear Schrodinger equation in dimensions 2 < d < 15 with mass equal to the mass of the
soliton. We prove that the only such solutions are the solitons and the pseudoconformal transfor-
mation of the solitons. We show that this implies a Liouville result for the nonlinear Schrédinger
equation.

1. INTRODUCTION

In this paper we continue the study begun in [Dod21a] of the focusing, mass-critical nonlinear
Schrédinger equation

(1.1) iug+ Au+ Juldu =0,  u(0,z) =ug(z) € LA(RY).

In [Dod21a] we proved a rigidity result for solutions to (1.1) in one dimension with mass equal to
the mass of the soliton. In this paper we address higher dimensions.
In general, the Hamiltonian equation

(1.2) iug + Au + |ulPu =0,
has the scaling symmetry
(1.3) u(t,z) > v(t, z) = AT Tu(A2, Az).

That is, if u solves (1.2), then v solves (1.2) for any A > 0, where v is given by (1.3). In particular,
(1.1) is called L2-critical or mass-critical, since if u solves (1.1), then

(1.4) o(t, z) = A2u(\2t, Ax)
is also a solution to (1.1) with initial data vy = A%?ug(Az). A change of variables calculation
verifies that |lvo||rz = [Juol| L2

As in one dimension, the scaling symmetry (1.4) completely controls the local well-posedness
theory of (1.1). Indeed, [CW90] proved

Theorem 1. The initial value problem (1.1) is locally well-posed for any ug € L?.

(1) For any ug € L* there exists T'(ug) > 0 such that (1.1) is locally well-posed on the interval
(—T,T).

(2) If ||uollzz is small then (1.1) is globally well-posed, and the solution scatters both forward
and backward in time. That is, there exist uy, u_ € L*(RY) such that

. _itA _ . _itA —
(1.5) t}linooﬂu(t) e"uyllz =0, t%rpoo||u(t) e"u_||r2 = 0.
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(3) If I is the mazimal interval of existence for a solution to (1.1) with initial data ug, u is
said to blow up forward in time if
(16) lim ||u|| 2(d+2) = +00.
T Zsup([) te?  ([0,T]xR%)
If u does not blow up forward in time, then sup(I) = +o00 and u scatters forward in time.
(4) If sup(I) < oo, then for any s > 0,
1.7 lim  ||u(t)||gs = +o0.
1.7 im0l
(5) Time reversal symmetry implies that the results corresponding to (3) and (4) also hold going
backward in time.

Proof. The proof in [CW90] combines Strichartz estimates (see [GV92], [KT98], [Str77b],[Yaj87])
with Picard iteration. See Section 1.3 of [Dod19] or Section 3.3 of [Tao06] for a detailed proof. See
also [GV79b], [GV79a], [GV85], and [Kat87]. O

Theorem 1 also holds for the defocusing, nonlinear Schrédinger equation,
(1.8) iuy 4+ Au — |ul*u = 0, u(0,2) = up(z) € L*(RY),

and the proof is identical.
However, the global theory for (1.1) with large data differs substantially from the global theory
for (1.8) with large data. Observe that the equation

(19) iut+Au—u|u|p_1u: 0,

is the Hamiltonian equation for the Hamiltonian
1 14

(1.10) E(u(t)) = 5[IVu(®)|z2 + ——=lu®)|]5+: = E(u(0)).
2 p+1

Both (1.1) and (1.8) conserve the mass
(1.11) M(u(t)) = /|u(t,:c)|2d:v — M(u(0)).

When g = +1, as in (1.8), the energy (1.10) is positive definite, so for ug € H'(R?), conservation
of energy guarantees a uniform bound on |[u()|| 1 (ra), which by (1.7) guarantees that the solution
u to (1.8) with initial data ug € H! is global. Global well-posedness and scattering for (1.8) for
general ug € L? was proved in [Dod12], [Dod16b], and [Dod16a]. When u = —1, the energy is given
by

(12 Bu(t) = 5 [ IVatt)Ps - 5o [ute) e

The most that (1.11) and (1.12) guarantee is a uniform bound on ||Vu(t)|| 2 for ||ug|/r2 below
a threshold mass. Indeed, in two dimensions, a straightforward application of the fundamental
theorem of calculus and Hoélder’s inequality implies

(1.13)

[t g)itandy < [t g) P gt 52) Pdsa) P2 e 50) Pdsa) 2 dady
< [ (] luattesnPas) 2 s Pdsn) 2 e, so) Pdsa) V2 s, 52) Pdse) P dady

< IVl ZallullZ:-



Therefore, there exists a threshhold mass My for which, if ||ug||z2 < Mo,
(1.14) E(u(t)) Zm, Hu(t)H?ip(Rz)a
with implicit constant N\, 0 as |lug||rz /* Mp. In higher dimensions, by the Sobolev embedding
theorem,
2(dd+2) % 5
(1.15) lull sarn S llulzlVelze,
Ly ¢ (R
so then (1.15) holds in dimensions d > 3 for some M, that may depend on d.

Remark 1. See the introduction to [Dod21a] and references therein for more information on blowup
for mass-subcritical and mass-supercritical results.

From [Wei83], the optimal constant in (1.13) and (1.15) is given by the Gagliardo—Nirenberg
inequality,

2(d+2) d+2 |lul3s
1.16 ul| 2 < —= L2 |IVul|?2,
( ) ” ||L2(dd+2) (R4) d (HQHi/zd)H ||L2

where () is the unique positive, radial solution to
(1.17) AQ+ Q1T =Q.

Remark 2. The unique positive, radial solution to (1.17) is called the ground state. See [BLT7S],
[BLP81], [Kwo89], and [Str77a] for the existence and uniqueness of a ground state solution to (1.17)
in general dimensions.

Thus, (1.12) implies that (1.1) with initial data ug € H' and |lug||zz < [|Q| 2 is globally well-
posed. Global well-posedness and scattering for (1.1) with a general ||ug||r2 < ||@Q]/r2 was proved
in [Dod15].

It is straightforward to see that u(t,z) = e®Q(x) solves (1.1), which gives a solution to (1.1)
with mass |[uo||z2 = ||@Q||2 that blows up both forward and backward in time (according to (1.6)).
Making a pseudoconformal transformation of e®Q(z),

1 i, =2 @
_Jr_
td/2et a Q(?)a

is a solution to (1.1) that blows up as t N\, 0. Observe that ||Vu(t)|/z2 oo as t \, 0 for (1.18).

(1.18) u(t,z) =

The soliton solutions and the pseudoconformal transformations of the solitons are the only solu-
tions to (1.1) with mass ||ug||zz = ||@Q]|z2. Previously, in [Dod21a], we proved

Theorem 2. In dimension d = 1, the only solutions to (1.1) with mass ||uo|L2 = ||Q||L2 that blow
up forward in time are the family of soliton solutions

(1.19) e =0 e\ 2Q(N (@ - 20) + 79),  A>0, OER,  wm€ER, &HER,
and the pseudoconformal transformation of the family of solitons,
1/2 (o —&) — (T —
A ¥ (e —co)® ei%Q(A(iﬂ &) — (T t)$0)7
(1.20) (T —t)1/2 T—t
where A >0, 0 € R, o € R, & € R, T e R, t<T.

In this paper we prove the same result in dimensions 2 < d < 15.
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Theorem 3. In dimensions 2 < d < 15, the only solutions to (1.1) with mass ||ug||rz = ||Q]| 2
that blow up forward in time are the family of soliton solutions
(1.21)

emi0itleo* iNtgiv o Nd/20) (\(z — 2t€0) + 20), A>0, OeR, xzoeRL g eR?
and the pseudoconformal transformation of the family of solitons,

A2 g dae a2 N — &) — (T = t)zo
— AE—T) p'i—T
(1.22) DL e T Q( - ),

where X >0, 6 R, zo € RY, & € RY, T € R, t<T.

Applying time reversal symmetry to (1.1), this theorem completely settles the question of qualitative
behavior of solutions to (1.1) for initial data satisfying ||uol|r2 = Q]| L2-

Remark 3. The obstruction to proving Theorem 3 in dimensitons d > 16 appears to be a purely
technical obstruction. The issue arises only in section ten, and will be discussed in more detail
there.

The proof of Theorem 3 relies heavily on the virial identity
(1.23) % / o Im[aVu)(t, 2)de = 4B (u(t)).
Using the Pohozaev identity,
(1.24) B@ =5 [@-2Q- Q" (GQ+s Y@y =0

Thus, by (1.16), @ is a minimizer of the energy when |u|zz = ||@]|z2. In fact, up to scaling, Q
is the unique minimizer of the energy (see [Wei83]). So when ||u||z2 = ||Q||L2, the energy E(u) in
(1.12) gives a good measurement for the distance from u to the set

(1.25) {ePN2Q(\x +20) : A >0, x€RY  HeR}.

However, E(u) is not invariant under the scaling symmetry (1.4), so this notion will not be made
precise until later. It will also be necessary to account for the Galilean transformation, which does
change the energy.

The proof of Theorem 3 will occupy most of the paper, and will follow the argument in [Dod21a).
There are many places where the argument is exactly the same, and in those places the argument
will often be abbreviated, and the reader will be referred to [Dod21a] for more details. There are
other places where the argument is much more technically difficult, especially in dimensions d > 3.

This is due to the fact that F(z) = |z|*/9z is not a smooth function of z in dimensions d > 3.
Circumventing this difficulty will rely on the tools in [Tay07] and [Vis07], along with bounds on
VQ(z)

o)== for some o > 0, when @ is the ground state solution to (1.17). Theorem 25 is the only
obstacle to the proof of Theorem 3 in dimensions d > 16.

However, before proving Theorem 3, it will be useful to cite two previous results making partial
progress in the direction of Theorem 3.

Theorem 4. If ug € H', ||lugllz2 = ||Q]|12, and the solution u(t) to (1.1) blows up in finite time
T > 0, then u(t,x) is in the form of (1.22).

Proof. This result was proved in [Mer92] and [Mer93], and was proved for the focusing, mass-critical
nonlinear Schrodinger equation in every dimension. O
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For the mass-critical nonlinear Schrédinger equation in higher dimensions with radially symmet-
ric initial data, [KLVZ09] proved

Theorem 5. If ||ugllre = [|Qllr2 is radially symmetric, and u is the solution to the focusing,
mass-critical nonlinear Schrodinger equation with initial data ug, and w blows up both forward and
backward in time, then u is equal to (1.21) with zo = & = 0.

After proving Theorem 3, we will show how Theorem 3 implies a Liouville result for blowup
solutions to the mass-critical problem. This result is very similar in nature to the Liouville result in
[MMOO] for the generalized KdV equation. This result holds in any dimension for which Theorems
2 or 3 hold.

2. REDUCTION OF A BLOWUP SOLUTION

As in [Dod21al, the first step is to reduce Theorem 3 to a result for solutions to (1.1) that blow
up forward in time and are close to the family of solitons for every positive time.

Theorem 6. Let 0 < n. < 1 be a small, fixred constant to be defined later. If u is a solution to

(1.1) on the mazimal interval of existence I C R, |luo|lr2z = ||Q|l2, u blows up forward in time,
and
(2.1) sup inf e e ENY 20 (t, Az + &) — Q|2 < 14,

n
te[0,sup(I)) YER,A>0,£€R4, ZERY

then u is a soliton solution of the form (1.17) or a pseudoconformal transformation of the soliton
of the form (1.18).

Theorem 3 follows from Theorem 6.

Proof that Theorem 6 implies Theorem 3. Let u be a blowup solution to (1.1) with mass ||uol|z2 =
Q2. By (1.17),

inf iy imf)\d/Q A =N
(2.2) >‘>01'Y€R11151€Rd,EGRd le*e uo(Az + &) = Q)| r2(ra)

I Tr—2x
= inf ug(x) — e e iR \4/2 .
R S [[uo(z) Q=2 ra)

As in the d = 1 case, there exist zg € R?, & € R, A\g > 0, 79 € R where this infimum is attained.

Lemma 1. There exists A\o > 0, 70 € R, 29 € RY, and & € R?, such that
(2.3)

. . & —
o) —e~ e 52 QUE ) =

inf wup(z)—e~ Ve % \—d/2 '
A>0,7€R,z€R?,EER? () Q( /\_)||L2

Proof. As in one dimension, the ground state solution @ is smooth and rapidly decreasing.
Theorem 7. There exists a unique positive radially symmetric solution @ to
(2.4) AQ+ Qi =Q

in H' which is called the ground state. In addition, Q@ € C*®(R%), 8,Q(r) < 0 for all r > 0, and
there exists § > 0 such that

(2.5) 10°Q(z)| <o e, Ve € RY, Vo € Z%.
Proof. See page 641 of [CMPS16]. O
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Throughout the paper, (f,g)r2 will denote the inner product

(2.6) (F9)1 = Re [ F@g(o)de

Since @ is smooth and rapidly decreasing,
(o(2) — e~ e S A2

(2.7)
= 2[|Q[13> — 2™ e EAT2Q(

),UO(,T) . e—iye—izé)\—dﬂQ(‘x—;j))Lz
ﬂ)vu(J(x))sz

is differentiable in v € R, ¢ € R%, # € R?, and A > 0. Since

27
—iy —iz Sy — r—x
(2.8) / (e b d/2Q( 3 ), uo(x))r2dy =0,
0

if (2.3) = 2||Q||%, then (2.7) = 2||Q||%, for any X, v, Z, and &. In this case it is convenient to take
Mo =1,7%=0,&=0,and & =0. If (2.3) < 2||Q||32, then since

Tr—x

A

(2.9) (e7e SN PQ(= ) uo()) 2 0,
as A oo, A N\ 0, |Z] = oo, or |£] = oo, (2.3) is equal to the infimum over a compact set
[A1, Ao] x {€: €] < R} x {Z: |2] < R} x [0, 27]. Indeed, (2.9) holds as A \, 0 or A * oo, uniformly
over I and &, so restrict A € [A1, A2]. Then (2.9) holds as |Z| — oo, uniformly over A € [A1, A2] and
¢ € RY, so restrict 7 € {x : |x| < R} for some large R. Finally, (2.9) holds as |¢| — oo for |Z| < R
and A € [A1, A2]. Since (2.7) is continuous in A, Z, £, and 7, the infimum is attained on this compact
set. |

Now recall the sequential convergence results of [Fan21] and [Dod21b).

Theorem 8. Assume u is a symmetric solution to (1.1) with ||u||r2 = ||Q||L2 that does not scatter
forward in time. Let (T—(u),Ty(u)) be its lifespan. Then there exists a sequence t, — Ty (u) and
a family of parameters Ay, vn such that

(2.10) ALY 20t Anz) = Q, in L2
Proof. This is proved in Theorem 1.3 of [Fan21]. O
Theorem 9. Assume u is a solution to (1.1) with ||ug|lrz = ||Q| L2 which blows up forward in

time. Let (T_(u), T4+ (u)) be its lifespan. Then there exists a sequence t, /Ty (u) and a family of
parameters Aen, Yens Exns Txn Such that

(2.11) e”**"emf*”‘)\i/,fu(tn, Ain® + Tun) = Q, in L2

Proof. This is proved in Theorem 2 of [Dod21b]. O

Then make the same argument as in [Dod21a], where we proved that Theorem 6 implies Theorem
4 and that Theorem 20 implies Theorem 5. 0



3. DECOMPOSITION OF THE SOLUTION NEAR Q

Under the assumptions of Theorem 6, when 7, < 1 is sufficiently small, it is possible to decom-
pose u into the sum of a soliton and a remainder for which the linearization of (1.17) has good
spectral properties. Recall that in one dimension, the linearization of (1.17),

(31) L= _6mm+1 _5Q47

has one negative eigenvalue and one zero eigenvalue. Choose A, £, Z, and ~ so that the difference €
between the soliton and the solution u acted on by the representation of the group element (A, £, Z, )
is orthogonal to these two eigenvectors. The fact that £ is positive definite on a subspace containing
€ gives lower bounds on various virial and energy identities as a function of the size of e.

The same can be done in higher dimensions. In two dimensions, the spectral theory for

(3.2) L=—-A+1-3Q% L o=-A+1-Q%
is found in [CGNTO08], [Kwo89], and [Mar02]. From the product rule, for any j = 1,2,

Thus @, are eigenvectors of £ with eigenvalue zero. These are the only two, and there is only one
eigenvector of £ with negative eigenvalue.

Theorem 10. The following holds for an operator L defined in (3.2).
(1) L is a self-adjoint operator and cess(L) = [1,+00).
(2) Ker(L) = span{Qz,, Qz, }-
(3) L has a unique single negative eigenvalue —X\g associated to a positive, radially symmetric
eigenfunction xo. Without loss of generality, xo can be chosen such that ||xollrz = 1.
Moreover, there exists 6 > 0 such that |xo(z)| < e~ for all x € R2.

Proof. This is Theorem 3.3 of [FHRY18]. O

In higher dimensions, [CGNTO08], [Kwo89], and [Wei85] proved a similar result for the spectral
theory of £ and £_.

(3.4) L:—A+1—i§fQi L_o=-A+1-Q1,
Theorem 11. The following holds for an operator L defined in (3.4).
(1) L is a self-adjoint operator and cess(L) = [1,+00).
(2) Ker(L) = span{Qz,, -+ ,Qu,}-
(3) L has a unique single negative eigenvalue —\g associated to a positive, radially symmetric
eigenfunction xo. Without loss of generality, xo can be chosen such that ||xollrz = 1.
Moreover, there exists § > 0 such that |xo(z)| < e 01l for all 2 € R?.

Proof. This theorem is copied from page 642 of [CMPS16]. O

For ug sufficiently close to @, it is possible to choose A, v, Z, and £ so that the remainder is
orthogonal to the kernel of £ and to the negative eigenvector.

Theorem 12. Take u € L2. There exists a > 0 sufficiently small such that if there exist \g > 0,
v € R, zg € RY, and & € R? that satisfy

(3.5) e e €0\ 2y Aoz + 20) — Q(x)]| 12 < a,
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then there exist unique X >0, v € R, & € R%, £ € R? such that if

(3.6) e(x) = e N 2y(Ax + 7) — Q(x),

then for j = 1,...,d,

(3.7) (6, x0)r2 = (&,ix0) 2 = (6, Qz,) 12 = (6,iQq;) 12 = 0,
and

f—{EO

Ao

A - A iv0 iz
(3.8) ||€||L2+|)\—0—1|+|7—”Yo—§0'(I—I0)|+|§—)\—0§0|+| | < llee™ o Nou(Noz+20)— Q|| 12

Remark 4. As usual, vy is unique up to translation by 2wn, where n is an integer.
Proof. Let f denote an element of the set
(3'9) f e {X07iXO7Q117"'7Q(Ed7iQ"E17"'7iQ(Ed}'
By Holder’s inequality,
(3.10) (€06 NP u(t, dx + 7) — Q(x), f) 2] S |le e AT 2u(Nox + F) — Q)| 2
The inner product in (3.10) is C! as a function of v, A, #, and £. Indeed,

9 iy ia- ~ - iy i ~
(3.11) 8_7(6W6m N 2y(da + &) — Q(x), )2 = (1™ N 2u(\e + &), e S |ull 2| £ Le-
Next, since all f are smooth with rapidly decreasing derivatives,

9 . . o

(812) Ze(€e A u(Ae +8) - Q(@), iz = (iwe e A u(he +8), iz S lullzzlof | 2.
Integrating by parts,

(3.13)
%(e”e”fwuw +8) = Q@) e = ("N Vu(\e + ), )2
L i i ~ . iy dx- ~ 1
= — (7N Pu(Ar + 5), V) — %(ze TN Pu(\r + ), e S S llule IVl + §||u||L2||f||L2.
Finally,
(3.14)
d

%(e”eimf)\d/zu()\x +2)—Qx), f)rz = (5)\d/2716i"e”'5u()\;v + &)+ Ve TN 2 Vuhx + E), f) 12

1 <l 1
S ylullzzllfllzz + Sollullzllzfllze + Sl zllzV £l 2.

Therefore, the inner product is a C' function of v, &, A, and #. Repeating the above calculations
would also show that the inner product is C2.

Computing (3.11)-3.14) at u=Q, =2 =~v=0, A =1,
(3.15)

O i i . . : .
a_’y(ez'yelz{)\d/zu()\:t + CE) - Q(x)a f)L2 |u:Q,>\:1,'y:i:£:0 = (lQa f)L2 =0 if f € {XOu ijalej}a

= (iQ,ix0)r2 = (@, Xx0)r2 >0, it f=ixo.



The fact that (@, xo0)rz > 0 follows from the fact that xo > 0 and > 0. Next,
(3.16)

0 i . . ) .
8—&(617611'5/\d/2u(/\517 +2) = Qx), f)r2lu=@ . =1,y=i=¢=0 = (121 Q, f)r2 = 0, it fe€{xo0,Qu,ix0},

, . 9j . , .
= (8@, iQa,)12 = (6@, Qu)re = —QNF> i f=iQu,  j=1..d

Next,
0 o s
—ik(e”e” N2y + 7) — Q(@), )2 lue@am1y—iet=0 = (Quy, f)r2 = 0,
0; . .
= (Qes Q)2 = ZIVRIT:, i f=Qu,  j=1.d
Finally,
(3.18)
o, .. .. 5 d
a(emew X 2u(Ax 4+ 1) — Q(x), f) 12 lue@rm1,y—imt—0 = (562 +2-VQ, f)r2=0
if f S {ixoviijanﬂj}7
d -1 .d 1 d 2
=(5Q+2-VQ,x0)r2 = ~—(5Q+7-VQ,Lxo0)r> = ——(L(3Q + - VQ),x0)2 = +—(Q, x0) >0,
2 Ad 2 Ad 2 Ad
it f=Xo

Therefore, by the inverse function theorem, there exists a unique A > 0, & € R?, ¢ € R? and
~v € R/27Z in a neighborhood of Ao, &y, xo, and ~ such that (3.7) holds.

The proof of (3.8) follows from acting on u by symmetries to map to \g =1, 2 =& =~ =0,
applying the inverse function theorem, and then mapping back to the original w. The proof of
uniqueness in Rsg x R" x R™ x R/27Z is identical to the proof of uniqueness in [Dod21a]. ]

Therefore, in Theorem 6, there exist functions
(3.19) A(t) : [0,sup(])) — (0, 00), £(t) : [0,sup(I)) — R,
' 2(t) : [0,sup(I)) = RY, ~(t) : [0,sup(])) = R,

such that (3.7) holds for all ¢ € [0, sup(])).

Furthermore, define a monotone function,

(3.20) s(t) : [0,sup(I)) — [0, 00), s(t) :/0 A1)~ 2dr.

As in Theorem 10 of [Dod21a], the functions in (3.19) are differentiable in time for almost every
t € [0,sup(I)), and furthermore, taking € = €; + iea,
(3.21)

As d

=il A D@+ F ik #(Q+ )+ (EQ+ )+ V(Q+ ) — i) #(Q+0)

2 V(Q+ 0 = 1 €(6)(Q+ 0 +iLe — £ea +26(5)- T(Q+ ) — €)@+
+i0(|Q| Y41 e|? + |e| T/, when 2<d <4, +i0(Je|}T4/4) when d>5.
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For f in (3.9),

d
(3.22) E(ﬁa frz = (es, f)r2 = 0.
Plugging (3.21) into (3.22) and following the analysis in Section 10.2 of [Dod21al, for any a € Z>,
a+1 Ts ) a+1 )

(3.23) [ =S - lePls S [ lads

a+1 /\s a+1 )
(3.24) |- Fewliss [ e,

a+1 )\ a+1
(3.25) [ s [ e e
and
a+1 T a+1
(3.26) / 4 oglds < / e(s)]| 2.
As in [Dod21al, it is also true that under the conditions of Theorem 6, for any a > 0,

(3.27) sup |le(s)|lz ~ inf |le(s)||L2-

s€la,a+1] s€[a,a+1]

4. A LONG TIME STRICHARTZ ESTIMATE WHEN d = 2

As in the one dimensional case, the next step is to obtain a long time Strichartz estimate.
Roughly speaking, if I is an interval of length |I| = T', and A(t) = 1 on I, the goal is to obtain good
Strichartz estimates at frequencies greater than or equal to T'* for some « < % In two dimensions,
as in one dimension, a = % will do. In higher dimensions, we will take T“¢, where ag — % as d
goes to infinity.

The main new technical difficulty in two dimensions is utilizing the interaction Morawetz bilinear

estimate of [PV09]. Setting

—Y)j
(4.1) /|u t,y)| ~0); |Im[u8 u)(t, x)dzdy,
if u solves (1.1),
(4.2)
d = — m|uoru 7(33—34)3- miud;u x)dx 1 uw(t,x Qi(x_y)j ; u|?)dz
(x —y), o P\ 2 e 2(:1:—9);‘ alt. o) 252 g
=2 [Jutt.y )@meWﬁmw- o5 [ It P 0y e, )

In one dlmenslon7 1ntegrat1ng by parts,

(4.3) %M(t) :/|8z(|u|2)(t,x)|2dx—§/|u(t,3:)|8d3:.

If the u’s in the interaction Morawetz estimate are replaced by Fourier truncations of u, this gives
good bilinear estimates, as was used in [Dod21a]. In two dimensions, fixing j, say j = 1,
(4.4)

d - 1
aM(t) :/|3z1(u(t7$17$2)u(t,Il,yz))|2dﬁfld$2dy2— 5/|U(t7$17332)|2|u(t,Il,y2)|4d331d332dy2-
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In order to turn (4.4) into a bilinear estimate of the form (4.3), we utilize the Fourier support of w.
Suppose again that the u’s are replaced by a u at frequencies > k and a u at frequencies < k. By
Holder’s inequality and the product rule, if ¢ is a rapidly decreasing function obtained from the

Littlewood—Paley kernel,
(4.5)

[ 1021 (Peva(t,or, ) Pl )) P diaday

S / |0, (Pogu(t, o1, 22)[*| Pagu(t, x1, 22)|*deydey + ||0x, P<gul|7o|| Porul|7

<2k /@(2’@(;52 — y2))|0u, (P<pul(t, x1, x2) Pogu(t, o1, y2)) [ dar dadys

+2* /15(2’“(902 — 2))|00, P<gu(t, w1, 22) | Popu(t, 21, y2) [Py dwodys + ||0n, P<ul|7s | Porull2q
S Qk/|8E1(P§Cu(t,x1,xg)m)|2dxldx2dy2 + (102, Pesul| Lo | Porul 2

This calculation appeared previously in [Dod16a] and [Dod19]. Here % + % =1

Let J = [a,b] be an interval. As in the one dimensional case, choose

(4.6) 0<m <y < 1,
such that
(4.7) sup [le(t, z) |22 < 115,
teJ
and that
(4.8) / Q@ <,
le|>n; Y/
where @ is the soliton solution (1.17). Furthermore, suppose that
1 1 £@)]
4.9 — < A(t) < =T1/100, and 2 <, forall telJ,
(19) A< o S <
and that there exists k € Z>q such that
(4.10) / AtH)72dt =T, and 5T =23k
J

When ¢ € Z, ¢ > 0, let P; denote the standard Littlewood-Paley projection operator. When
1 =0, let P; denote the projection operator P<q, and when ¢ < 0, let P; denote the zero operator.
It is convenient to calculate for A(t) = % first and then generalize to (4.9). It is also convenient to
assume without loss of generality that a = 0.

Theorem 13. Suppose J = [O,nl_zT] is an interval for which
(4.11)

1 ¢
A(t) = —, and €)1 <o, forall  teJ, / At)2dt =T, and T =23k
m A(t) J
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Then for some p > 2, p=15/2 will do, define the norm

(4.12)
1
2 2 2
U _ = su su Psu 1930 403 + ——|[(P>u)(P<;_3u \o3i o3i .
|| ||X([O,771 2T xR2) ogigmgagggcfsi || >4 ||U£([(a 1)23%,a231] x R2) ’I]é/lo”( >4 )( <i—3 )HL%Z([(a 1)23%,a23]xR2)
Also, for any 0 < j <k, let
2 _ ) 2
HUHXJ-([O,n;QT]XRZ) = Oilzgj 1<as<l;£)k73i ||PZ'LU||Ug([(a_1)23i)a23i]XRZ)
(4.13) 1 - ,
toowp sup ol (Pri) (Peims)lie | anj2ss azsijre)
<i<j1<a<23k =31 ) :

Then the long time Strichartz estimate,

(4.14) ||u||x([o,n;2T]xR2) <1
holds with implicit constant independent of T.

Proof. This estimate is proved by induction on j. Local well-posedness arguments combined with
the fact that A\(¢) = n% for any t € [0, T] imply that

(415) ||u||Ug([a,a+1]><]R2) S 17
and when ¢ = 0,

(416) (PZi’u)(Pgi_3’u,) =0.

Therefore,

(4.17) el (o, 2y xmey S 1

when j = 0. This is the base case.

To prove the inductive step, recall that by Duhamel’s principle, if JR = [(a—1)23k=31 q23k=37]

then for any tg € Jék),

(4.18) u(t) = et By (1) + i /t e A (|ulu)dr,
¢
and 0
t

(4.19) ||P2iu||UZ(J§k)xR2) S |1P>i(u(to))| oz + || /to ei(tﬂ-)APZi(|u|2u)dT||U£(Jék>XRQ).

Since ||u(to)||zz < 1, turn to the Duhamel term. Choose v € VKI(JXR) such that ||v||VAp/(JX]R) =1
and 0(t, £) is supported on the Fourier support of P;. It is a well-known fact that
(4.20) I /tt AP i(JulPu)drl|ug (gxry S sup [vPsi(Jul*u) s,
where sup, is the supiemum over all such v supported on P; satisfying ||v||VAp/(JxR) = 1. See

[HHKO09] for a proof.
Throughout this section it is not so important to distinguish between w and @. Since

(4.21) Psi(Ju<i—s)?u<i—3) =0,
decompose
(4.22) P>i([ul*u) = P>iO((P>i-3u)’) + P5;0((Psi—3u)*(P<i—3u)) + P>;0((Psi—3u)(P<i—3u)®).
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By Holder’s inequality,
(4.23)
||'U(u2i73)2(uﬁi73)”Lt1,z + HU(UJZlFS)BHL%’I S HUHL,?"LinuZifSH%ng + ||v||LfL2”uZifBH%ng||u§i73||L§°L§-

Since VK, C UZ for any p > 2, again see [HHK09],
(4.24) [ollzgerz + vllzers < llvllvz S llvllY, =1

Therefore, when i > 4, by (4.7), (4.8), (4.11), and interpolation,

/2 < 1/2|

5/2
/ ||u2i—3”Lt°°L§ ~ Mo

5/2 < 1/2 5/2
Li’/szle n

(4.25) lluzi-slZspe S llusi-sl| luzisll 57200 < 0" Nl 10,1 xm):
When i < 4, simply use (3.6), which implies

1 it x—x(t) 1 iz

4.96 t _ = i) xm 2\ —— o (D) o7 X (¢

( ) U( 7:E) )\(t)e € Q( A(t) ) + A(t)e € 6( ?

By local well-posedness arguments and A(t) = n—ll, for any a € Zx>o,

s o —a(t)

(4.27) ”u”Lf/QL;O([a,a-i-l]xR?) S 1 HGHLEZ’/QL;U([a,a-i-l]XR?) < nos
and therefore by (4.7) and (4.8),

(4.28) lusi-3l1 23 L6 (a0t 1)xz2) < TI0-

Therefore,

(4.29)

5/2 1/2
X;_s(j0,T)xR) T 7o -

1/2
%(i—s([O,T]XR) +770/ [l

1/2
lusi-slFag + lusisllfepe lu<i-sllzrz < mo’?lul

Now compute

(4.30) [0((P2i—3u)(P<i—3u)®)l|2: , S |(Poi—su)(P<i—su)| 2 [lv(P<i—su)]| 1z -
By (4.13),
(4.31) [(Pzi-su)(P<i—3u)ll12 _(((a-1)2%,a281)xR2) S ! 2l x, -

Next, suppose that it is true that for any ||vg| 2 = 1, where 7y is supported on |£]| > 2¢,

(4.32) sup [|(e"vo) (u<i—s)llr2 . S 1+ nollul
vo ’

3
Xi-3°

Then (4.32) combined with VAp/ C UZ implies

(4.33) [o(P<i—su)llz, S 1+mollul%, .
and therefore,
1/20
(4.34) sup | Postullun ((am1)o azsipxrzy S 1+ 0 Cllullx s (1 +mollulk, ).

1SaS23(k—z‘)
This bound is fine for the induction on frequency argument.

The bilinear estimate (4.32) is proved using the interaction Morawetz estimate described at the
beginning of this section. To simplify notation, let

(4.35) v(t,z) = ePuy,
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where ||vg]lL2 = 1 and ©p is supported on P; for some j > . The function v may be split into a
piece supported in frequency near the é; axis and a piece supported in frequency near the é; axis.
Suppose without loss of generality that © is supported near the é; axis. Then set

(4.36)

= v 27(20—3/)1 mlu<; U< x U< 27(;6_3/)1 m|U0y;, v|dx
M(t)_/| (t7y)| |(I—y)1|l [ Sl—3a$1 Sl—?)]d dy+/| Sl—3| |(I—y)1|l [awl ]d dy

Let F(u) = |u[*>u. Then u<;_3 solves the equation
(437) i@tuSi_g + A’U,Si_3 + F(Ugi_;g) = F(’U,Si_g) — Pgi_3F(’U,) = —./\/i_g.

Making a direct computation,

—M —2// O, (W(t, y)u<i_3(t, x))|?dedy — // v(t, y)|?lu<i_3(t, z)|[*drdy
T1=Y1 T1=Y1

y) - Re[u<;—304, Ni—3|(t, z)dzdy
(4.38)

ZE=nk Im|09,,v](t, z)dzdy.

Then by the fundamental theorem of calculus, Bernstein’s inequality, the Fourier support of vu<;_3,
[lvoll 2 = 1, the fact that ||ul|L2 = ||Q] L2, and (4.5),
(4.39)

Plousialls ey $2 [ [ 10 @l pusia(ta) Pdsdydt + [ [Vusicall ol
o r1=Yy1 Jx1=Y1
S22 [ [ o) Plusi-alt, o) dedyde
Tr1=Y1

///|v (t,y |2| i y; | - Re[N;—_30,, u<;_3](t, x)dxdydt

///'“ (ty |2|i yi frelirsi- 502, Ni—s](t, z)dadydt

1+1 ( )
4ot / / / Im[T=5 N8 (t, y>|( m— |Im[vamv]<t ,x)dadydt + / [Vuziosl|2o|lv]|qdt.

Also note that
(4.40) [Dusi-sll7s = lovigi—su<i-slny, = lvusi-slliz |

so it is not too important to pay attention to complex conjugates in the proceeding calculations.

First, by (4.7), Bernstein’s inequality, and the fact that A(t) = n—ll,

[ bt Plusia ol dedy S 2V fusi-ale [ (0., G pusi-alt. o) Pdady
T1=Y1

T1=Y1

(4.41)
< pp22Y / 1O, (000, )i 5(t, 2))[2dady.
T1=Y1
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Since j > i and ng < 1 is small,

(4.42) D (41 < / 0., (0(t, y)u<i—3(t, ) |>dzdy,
j>i T1=Y1

which is more than sufficient for our purposes. Next, Strichartz estimates, (4.7), (4.8), and (4.11)

imply

(4.43)

/||U||%20||VP9—3U||L5/2||VP§z'—3U||L2df S ||U||i§oxe IVP<i—gullpyops2[VP<i-sullLgerz S n02% |ul| x,_s-

20
Lz

This calculation is also sufficient since 3, 2%~ */ng|ul| x

is bounded by the right hand side of

i—3
(4.33).
Now consider the term,
(444) ./\/'i,3 = PSZ',Q,F(’U,) — F(uSi,g).

Since by Fourier support arguments
(4.45) P<i_3F(u<i—¢) — Fu<i—¢) =0,
(4.46)
Ni = P<i—3(2lu<i—o[*usi—o + (u<i-6)*Tziz6) — (2lu<i-o|*ui—s<.<i—3 + (u<i—6)*Ti—o<.<i—3)
+Pei 30 ((uzi-6)%u) + O((ui—6<.<i—3)?u) = N1y + N2,

Following (4.23)—(4.31),
(4.47)

IV s sllics, S Musi-oluci-o®llLs | +Illusi—o*luzi-ol?[ L1,

1/10
Sluzimo) -z + luzi-lis luzicolfs S no"lullk,yrwre) (1 + lullk,_yxme))-

Therefore, since ||vg]|r2 = 1,
///|v (t,y |2|Ez Z;'Re[./\/'( 30z, u<;—3](t, z)dzdydt
(@ —yh (2)
( ) Relu<i—30,,N; 5] (t, z)dxdydt
Y
)

. wf | [reore=
+2 / / / Imli<i— s N (¢, y |

1/1044
<770/ 27|

|
E —vh Im[00,,v](t, x)dxdydt

Y)1l
lull X, _so.myxrey (1 + 1ull%, (0.7 x2))-

Next, observe that
(4.49)

2P<;—3(Ju<i—6|*usi—6)—2(|u<i—6/*ti—6<.<i—3) = 2Psi—3(|u<i—6|*ti—6<.<i—3)+2P<i—3(|u<i—6|*usi—3).
The computation for
(4.50) Pei3((u<i—6)’Usi=6) — (u<i—6)*(Wi—6<-<i-3)

is similar.
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Again following (4.23)—(4.32),

| P<izs(Ju<i—g|*usi—3)(ui—6<.<i—3) ||Ll

(4.51) 0

+| P<ima(lui-s|*usi—3) (ui—e<.<i—3)llnt , S ull%, srxrey L+ ull%, rxre))-
Finally, observe that the Fourier support of
(4.52) 2P 3(Ju<i—6*ui—6<.<i—3)(u<i—6) + 2P<i—3(|lu<i—6|*usi—3)(u<i¢)

is on frequencies |¢| > 2¢76. Therefore, integrating by parts,
(4.53)

///Im i—6P>i—g(Ju<i— 6| wi 6< <i— 3)](1%,y)%lm[vamv](t,x)dxdydt

=[] [ i) G minecoPes (s o os <o), syt
T1=Y1

<2’i(/// |77(u§i—6)|2dxdydt)1/2(/// |00, D(u<i—g)*dudydt)/?|u<; 5|3
T1=Y1 T1=Y1 "

sevp([ [ [ fotusi-o)Pdodya)
T1=Y1
A similar calculation gives the estimate

///Im i—6P<i—3(Ju<i—s|*u=i—3)](t, y)&:ci)lm[vamlv](t x)dzdydt

< 20ty /// O(u<i_g)|*dedydt).
T1=Y1
We can analyze the terms

(4.55) ///|v t,y)|? x_z; |R6[N( 30z, u<i—3](t, x)dzdydt,

(4.54)

and
(4.56) / / / (e, y)|2|g:73;1|36[u9_3am“;](t,x)dxdydt,
in a similar manner.
Plugging (4.40)—(4.56) into (4.39) gives
(4.57) 29| tugi-sllz;  +2%lvusi-sllz; S 27 + o/ 02 (14 ullk, ).

Summing up over j > i implies (4.32).
The estimate of

(4.58) [(Piu)(P<i-su)llrz

also uses an interaction Morawetz estimate. This time, for a fixed 7 > i, define the Morawetz
potential,
(4.59)

T —yh

L Imluzi—30,, u<i- 3]d$dy+/|u<z 3] ml

m[Pjudy, Pjuldxdy.
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Making a direct computation, since Pju is not a solution to the linear Schrodinger equation, we
have three additional terms,
(4.60)

d _
=2 [ (Bt pussta)Psdy - [ [ Putty)Plusiao) dedy
T1=Y1 T1=Y1

//|Pu (t,y |2|(z_zzi| Re[0=i=300,Ni—s|(t, z)dzdy
//|P u(t,y) |2 |Ez — zih Re[mawluﬁ_g](t,x)d:vdy
w2 [ [ il 0 o, P, a)dady
[ [P = RelPuon, Pyl ldady
-/ |Pgi_3u|2%Re[waﬁu]dwdy
w2 [ [P ) =0 5o s aldody,
Now then,
(4.61) > 2 sup [M; (0)] S |1Paiullzze s S -

Jj=i

Following (4.40)—(4.56), (4.6) and (4.7) imply
(4.62)

2’ 2]/// |Pju(t, y)|?|u<i_s(t, ©)|*dedydt
J>l T1=Y1

SRS 2g///|Puty LI pefzg0,, N (t, ) dedydt
[CEmN

_221 23///|Pu (t, y)|? —=— (z = y)s - Re[Ni_30,, u<;—3|(t, x)dxdydt
= l(z —y)l -

w2y 2% [ [ [ i y>|ﬁ I Brudy, Pyul(t,w)dudydt S (1 + lull, ).

= whl

To analyze the new terms,

i—27 m u u2 ( y) Imli=—= Ue s .
227 ///I [PyuP;(Jul )]|( — [W<i=30z, u<;—3]dvdydt

j>i

j>t

—221'72]///|P§Z—,3u|2MRe[Waleju]dxdydt,
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first observe that by (4.7), (4.8), (4.11), (4.26), and (4.47),

222Z 23///ImPuP (Jul?u)] |(( — )) Im[u<; =30, u<;—3|dxdydt

j>i

4.64 ;
WO < 9 VP sl | Pesaull o (1 Psi—sullls -+ [(Poicsu)(Peist)l )

1/10
S ol o (1 + [l ).
For the other two terms in (4.63), decompose

Pj([ul*u) = Pj(O((Psi-3u)*)) + P;(O((Psi-su)*(P<;_3u)))

(4.65) 9 9 B
+Pj(2|PSi_3’U,| (P>i_3u) =+ (Pgi_;;’u,) (P>i_3u)) = Nl +N2.

By (4.25),

(4.66)
3 2 2”///|P<l qul? | y; | e[Pjudy, PiN1|dzdydt
j>i -y

B / / / |P<i_ 3u| y))l Re[N0g, Pyuldadydt < || Psisullss o < o/ ull¥
Y
j>i

Next, if m is a smooth Fourier multiplier satisfying Vm(§) < % |m(€ + &) —m(é)| < ‘IE_II for
|€1] < |€], and therefore, as in (4.25), '

[(Pju) - [Pj(| P<i—sul*(Psi—su)) — |P<i—sul*(Pju)]| L1 |
(4.67) +|(Pju) - [Pi((Pimsu)?(Psi—zu)) — (P<i—3u)*(Pju)]l| L,

1/2 5/2
spposslucizall e n2 [ Poimaull} e o < o’ ul 32

Also by the product rule,
(4.68) . _
2Re[Pjudy, (|P<i—3ul?(Pju))] — 2Re[| P<i—gu[*(Pju)dy, Pjul

+Re[Pjuds, ((P<i-3u)*(Pju))] — Re[(P<i—3u)*(Pju)ds, (Pju)] = O((V P<i-3u) (P<i-3u) (Pju)?).
Using the analysis in (4.67), (4.68) < nt/?||u ||§{{ . Finally, integrating by parts and using (4.41),

i—2j u2 x_) )2 o) 2lda
(4.69) ng ///|P<l 3ul — )| Re[0y, ((Pju)”(P<i—3u)|dxdydt

< [ 1on (ot usicatt, ) Pdady.
T1=Y1
Therefore, by the fundamental theorem of calculus,

> 270y, (Pyutici—s) 72

t,x
Jj=i

(4.70)
< 2w / / Bra(t, y)uci_s(t, z) Pdedydt < n +nb/2(1+ [ul%, ).

§>i 1=Y1
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It is possible to perform the same analysis with 0., replaced by 0,,, so

_925 _ 1/2
(4.71) S 2 ¥ V(Puticios)3s S+ ullk,
j>i

Using the Fourier support properties of Pju(tu<;,—3) implies

(4.72) I(Piu)(Pei—gu)ll3 S m3 +m" lullk,_,

Combining (4.34) with (4.72) and (4.17), and arguing by induction on ¢ implies Theorem 13. O
Theorem 13 may be upgraded when u is close to a soliton, as in Theorem 6.

Theorem 14. When J = [0,n; *T] is an interval that satisfies (4.11), and u satisfies Theorem 6,
(4.73)

2 0T 1
n
1Pl o rpesn + P (Persil oy S O [ e300 + 5.

Proof. Make another induction on frequency argument starting at level % First, observe that since
Theorem 13 is invariant under translation in time, for any a € Z,

(4.74) 1P g ully fang 1772 @ rynr i/ ey S 1
Next, following Theorem 13,
(4.75)
”Pz§+3“”Ug([512an;1T1/2,512(a+1)n;1T1/2]xR?) S inf ] ||Pzg+3u(t)||L2

te[512an; 'T1/2,512(a+1)ny *T1/2
+1o ||P2§“|| U%([512an; ' T1/2 512(a+1)n; ' T1/2]xR2)"

Now then, by (4.26), (4.11), and the fact that @ is smooth and all its derivatives are rapidly
decreasing,

(4.76)
x —z(t)

. 10
P>k qu(t)llre < [le(t)]lr + I\Pzﬁ+3(/\(t)_le_”(t)e_w%Q(i)||L2 S e + T
2 2 )\(t)

Plugging (4.76) back into (4.75),
(4.77)

le(t, )1 22d)"

512(a+1)n; T2
HP>5+SUHU2 ([512an; 1 T1/2,512(a+1)n7 1 T1/2] xR2) S ( 7711 2
- 2 n ' n 5127 512an; 1T1/2

512
~10 2 1/2
T4 103 1P 4 0lTa (51304 G101 7272, (5120450 T3/ ) )
j=1

Arguing by induction in k, taking L%J steps in all, for ny sufficiently small,
_k 1 [T ,
Portllog sy ST+ 205+ (3 [ int e ue ) - Qo)lfadt)
(4.78) | o
ST+ (—/ inf || AV ?u(t, Ax) — Q(x)||72dt)' /.
T 0 MY

Indeed, if C is the implicit constant in (4.77) then for 79 < 1 sufficiently small,
(4.79) (Cno)s) <710,
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O

Throughout the proof, we assumed that A(t) = %, although most of the time we only needed

At) > % For the general case when A(t) > %, replace the intervals in (4.15) with intervals on

which
(4.80) / At)"2dt = n?,

a

and then argue by induction in exactly the same manner.

Corollary 1. When J is an interval that satisfies

1 1€@)]
4.81 — < A1), and == <7, or all telJ,
(4.81) <) W <
and (4.10), and u satisfies the conditions of Theorem 6,
1 _ 1
(452)  |Pssullgeraes + I(Poi) (Perawdlzg, sy S (5 [ IOZNO 207+

5. A LONG TIME STRICHARTZ ESTIMATE WHEN d > 3

In dimensions d > 3, the proof of long time Strichartz estimates is complicated by the fact that
F(z) = |z|*4z is not a smooth function. To circumvent this difficulty, we will utilize a bound on
% for a > 0.

Theorem 15. If Q is the unique positive solution to AQ+Q'+4/4 = Q, Qvl—f?a is uniformly bounded
for any a > 0.

Proof. To see this, first observe that since () is smooth and positive, % is uniformly bounded on

the set {z : |z| < 1}.
Next, since @ is radially symmetric,
d—1
(5.1) Qrr + ——Q, = D9, (r71Q,) = Q — Q4.
r
By the fundamental theorem of calculus, since () and all its derivatives are rapidly decreasing, and
Q is strictly decreasing, for any o > 0,

(5.2) 1< [ sIQds S0 Q)
This gives a bound on Qvl—;Qa when r > 1. O

As before, let J = [a,b] be an interval, and choose

(5.3) O<m<Kyp Kl,

such that

(5'4) sup ||€(t, x)”%ﬁ S 77(2)7
teJ

and that

(5.5) /I£ Q)P <,
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where @ is the soliton solution (1.17). Suppose

1 1 t
(5.6) — < \(t) < =T11/504 and £ < 1o, for all teld,
m m A(t)
and that there exists k € Z>q such that
(5.7)
1
At)2dt =T, and 771_2T = goak where ag=3— 0 when 3<d<8,
J
=201+ é) _ L h d>9
g = 7 T when >9.

Once again, when i € Z, i > 0, let P; denote the standard Littlewood-Paley projection operator.
When ¢ = 0, let P; denote the projection operator P<g, and when ¢ < 0, let P; denote the zero
operator.

Theorem 16. If J is an interval on which |z(t)| < T 500002 , and (5.6) and (5.7) hold, letting p

ce 11 1 k , 1
satisfy P — 2 7100042’ Jor 157 <1< k(14 152),

o n, 1
_ ) < 9% (k(1+137)—1) ( 2 -2 7:\1/2 -10
(68) IPesulloginn+IPoiul , e, o S 27 CEB070(5 | le@izaxe2ant T

Proof. This theorem is also proved using induction on frequency. Make the decomposition
(5.9)
x — x(t) x —x(t)

1 —im»m — — —im-m — ~ ~
u(t,z) = e~ A0 A(t) dﬂQ(W) + e (g A0 \(t) d/2Q(W) =é(t,z) + Q.

By (5.6), (5.7), the fact that @ is smooth and all its derivatives are rapidly decreasing, and local
well-posedness theory,

(5.10)
< 2 2 7,\1/2 | =10 _ 54" 1 2 —2 3\1/2 | n—10
1P gl S eGR40 = 2% g [ el it
For i > ﬁ, by Duhamel’s principle, for tg,t € J,
t
(5.11) u(t) = et 2y (tg) + i / S E=DAR (u)dr.
to

Also, by (5.6), (5.7), and the fact that @ is smooth and all its derivatives are rapidly decreasing,
for i > ﬁ, choosing to € J such that ||€(to)||r2 = infre s [|€(t)|| 12,
(5.12)
. , 1
A itA 2 2 —2 \1/2 ~10

P ulto)] gy o+ P a0 g rnme S (G [ IOIEA0 202 + 771

For the Duhamel term, observe that by the endpoint Strichartz estimates of [KT98] and [HHK09]
(compare to (4.20)),

t
(5.13) [ / FEDAR(D)dr|| SIF| e .
to L2LE™2 NUR (JxR4) L2LAF2 (JxRd)
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We will split F' = Fy + Fy, where F; € L2Ld+2 and F5 will be estimated in a different function
space. Use Taylor’s formula to expand the nonlinearity,

1
(5.14) F(u) = F(u<;) + F(u) — F(u<;) = F(u<;) + / F'(u<i + sus;) - (us;)ds.
0
Remark 5. When proving Theorem 16, it is not so important to distinguish between u and .
Split
(5.15)
_ i 81 x — x(t) Cin(t) iz 1 x — x(t)
jad ; ; < iy (t) ,—iz i(t) 4/d iy (t) ,—iz-E(t) t 4/d'
| (US +SU> )l ~ |e € )\(t)d/g Q( )\(t) )| +|€ € A(t)d/?e( ? A(t) )l
y (5.4),
—i —ix- 51 1 L — ‘T(t)
(516)  [IPssullle™ ™30 et M S I Pl
Next, using local smoothing,
Lemma 2. Under the assumptions of Theorem 16,
1 Tr — ( ) 1 _ i
(517) Hl)\(t)d/Q Q( )\( ) )|4/d|P>zU||| 2Ld+2( J xR S 771T2000d2 277 HPZiuHUZ(JXRd)'

Proof of Lemma 2. If v is a solution to (i9; + A)v = 0 and ¢ is supported on |£] > 2%, then for any
R >0,

(5.18) lvlle2 | R {a:121<rY) S R2™ 3 |vo | 2.

Then, by (5.18), |z(t)| < T'3o0027 | (5.6), and the fact that @ is rapidly decreasing,
(5.19)

1 z—2(t),\ 4/a 1 z—a(t)\ 9/4 2/d  1/2
Il @ I, 2 S Il QU D g QI /23T ol
Also,
(5.20)
1 z—x(t),\ 14/a
Il (f)d/2Q( A(t) ) ||L2Ld+2(1 R
1 Tr — ( ) 2 2/d _ 1 ; i1
S ol @ g Iz v [ o] A /J (1) dtym00 < 07 25T 500 ||| 2.
Lemma 2 follows by replacing v with a UX atom and summing up. O

Since 7 2 5T300a% < 1 when i > 10d’ the contributions of (5.16) and (5.17) may be absorbed

into the left hand side of (5.8). Therefore, by (5.11) and (5.14), for any m <i<k(l+4 %),

IPoitllogeren + 1Pl aay

5.21
o2 +([ 1ol 202+ 70,

t
< W(t—7)A )
[ e pp g

By (1.17), (5.6), and (5.7), for i > &,
(5.22) 1P F(Q)l L2 (sxray ST,
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so it only remains to compute

(5.23) || / U= Flucy) — F(Q))dr|

2d .
URNL2LI™? (JxR4)

Once again from [HHKO09]

(5.24) |\ DA || < sup/(v,F)L2dt,
L2Ld 2mUA v JJ

where [[v]|lpz (7xre) S HU||V§(JX]Rd) = 1. Therefore, suppose [|v|lyz(sxrey = 1 and 9(t,&) is sup-
ported on |¢| > 2. By Bernstein’s inequality,

/(UvF(uSi) —F(Q))detﬁfi/(v, (Vusi) F'(uzi) — (VQ)F'(Q))r2dt
(525) J J

=27t /](v, V(uci — Q)F (u<i) + VQ(F' (u<i) — F'(Q))) 2.

To esimate (5.25), it is useful to split into regions Where U<y — Q < Q and where Q Su<i— Q
Let ¥ be a smooth, cutoff function, 1(z) =1 for |z| > 3, ¥(z) = 0 for |z| < ;. Now abuse notation

and let ¢ (z) denote 1(x) = 1/1(%). There exists a sequence of constants c¢; that are uniformly
bounded such that

(1 — () [V(usi — Q)F/(UQ) + VQ(F/(UQ‘) - F’(Q))]
1= - QY oM vey e

j>0 j>1

(5.26)

Following the computations in the proof of Lemma 2, since [[v][yz < 1,

2~ 1—? i lugi = OF)
(5.27) /J( R ;o J QH” ol

52_i_%/(v,V(u<i—Q)IQI4/d) 2dt < y/"27 7 T TT0R | V(ugi — Q) | 2a
J - L2Ld~?

Next, on the support of 1 — 2(z), by the definition of Q, (5.6), (5.7), and Theorem 15,

(usi = Q) _ J&(0)] 55 (i = 2 VOCTHY) 51os - (i = QY
VQZ —4/d N t QZ j— 4/d /\(t) z—x(t) 1-2 Q ¢ Z Nji—4/d
(5 28) j>1 7>1 Q Q( () ) i>1 Q
' z—x(t)
|§(t)| H4/d),, At VQ( ) ~2/d

Again following the computations in the proof of Lemma 2, since HUHUZ <1, by (5.6) and (5.7),

629) 2 [0 -0 VQZLf”)wdtw O o [CPYG) [

/d L2072



24 BENJAMIN DODSON

Similarly, since |Q| < |u<; — Q| on the support of ¥(x), by the definition of Q, (5.6), (5.7), and
Theorem 15,

(@) (VQ(F' (u<i) — F'(Q)) S ¥*(@)VQ - luci — QY7

z—a(t)
£l ol 2y 2 A®) ) ~14/d A1-2/d
S At) 22— 2Dy
sy SV Qs QM uaPaw) Qs ~ A1
VOS5

< molu<i — QlIQIY e+ mA(t) ! lu<; — Q€.

z—x(t)\1_
Q(‘A(t) )i=2/d

Therefore,

(5.31) 27 / (0,02 (@)VQIF (uzi) — F(Q)]) 2t S /P27 " T | (uzi — Q)| 2a .

i—2
L?L;

Now decompose,

(532)  V(uzi — Q)F'(u<i) = V(uzi — Q)F (uszi — Q) + V(uzi — Q)[F'(uz;) — F'(uzi — Q).

Since

(5.33) V(uci — Q)[F (u<i) — F'(u<i — Q)] < |V(uzi — Q)||1Q*,
then as in (5.27),
(5.34)
2 [ (002 @) V(s - QIIF (usi) - F'luss - Q) gedt S 0i/*27 5 T [Vusi = Q) s,
J LiL
Also, since
(5.35) (1= 9*(@))|V(u<i — QIF (u<i) — F/(Q)] < [V(usi — Q)I|QIY,
by (5.27),
(5.36)
2/ (v, (1 = @)V (u<i = QIIF (usi — Q)) p2dt S mi/?27» " TT007 ||V (us — Q)| | au .
J LiL,

Therefore, it only remains to estimate

t
2_Z||/ e TIAPL(V(ug: — Q)F (u<i — Q))dr||
to L2Ld szP(Jde)

S 27 Poi(V(ug — Q)F (usi — Q)|

(5.37)
2d_ .

L2032 (JxR4)

For this term, use fractional derivative chain rule (Proposition A.1 of [Vis07]),

Proposition 1. Let F be a Hélder continuous function of order 0 < a < 1. Then for every
0<o<a,1<p<oo, and T <s<1, we have

(5.38) VI E@)ze < =% [ [IV]u]

LIr2?

P?“OmdedlZp—l—i-pi2 and (1— Z)py > 1.



25

4
Thenforany0§0<1+3,

2—1/](0 V(s — Q) (usi — O)) 2t

(5.39)
i - ~ 4/d i/ dg—oi ~
o 27V s = Qo luss = QUL S0 2 IV (s = QU e,
Therefore, arguing by induction on frequency, if (5.8) holds for all {5 S 1 < jo for some % <

jo < k, then for i = jo + 1, (5.8) holds, which proves the Theorem 16 by induction on frequency.
Indeed, choosing o such that o > %, the contributions of (5.23)-(5.39) may be bounded by

/72T 3 PIP= Q) e+’ 3 27 IR = Q)

0<j<i = 0<;5<i

2d
L2072 (JxR4)

(5.40)
<@ 1/102 lldT2000d2 + n4/d)(2a—§((l+ﬁ)k7i)(%/ He(t)”%z)lm + Tflo).
J
When ¢ > Wkdv
(5.41) ni/Pa- T Tavear + i/ < 1,
so the induction on frequency step is complete. O

6. ALMOST CONSERVATION OF ENERGY

In two dimensions, the almost conservation of energy computation is exactly the same as in one
dimension in [Dod2la]. The computations in higher dimensions are more difficult since F(z) =
|z|*/9z is not smooth. The good news is that most of the difficult computations have already been
done in the previous section.

6.1. Almost conservation of energy in dimension d = 2.

Theorem 17. Let J = [a,b] be an interval for which (4.11) holds. Then,

(6.1) itelgE(ngJrgu(t) /H M)~ 2dt—|—sup |§8|2 4 2210,

Proof. Since ||e(t)||rz is continuous as a function of time, the mean value theorem implies that
under the conditions of Theorem 13, there exists to € [a,b] = J such that

(6:2) et = 5 [ T A0 a

Then by (4.26), the fact that @ is a smooth real valued function and all its derivatives are rapidly
decreasing, and the Sobolev embedding theorem, taking € = € + ieo,

(6.3)
B(Pepson) = 5V Pawsaulfs — 1Personlls = s Q@I + HEOL joi. -
+)\(t)2 (VQ,Vﬁl) 2 f((t)L . (Q7V€2) + f((t))g . (VQ762) |§Et;| , 1) W(Qsael)L2

+0(2% || 1) + 022 T71).
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Since (EQ,VQ)Lz = (VEQ,Q)Lz = O, (VQ, Vel)Lz — (QB,El)LQ = —(Q,El)Lz = %HEH%Q, and E(Q) =
0,

1
IN(t)?

[HOls
IA(t)?

LIEDP 2
6.4) E(P. = -
(6.4) (P<ptou) 3N Q7 +
so (6.1) holds at tg.
Next compute the change of energy. This computation utilizes the computations in the Fourier
truncation method of [Bou98]. See also the I-method in [CKS102].

(6.5)

lellZ> + O2%le]|Z2) + O2*T~1),

lellZ- —

d
EE(PSHQU) = —(P<pyotiy, AP<pyou)r2 — (P<prour, | P<pioul* P<pyou) e

= —<k+9Ut, <9l (U) — <kt+ow))r2 = (LAP<piou + tP<pio(|u| u), P<ptoF(u) — <k+9U))L2-
(P PepioF (u) — F(P ) (IAP. +iP<gyo(|ul*u), P<pyoF(u) — F(P )

First compute

t/
(6.6) / (iAPS]H_gu, P§k+9F(U) — F(ng_i_gu))Lz dt,

to

for some t' € J. Making a Littlewood-Paley decomposition,
(6.7)

t/
/ (iAPSk+9U, PSkJrgF(’UJ) — F(P§k+9u))L2dt

to

t/
~ Y > / (1APg, v, Pepro(Pryu- - - Pryu) = (P<pyoPryu) - -+ (P<kyo Pryu)) p2dt.
0<ks<ky <k 0<ka<k+9 " 10

Remark 6. For these computations, it is not so important to distinguish between u and u.

Case 1, k; < k+6: In this case P<pt19Px, = Pi, and P<pio(Py, - Pyyu) = Py u- -+ Pr,u, so the
contribution of these terms is zero. That is, for ki, ....,ks < k + 6,

t/

(6.8) / (1A Py, P<jpro( Pyt - - Pryu) — (P<poyo Py u) - - - (P<goPryu)) p2dt = 0.
to

Case 2, k1 > k+ 6 and ke < k: In this case, Fourier support properties imply that k4 > &k + 3.

Then by Theorem 14,

t/
(6.9) / (iAPit3< <9t Pero((P<rt)’(Pogrou)) — (Peru)?(Pryo< <krou))p2dt

to

22k
(6:10) S 2M)(Poprau)(Pexen)luz | (Porow)(Pesn)lzz, < = / le(®)l22A(0) " 2dt + 257,
’ i J
Case 3, k1 > k+6, ks > k k3 < k: If k4 <k, then by Fourier support properties, ks > k + 3. In
that case,
(6.11)

t/
/ (1A P<ptt, P<pro((Pokreu)(P>rtau)(P<kt)) — (Pryo< <ktou)(Prta< <krou)(P<iu))p2dt
to

22k
< 22| (Porsou) (Pext)| 12| (Pokiaw) (Pexu)ll e S

= / () |22 A(8)~2dt + 226710,
T Jy
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In the case when k4 > k,
(6.12)

t/
/ (1A Pg<. <k 9u, P<pro((Porreu)(P>ru)(P<ku)) — (Pryo<-<ktou) (Pr< <ktou)(P<ku))p2dt
to
2k 2 22k 2 —2 2km—10
S 27 (Perrou) (P<ww)lliz 1Powullzy S = | Nle@)Z2A()""dt + 27T
B t,x J
Case 4, k1 > k+ 6 and ko, k3 > k: In this case,
(6.13)

t/
/ (iAP<piou, Pegyo((Popret)(Poxt)®) — (Pryo< <krou)(Prc.<krou)®)2dt
to

2k

2 _ _
S 28 I(Pokveu) (Paxu)llzs | Poullty | + 22| Popullyy | S = [ lle@)Z2A()~dt + 22T,
B t,x t,x J

The contribution of the nonlinear terms is similar, using the fact that
(6.14) (1P<k+oF (u), P<kyoF'(u) — F(P<piou))r2 = (iP<proF (u), F(P<piou))re.
Then make a Littlewood—Paley decomposition,
(iP<ptoF (u), F(P<piou)) 2
(6.15) = > D (iP<gyo(u, -+ k), (P<kioPhtt) -+ (PagioPeyu)) .

0<ks <ha<ki 0<kj<kj <k,
Case 1: ki,k] < k+ 6: Once again, if k1, k] < k + 6, then the right hand side of (6.15) is zero,
since P<p19(Uk, Uk, Uky) = Uk, UkyUky a0d P<pyoug; = uy; for j =1,2,3.

Case 2: k; or k} > k+6, four terms are < k: In the case that k; or k] > k+ 6, and four of the
terms in (6.15) are at frequency < k, then by Fourier support properties the final term should be
at frequency > k + 3. The contribution in this case is bounded by

1 _
(6.16) [[(Pekrou)(P<ru)llzz  II(Porrau)(Peru)l oz [1P<rullfe, SQQkT/JHE(t)H%zder?%T .

Case 3: ky or k| > k+ 6, two additional terms are > k: The contribution of the case that k;
or k} > k + 6, two additional terms in (6.15) are at frequency > k, and the other three terms are
at frequency < k is bounded by

1 _
617 Porsan)(Para)liz I Povully |Paalie, 2% [ s + 270,
s t,x t,x J

Case 4: ky or k} > k+ 6 and at least three additional terms in (6.15) are at frequencies
> k.
This case may always be reduced to the estimate

22k
(6.15) P Posally Nulers < 5 [ IeOIEA0) 2+ 277

Indeed, if both P<pig(uk, Uk, Uk, ) and P<girouk, - P<ktotk, - P<ptouk, have two terms at frequency
< k, then place each term in L?L! and then make a Sobolev embedding at frequencies < k + 9 to
place each term in L7 .
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/3

and using the

If P<pio(uk, uk,ug,) has three terms at frequency > k, then estimate this triple product in L;,
and place the term in P<piouk, - P<pyoUk, - P<ptour, at frequency > k in L
Sobolev embedding theorem, place the other two in LgF,

If P<jyo(ug, uk,urk,) has only one term at frequency > k, then estimate this triple product in
L4 and place the term Pr<.<pioUp, - Pr<.<kt9Uk, - Pi<.<kt9oUk, i Lt/?’.

T his completes the proof of Theorem 17. g

I

This bound on E(P<j9u) gives good bounds on the L? norm and H' norms of .

Theorem 18. If

1 1 1€(2)]
6.19 — < A(t) < =T/100, and 2 <, orall  telJ
(6.19) m_()_m ) = [
and
(6.20) /A(t)*z‘dt:T, and T = 2%F,
J
then
(6.21)

WS o (1) 22 ) O p—
igglngm( NOLE e(t, O N S 5 T /II T2~ dt+sup NOE + 27T,
and

22kT1/50 1/50 |€( )|2 T1/50
6.22 sup ||e(t)||? Ni/ At 2dt—l— sup + 22k 710,
(6.22) Sup l[e()II72 le(®)[72A(1) R ASYOR ;-

Proof. This theorem is a direct consequence of Theorem 17 and an expansion of the energy. Recall
from (6.4) that

1 |€( ) 1 E@)°
( )2 HQHL2 ( )2 HGH%Q - 2)\(t)2
where P;, j = 2, 3,4 refers to terms in the expansion of E(P<jt9u) with j €'s in the product. Split

PSkJrgg(t,x) = ng+9(€7i7(t)€ e "((i; /\( ) 1€(t, %f)(t)))

(6.23) E(P<piou) = HGH%Q + P+ P34+ Py + O(Q%T_lo),

(6.24) v 2(t)

A(t)
Using the fact that ||§( ‘| < 1o the Fourier support properties of P<jt9, and the discussion of

= WG Pegyo () et ) +R=étx) +R.

Fourier multipliers prior to (4.67),
_rlE _ t
625) (Rl 52 B S o ele, and (VRN 5 D e e S el
A(t) A(t)
Since @ is real valued, smooth, and has derivatives that are rapidly decreasing, using (6.24) and

(6.25),
(6.26)

1oz 1 x —x(t) o x—x(t), 9
§||V€HL2 - W/Q(W) |P§k+9€(tvw)| dz

aite [ QU Peranett, 51 )P do + OHT9) + OUll=) + Ol 92]12)



29

By the product rule,

(6.27)
. 2 T —x T—x xT—
1920 = S NPersactt TS DI + £5 - (Pesactt, S, iPersaVett, 0 )s
+ﬁ”P<k+96( (x)(t)”

Rescaling, if 271 = A(t),

#)2|P<k+ge<t,x‘—"“”>|ip - st | @ Pasacte s

2A(t A(t) NG

f . z—xz(t) )

(6.28) . 27(t) /Q “(Paipoet, O ))d
- W”PSHM"“)E“J)”W B —2/Q($) |P§1c+9+n(t)f(ta517)|2dﬂj

RG/Q P<k+9+n(t) (t,$)2d$

Then using the spectral theory of £ in Theorem 10, prov1ded

(629) g 1 Spa’n{XOaiXOu ijaiij}a
there exists a fixed constant Ay > 0 such that
©30)  3IVelR+ slale - [ QuPla@P - 3Re [ Qio(e?de = Mgl

It is not quite true for P<j g s € that (6.29) holds, however, by (3.7), the fact that xo and Qy;
are smooth with rapidly decreasing derivatives, and the bounds on A(¢) in (6.19),

(6.31) (P<kyotrny€ fre ST,
for any f in (3.9). Therefore, for ny < 1 sufficiently small, there exists some fixed A; > 0 such that

1 2 A1 2 212 2k—10
(6.32) WHGHLQ + Py > WHEHLQ + A]é][3 — ORFT™).
Next, by the Sobolev embedding theorem and (6.25),
(6.33)
. : : : ok 2 €)1
/|P§k+9€(t7$)|4dfl? S lellze + IRIZs S el llellz> + 1R S mllel + 2728 03 )2 lellZ,
and
6 34)
~ ~ 1 ~ - 1 ~ _ t
/ QS Dlett ) S el el S 5 103 Wl < s led a2~ mo SO el
For no K 1 sufﬁmently small, we have therefore proved
1E@)? M | (®) -
E(P<iyou) > 5 1QIZ: + 53z e 2.+ 2 H el sllelli= — 0% T1%)
65 2\ A 2A(1)?
' Lg))? A )‘1 2kn—10
> — —02*"T .
T 1@l + g Il + e, — 0T )
Plugging (6.35) into (6.1) proves Theorem 18. O
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6.2. Almost conservation of energy in dimension d > 3.

Theorem 19. Let J = [a, b] be an interval for which (5.6) and (5.7) hold, as well as |z(t)] < T 350027 .

To simplify notation let ko = k(1 + 10d) Then,
22k t 2
(6.36) sup E(P<py1oul(t) / lle(®)]|22A(t) " 2dt + s |§( )L 4 2%kop=10,
teJ B )\(t)

Proof. Again choose tg € J such that (6.2) holds. As in the two dimensional case, by (5.24), the
fact that @ is a real valued function, @ is smooth and all its derivatives are rapidly decreasing, and
the Sobolev embedding theorem, taking € = €; + ies,

(6.37)
1 9 d 2(dd+2)
E(PSkOJrQu) = gHVPSkoJr?)uHL? - 2(d T 2) HPSk0+9u||L2(dJ2)
1 LIE@) d 23 42)
- 2)\@)2” ( )HL2+ ( )2 ||62||L2 (d+2))\(t)2 ||Q||L2(d;r2)

1 30 30 le®r? 1 e
+)\(t)2 (vavel)L2 - W ’ (Q7VE2) /\(t)g : (VQ,E )L2 + 5 ( ) (Qu 1) /\(t) (Q1+ ,61)L2

+0(2%%|€]|32) + O(22FoT~19).

As in the two dimensional case, (e2,VQ)rz = (Vea,Q)r2 = 0, (VQ,Ver)p2 — (Q1+%,61)L2 =

—(Q,€e1)r2 = 2H HLQ, and E(Q) =0, so
(6.38)

2
E(Pcpytou) = % |§(t)2

|§(t)|2 2 19) 22k0 2 0 22k0T_10
2)\(t)2H6HL2 + ( ||€||L2)+ ( )7

2A(t)2
so (6.36) holds at tg.
Next compute the change of energy. Following the computations in the two dimensional case,

d . .
(6.39) S B (P<ioou) = (1AP<k +ou + 1Py +9 1 (u), PekoroF (1) — F(P<hg+ou)) 12
Decompose
(640) P§k0+9F(u) - F(PSIC0+9U’) = F(u) - F(P§k0+9u) - P2k0+9F(u)'

From the proof of Theorem 16, the fact that @) is smooth and all its derivatives are rapidly decreas-
ing, the Sobolev embedding theorem, and Fourier support properties,
(6.41)

t
/ (1AP<ko 49U + i P<pgroF'(u), Poro+oF () p2dt < 22k0||Pko§'§ko+9u”L2L% [P ko ' (w)]

to tLa

22k
2Pl g S [ Ie@IEAG 2+ 20T
3

2d
L2L d+2

Next, by Taylor’s formula,

(6.42) F(u) = F(Pergsot) = (Posgson) - | F'(Petysan+ Py sou)ds.
By (5.9),
(6.43) Au+ F(u) = AQ + A¢ + F(Q) + F(u) — F(Q).
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Then by Theorem 16, (5.6), and (5.7),
(6.44)

t 1
1
/ (iP§k0+9A€,/ F/(P§k0+9u+5PZko+9u)dS'PZko-i-QU)L?dtS22k0(T/ le(®)172A(8)"2dt) + 22k 0.
J

to 0

Also, by Theorem 16, the Sobolev embedding theorem, and interpolation,

(6.45)
t’ _ 1
| @Petgial @) = FQ@). | F(Pergsau + sPorgsouds - Porysou)pade
to 0
~ ~N4/d 4/d ~ ~n4/d 4/d
S, 2o IPooonl o QU llull3 2 + 1APekyofll ,, 2 Iell7 2 1Piooul , 2o (AP

. _4/d 4/d 1 _ _
S22 Pl gt VPotgsofll g eIl S 2201 [ e o) 2an) + 22000

L2ri- r2pd=2

Now expand,
(6.46)

AQ + F(Q) = e e 5@ A1) 2AQ (2 ;5)“)) — 21~ \ (1)~ 2¢(1) - VQ(E ;é‘)(—t))
e A) 22 )PQ(E ;(f)(t)> + eI R A1)~/ (T ;(f)(” ).

By (1.17),

(6.47)

e—i'y(t)e—iwv%)\(t)—d/2—2AQ(:E - Ji(t)) + e—i'y(t)e—im-%)\(t)—d/2—2Q1+4/d(‘T - Ji(t)) _ )\(t)_2Q

()

Plugging (6.47) into (6.45), using (5.6) and (5.7),
(6.48)

t 1
[ A [GNO Q. F (Pergsat + 5Py a0) (Pt o)) adscs

to 0

t’ 1
= / A(t)~? / (i(P<ko+ou + sP>korou), F'(Pgy ot 4 sP>ky19u) (Psgyyou)) p2dsdt
to 0

t 1
+/ A(t)*z)/ (i(Poko+9Q — Peiot9€ = 8P>g19€), F' (P<grot + SPoky9u) (Poko+ou)) r2dsdt

to 0
:
S+ 3) /tt D™ /ol(iF(P<k°+9u + 8P> gy ou), (Pro+ou)) L2dsdt
:
e, e IPorosoul g el + 1 PorooQl o WPorgsoull e Il
sa+y A2 (Pepy), Pt o)t + WPl Tl
Rl IPoooull o s+ 8 1PorosoQl g, WPorsoul e, Tl
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Then by Theorem 16,

(6.49)
a. 1",
(Ut 3) [ A2 (Peryu). Porou) dt 0| Poigul g Jull 22
d’Jy, 22 t e
~ 4/d 4/d
el a1 Porosonl e [l s + 1 PororaQl e I Pooroul o Tl
4/d
S Wf||P2koF(u§ko)||L?Ld2_g2 ||PZkO+9U||L?Lfj2 + nﬂlpz’““u”i%% lull7 2
4/d

2101~
e, | Poosoull i Il + N Ponoo QI o WPonoroull g el

52%0(?/ le(OlI22A(H)~2dt) + 225010,
J

By the product rule,

(6.50)
_2ie—iv(t)e—iw-%)\(t>—d/2—2§(t> . VQ(;E ;(f)(t)) _ e—i’y(t)e—im»%)\(t)—d/2—2|€(t)|2Q(x ;(‘f)(t))
(t) 5 LKOP 5
—2i OE -VQ + NOE Q.
|£

Plugging & A(t Q into (6.48) and using (5.6) and (5.7), the contribution of t)2 Q can be handled

in the same way as A(t)2Q.
Finally, use the computations in the proof of Theorem 16 to compute

t’ 1
2/ (PSko+9vQ’/ F'(P<ioou + sP>pgrou)ds - Popgrou) p2dt
(6.51) to 0 )
S22 [ [eEA) 2o + 2207
J

O

The bound on E(P<g,+ou) gives good bounds on the L? and H' norms of € in higher dimensions
as well.

Theorem 20. If |z(t)| < T 500002 for allt € J, and (5.6) and (5.7) hold, then
(6.52)

s Pl 0 0 T B sy O g
o [Pt g e 2 v RYOE |
and
22k0T1/25d T1/25d 2 T1/25d
(633)  sup el $ 2 [ el 2+ o sup ST g T S
teJ nooes At)? n

Proof. This theorem is a direct consequence of Theorem 17 and an expansion of the energy. Recall
from (6.38) that

| =

650 B(Perysan) = 320 1QIE. + oot - BT oz,

+P2 + O(| P<iey19]*| P<rg19Q) + O(|Psiy40€* /%) + O(27%0T~10).
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Again let
(6.55)
Peryrole™ e 50 A1) e(t, 2 ;(f)(t) ) = e e RT Py Lo (M) e(t, ;(f)(t) ))+R = é(t,)+R,

where

_ t _ t

656) IR <2 B e Sobmglezs, ana VRIS B0 < ol
A(t) A(t)

As in dimension d = 2, since @ is real valued, smooth, and has derivatives that are rapidly decreas-

ing,

[ d+2 x(t) 4/ x—x(t) 9
—HVeHLz—w i / QS D) Pt S P

(657) d+2 /Q 4/d(P§k0+9€(t, X ;('f)(t)))2dx + 0(22koT710)

05 llellz2) + Omollell 2| Vel 2)-

Also, as in dimension d = 2, by the product rule,

(6.58)
Lo _ EOP z—x(t), o
§||V6HL2 EONOGE | P<ko+9€(t, W)Hm
&(t) x—x(t), . x — x(t) 1 x—x(t), o
+W ’ (P§k0+9€(ta )\(t) )a ZPSkoJere(ta )\(t) ))Lz + 2)\(t)d ||P§ko+9€(ta )\(t) )”Hl
Rescaling, if 271 = A(t),
1 () d+2 x(t) 4 / x—x(t) o
2/\( )d ||P</€0+9€( ( ) )” 2d/\ d+2 /Q t) |P</€0+96(t /\(t) )| dx
t r—x(t
d)\ d+2R€/Q ( )) (P§k0+96(t, A(t)( )))2d(E
(6.59) 1 d+ 2
= W|\P§ko+9+n(t)6(fa$)|\gl - 2d)\ /Q ) Py 94n(eye(t, )P dz
/Q P<ko+9+n(t) (t7$)2d$-
Then using the spectral theory of £ in Theorem 10, prov1ded
(660) g i Span{xf)aiXOu ijaiij}a
there exists a fixed constant Ay > 0 such that
1 1 d+ 2
061 31l + 3lgle — 7 [ @@Pla@) - jRe [ Q@Pg(w)?de = Mlgl-

Again using the fact that xo and sz are smooth with rapidly decreasing derivatives, and the
bounds on A(t) in (6.19),

(6.62) (P<kototnw€ frz ST,
Therefore, for ny < 1 sufﬁciently small, there exists some fixed A\; > 0 such that

(6.63) gllellzz +P2 = sz lellze + AalléllZ 0227 17).

() ()
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Next, by the Sobolev embedding theorem and (6.56),

N 4 = 1 &) d < alE@)?
000 [l dde < R el + S Il S nd 1+ o S el
Therefore, by interpolation, for 1y < 1 sufficiently small,
L[E)? Ad 2, Az EOP | 2 2o —10
E(P > = —l€ll%,, — —0(2°%T
(6 65) ( §k0+9u) =9 A(t) | )\(t)Q € 92 HEHHl 2A(t)2 HEHL2 ( )
' 1 |§(t)|2 Ad Ad |20 2ko n—10
> -, — O(2°%T
SO Q72 o )QHGHLz + 5 llellz = O )
Plugging (6.65) into (6.36) proves Theorem 20. O

7. A FREQUENCY LOCALIZED MORAWETZ ESTIMATE

Proceeding to the frequency localized Morawetz estimates, again start with dimension d = 2.

7.1. Two dimensions.

Theorem 21. Let J = [a,b] be an interval on which

(7.1)
ko, o< trw grar ted, / At)Pdt=T, 0T =2
A(t) m m J

Also suppose that € = €1 + iea and suppose £(a) = x(b) = 0. Finally suppose there exists a uniform
bound on x(t),

(7.2) sup |z(t)| < R=TY%.
teJ

Then for T sufficiently large,
(7.3)

1/1 2
/ o)1)t < 3lea(0). Q- VQ)zs ~3(ex(0). Q-+ V@) + o sup KU

su
1 tel? )‘( )

Proof. Define a Morawetz potential. Let x(r) € C°°([0,00)) be a smooth, radial function, satisfying
x(r) =1 for 0 <r <1, and supported on r < 2. Then let

+0O(T78).

" s Tos
(74) o) = [ s = [ ugps
and let
(7.5) M(t /(;5 YIm[P<jyoud, P<pyoul(t, z)dr = /gb |a:| m[P<prouV P<pioul(t, x)dx.

Following (4.37),

(7.6) 10y P<prot + AP<piou + F(Ppyou) = F(Ppyou) — PapyoF (u) = —N.
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Plugging in (7.6) and integrating by parts,

diM /¢ YRe[—AP<j1oudy P<j ot + P<pioulO, P<jioul
/ o(r) Rel— F (Przow)dy Peisou + Ponraudy F(Peprou)]

+f ¢<r>Re[marm<t,w>dw ~ [ 0 ReN0, Pesoult,x)ds
:2/x2(%>IVng+9u|2dar 32 /1//’ )| P<ktoul dx—/ (%)|P§k+9u|4dx
+2 [0 = xRN0~ T Re(@ Porroudh Pesson)da

+ [ ot RelPosauo, N(t,2)ds — [ 9(r)REIND, Percou) (1, )da.

Next, following (4.46),
(7.8)
N = Pejyo(2lu<kts*usrie + (u<iye)Tskre) — (2lu<ris| urte< <kto + (u<iie) Unto< <kto)

+ P00 ((uskis) ) + O((ubro<.<kro)?u) = NV £ N3,

As in (4.47), by Theorems 13 and 14,

b T
/ / o(r)Re[P<pyoud, N dxdt — / / d(r)Re[N @9, P<yygu]dadt
a 0

(7.9) < 2" R||(uzkro) (u<ies) Ty + 2" Rllusnislls [lusraslZs

1 b
< 2’“R(T/ le(®)]|22A(t)"2dt + 22FT10).
Splitting N/ (V)

(7.10) N = O((uzps6) (Uzk3)u) + O(uzkio) (ucprs)®) = N 4 N2,

Making calculations identical to the estimate (7.9),

b b
/ / o(r)Re[P<proud, NV dadt — / / d(r)Re]N 1), Pey 4 gu)dxdt

T b
(7.11) +/ /¢($)R€[Pk+3s-§k+9u3r/\/'(l’1)]d$df—/ /¢($)R€W(1’1)3erk+3s-§k+9U]dwdf
. 0 a

S 2R (uspre) (w2 | (uspra) (ush) oz + 2kRHqu+3”%;{zHquH%‘im

1 b
< 2’“R(T/ le(®)]|22A(t)~2dt + 22FT10),
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Finally, using Bernstein’s inequality, the fact that ¢ is smooth, rapidly decreasing, R = T/25, and

lullLs (ap1xr2y ST /4,

b
/ [ ot retmzrmo N dsd: ~ [ [ o) RlNTD0, o) dde

1

SN Psrssd(@) oo [(uzprew) (u<prs)lre lu<itslis S —=5-
t,x Ly . T9

(7.12)

Therefore, the error arising from frequency truncation is bounded by
1 b
(7.13) 2’“R(T / lle(®)||22A(t)~2dt + 22FT10),
Using the fact that (2¢(r) — x2(r))(d;x — 7o) is a positive definite matrix, by the fundamental

theorem of calculus,
(7.14)

/ / |VP<k+9u| dxdt — 2R2/ /1/)” |P<k+9u| dIEdt—/ / |P<k+9u| dxdt
b) — M(a) + 2" R( /|| I22A(6)2db) + O(T*).

Next compute M (b) — M(a) under the assumption that £(a) = 2(b) = 0. Since @ is smooth,
real valued, rapidly decreasing, all its derivatives are rapidly decreasing, by (7.1), (7.2), (7.4), and

§(b) = z(a) =0,
(7.15)
—iy(t —im»% ZC—.’IJ(t) —aiy(t —iw»% x ‘T(t)
/ o(la 2Tl Perafe 058 QU H ) WP afe e 58 (D last,
i £(t) —xz(t)\2 . k pprp—10
16) | )| ( NG )*dx + O(2"RT ")

E/Q(W)zdw|2+0(2kRT‘lo) = O@2FRT19).

(

(
Next, by Theorem 18, (7.1), (7.2), (7.4), £(b) = z(a) =0, (€1, VQ) 2 = (€2, VQ) 2, the fact that
Q is smooth and rapidly decreasing, and that ¢(|x )— is smooth,

(7.17)
/ a5 - mfPersale e 58 e TN (Pepale e 58 oo E sl
=60 (10 + TS (6, Q)uo — (20 TQUua — 5(0)e2, TQ)z2 + O L
=€) (@ 0Q)z2 + (e2,2- Q) + O = O SAD elz2) ~ (cav - VQUuall + OT )
= <'§((?)'f> + ||e||i2 (22 VQ)usls + O )
= ~(r Vel + 0 [ eta 2+ T sup BOL gl 2



Also, integrating by parts, since @@ and all its derivatives are rapidly decreasing, as well as ¢(|x|)‘—i‘
is smooth,

(7.18)
/ a5 - ImPesan(emne =55 Lo QUL T(Pausole Ve 8 o S laa,
' . mi x —z(t) Lex—xt [ _10
117) = [ V- @) ) - Il QU ) el S el + 071
= (7.17) — 2(e2, Q) 2|2 + O(T~10).
Finally, by Theorem 18, for any ¢ € J,
(7.19)
[ el rmiPersate e 58 S V(P ate 0 S e s
< Bl 2l P (e Ve 563 %eﬁ’ i Dl + RED el
R L CEOR | TV,
S IOt S S T
Therefore,
M(b) — M(a) = 2es(a), @ + - TQ)12 — 2es(b), @ + - VQ) 12
(7.20) 22kT1/15 2 1/15 |§( )|2 Tl/l B
/|| MEaAe) 2t + o sup SO0 22 T

Therefore, to complete the proof of Theorem 217 it only remains to obtain a lower bound for
(7.21)

/ / |VP<]€+9’U,| dxdt — 2R2/ /’Q/JH |P<k+9’u,| dxdt — / / |P<k+9u| dxdt.

Splitting
(7.22)
; w80 w—x(t _ i iz 8 x—x(t
| Peioul? < 2X(t) 2| P<pgo(e” el 3@ Q( /\(t)( ))|2+2)\(f) ?|Pepio(e” e ™30 et /\(t)( ))|2-

By (7.1), (7.2), and (7.4), the support of ¢”(z), and the fact that @ is smooth and all its derivatives
are rapidly decreasing,

1 —2 z —in(t) iw 80 T —T(t) |9 -2
(7.23) —QA(t) /W'(-)|P§k+9(€ 1Bt Q( D) Wdz S A1) ™ 75
On the other hand, by (7.1), (7. 2) and (7.4), for T sufficiently large,
iz S T—x 1 _
(7.21) 02 [0 lPesale 055 e, T E s £ A0 el

Since @ is smooth and all its derivatives are rapidly decreasing, by (7.1), (7.2), and (7.4),

- 3 [0 GITPas(e e g P
1 [ A GRIPera(e =40 oo ;(;“) e = O(HT—),
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Also,
(7.26)
0= GRDRATPepgleOemiec0 0 ;(f)(t)> VPegsole” e e, ;(f)(t) ))da
T - 1 Tr—x
- [0 RGPt Ve 0 (T
i) izt L T () —in(t) izt L, T —a(t) _ ferp—
X Re(P<pio(e~ (e 5()/\@)@(7)\@) )+ P<pyo(e™"e )\(t)e(t, NG ))dx = O(2*FT7~19).
Therefore, from (6.23),
(7.27)
1 . . 1 _
5/XQ(%)WngJrg(e_”(t)e_””'f(t)mQ(x )\(;;(t))'de
- - 1 Tr—x
—i/X2(2R)|P<k+9(6W(t)ewg(t)mQ( )\(t)(t))|4d17
i) piwe() LT () () —imee) L T (D)
+/ (2R)R6(VP<k+9( v (t)e 5()/\(t)Q( NG )+ VP<pig(e™ e )\(t)e(t, NG ))dz
~ [ Persate eSO gt
—iy(t) g—ix- ti L"T(t) . —iy(t) —m»g()i Lﬂc(f)
X Re(P<pyo(e~ (W) e—iz&(t) NG ( NG ) Poprg(eWe t)\(t)e(t, NG ))dz
_1[¢ 1 )2 _
S Q1 + gyt el — SO el + 027 9)
Turning to the terms with two €’s, by the product rule,
1 pmir(D gmizet) L o T =)0
- 5 [ G Parssle™ e P
' Cime 1 —x(t 1
= 31X Pesole™ Ve =40 et ST, + Olmlel)

Then by (7.1), (7.2), (7.4), (6.36), and the fact that Q,, and xo are rapidly decreasing,

(7.29) (2L gy g7
Therefore, following the analysis in (6.24)—(6.32),
(7.30)
% [T Papsa(e e 40 e, T s
syt [ 1Persate e EE QU2 Par e Vet O, A
_QAL)AL Re/(PSk+9( e i Q /\(f)( ))))2(P§k+9(e*”(t)e*”'f(t)e(t, a ;(f)(t))))zdx

A1 2 / EARY —iv(t) —m»g(t)i z—a(t), o _ 2k—10
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Following (1.13),

[ Gmlstonnitdndes < [ x(GRlatena) - (s X(5lg(e2) Pdraday

r1ER

< [xtGlater el - ([ 102, () lats, w2 ds)de doe

= [([xGlateraPdan) - ([ 10s (g gt o0)Pldar iz

(7.31)
< sup ([ x(gpllatena)Pde) - [ ([ 10 (R lotwr.a) oo
< [ [1ontoplstar o ldmdss - [ [ |am<x<ﬁ>|g<:c1,:cz>|2>|dx1dx2
< o) VlEalllh + =5 lgl

Therefore,
/ (P Pasole™ OO @ e(t, T
2R 1)
(7.32)

—1i —iz- — ZC—.’IJ(t) n2
S IRV Persole™ OO0 e, I + e

Finally, by interpolation,
(7.33)
; —z(t) o £
P (1) p—ia€(t) \ ()~ Le(r. & z(t) |\ 13 P iy(t) ,—iw S
[ X GRPP<isate Ve A et S PP (e e

x —z(t)
Q(W))Idw

(t)

(1) i - —z(t)\, el
< VP —iy(t) ,—ix §(t)A ) Le(t T .I(
mlX(5) T Persole™ " OeSOND) et Tt o S+ R el
Therefore, we have finally proved that there exists some A; > 0 such that for 7y sufficiently small,
b
(7.34) (7.21) = )\1/ lellFA(t)"2dt — O(T~®).
Combining (7.34), (7.14), (7.23), (7.24), and (7.20) proves Theorem 21. O

7.2. Dimensions d > 3. The computations in dimensions d > 3 are quite similar.

Theorem 22. Let J = [a,b] be an interval on which (5.6) and (5.7) hold, and |z(t)] < T 500047 .
Also suppose that € = €1 + iea, and that £(a) = 0 and 2(b) = 0. Then for T sufficiently large,

(7.35)
: TV g (h)]?

[ It < Bcala), @ 4V @)~ B(ea0), Qb FQ)rat T o
a U teJ )\(t)

Proof. Once again let R = T/ y(r) € C*([0,00)) be a smooth, radial function, satisfying
x(r) =1 for 0 <r <1, and supported on r < 2, and let

(7.36) o(r) = / (s = / (s

+0(T79).
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and
(7. 37)

/(b VIm[P<py+9udy P<yy roul (t, ¥)dz = /¢ |:v| Im[P<py+9uV P<po+oul(t, x)dz.

Once again,

(7.38) 0y Py ot + AP<pypou + F(P<pgpou) = F(P<gorou) — P<pgroF(u) = —N.
Plugging in (7.38) and integrating by parts,
(7.39)
d
—M /gf) Re[ AP<kO+9u3 P<k0+9u+P<k0+9uA8 P<k0+9u]
/¢ JRe[—F (P, +ou)0r P<gy 4ot + P<pyoudn F (P, you)]
+ / o) Re Py o0, N (t0) — [ G(r) RN, Pl (1)
—2 [V PasnPde - o [0/ PersanPde - 2 [\ Per oo
2R =" 2R2 2R 0 d+2 2R 0
X;X _—
+2 [l 0(e) = P GRI0 — T RelB; Py it P o
+/¢(T)R€[P§ko+9uar/\/](ta$) - /¢(T)R6[Narpsko+9u](t,f)-
Decompose
(740) N = P§k0+9F(u) - F(P§k0+9u) = F(u) - F(P§k0+9u) - PZk0+9F(u)'

Then by Theorem 16, Bernstein’s inequality, Fourier support properties of P>j 49 and P<y,, and
the fact that ¢ is smooth and all its derivatives are rapidly decreasing,

| [ o0 Rl a0, ey st 2)dndt S 20 RIPsy P [Pl oo
L?2L; L2L

d—2

(7.41) il
//(b YRe[P> 1y +oF ()0, P<yyul(t, z)dzdt,

and

/ /d)(r)Re[P2k0+9F(u)8TP§kou](tv:E)dxdt /S 2k0R”PZk0F(U)H ﬂT?5

(7.42) . k

< 2kOR(T/ lle@)||32A(t) " 2dt) + T~°.
J

Next, by Taylor’s formula,

[ o) 1 [FT@) = PP w0, (P o)
(7.43)

1
- / / () I (F (Pory 20w ¥ 5Py 10w) (Popy 20)r (P sow)|dsdadt.
0
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By the chain rule and the computations in (7.41)—(7.42),
(7.44)

[ o) PP o (P )0, (Pt = [ o(r)1m (P20, F (P, cou)dade

1 _ _
§2kOR(T/]|€(t)|%2A(t) 2dt) +T7.

Next, by Theorem 16, 1f == 21+£1/d7 and % = %Hi/d,
(7.45)

1
/ / () Im([F (Penyou & 5Py r00) — F'(Pzpy 10wl (Poryron) s (Pe iy 08)) dsdrdt
0

1
S RI|Pokevoull | _2a NQkUR(—/ le(®)[F2A()"2dt) + T 7.
L2L] T/

Then using the fact that @ is smooth with all derivatives rapidly decreasing,
(7.46)
1

[ | ol Per ot sPorg ) = F(PegaQ + Pty 00 (P ro1)0(Pey o Q)ldsd
0

1
S // S(r)Im[[F'(Q + P<yy 9€ + s P>k 198) — F'(Q)](Psky+9u)0y (Q)]dsdzdt
0

+ / / d(r)Im[[F'(Q 4 P<iy19€) — F'(Q))(Psorou)dr(Q)]dsdzdt + T~°.
0

Using the computations in Theorem 16,

1
/ /O G(r)Im[[F'(Q + P<ky49€ + 8P4 +9€) — F'(Q)](P>ko+9u)0r(Q)]dsddt

(7.47) X
SPOR(E [ eEA0 2 + 177
J
and
1
[ | o) mmllF@+ Petys0d) — F QI Pr a0, (Q)ldsdds
(7.48) 0

1
S2R(G [ IeOIEA0 )+ 77
TJ;
Next, integrating by parts,

/ / Pz m|(P<o+ou) VN]dzdt = / / oz m[(V P< o +ou)N|dzdt
//V Im[(P<k0+9u Ndzdt.

The first term in (7.49) is handled by the computations in (7.41)7(7.47). Again using the smoothness
of ¢(x )ICEI’ Theorem 16, and Fourier support arguments,

(7.49)

@50 [ [ @) I ml(Pasi P o F(uldedt < 7 [ N0 2+ 77
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Also, since V - (¢(x)ﬁ) < inf{1, I_Ijl}’ using the analysis in (7.43)—(7.47),
(7.51)

/ / V- (9(0) T TPty 250) (F() = F(Pe o)y

/ / / Il (Pig )P (P ot + 5P ) Py o) s

4
S(1+5) V : (¢(x)_)lm[F(PSko+9u + 5P> ko) (Pororou)dsdrdt + || Pogyroul|® 2o
d 0 || L2p3-2

tx

2

S+ [ [ 0@ PP (P sowldsde + [ Porgronl? |

tHa

By Theorem 16,

(7.52)
1 _ _
IPrgsonl? o, + WPoio PPl g Possonl s, < 7 [ e o) 2 +77"
Meanwhile, since V - (‘ ‘qb(:z:)) is smooth,
(1+3) [ [ V-0 P PP (Por ot ST Posgsonl s

tdax

(7.53) '
< _/ le(OI2aA () 2dt + T,
T/,

Therefore, the error arising from frequency truncation is bounded by
1
(7.54) 20 R(7, / ()2 A(8) ~2dt) + T2
J

Using the fact that (1¢(r) — x*(r)) (6% — Imz ) is a positive definite matrix, we have proved

(7.55)
/ / |VP<k0+9u| dxdt— / /1/)” |P<k0+9u| dzdt

1 2
2 e i+ 2R [ 132G 2a)

0
The estimate of M(b) — M(a) under the assumption that (a) = z(b) = 0 is the same as in
dimension d = 2. Indeed, since @ is smooth, real valued, rapidly decreasing, all its derivatives are
rapidly decreasing, by (5.6), (5.7), and (7.36), £(b) = x(a) = 0, as in dimension d = 2,

(b) — M(a) +

—iz- S8 1 z -zt
/¢ |:c| Im[Pepyo(e=®Me o )\(t)d/QQ( /\(t)( )))

XV(Perysole™ O30 om0l ;(t)t Ddal, = 02 RT~10).

(7.56)
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Also,
(7.57)
i £ 1 x — x(t)
—iv(t) o X
[ ol - ImiPassate 038 S o)
i PG N | T — x(t
<V (Pargsale Ve QT sl
2ko 771 /25d T1/25d 1/25d
— (enz VQ) el + O T 2 T /H )22A(0) 2dt—|— — sup OIS kOT—2T710
notes At)? m

Also, integrating by parts, since @ and all its derivatives are rapidly decreasing, as well as that
¢(|x|)|””7| is smooth,

7ix-Li)
/¢ |17| m[Peyyro(e="Me™ 30 )\(t)d/zQ(

(7.58) ><v(PS’“”Q(e_m(t)e_mﬁA(lt)d/f( O

= @57 = [ V- (@llal) ) - Il

Finally, by Theorem 20,

x _ L1 x — x(t)
el —iy(t) o 7 X(D)
/¢(|x|)|(b| Im[P§k0+9(e € )\(t)d/QE( )\(t)

XV (Pegyrole” e 53 A(t;d/ze(x ;(f)(t))))]dw

)

(7.59)
t) —ix- 5(? 1 xr— ( ) |§(t)|
S R||€||L2||P§ko+9( i )6 A /\( )d/2€( A(t) ))HHl + R~ )\(t) H HL2
22k0T1/25d T1/25d £(t)[? T1/25d
SR(———— / Nt)~2dt + su 4+ 9%k 10
( e FA) 2t + = smp o 7
Therefore, letting A denote the operator
d
(7.60) Af:x~Vf+§f,

M(b) — M(a) =2(ea(a), AQ) 2 — 2(e2(b), AQ) 12

(7.61) 22k0T2/15d / T2/15d |€( )|2 T2/15d
+0 ()~ 2dt + sup + 22ko T7-10).
|| ||L2 n% teJ )\( ) ’I’]% ))

Therefore, to complete the proof of Theorem 22, it only remains to obtain a lower bound for
/ / |VP<k0+9’U,| dxdt — 2R2 / /1/)” 2R)|P<k0+9u| dxdt

)P
d+2// 2R|<’“°+9“

(7.62)
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Again splitting
(7.63)
i iz £ x—x(t
[Petysonul? < 27() | Py rafe™ Ve 55 (22U

A(t)

x — x(t)

\(t)

. . (t)
JZH2A(E) ™ Pag po(e 1 We™ T (1,

).

By (5.6), (5.7), and (7.36), the support of ¥”(z), and the fact that @ is smooth and all its derivatives
are rapidly decreasing,

1 ; i £ —x(t o 1
(7.64) ﬁ)\(t)_d/w”(}%ﬂPSng(e—w(t)e iiﬁQ(xT;())Fdx <A .

On the other hand, by (5.6), (5.7), and (7.36), for T sufficiently large,

1

T —x(t _
D e < A el

()

~

1 X L E()
(7.65) A / 0 (E)|Pepaole™ O™ St

As in two dimensions, since @ is smooth and all its derivatives are rapidly decreasing, by (5.6),
(5.7), and (7.36),

5 [0 GRIITPatsole et ol

2
2 2R )I*dz
dx = O(T~ 7).

(7.66) -
573 ] (X GR D Pansole e ()

2(d+2)
d

Also,

/(1 - X2(;_R))RG(VPSkOJFQ(e*i’y(t)efix-g(t) )\(;m o ;(f)(t))

1 x —z(t)
A(t)d/2 «(t A(t)
x 1 x —x(t)

(7.67) - / (=X GpIPsrosole™ e 0 om0l

))da

V Pepypo(e” W emime®)

1 x — x(t)
A(t)d/2Q( A(t) )

XRe(PSkO-i-g (e_i'Y(t)e—Wf(t)

1 x —x(t)

NC 0 ;
S O R0

))dx = O(2%FeT~10),

'P§k0+9
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Therefore, from (6.54),

(7.68)

A

1 i 1 x —z(t)

Z P —iy(t) ,—iz-&(t) 24

92 /X (2R)|V <k0+9( € )\(t)d/2 Q( )\(t) ))| L
1 x —x(t) ., 26+

7d t) ,—ix-§(t 2(d+2)
_2(d+ ) / 2(2R)|P<k0+9( —iy(t) g—iz-&( ))\(t)d/2Q( 0 NI e de
x — x(t)

A0
~ [ pIPaysale e

1 x —z(t)
NOUERANY0)

1|€()

. . 1
)+ VP<pypo(e” e 80 —_¢(t,

. 1
P 17(15) —ixE(t)

—_

x — x(t)

OEhA

—1 —ix- 1
)) - Pepyrole™We £(t)me(t, i A

XRe(PSkO-i-g (e_i'Y(t)e—Wf(t)

1 E))? _
€ 2 | ()' HEH%2+0(22}%T 10)'

A(t)?

Turning to the terms with two €’s, by the product rule,

1 9 _ 1 x — x(t)
1 P (1) =i € (t) ¢ 24
2 /X (2R)|V <ko+9(e A(t)d/2€( ’ )\(t) )| €T

— ime 1 x — x(t) 1
iy (t) ,—iz-&(t) 2 2
(6 € )\(t)d/26(t’ A(t) ))H O(R)\(t)2 ||€||L2)'
Then by (5.6), (5.7), (7.36), (6.36), and the fact that Q., and xo are rapidly decreasing,
zA(t) + z(t)

2X(t)? 2X(t)?

(7.69)

= —||X( )P<ko+9

(7.70) (X(T)Evf)L2 ST
Therefore, following the analysis in (6.55)—(6.63),
(7.71)

1 [ 2 () —iwg(t) L z—a(t),
5 | RV Perpsole™ e 40 st T P

d+2 i) —ix-E0 x— x(t) Zi(8) iz x — z(t)
_ iy (t) 1T 3y 2 iy (t) ix-&(t) 2
s | IPtora(e 7038 QUL PIPassofe e 0, T
1 o i 8 x— () —in(8) —iz- x — z(t)
- —iy(t) o~ @) 2 iy(¢) ,—iz-£(t) 2
e [ (Pensatemr0e 88 QU R (Par e Ve €0c(r, o0 s
Ad 2 / L 2 —in(t) —ime(t) L z—x(t),| o 2ko—10
Z ) € X(2R) |V P<yio(e e )\(t)d/2€(t’ NG VPdx — O(22FoT 1Y),
By the Sobolev embedding theorem, for g € H*,
€z 2(d+2) 4/d
(r.72) [ GRo@l o S el ol

Therefore, by the product rule,

. , 2l
/X(%y|P§ko+9(G_W(t)e_”f(t)/\(t)_d/Qe(t, A f)( )))|2(dff2)dx

(7.73) "

S 1/ I ) Pesprale 7O 0N /2e(t, Z o
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Therefore, we have proved that for any d > 3, there exists some Ay > 0 such that for 79 sufficiently
small,

b
(7.74) (7.55) > )\d/ lellZ2A(t)~2dt — O(T ).
Combining (7.74), (7.55), (7.64), (7.65), and (7.55) proves Theorem 22. O

8. AN L2 BOUND ON ||e(s)||L2 WHEN p > 1
As in one dimension, Theorems 21 and 22 imply that ||e(s)||p2 lies in L? for any p > 1.
Theorem 23. Let u be a solution to (1.1) that satisfies ||u||L2 = ||Ql|L2, and suppose

(8.1) sap le(s)llz2 < e,

s€[0,00

and ||€(0)|| Lz = n«. Then

5:2) | e ads < .
0
with implicit constant independent of n. when n,. < 1 s sufficiently small.
Furthermore, for any j € Z>o, let
(8.3) s; = inf{s € [0,00) : [le(s)||z2 = 27n.}.

By definition, so = 0, and the continuity of ||e(s)||L2 combined with Theorem 9 implies that such
an s; exists for any j > 0. Then,

(5.4 | 1elads s 2770,
Si

for each j > 0, with implicit constant independent of 1.

Proof. Set T, = n% and suppose that T, is sufficiently large such that Theorems 21 and 22 hold.
Then by (3.25) and (8.1), for any s’ > 0,

(8:5) | sup In(A(s)— inf  In(A\(s))| S 1,
s€ls’,s'+Ty] s€[s’,8"+Tx]

with implicit constant independent of s’ > 0. Let J be the largest dyadic integer that satisfies

(8.6) J =27 < —In(n,) /4.
By (8.5) and the triangle inequality,

sup In(A(s)) — inf In(A(s))| < J,
(87) |s€[s/,s/+JT*] ( ( )) s€[s’,s'+JTx] ( ( ))|

and therefore,

SUPg¢ [s,8"+3JTy] )‘(S)

infse[s’,s/-i-SJT*] /\(S)

_1
< 7500042
~ T* *

(8.8)

Rescale so that
1

1 1, Ll
(8.9) — < A(s) < —Tp000# for any s e€l[s,s +3JT.].

m m
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Now take a subset [a,b] C [s/,s" + 3JT,], make a Galilean transformation so that {(a) = 0, and a
translation in space so that z(b) = 0. By (3.24) and (8.9),

S
(5.10) sw 158 <o, <.
s€s’,8'+3JTy] /\(S)

Also by (3.26),

 [— 1 1 1
(811) |£L‘(S)| S _21"*50000l2 771J+ _T*sooocﬂ J < T*2000d2_
Ui m
Therefore, Theorems 21 and 22 may be utilized on [s', s’ + JT], proving that for any s’ > 0,
s'+JT, 1
612 [ s S el + [els'+ IT s + 02702 + O,

Note that the left hand side of (8.12) is scale invariant.
Moreover, for any s’ > JT,

(8.13)
s'+JT,
9 . . 272, 2
/S/ le(s)lz2ds 5 se[s’lfanT*,s'] le(s)llz= + se[s/+J71’?,fS’+2JT*] le(s)llze +m ™. + O(J9T»?)-
In particular, for a fixed s’ > 0,
(8.14)
s'+(a+1)JT. ) 1 s'+(a+1)J T, ) 1/2 59 o
su €(s < ———=(su €(s ds +n7J N, + O(==5)-
ap [ el S el o el 2 4 172 4 O )

Meanwhile, when a = 0,
(8.15)

s'+JT, ) 1 "+(a+1)J T ) 12 5 0 o 1
< ! - -
[ el S 1+ o [ el P+ Ol ).

Therefore, taking s’ = s;.,
S+ (a+1)JT, ) )

(816) sup | le(s) 3ads < 275 + 022072 + 02~ %)

az0Js;, +aJT.
Then by the triangle inequality,

s'+JT, )
(8.17) swp [ e(o)ads S 27,
S,_Sj* s’/
and by Holder’s inequality,
s'+JT.
(8.18) sup / lle(s)]|2ds < 1.
8’285, Js

Repeating this argument, Theorem 23 can be proved by induction. Indeed, fix a constant C' < oo
and suppose that there exists a positive integer ng such that for all integers 0 < n < ny,

s’ +J"T, s’ +J"T,
(8.19) sup / lle(s)]|2ds < C, sup / le(s)||32ds < CT ™,

8'>8njy 4 §'>8nj, 4
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Then by (8.5), for s’ > spj.,

Supse[sl7sl+3Jn+lT*] )\(S)
infse[5175/+3(]n+1T*] )\(S)

1
5000d2
< 2000

(8.20)
Remark 7. The C in (8.19) will ultimately be given by the implicit constants in Theorems 21 and
22, so for T, sufficiently large, (8.20) will hold.

Rescale so that (8.9) holds. Also, for [a,b] C [s',s" + 3J"TT,], setting £(a) = 0 and x(b) = 0,
by (3.24) and (8.19),

1€(s)] -
(8.21) sup < CJI7 M.,
sE[s!,s'+3Jn 1T ] )‘(8) '
and by (3.26) and (8.19),
s'+3Jn T, |€(S)| s'3Jn T,
|z(s)| < sup /\(s)/ lle(s)]|L2ds + sup A(s)? - sup o) / 1ds

(822) 1 h 1 1 1 1 1 1
S _T*5000d2 CJ + _2T*1/25dcjfnnln*Jn+1T* 5 _T*5000d2 CJ + _T*2500d2 CJ < T*2000d2 .
mn Ui m m

Then by Theorems 21 and 22,

s'+Jm T,
(8.23) sup / le(s)]|22ds < CJ~(HDTL

828 (n41)jx

and by Holder’s inequality,

s'+J7 T,
(8.24) sup / lle(s)||L2ds < C.
8'28(nt1)j. I8
Therefore, (8.19) holds for any integer n > 0.
Now take any j € Z and suppose nj. < j < (n + 1)j.. Then (8.20)—(8.22) hold on [s; +
aJ" T, s; + (a+ 1)J"TIT,] for any a > 0, so by Theorems 21 and 22,

5j+(a+1)J"+1T* )
(8.25) sup | le(s)[22ds S 2.
a>0Js;+aJn+1T,
and therefore by Holder’s inequality, for any s’ > s;,
s’+2jT*
(8.26) sup / lle(s)||r2ds < 1,
S,ZS]‘ s/

with bound independent of j. Inequalities (8.25) and (8.26) imply that (8.20)—(8.22) hold on
[s',8" + 327 JT,] for any s’ > s;, so

55427 JT. _
(8.27) [ e sz
and therefore, by the mean value theorem,
(8.28) inf le(s) g2 S 27 Ine M2,

s€[s;j,8;+279 JT]
which implies

(8.29) sjt1 € [s5,8; + 27 JT.].
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Therefore, by (8.27) and Holder’s inequality,

Sj+1 . Sj+1
(8.30) / le(s)|72ds S 277, and / lle(s)l[r2ds S 1,
with constant independent of j. Summing in j gives (8.2) and (8.4). a
Now then, (3.27) and (8.2) imply

(3.31) Tim [|e(s)] 2 = 0.
Next, by definition of s;, (8.4) implies

Sj+1
(8.32) / le(s)llads < 1.

55
and for any 1 < p < oo,

Sj+1 )

(5.33) ([ o)) < 212900,

g
which implies that ||e(s)|| 2 belongs to L? for any p > 1, but not Ll
Comparing (8.33) to the pseudoconformal transformation of the soliton, (1.18), for 0 < ¢ < 1,

(8.34) At)~t,  and  [le(t)]z2 ~t,
SO

1
(3.35) | e®llaay e = o.

but for any p > 1,

1
(8.36) / [e(®)]|2 2 A(t) 2 dt < oo.

0
For the soliton, ¢(s) = 0 for any s € R, so obviously, |e(s)||z2 € L? for 1 < p < 0.

9. MONOTONICITY OF A\

As in the one dimensional case, it is possible to use the virial identity from [MRO5], to show that
A(s) is an approximately monotone decreasing function.

Theorem 24. For any s > 0, let

(9.1) As) = inf A(7).
T€0,s]

Then for any s > 0,

(9.2) <28 g
Als)

Proof. Suppose there exist 0 < s_ < sy < oo satisfying

Als4+) _
(9.3) o)

Then we can show that  is a soliton solution to (1.1), which is a contradiction, since A(s) is constant
in that case.
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The proof that (9.3) implies that u is a soliton uses a virial identity from [MR05], combined with
the L? bounds on ||e(s)| 2 obtained in Theorem 23. Using (3.21), compute

(9.4)
L (e oPQ) + 2 QIR +4(5Q + - VQ,e2)r
O(lys +1 = 22 - &(s) — [€(s)[? |||e||Lz>+o<|§s—7 £(s)llle |\Lz>+o<|—||| Iz2) + O(|1 % 5+ 2] lel 22)
<|| 1) + Ollellzeliell” . y), i 2<d<4, +O(ld|), it d>5.

Indeed, by direct computation,

(9.5) (VQ,2%Q) 1> = (iQ,2%Q) 12> = (iVQ,2%Q) = 0, and —L_(y*Q) = —2dQ — 4z -V Q.
Also,

d
(3Q+2-VQ, |2*Q)r2 = —IIIQHLz +5 (|l’|2$ VQ?)12 = —HxQIIp +3 (VIII4 VQ)r>

(96) d+ 2

d
= 2@l — (Al Qe = 21013 — T2 10QI. = eI
Then by Theorem 23, the fundamental theorem of calculus, and (3.23)7(3.26),

S4 Q
(0.7) Q2 + 4/ (62, % +2Qu)12 = O(n.).
Therefore, there exists s’ € [s_, s, ] such that

(9.8) (eg,gQ+x~VQ)L2 < 0.

Rescale so that A(s') = n%

Since s’ > 0, there exists some j > 0 such that s; < s’ + T\ < s;+1. Using the proof of Theorem
23, in particular (8.20)—(8.22), setting £(s’) = 0 and z(sj4144) =0,

SiH1HT A
(9.9) / Alas <

’

Then by Theorems 21 and 22, (9.8) implies

s 2 T
(9:10) [ Ieeas g 2aren,
and therefore by definition of 5,114,

Sjt14J
(9.11) / le(s)ods < 1.
Arguing by induction, suppose that for some 1 < k < ky,
Sjtk )

(0.12) [ s 275,
and

Sj+k
(9.13) / le(s)lleds < 1,

’
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with implicit constant independent of k. By Theorem 23,

Sjt+k+J .
.14 [T e ds s 2 b
and

Sitk+J
(.15 [ Neleds 5 .
Then by (8.20)—(8.22) and setting £(s") = z(sj+x+s) =0,
(9.16)
sup  Jz(s)| S T,?OOI‘”Q , sup  |£(s)] < o, S.UPSG[SGSHHJ] Als) < T*W,
SE[s,8j4 k4] SE[s\8j 414 7] lnfse[s’,s]urk#]] /\(5)
so by Theorems 21 and 22 and (9.8),
Sitk -
9.17) / le(s)|[2ads < 27 .,
and
Sitk

(018) [ el 51

for 1 < k < kg + J. Therefore, (9.17) and (9.18) hold for any k, with implicit constant independent
of k.
Taking k — oo,

(9.19) /OO lle(s)]|32ds =0,

’

which implies that €(s) = 0 for all s > s’. Therefore,
(9.20) up(x) = e ENY2Q (N + o),

for some v € R, A > 0, £ € R, 2y € R?, which proves that u is a soliton solution. 0

10. PROOF OF THEOREM 6

The key difference between the soliton solution (1.21) and the pseudoconformal transformation
of the soliton (1.22) is that the soliton is global, while the pseudoconformal transformation of
the soliton blows up in finite time. To prove Theorem 6, it suffices to show that a solution to
(1.1) satisfying the conditions of Theorem 6 that blows up in infinite time must be a soliton. A
pseudoconformal transformation of a finite time blowup solution will then show that it must be a
pseudoconformal transformation of a soliton.

Theorem 25. In dimensions 2 < d < 15, if u is a solution to (1.1) that satisfies the conditions of
Theorem 6, blows up forward in time, and

(10.1) sup(I) = oo,
then u is equal to a soliton solution.

Remark 8. This theorem is the only place where the proof of Theorem 6 does not work in dimen-
stons d > 16.
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Proof. For any integer k > 0, let

(10.2) I(k) ={s>0:27F2 < \(s) < 27F3),
Then by (9.2),

(10.3) 27F < A(s) <2703,

for all s € I(k). By (3.20), the fact that sup(I) = oo implies that
(10.4) > 27| 1(k)| = oo

If A(s) = 0 as s — oo, then there exists a sequence k,, * 0o such that
(10.5) [T (Kyp)[27 2 > é

Now let I(ky) = [an,bn]. Then by (8.3) and (8.30), for any j > 0,
(10.6) 541 =851 S 20t lle(si)llze = 270 .,
and therefore there exists s’ € [0, b,,] such that

(10.7) le(si)llzz S k272

When d = 2, the proof of Theorem 25 is much simpler, so we will start with that. Make a
Galilean transformation so that £(s") = 0. By (3.24) and Theorem 21, for any 0 < s < s/ ,

£65) / 1 )
10.8 < ds < mns.
(105) S [ sl s < o
Using (1.4), rescale so that
1 1
(10.9) — < A(s) < =2k~ for any 0<s<s.
m m

. =1 . . . _ an
Setting t;, = s™'(s},), using (10.8)—(10.9), Corollary 1 implies that for r, = =3,

(10.10) P>, ulluz o, xR2) S s

Furthermore, arguing by induction on frequency, and using (4.79) and the preceding computations,
(10.11) 1P, i tulluz o, <m2) S k27

Then using the computations in (6.4),

(10.12) E(P

<rn+in

13k

u(th)) S (K227 2nort )2 o (k227 15 )2,

Next, following the computations in the proof of Theorem 17, and using (10.11),
(10.13) sup E(P u(t)) < (k2271582

tef0,t”] Sratip
Therefore, by (6.35) and (10.9),
(10.14) ()12 S (K2~ i h)?.
Since k, — 0o as n — 00, (10.14) implies that €(0) = 0, or that u is a soliton solution to (1.1).
If A(s) > d > 0 for some § > 0, then rescale so that
1

1
10.15 — < A(s) < —2ko,
( ) m ()_771
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for some ko € Z>o. Then for k, = n, |s,| < 2"y, 1, by (10.8), (10.23), Corollary 1, and (10.10)—
(10.13),

(10.16) sup BE(P_, ,mou(t) S27°5%,  and  sup [le(t)]|pe S oyt T2k,
tef0,t!] - 4 tef0,t!]

In this case as well, since k,, — o0, €(0) = 0.

In dimensions d > 3, the proof is complicated by two factors. The first is that the long time
Strichartz estimates in Theorem 16 depend on a bound on |z(t)|, which was not needed in two
dimensions. The second is that in dimensions d > 3, F(z) = |x|%x is not a smooth function of x.

First suppose A(s) N\, 0 as s — oco. Again rescale so that

1 1
(10.17) — < A(s) < —2Fn, forany 0<s<s).
m m
Suppose s, € I(kn) = [an, by, for kn < kn. By (10.8),
(10.18) % < M, forall 0<s<s.
Also, for any s; € I(ky), 5j € [an, by], setting z(s;) = &(s;) = 0, by (10.8),
1 1 27 1
(10.19) sup  |z(s)| S — + 5mm27 = < —
SE[S]',S]'+1] Uit TI T 771

Since |8}, — an| < k12 22kn | setting T ~ 7522%» and n; *T = 2%¢* as in (5.7), Theorem 16 implies

that for any 7 > 28z letting a!, = s~ (ay),

10d’
1Poitl g WPl e

’

1 tn
/ e(8) 22 A(t)~2d) /2 4 k22~2kn 4 10

< k23 (k=) (—

(10.20) T

n

"
_ 1 _ 1 kn ag - n
:771 1+10dk’r17, 5d2§—d277d1(/ He(t)||%2)\(t)72dt)l/2_|_k721272kn +T710.

In fact, revisiting the proof of Theorem 16, by (10.7), the right hand side of (5.12) can be replaced
by k2272k» 4 7=19 and (5.21) can be replaced by

(10.21)

S| e TTAPL Flug)dr|| oa + k2270 4 710,
2Ld 2(J R?) to - URNL2LI2

Next, the contributions of (5.22), (5.30)—(5.31), and (5.39) can be replaced by
(10.22)

[ P>iulluz (rxray + | P>ull

kn

t/

—1+157 1" 59k " 2/d 2/d -
my Ok 125 2T / @A A el 7L L ar ey HFR 2 Nl T L2 10y ) T
Furthermore, by the support properties of 9?(x), where 1) is as defined in the proof of Theorem 16,
the contribution of (5.27) and (5.29) may be controlled by the right hand side of (10.22) plus

(u<1 Q)

Ql 4/d ))L2dta

(10.23) 27 [0 (Tuss = Q@Y et + 270, (VQUE
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where [|v]yz = 1 and 9 is supported on [¢] > 2. Theorem 15 implies that Q*/? is differentiable,
and the gradient is smooth and rapidly decreasing. Theorem 15 and (1.17) also imply that since @
is radially symmetric,

(10.24)
v VQ -V Qr £y _ (5L xjxk) Qr + er TjT _( . 4) Q% TjTk
Q1-4/d R OT-1/d || o[ JaP JQi-/d T Qi-4/d |2 4’ Q2=1/d [z]2
QT 4/d Q d 2
S 2| Q1474 QY1+ 0 aa © e Ly/

Therefore, by Bernstein’s inequality, arguing as in (5.27) and (5.29),

(10.25) (10.23) < n/P27 5 Taw00a | (V)2 (Peju — Q)| 2a -
L

Therefore, plugging in (10.20), we have proved

(10.26)
t/
14 1—L kn (as—1)i n _
| P>iulluz (s, o) xmay + |1 P>iull | 24 Sy g, B8 g (@am ) (/ le(t)]|22A ()~ 2dt) /2
L3LE77 ([}, ] xR al,
t/
— _1 _ 1 n ag . n
b I e el g + 22 T

and revisiting (5.16) and (5.17),

t
gl 1=k ka0 1) " _
1Pl oS R e [ o))
A t—z Aoty al

n
’
t

—l+ - ke 24y " d
Tt N I O RO ORE P

a’

(10.27)

n

+R227 2 e Ly + K22 2Rn T 4 IO,

Combining (10.26) and (10.27) with the proof of Theorem 19, for t € [al,,t},], and Theorem 23,
(10.28)

E(Pey, - 3 yult) S 2792k () gl 4 9(1-2000k (O m8) 9558 k2072 el oo 12 (ar 11 xR

i k22 S oD e T + T

LeoL2([a, ¢ ]

Now then, when d = 3,4, by (6.65), [[e(t)[|2. S At)*E(u(t)) + T, so

(10.29)  E(Pey,, q_pyult)) S 27 %n22n (w4 o8—daakn (=) g 5 oy o8 4 10,

10d

so for k, sufficiently large,

(10.30) E(Pey, - yu(t) S 9~ 4kn92kn(1-s52) 4 4 =10,

for any t € [al,,t,,]. Furthermore, for any j < k,, suppose I(j) = [a;j,b;]. Then, A(s) ~ n—112(’~“"_j).

n»'n

Rescaling so that A(s) ~ n—ll on this interval, repeating the calculations obtaining (10.26) and
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88;3, and then rescaling back, if a); = s7'(a;) and b} = s71(b;),
ST E S S r
||P>Zu||Up( b XRY) + ||P>lu||L2Ld - <, 1+ 15 k'}z 5d 2’;,72_(ad—1)(1+kn—J)||6||1/2

/ ’ X

1

—14E 1
+771 104 kn LooLz([ /) b/]

and letting Y denote the dual space to UX N LQLF,

1+10d/€ 51d2%2—(ad—l)(i+/}n—j)||€||1/2

||P>z ( )||Y(J><Rd) S ™ L= L2([a/, b} xR4)

TR W R W N N T A
(10.32) +m Hrmoa g, 5d2§7d2_7d(l+kn_])||€||i/t°<2iz§<[(i;.,b;.]><]1§d)

Fsup{27, 27 Y B(Pey o u(®) (e[, + 2 ) 4 T,

Using (6.65), for 0 < j < ky,

(10.33) M2~ le(t)l| e S Eu(t)?,

so arguing by induction on j, 0 < j < k,,, and following (10.28)—(10.30),

(10.34) sup E(u(t)) S 27 oo gh 4 7710,
tef0,t))]

Again by (6.65) and (10.17), (10.34) implies

(10.35) el 2 < %2—2’%22’%“—ﬁ>k3 + %22’%:/“—10.
Un Un
Taking k,, — oo implies ¢(0) = 0, so w is a soliton. The case when A(s) has a positive lower bound
is easier, as in the two dimensional case.
In dimensions 5 < d < 8,
(10.36)

E(Peg, - 1 yult)) S 2722 (- ma) g1 4 9(4-2000kn (1= 56) 258 2572 oo 12 (jar 11 )
oy k22 g @am Dk Ui | A T

for t € [al,,t]] implies

(10 37) E(ngn(l—ﬁ)u(t)) 5 2—4k7122kn(1—ﬁ)k4 + 2(8—4ad)7€n(1—ﬁ)2% k:llnl—4
' 2kn

+(771_2k22 a9~ (ad72)kn(1fﬁ))d2—7d4 + 710,

. . _ 1
Doing some algebra, since ag = 3 — =5,

(10.38)

%o 24 B d o, 8 3 1 4,
5d d—4 104 502’d—4 “Td—4 10(d—4) 50dd—4) bdd—4) - "Td—4
Therefore, for ¢ € [a),, ],

(10.39) E(Pey, 1 yu(t)) S 27227 a4,

Then as in (10.31) and (10.32),

(10.40) sup B(Pey, o 1 yu(t)) S 27227 i,

tef0,t)]

L3°L2(a), b | xR9)

BgSitg F R V20 Fsup{2 2 ke B(P, (au() Y2+ T,
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Then by by (6.65) and (10.9), taking k, — oo, €(0) = 0.
When d > 9, recall that ooy = 2+ % — %. However examining the proof of Theorem 16, it is only
the contribution of (5.39) that needs ag = 2+ & — 2, the other terms have the regularity 3 — &

10d-
Therefore, for ¢ € [a},, ], replace (10.36) by
(10.41)
_ _ o =
E(Pay, - yult)) S 27 Mmoo moa) i 4 9(1=200)ke Um0 958 k2172 €] e 2 (ar 11, xR
07 2k22 oy 2*0*%)’%(1*%0{)||€||2;O4L/g([%t;l]xw) + 2k2 B 9= (5 —5a)kn(1-159) lle ||i;8£g + 710,
Then
(1042)  n k2258 27 G300k Oosb0) ] 5/ < o3 1 + (k22 5 27 (=3 hn (O mb)) 75,
Doing some algebra, for 8 < d < 15,
8 3 7 2d 3
10.43 ° 2 Ly 2 59, 2
( ) (d 5d 1Od2) d—8~ +7O
Therefore, for 8 < d < 15, for k,, sufficiently large,
(10.44) (ny 2k22 754 2~ (G —50)kn (1= 152) ) @5 < 9= 2kng—70kn.
Once again, taking k, — oo proves €(0) = 0.
Dimensions d > 16 remain unresolved. O

Now turn to a finite time blowup solution. As in dimension one, sup(I) < co implies that u is a
pseudoconformal transformation of the soliton. Suppose without loss of generality that sup(l) = 0,
and

(10.45) sup |le(t)]| L2 < 7.
—1<t<0
Then decomposing wu,

£(t) ; (2]
e~ M) e XE 4 — z(t) e~ () o7 X x —x(t)

oz Y )T e e )

Then apply the pseudoconformal transformation to u(¢, x). For —oco <t < —1, let

(10.46) u(t,z) =

iz 5( )
U(t I) Lu(l E)el‘z‘ /At _ 1 el’Y(l/t)e t A (E—t.’[:(%))ei‘zp/“
’ t42 0t A2 \(1/t)d/? tA(1/¢)
(10.47) e
+L e/t et XD e(l x — tw(%))€i|x|2/4t
td/2 X\(1/t)d/2 t7 tA(1/t) '

Since the L? norm is preserved by the pseudoconformal transformation,

o 6D
1 (/D T3 x —ta(l)

A g gy ¢ e =0, and
(10.48) . o
1 e/ HUW_Q
_ ix” /4t <
e E e G gy e e < e
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Decompose

o Jr—taDP | wead) ¢, 1,
10.49 | e
( ) 4t 4t + ) 4|$(t)|
Since

) lEL%l) ey, 1
(10.50) 1 nWhe' A gin T igle(D)] x_m(%))
2 OVORE EA(1/t)
gy i S0 )

is in the form of &7 Q(ztz(t) ), it only remains to estimate

A(t)4/2

. Jx €(1)
1 en/Me'esm o —tx(T)

a7 A(1/t)d/2 tA(1/t)
As in (10.3), for any k > 0, A(s) ~ 27* for all s € I(k). Furthermore, by (3.25), ||e(t)||z2 — 0 as
t 0 implies that there exists a sequence c; " oo such that

(10.51) Y (et (D4 )| .

(10.52) |I(k)| >ck,  forall  k>0.
Then by (3.20), there exists r(t) \, 0 as ¢t /0 such that
(10.53) At) < tY2r(t),  so  AA/t) < tTY2r(1)t).
Therefore, since @ is rapidly decreasing,
| = to(d) |z — ta(L)P?

10.54 li L ! =0
(10-54) A a7 oy ) e =0
as well as

1 r—tx(L) . 12

10.55 li 14 ilz—tx($)[7/4t _q =0

Therefore, v is a solution that blows up backward in time at inf(I) = —oo and v satisfies the

conditions of Theorem 10 on (—oo, to] for some ¢y € R. Therefore, by time reversal symmetry and
Theorem 25, v must be a soliton. Therefore, u is the pseudoconformal transformation of a soliton.

11. A LIOUVILLE RESULT
Recall the Liouville theorem for the generalized KdV equation from [MMO00].

Theorem 26. Let ug € HY(R) and let o = |Jug — Q|| 2. Suppose that the solution to the focusing,
mass-critical generalized KdV problem,

(11.1) U + O (Uze +u°) =0, u(0,2) = ug,
is global in time, and for all t € R, and assume that for some c1,co >0,
(11.2) 1 < lu(@®)|lgr < ea.

Also suppose that there exists x(t) such that

(11.3) v(t,x) = u(t,z + z(t)),

satisfies

(11.4) Veo, JRo(e0) > 0, vt € R, / v(t, x)%dr < €.
|:E|>R0
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There exists ag > 0 such that if a < ay, there exists Ao, o such that
(11.5) u(t,z) = )\é/QQ(AO(x —x0) — Aot).

Using Theorems 2 and 3, we can prove such a result for the nonlinear Schrédinger equation,
without requiring the initial data to lie close to the soliton.

Theorem 27. Let ug € H*(R?) and suppose ||uol|z2 < ||Q|lr2 + «, for some 0 < a < ap < 1.
Suppose that a solution u(t) to (1.1) is defined for allt € R and for some c1,co > 0,

(11.6) 1 < |lu@®)||gr < eay for all teR.

Also suppose that for all t € R there exists x(t) € R? such that

(11.7) v(t,x) = u(t,z + z(t)),

satisfies

(11.8) Veo > 0, 3Ry > 0, Vt € R, / lo(t, z)|>dz < €.
|:E|>R0

Then there exists ag > 0 sufficiently small such that if & < ag, u should be in the form (1.19).

Proof. By Theorem 3 and scattering for ||uo||r2 < ||Q||L2, it suffices to check

(11.9) 1QN> < llullz> + QL2 + o

By [Fan21], [Dod20], and [Dod21b], there exists a sequence ¢, — +oo and a sequence 7., € R,
Eem €RY N, €(0,00), T € R, such that

(11.10) eiW*’"eim'g*’"Affgu(tn, Aen® + Tum) — Q, weakly in L2

By (11.6) and (11.8), this can be upgraded to convergence in L?, which implies |lu|z: = ||Q| 12,
which proves the theorem. O

In fact, it is possible to say more. Suppose ug does not lie in H', but only in L2, but we have
uniform bounds on the length of the intervals for which local well-posedness of (1.1) holds. The
Liouville theorem still holds.

Theorem 28. Let ug € L?(RY) and suppose ||ugl|r: < ||Q|lz2 + @, for some 0 < a < ag < 1.

Suppose that a solution u(t) to (1.1) is defined for all t € R and for some c1,co > 0,

sup ||u|| 2(d+2) < ¢2,
to€R L, .7 ([to,to+1]xR%)
inf lul| 2eat2) > ¢
to€R Ly .7 ([to,to+1]xR9)

(11.11)

Also suppose that for all t € R there exists x(t) € R? such that

(11.12) v(t,x) = u(t,z + z(t)),

satisfies

(11.13) Veg > 0, IRy > 0, vVt € R, / lo(t, x)|?dx < €.
|z|>Ro

Then there exists ag > 0 sufficiently small such that if & < ag, u should be in the form (1.19).
Remark 9. Note that (11.6) and (11.8) imply (11.11).
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Proof. Once again, it suffices to only consider initial data that satisfy (11.9). Once again, (11.10)
holds for a sequence t,,  co.
We claim that for any IV,

(11.14) 1< (€7 S A 2 u(tn, A + 4n) — Q@) 12 — 0.

Otherwise, by (11.13),

(11.15) PSN(eiv*’"eiz'g*’"kf(,%u(tn, Aen® + Topn) — Q(z)) = f #0, weakly in L2,
which would contradict (11.10). Therefore, there exists a sequence N,, ,/* oo such that
(11.16) | P<n,, (€7=m €@ & m AU 20ty Ay + T ) — Q(2)) | 12 — O.

Next, since (11.11) implies that u blows up in both time directions, for «g sufficiently small,
Theorem 3 combined with standard perturbative arguments implies that u is close to a member of
the soliton family (1.21) for all ¢ € R. Furthermore, (11.11) implies that A(¢) ~ 1 for all ¢ € R.
Therefore, let uy,(t) be the solution to (1.1) with initial data of the form

(11.17) U (0) = eme®Em AN 20t N, w34 ).

Then by (11.16) and standard perturbative arguments, there exists a sequence T;, / 0o such that
(11.18)

Un(t) = e Q4vy, () +7n (1), where lonll 2at2) <1, lrnll 2at2) N 0.
L, ,.% ([0,T,]xR4) L, . ([0,T,]xR4)

t,a t,a

However, by Holder’s inequality and (11.13), for n sufficiently large,

(11.19) lon@ll 2 ) 2 (luollzz = 1€ 22),

for any ¢ € [0,T,], with lower bound independent of n. This gives a contradiction for n sufficiently

large, when ||ugl/p2 > ||Q]| 2. When [Jug||r2 = ||Q]| L2, apply Theorem 3. O
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