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INSTABILITY OF THE SOLITON FOR THE FOCUSING, MASS-CRITICAL
GENERALIZED KDV EQUATION

BENJAMIN DODSON AND CRISTIAN GAVRUS

ABSTRACT. In this paper we prove instability of the soliton for the focusing, mass-critical gener-
alized KdV equation. We prove that the solution to the generalized KdV equation for any initial
data with mass smaller than the mass of the soliton and close to the soliton in L? norm must
eventually move away from the soliton.
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1. INTRODUCTION

In this paper we prove L? instability of the soliton for the focusing, mass-critical, generalized
KdV equation

(1.1) U = —(Uge + %), uw(0,z) = ug € L*(R).
This equation is called mass-critical because the scaling leaving invariant, i.e.
u(t,x) — AZu (A\t, Az)

leaves the L2 norm, or mass, invariant. The mass of a solution, defined by

M(u(t)) = /R|u(7§,x)|2dx

is conserved.
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Recently, [7] proved that the defocusing, mass-critical generalized KdV equation
(1.2) Uy = —(Ugz — %), u(0,7) = up € L*(R),
is globally well-posed and scattering for any ug € L?(R). The proof of the defocusing result used
the concentration compactness method. Namely, a result of [12] combined with a scattering result
of [5] for the defocusing nonlinear Schrédinger equation,
(1.3) iy + Uy = |u|tu, u(0,2) = ug € L*(R),

implies that for scattering to fail for (1.2]), there must exist a nonzero, almost periodic solution to
.

Definition 1.1 (Almost periodic solution). Suppose u is a strong solution to on the mazimal
interval of existence I. Such a solution u is said to be almost periodic (modulo symmetries) if there
exist continuous functions N(t) : I — (0,00) and x(t) : I — R, such that
(1.4) {o(t,z) = N@t)""2u(t, N(t) ‘o +z(t)) : t € I}
is contained in a compact subset of L*(R). See also section[2.4) for an equivalent condition.

Then [5] proved that in the defocusing case, there does not exist a nonzero, almost periodic
solution to (1.2)), which implies scattering for the defocusing equation (1.2]). The proof used an

interaction Morawetz estimate based upon the argument in [23], which proved there does not exist
a soliton for the defocusing, generalized KdV equation.

For the focusing generalized KAV equation, there exists the soliton u(t,z) = Q(x — t), where

31/4
(1.5) Qz) = m > 0.
The function Q(x) solves the elliptic equation
(1.6) Qua +Q° = Q,

so therefore, Q(x — t) solves (L.I). Note that Q(x — t) is an almost periodic solution to .
Meanwhile, for the focusing, mass-critical nonlinear Schrodinger equation,

(1.7) g+ Upw = —|u*u, u(0,7) = up € L*(R),
u(t,z) = " Q(z) gives a soliton solution.

The paper [6] proved that the focusing nonlinear Schrédinger equation is scattering for
initial data below the ground state, ||ug||rz < ||@]|r2. It is conjectured that the same is also true
for the focusing, generalized KdV equation.

Conjecture 1.2. If ||ug||z2 < [|@Q]| L2, then the solution to (1)) is globally well-posed and scattering.

It can be verified that if Conjecture [1.2]is true, then this implies that there does not exist an
almost periodic solution to below the ground state.

Conjecture 1.3. There does not exist a nonzero, almost periodic solution u to (I.1) satisfying
0 <lullrz <@l -

However, unlike in the defocusing case, Conjecture does not imply Conjecture This
is because [12] states that if is globally well-posed and scattering when |ul|r: < [|@Q] L2,

Conjecture implies Conjecture when 0 < |ullz2 < \/%HQHLQ. In the defocusing case,
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the presence of the constant \/% is unimportant, because scattering for the defocusing nonlinear

5

Schrodinger equation holds for any finite mass. However, in the focusing case, the constant 4/ g

becomes quite important, since it is conjectured that (I.1) scatters for any |uo|lr2 < ||Q|lL2-

Conjecture would also imply instability of the soliton in an L?-sense. For any initial data
up € L?, |lugllzz < ||Q|lL2, the solution to would scatter to a free solution, and thus the
solution would approach distance

Q72 + lluolZ=)"?
from any translation or rescaling of the soliton as t — 4oc.

In a remarkable series of works, [20], [13], [14], [15], [19], |16] proved, among many nice results,
the instability of the soliton in an H! sense, for initial data with mass greater than or equal to the
soliton. In fact, they proved something more, that there initial data arbitrarily close to the soliton
in H'-norm, which eventually move away from the soliton in an L2-sense. See [17] and [18] for
results in a weighted L? space.

In this paper we show that there are no almost periodic solutions to which are uniformly
close to Q(x) in L2 modulo symmetries.

Definition 1.4. If a mazimal-lifespan strong solution u to on I satisfies

1 T — X0
—)

1.8 inf t,x) — —7
( ) sup In Hu( 7$) ,\3/2 Q( )\0

tel Moo o2 <0

then we say u is d-close to Q. It is readily seen that the infimum is attained and the values
Ao(t), zo(t) which attain the minimum can be chosen to be continuous.

The main result is

Theorem 1.5. There exists § > 0 sufficiently small such that there does not exist a maximal-
lifespan solution to with ||ugllrz < [|@Q]|r2 satisfying (1.8).

In other words, Theorem [1.5] states that there no solutions d-close to Q. A consequence of this
fact is that for any initial data satisfying ||ugl| 2 < |[|@] L2, the solution to with such initial data
must eventually move a distance § > 0 away from the soliton, modulo translations and rescalings,
where § > 0 is a small, fixed constant.

We split Theorem [1.5] into two statements. The first part reduces the study to the existence of
almost-periodic solutions.

Theorem 1.6. Suppose u : I x R — R is a mazimal-lifespan strong solution with ||ugl|r2 < ||Q]| L2
to the mass-critical focusing gKdV equation which is d-close to Q. Then, if § is small enough,
there exists an almost periodic modulo symmetries mazimal-lifespan (strong) solution v which is
d-close to @ with mass less than Q.

The proof is given in Section [3and it relies essentially on a Palais-Smale result based on the Airy
linear profile decomposition, decoupling and an approximation of gKdV solutions by NLS solutions,
which are tools developed in [22], [23], [12] and reviewed in Section[2] See [9] for a similar argument
in the case of the mass-critical nonlinear Schrédinger equation.

Once we have this reduction, we prove that such solutions cannot exist.
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Theorem 1.7. There are no almost periodic solutions to with mass less than Q which are
d-close to Q, if 6 is small enough.

The proof of Theorem combines the ideas of [7] and in [20], [13], [14], [15], [19], [16], [17],
and [18]. The proof of scattering in [7] reduced an almost periodic solution to three scenarios: a
self-similar solution, a double rapid cascade solution, and a quasisoliton solution. The arguments
used in excluding the self-similar and double rapid cascade solutions can also be used to exclude an
almost periodic solution to with mass less than the soliton, regardless of whether it is close to
the soliton or not. However, in the defocusing case, the interaction Morawetz estimate developed
in [7] used [23], and there is no analog to [23], even for a solution with mass below the mass of the
soliton. Instead, we rely on the Morawetz arguments in [20], [13], [14], [15], [19], [16], |[17], and [18].
These Morawetz estimates depend very much on the fact that the solution is close to the soliton in
an L?-sense, and can be used to show that a solution cannot stay close to the soliton for the entire
time of its existence.

Acknowledgements: The authors are grateful to Jonas Lithrmann, Yvann Martel, and Daniel
Tataru for several helpful conversations concerning this problem. The first author also acknowleges
the support of NSF grant DMS-1764358.

2. PRELIMINARIES

2.1. Notation and linear estimates. We will write x < y to denote x < Cy for a uniform
constant C' > 0. We denote (x) = (14 22)'/2. The one-dimensional Fourier transform is defined by

. 1 .
o —iz§
f(g) L (27’()1/2 /Re f(I)d.I, geR
which is used to define the linear propagator and fractional differentiation operators by

cEF(E) = M F(©), 0. F(€) = €I F©).

For an interval I one considers the mixed norms on I x R

1/p
I FNlLrLa(rxr) = (/I(/RIF(t,x)|qu)p/th) ,
1/p
I E e e rxr) = (/R(/IIF(t,x)|th)p/qu) ,

with the standard modification when p = oo or ¢ = co. We recall the dispersive estimate
o102 <+ 30G-3) , 2<p<
uoHLg(R) ~ P ||u0||L§ (R)’ N e oh

We will consider weakly convergent sequences in L2(R), i.e. f, — f if

(fn,9) /fn dx—>/f dr  VgeL%(R).

By approximation arguments, it sufficies to check this condition for all g € C.(R). A basic fact
which we will be using tacitly is that if f, — f then

11z < I%ngf | frllz2 -
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2.2. Solutions to gKdV. Throughout this paper we will consider strong solutions, defined as
follows.

Definition 2.1.

(1) A functionu: I xR — R on a non-empty interval 0 € I C R is a (strong) solution to (1.1)
if it lies in the class CPL2(J x R) N L2LI°(J x R) for any compact J C I and obeys the
Duhamel formula

¢
u(t) = e‘taguo — / e—“—T)@iaw (u5(7)) dr.
0

We say that u is a mazimal-lifespan solution if the solution cannot be extended to any
strictly larger interval. We say that u is a global solution if I = R.
(2) The scattering size is defined to be

1/2
160 = [ ([ lute.o®at) o =l rny

(3) We say that a solution u to (LI) blows up forward in time if there exists t1 € I such that
Sit, sup(1)) (1) = 00 and that u blows up backward in time if there evists a time t; € I such
that S(inf(1)7t1](u) = 0Q.

(4) We say that u scatters forward/backwards in time if there exists a unique uy. € L2(R) such
that

(2.1) lim_[|u(t) = ¢~

t—too

L2®)

(5) The symmetry group G is defined as the set of unitary transformations
G = {gaor : L2(R) = L2(R)| (w0, A) € R x (0,00), guyrf (@) := A2 f (A" (& — 20)) }.
Foru:I xR =R, one defines Ty, ,u: I xR—R by
T,

LERIPN

u(t,z) == A\"2u (AP A (2 — ).
Tyu solves (1L.I) with initial data gup if u is a solution. Moreover, scattering sizes are invariant
Sxer(Tyu) = Si(u),  geG.

We note that G is a Lie group and the map g — T, is a homomorphism. Giving the operators
in G the strong operator topology, then the identification (z9,A) + ¢g,,a is a homeomorphism
between R x (0,00) and G. Thus we say gz, x, — o0 if |z,| + Ay + A, — 0o. Moreover, in that
case ¢z, ., converges to 0 in the weak operator topology.

The L? local well-posedness theory of was established by Kenig, Ponce, Vega in [10].

Theorem 2.2 (Local well-posedness [10]). For any ug € L2(R) and to € R, there ezists a unique
solution u to with u (tg) = wo which has maximal lifespan. Let I denote the lifespan of u.
Then:

(1) Iis an open neighborhood of tg.

(2) Ifsup(I)/inf(I) is finite then u blows up forward / backward in time.

(3) If sup (I) = +00 and u does not blow up forward in time, then u scatters forward in time.
Conversely, given uy € L2(R) there is a unique solution to in a neighborhood of oo
so that (2.1) holds. One can define scattering backward in time in a completely analogous
manner.
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(4) If M (uo) is sufficiently small then u is a global solution which does not blow up either
forward or backward in time and Sg(u) < M (u)>/2.
(5) Uniformly continuous dependence on initial data holds, see Corollary|[2.5

2.3. Stability and corollaries. The stability theory of the generalized KdV equation is
discussed in detail in [12].

Lemma 2.3 (Short time stability [12](Lemma 3.3)). Let I be an interval with 0 € I. Suppose
u: I xR —=Ris a solution to

(2.2) (O + 02)u + 0, (7°) = e,
(0, ) = to(z),
for some function e such that
il Loo L2 (rxr) < M,
for some M > 0. Let ug be such that

Juo — @0l 2 < M,

for some M' > 0. Assume the smallness conditions

(2.3) %l L5 Lio(rxr) < €05
_ 53 ~
(2.4) lle™"% (ug — o) | L3 L1o (1xR) < €
—1
(2.5) 11021 ellLr Lz (rxry < &

for some small 0 < e < g = eo(M,M’). Then there exists a solution u : I x R — R to (L.I) with
initial data u(0) = ug satisfying

(2.6) |u— ﬁ”LgL}O(IxR) + [’ - ﬁSHL;Lf(IxR) Se,

(2.7) l[u — @l oo r2 1y + | 18] (u — @)

!
s, (1xr) S M' +e.

Iterating this lemma over small intervals also a long-time stability result can be obtained, see
[12] Theorem 3.1]. To keep track of the number of small intervals one uses the following bound.

Lemma 2.4. Let v € L2LI°(J x R) for an interval J. Divide J into N intervals [ty,tr+1] such
that ||v]| 15 L1o ([t 4 0] xR) = €0 for every 1 <k < N —1 and ||v][ 15 110(jty tn11]xR) S €05 for a fized
€0 > 0. Then the number of intervals N is finite and N S (1 + ||v]| 15 10(sxr) /€0) '

Proof. See [12] Thm 3.1 -first part] O

As a consequence, one has

Corollary 2.5 (Uniformly continuous dependence on initial data). Consider solutionsv € L2L}%(.Jx
R) to (I.I). For every e > 0 there exists 0 = 6(e, ||v(0)||L2, [[v]lLs pro(sxry) such that if [[uo —
v(0)|l2 < 0, then there exists a solution to (1.1) defined on J, with initial data u(0) = ug such that

lu—vllrserznrsLiorxr) < e

Finally, we can use stability to prove a compactness property for the the transformations asso-
ciated to solutions that are J-close to Q.
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Lemma 2.6. There exists § > 0 such that the following statement holds. Let u: I x R — R be a
strong solution to such that
(2.8) lg@u(t) = Qllzz <6,  Vtel,

with g(0) = go1 (the identity), 0 € I, g(t) € G. Then for any t € I there exists a compact set K,
depending only on ], ||ullLs p10(j0,qxr) and M(u) such that g(t) € K.

Proof. Without loss of generality suppose ¢ > 0 is fixed. We split [0, ¢] into N intervals as in Lemma
where ¢ is the constant in Lemma[2.3] Then N depends on M (u) and [[ul| s 110 ([0.4)xR)-

We do an induction argument. We prove that if the statement holds for ¢; then it also holds for
S € [tk;thrl]- At t =0 we have Ky = {90,1}-

From |[u(t) — g(tx) ' Q||2 < J using Lemma [2.3] we deduce

S—tk
3
)‘k

lu(s) = g(te) ' Q( =
From this and at s we find

1Q — 9()g(tk) ™ 95—ty 221 Qll L2 < 6.

For § small enough, g(s)g(tk)_lg(s_tk)”i’l will lie in a small compact neighborhood of the identity
parametrized by (z,\) € [—n,n] x [r, R] for some n > 0 and 0 < r < 1 < R. Therefore g(s) has to
be in a compact set. Moreover, denoting g(tx) = gz, x., one checks inductively that

ez S 6,

k—1

M € [PFTLRT ek < (04 R 4 gt

which implies the stated dependence. O

2.4. Almost periodicity. As a consequence of the Arzela-Ascoli theorem we know that precom-
pactness of a family of functions in L2(R) is equivalent to it being bounded in L2(R) and the
existence of a function C'(n) so that

[ @i [ jj@raesa vaso
lz[>C (n) 1€1=C(n)

holds for all the functions. Therefore, the almost periodicity condition (L.4) is equivalent to

utt. o) dot [ (L oORde <y V>0

~/|Im(t)>c(n)/N(t) [€1=C ()N (t)

2.5. The embedding of NLS into gKdV. We now review the approximation of solutions to
gKdV by certain modulated, rescaled versions of solutions to NLS discussed in [23], [3], [12].

We cite the following theorem from [12, Thm. 4.1], which was initially conditional on the global
well-posedness and scattering of the focusing NLS below the ground state, which was subsequently
proved in [4]. We will only need this theorem for small data (in which case the existence part is
automatic), and specifically we will use the approximations (2.11), (2.12). Here

Re [eisnde i€ Vi, (3¢, At 4 3(6aAn)?1)] ,  when [t] < 32

3£7l>\7l
(29)  dL(t,z) =1 expi— (t— g0 ) 03t iin (300 ) » when ¢ > 21—
exp i — t+—3§$n 83 Up, —35:‘5)\” , whent<——3£)\n
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is defined in terms of certain frequency-localized solutions V,, and V' to NLS such that

(2.10) Vi = VllLge L2 mxry = 0-

Theorem 2.7 (Oscillatory profiles [12]). Let ¢ € L2 with M (¢) < 2\/§M(Q). Let (An)n>1, (En)n>1 C
(0,00), with &, A, — 00 and let (tp)n>1 C R such that 3§, Aty converges to some Ty € [—o0, 00].
Then, for n sufficiently large there exists a global solution v, to with initial data at time t = t,
given by

Op (tn, ) = e~ tns Re[e!®$ A g (1)]

The solution obeys the global spacetime bounds

1/6 ~ ~
1Ol Bnll s iy + 15l 5 p10(exm) So 1

and for every e > 0 there exist n. € N and . € C°(R x R) so that, for all n > n. one has

(2.11) |0 (t, 2) — Rele hnAn tit(EnAn) 7/15 (3571)‘ t,x 4 3(EnA n)2t)]||LgL}°(R><R) <e
Moreover, defining il by one has the approximation
~T

(2.12) Tlglgo dmn 19 = @] o 2 gy = O

We note that (2.12)) is obtained in the proof of [12, Thm. 4.1].
2.6. The Airy profile decomposition and decoupling.
Definition 2.8. (1) We say that two sequences (LL)p>1 = (AL &L al t1),>1 and (T2),>1 =

()\2 2 22, t2),>1 in (0,00) x R? are asymptotically orthogonal if
)\’}L / 1_ g2 Leiyz e s [0t — (ARt
/\_% )\1 + ARAL }5 =& } + <)‘ nAné >2 ()\1 \2)3/2
+ (AT o, — 2 + 5 [(/\1) n = ORPEIIE)? + (63)%]| = oo

(2) We say that
( )n>1 = (/\mfmﬂ?natn)nzl i) 0,
if (Tp)n>1 and (1,0,0,0),>1 are asymptotically orthogonal , i.e

1
A 4 5=+ [€al + [tn] + |20 — o0.
n

Thus one can think of co as an element in the one-point compactification of (0, 00) x R3.

T = (AL, &b ol th) and T2 = (\2,£2, 22 12) are asymptotically orthogonal then
(2.13) nh_)ngo@zi“&e_t"a e i€} An¢] gzi,xge_tia le msnwa —0, b0 L2
where either &/ = 0 for all n > 1 or |M,&J| — oo. See [22, Lemma 5.2, 5.1 Cor. 3.7].

This implies, in particular, the following statement.

Lemma 2.9. Let T, = (A, &n, 20, 8n) — o0 and 6, € R. Then, weakly in L* one has
(2.14) g, A, e om0 [ p)
for any h € L.
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We are ready to state the profile decomposition for the Airy propagator obtained by Shao in
[22].

Lemma 2.10. (Airy linear profile decomposition [22]) Let v, : R — R be a sequence of functions
bounded in L2(R). Then, after passing to a subsequence, there exist functions ¢ : R — C in L2(R),
group elements g := 9ui N, € G, frequency parameters £ € [0,00) and times tJ, € R such that for
all J > 1 one can write 7

(215) vy = Z gieftﬁlag Re[ izl )\"(bj]

1<5<J
for some real-valued sequence w;! in L2(R) with

(2.16) hm lim sup |||0x |1/667t83 J”LG (RxR) = hm limsup |le™* zw;{HLiL%O(RX]R) =0.

n—oo n—00
For each 1 < j < J, the frequency parameters &) satisfy: either & =0 for alln > 1 or &N, — oo
asn — oo (If & =0 we assume ¢’ is real). For any J > 1 one has

(2.17) loall3e = D= IIRele™ ¥ ] 72 — w72 = 0.

1<5<J

The family of sequences T, = (X, &1 x #1) € (0,00) x R? are pair-wise asymptotically orthogonal

n»’n

in the sense of Definition[2.8 and for any 1 < j<J

(2.18) lim (g’e t"amRe[ g, )‘"(;53] Sy =0.
n—oo
For more discussion of the properties stated above we refer to Lemma 2.4, Remark 2.5. in [12]
and Corollary 3.7, Lemma 5.2 in [22].

Corollary 2.11. Under the assumptions and notations of Lemma[2.10, if v, — 0 weakly in L?,
then also w; — 0 weakly in L2 for all J > 1 after passing to a subsequence. For any 1 < j < J one
has ¢7 =0 or T, = (M,, & @), t)) — oo in the sense of Definition[2.8 and therefore

(2.19) gl e 02 Relei ™A ] — 0.

Proof. After passing to a subsequence, we can arrange so that for each j € 1, J, either ', converges
to a finite T in (0,00) x R3 or I}, — co. By pair-wise asymptotic orthogonality we have (2.13
and therefore at most one of the sequences {(I),>; | 1 < j < J, ¢’ # 0} can converge to a finite
value. Assume this happens for j = 1 and then ¢! =0 for all n > 1 and ¢! is assumed real. Since
vy, — 0 we obtain

gle—t az¢l+w 0.

Taking inner product with gle 2% ¢! and using (2.18) we obtain lghe™? 69 #*)|2. = 0 and then
¢ = 0, which is a contradiction. O

Finally, we recall the decoupling property of nonlinear profiles proved in [12] Lemma 2.6]. When
EnAn — 0o the decoupling will follow from this lemma together with the approximation (2.11) from
Theorem
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Lemma 2.12 ([12]). Let ¢!, ¢* € C°(R x R) and sequences
()1 = An & nsti)nz1, (Th)az1 = (AR, &0, @, 8 )01,

in (0,00) x R3 assumed asymptotically orthogonal in the sense of Definition[2.8. Then one has:

nlggo HTQZ%,A% 7/11(t + tvlz) ngg“A% 7/}2 (t+ ti)

I3, =0
in the case £} = &2 =0, and
T (1T, |, [ AL+ 1)+ BOLED? ()] Ty, LR+ 2)] 5 =0,
when &AL — oo and €2 = 0, while
T [T, [0 (BALEL(E+ 2h), 2 + BOGEL(E + 1))
Ty [P GNEG(E+0), e 3G E+ 0] 5, =0,

92 2
q‘”n’>‘7l

when ELAL — 0o and E20% — oco.

3. REDUCTION TO AN ALMOST PERIODIC SOLUTION - PROOF OF THEOREM

This section is devoted to the proof of Theorem[1.6l Therefore we will assume at least one d-close
solution exists. Then we define the set

S(0) :={u | u=solution § — close to Q with M (u) < Mg}
and the minimal mass:
mo(0) = inf{M(u) |u € S(9)}.
By the triangle inequality, if u € S(8) # 0 and ¢y € I we have the basic bounds

1 1 1 1 1
(3.1) Mg — 6 < |lulto)ll 2 < M3, and MZ—8<mi < M3.

The crux of the proof is the following Palais-Smale -type proposition which is used to extract
subsequences convergent in L2

Proposition 3.1. There exists an 6 > 0 small enough such that the following holds. Let u,, :
I, x R — R be mazimal-lifespan (strong) solutions to the mass-critical focusing gKdV equation
(@L.I) which are d-close to Q, i.e. for some continuous gn, : I, — G one has

(3.2) lgn(t)un(t) — Q2 <6 vtel,, n>1.

Suppose M (un) ¢y mo = mo(d) and let t, € I, be a sequence of times. Then the sequence
Gn(tn)un(t,) has a subsequence which converges in L? to a function ¢ with M(¢) = mq.

Assuming Proposition we can now construct almost periodic solutions.

Proof of Theorem We first show that if M (u) > mg then there exists a maximal-lifespan
solution v : J x R — R with minimal mass M (v) = mg which is d-close to Q. In that case there
exists a sequence of maximal-lifespan solutions u, : I, x R — R with M (uy) N\, mo such that
holds for some continuous g, : I, = G. Then we apply Prop. with some ¢,, € I, and obtain
a ¢ € L? with [|¢| 2 = mé/z. By translating time we may assume all ¢, = 0 and by applying
transformations 7, (o)1 we may assume without loss of generality that all g,,(0) are the identity.



INSTABILITY OF THE SOLITON FOR GKDV 11

Let v be the strong solution to with initial data v(0) = ¢, defined on a maximal interval J,
which then satisfies
[[un(0) = 0(0)[| Lz — 0.
Then for any ¢ € J, by continuous dependence on initial data, see Corollary[2.5 applied on [0, ¢],
one has t € I, for n large enough and

(3.3) lun() =o)Lz + llun — vl L5 100, xR) — O

By Lemma 2.6l we have g, (t) € K; for a compact set K;. Then we can extract a subsequence such
that g, (t) converges to some g(¢t) € G in the strong operator topology. Therefore and
imply
lg)o(t) = Qllr= <6 Vted,

which gives the desired d-closeness to (). Note that g(¢) is continuous.

We now show that v is almost periodic modulo symmetries. This follows by considering a new
arbitrary sequence of times ¢,, € J and applying Prop. B.I with ¢, = g, u, = v and ¢, € I,, = J to
conclude that g(t,)v(t,) has a limit point in L?. O

It remains to prove the key convergence result.

Proof of Proposition By translating time we may assume all t,, = 0 and by applying trans-
formations T (g)-1 we may assume without loss of generality that all gn(0) are the identity.

We divide the proof into several steps and for the first steps we largely follow the outline of [12]
Prop. 5.1 -Case II], with the mention that here one needs to insure that the bulk of mg, except for
O(4) mass, has to fall onto the first profile.

Step 1. (Decomposing the sequence)

By passing to a subsequence, using the Banach-Alaoglu theorem, we obtain a function ¢! € L?
such that u,(0) — ¢' weakly in L?. Note that ||¢'[|2, < mg and since u,(0) — Q@ — ¢' — Q we
obtain

(34) 6" = Q|2 < 4.
Moreover,
(3.5) [ (0) = 6172 = un(0)[[ 72 + 19" 172 — 2(un(0), &) == mo — [|6"]|7

If [|¢'||2, = mo this implies the desired convergence. Now assume [|¢'||2, < mo and we will obtain
a contradiction. We use the profile decomposition in Lemma and its Corollary applied to
vn = U, (0) — ¢* — 0 to write for any J > 2

wn(0) = ¢' = D ghe MO Rele "N ] + w].

2<5<J
By (3.5)), the limit (2.17) becomes
(3.6) mo — [[¢'17: — Y IRe[e“ ¢]||72 — [|w;l|72 = 0.
2<5j<Jd

By re-denoting some indices, we may assume that all the ¢’’s are nonzero. Defining I'} = (1,0,0,0)
corresponding to ¢!, from Corollary [2.11] we obtain that '/ = (M, & 29, #1) — oo for j > 2, and
thus all (I'});>1 are pair-wise asymptotically orthogonal and

(3.7) w! — 0.
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From and [|¢']|2, < mg we obtain the smallness condition

. 1
(3.8) S Ree N ]2, + w22 < 20M3, ¥l
2<5<J

Step 2. (Construct nonlinear profiles)

Let v! : I x R — R be the maximal-lifespan solution to (L.I) with initial data v*(0) = ¢. We
continue with defining solutions associated to the profiles for j > 2. For each J > 2 we reorder the
indices such that:

A) For j € 2, Jo one has & = 0. Then one can refine the sequence for each j and by a diagonal
argument one can assume that each sequence (#},),,>1 has a limit 77, possibly +oo. If T7 is finite one
may assume that tJ = TV = 0 by replacing ¢’ by e’ 82¢j and by absorbing e~ (th=T7)0; Re¢’ —Reg’
into the remainder term w;. One defines:

e When t =0, let v/ be the the maximal-lifespan solution to with v7(0) = Re¢’.
o If t/ — +oo, let v/ be the the maximal-lifespan solution to which scatters for-
ward /backward in time to e % Re¢/.
Due to the smallness property (3.8), each v/ is global and Sg(v7) < M[Re¢’].
The nonlinear profiles are defined by

vh(t) =Ty [ +8))),  G€2Jo, n>1,
so that vJ : R x R — R with v/ (0) = g/ v’ (t,).
B) For j € Jy + 1,J the reordering satisfies &) M) — oo. For n sufficiently large, the solution to

(@.I) with data

W (t) = eftglagRe[ iwE A, ]
is global and small. Moreover, by applying the Riemann-Lebesgue lemma to

2| Relc™EM ¢] |12, = M(¢7) + / o[, ¢ (2)?] da
R

to obtain a bound on M (¢’), one has the approximation given by Theorem [2.7] (since one can
insure, using a diagonal argument, that (¢},&2)),),,>1 has a limit).
Again, one transforms these solutions to obtain v7 : R x R — R by

vh(t) =Ty (B (+t)It),  jE€Jo+1,7, n> 1

For both cases A) and B) Lemma [2.12] and Theorem [2.7] give the decoupling property
. li = 1<ji<k
(3.9) M 100l ey = TS

where for j = 1 we denote v} = v!.
Moreover, due to the smallness and the invariance of the scattering norm one has

(3.10) Su(v]) < |Rele™ ]2, 5>2, n>; 1

Step 3. (Construct approximate solutions and bound the difference)
For any J > 2 construct the approximate solution, defined on I for n >; 1 by

J
al(t) =o' (t) + Z vl () + e_tazw;{.
j=2
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and define the remainders / on I NI, by
un (t) = 1, (1) + 77, (1).
From the way the v} were constructed we obtain
(3.11) 72 (0)][ 22 = [[un(0) = @ (0) |2 == 0, VJ >2.

Next we bound the scattering size on any interval I, using (3.8),(3.10) and using the decoupling
after having raised the sum to the power 5:

n—00 n—r00 n—r00

lim sup S;(@) < limsup S; Z ) + lim sup S]R(e_ta:w;{)
j=1

J

S Si(v )—|—hmsupZSR (W) +6
J
(3.12) < Sqv') + limsupz |IRe[e ””E )‘nqSJ]H%i +0 < S;(v') +6.

In the remainder of this step we prove
(3.13) ey N
N>1n>N
and that for any ¢ € I one has
(3.14) lim limsup || (t)|| > = 0.
J—=00 nooco

Suppose ¢t > 0. Divide [0, ¢] into intervals [tg, txt1], &k € 1, N, t1 = 0 such that
(3.15) [0 | 25 L10 ([t xm) €0 VEETL,N—1

where g = €9(Mg, 1) > 0 is the universal constant given by Lemma [2.3] Then Lemma [2.4] gives a
bound on the number of intervals V.

We begin with and do an inductive argument to show that if ¢, € I, for n >, 1 and
holds at t = ti, then tx41 € I, holds for n >,; 1 and

Jim Tim sup [[757]] ge £ i) xm) = 0-
—0  n—oo

These facts follow from the short-time stability Lemma [2.3] applied with u,, and %, provided we
check:

(3.16) llﬁolip ||un||L5L10([tk tas1] XR) <2 2 VJ>2 kel,N
(3.17) Jim lmsup || |0 |10 + 02)a, — 00 () ) L1 L2 (1 ) x2) = O-

n—oo
The first bound (3.16)) follows from (3.12) by appropriately choosing the implicit constant in (3.15
and choosing § small enough. The asymptotic solution bound is proved in Lemma [3.2] below.
This completes the proof of and (3.14). Moreover, by summing over intervals and recalling
that &g is fixed, this argument and Lemma [2.3] give the uniform bound

(3.18) HunHLgL%“({O ) = < Neg < C(HU ||L5L10 ([0, t])) n > 1.
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Step 4. (Show that vJ (t) converges weakly to 0)
Fix t € R and j > 2. Recall that T, = (M, &2, 27 t)) — oo in the sense of Definition
A) We first assume &, = 0. Then

. - t
ol (1) = gl (8 + o )3).

By passing to a subsequence, we may assume

; t
)+ —— =T, € [—00,00].
oo b [ ]
If 7} is finite, in either case tJ = 0 or tJ — oo we have g/ — oo and the claim reduces to
glvI(T;) — 0, which follows from (2.14).

(43 t 3
If T; — 00 we use scattering to replace vl (¢) by gle (t’”m)am v4. Then we can approximate
by bump functions and apply the dispersive estimate.

B) It remains to consider the case & N\, — co. This implies in particular that & + A, — co. Fix
teR, e>0,7>Jp+1and p € C(R). We will use the approximation involving NLS solutions

from Theorem to show

for n large enough. Since

we can use the approximation (2.12)) to reduce to

<

(L t €
G (6 + )9 < 3

for a fixed large T', where the @l are defined by in terms of NLS solutions V,,.

L

By passing to a subsequence we may assume that all the tJ + oo are in [—3&%, BEnLAn] or in
[%L/\, o0) or in (—oo, —%L/\] and that in the first case we have a limit
; t
T J _
Tii= lim 36\, (tn + (Ag;)3> € [-T,T).

In the other two cases we define T} := £T'. Using , and V € C;L? we approximate

; t

lal (84 —=) = Tl < & n>1
(An)?

where we denote , _ _
Fu(T1) = e7*r % Rele™™ e n V (T1, 2 — y)]

for some values s, ¢p, yn. Therefore, denoting W to be either V or V, we reduce to showing
€iie"gm£,xib9yn,1€*s"az [e* A (Ty)] = 0,

fgr some 0n’s. This follows from Lemma [2.9/because g, i gy,,1 =9, s for some z, and we have

& + N — oo.

From A) and B) we conclude
(3.19) vl () =0, VteR, j>2.
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Step 5. (Prove that v! is d-close to Q)
Fix an arbitrary ¢ € I, where we recall that I is the maximal lifespan of v!. Then, by (3.13) we
have t € I,, for n large enough. We expand

(3.20) 0% > Jlun(t) = gn ()71 QN7 = 0" (8) — ga ()T QU7 + A7 (1) + B (1)

with the terms

J
. 493
AL() = 11D v () + e w4 (1) 72

Bl (1) = 200" (6) = 9a(0)'Q . D wh0) + e Ful 41 (1),

Due to the uniform bound (3.18), Lemma [2.6] provides the existence of a compact set K; such
that g,(t) € K for n large enough. We extract a subsequence such that g, (¢) converges to some
g(t) € G in the strong operator topology. Then also g, (t)~! — g(t)~!, so we may replace g, (t)~1Q

by g(t)~'Q when we use , (3.7) and (3.14) to obtain
hm limsup B/ (t) = 0.

J—=00 nosoco

We use this together with A/ (#) > 0 to pass to the limit in and conclude

lg@®)wt(t) — Q2 <86  Vtel.
This means v* € S() with M (v!) < mg(6), a contradiction. O

It remains to verify the asymptotic solution bound .

Lemma 3.2. Suppose w;] € L2(R), J > 1, n > 1 and that v € L3LI°(I x R) are solutions to
such that for any 1 < j <k

. . I J 5 o
nlgrolo l|vdv "”L2L5(1xR) 0, h_)H;OhTTlHSUPHe wn”LgL}O(IxR) =0.

Then, assuming the @) are uniformly bounded in L3LI°(I x R), defined by

J
il (1) := ZU%@) + e 10y
j=1

one has

hm limsup || |8, " [(8: + 82)a; — 8z(ﬁ;{)5]||L;L?(fo) = 0.

—00 n—oo

Proof. This is proved in [12] Lemma 5.3]. We review the argument for the sake of completeness.

One writes
@+ al=> 8 (v)
1<5<J

Thus it suffices to estimate (@)% — >, <j<y )% as follows:

~ —t83 5 ~J\9 _ 453 193
[ (“;{_6 ta"'w}{) - (“7{) ”L}va(fx]R) S e ta"'wr{)5||L;L§(ixR)+||(e P }UJ} ||L1L§(ixR)v
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then one uses Holder’s inequality and pass to the limit. Secondly,

J
1SS 0= S ) e S S0 S0 Tevizol (0ol o

1<5<J 1<5<J iy in,iz=11<j#£k<J

and one uses Holder’s inequality again to pass to the limit. This completes the proof. O

4. REDUCTIONS OF AN ALMOST PERIODIC SOLUTION

Having proved Theorem (1.6} we have reduced the main result, Theorem[1.5] to the case of almost
periodic solutions. The remainder of the paper is devoted to this case, i.e. proving Theorem
We begin with studying N (¢) from Definition In this section we prove

Theorem 4.1. If there exists an almost periodic solution to with Jug||p2 < ||Q| L2, then there
exists an almost periodic solution to satisfying on a mazximal interval T with N(t) > 1
on I, and

(4.1) /IN(t)th = 0.

Moreover, if the initial solution is §-close to @, then the solution we obtain is also d-close to Q.

Proof of Theorem Using elementary reductions (see [12]) it suffices to consider an almost
periodic solution to that satisfies N(t) < 1 for ¢t € [0,00). Such a solution will satisfy one of
two properties:

4.2 lim inf N(t)>0
(4.2) At (t) >0,
or

4.3 lim inf N(t)=0.
( ) T1—r>nootel[%,T] ()

1) Begin with scenario (4.2), N(t) ~ 1 for any ¢ € [0,00). Thus, there exists a function z(t) :
[0,00) — R such that

(4.4) {u(t,z —x(t)) : t € [0,00)}

lies in a precompact subset of L2(R). Therefore, taking t,, — +oc and possibly after passing to a
subsequence,

(4.5) u(tn,x — x(tn)) = ug in L*(R),
and moreover, ug is the initial data for a solution to (I.I) satisfying
(4.6) {u(t,z —z(t)) : t € R}

lies in a precompact subset of L%(R).

2) Now consider scenario (4.3). Split this scenario into two separate cases:

) SUDeto (1), 77 IV (1)
4.7 lim su
( ) T%sup(ll)) N(fo (T))

< 00,

. SUPe 1o (1), 7] IV (1)
4.8 lim su = o0.
( ) T%sup(lzl)) N(tO (T))
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where

to(T) =inf {t € [0,T] : N(t) = tei[%,fT] N(t)}

Following [7], for any k € Z, let
(4.9) ty = inf{t € [0,T]: N(t) = 27F}.

Since N(t) is a continuous function of time and holds, t;, is well-defined.
2A) When (4.7) holds, there exists C' < co such that N(¢t) < C27* for any ¢ > ;.

Lemma 4.2. Suppose (&.3) and (&7) hold. Then the sequence (tyy1 — tx) - 273F is unbounded as
k — +oo0.

Proof: Suppose that there exists a constant Cjy such that

(4.10) (tear —tr) - 273% < Cp.
Then for any k € Z,

(4.11) te < Cp23k.
Meanwhile, as in the scaling symmetry implies

(4.12) ty = 2%,
Therefore, for any k,

(4.13) N(ty) ~t; /3.

As in [7], implies that after passing to another subsequence, we have a solution u to
satisfying N (t) ~ t='/3 for any t > 0. Moreover, following the exact arguments in Section five of
[7] shows that the self similar solution u(t, z) satisfies the estimate

(4.14) E(u) < 1.

However, by the Gagliardo-Nirenberg inequality, this contradicts N (t) , +oo as ¢t \,0. O
Now take a sequence t;, — oo such that

(4.15) (tpa1 —tr) - 273F = +oo.

In this case, guarantees that N(t) ~ 27F for any ¢, < ¢ < t;41. Choose the sequence of times

bttt .
), = % After passing to a subsequence,

(4.16) 2k2(t), 2% (2 — x(t}))) = uo,  in  L3(R),
and furthermore, ug is the initial data of a solution to satisfying
(4.17) {u(t,z —z(t)) : t € R}

lies in a precompact subset of L?(R).

2B) Finally, consider the case when and hold. In this case, possibly after passing to
a subsequence,

(4.18) 2520 (ty, 2% (x — x(t1))) = wo,  in  L3*R),
where ug is the initial data of a solution to on an interval I such that
(4.19) {N(@&)"Y2u(t, N(t) 'z + z(t)) : t € I}

lies in a precompact subset of L?(R), and moreover, N(t) > 1 for all t € I.
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Proposition 4.3. If u is an almost periodic solution to with ||ullrz < ||Q||rz on a mazimal
interval I C R that satisfies N(t) > 1 for all t € I, and N(0) =1, then

(4.20) /IN(t)2dt =

Proof: Again following [7], suppose

(4.21) /N(t)2dt = Ry < 0.
Translating in space so that z(0) = 0, d;ﬁne the Morawetz potential
(4.22) M(t) = /w(}%)u(t z)2dx
where

(4.23) (z) = /O " (o)

where ¢ is a smooth, even function, ¢(z) = 1 for —1 < 2 < 1, and ¢ is supported on |z| < 2.

Since N(t) > 1 and [, N(t)?dt < oo, I is necessarily a finite interval. Therefore, N(t) /400 as
t — sup(I) or t — inf(I). Combmmg this with the fact that |2(¢)] < N(t)?,

(4.24) sup [M(t)| < Ro,
tel
with implicit constant independent of R. Moreover, by direct computation,

(4.25) - =—3/¢ Jugz(t, x) d:C+R2/¢" u(t, z)?dr + = /¢

Therefore, by the fundamental theorem of calculus,

(4.26) //(;5 Yug(t, z)?dedt < Ry —|— // (t, x)°dzdt.

We have already demonstrated that the first two terms on the right hand side are uniformly bounded
for any R > 1. So it remains to control the third term.

Partition I into consecutive intervals

(4.27) I = UyJg,
where
(4.28) / /u(t,:z:)sdxdt ~ 1.
Ji
Using standard perturbation arguments, for any fixed Ji with ¢1,ts € Ji
(429) N(tl) ~ N(tg), and |t1 — t2| 5 N(tl)_B
Therefore, by Holder’s inequality,
2/3 16/3
(4.30) /J /u(t,x)@‘dxdt < |Jk|l/3||u||L/tmL§||u||L§{I(kaR) < |Jk|1/3 < ’ N(t)%dt.
k k

Therefore,

(4.31) /1 / ¢(%)uz(t,x)2dxdt < Ro+ %2'.
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Taking R — oo,

(4.32) / / ug(t, 2)*drdt < Ro.
I

Therefore, by the Gagliardo-Nirenberg inequality, when ||u|/z2 < ||@]/ 2, by conservation of energy,
(4.33) /E(u(t))dt — [11E(u0) < Ro.

I
However, when ||ug||z2 < ||@]| L2, conservation of energy combined with contradicts the fact
that N(¢) is unbounded on I, which completes the proof of Proposition[4.3] [

Since the subsequence in the above analysis always converges strongly in L2 to ug, if we begin
with an J-close to @ solution, then the solution that we obtain is also d-close to ). This completes
the proof of Theorem [4.1] O

5. DECOMPOSITION OF THE SOLUTION NEAR A SOLITON

Since after rescaling and translation, u is close to @, we can use a decomposition lemma of [16].
This lemma was proved when u was close to @ in H' norm, however, it is possible to prove a
slightly weaker result when u is merely close in L? norm.

Lemma 5.1. There exists 6 > 0 such that if

—1/2,9,% — @o(1)

(5.1) [ — Ao ()~ Q(T(to))”m < 26,
then there exist x(t) and A(t) such that
(52) e(t,y) == A(6)Pult, A(t)y + (1) — Q(y)
satisfies
(53) (V20:9) = (U(Z +4@y).0) = 0.
Moreover,

Ao(t) zo(t) — a(t)
(5.4) | )?(t) _1|+|OT|+HEHL2§5-

Remark 5.2. Observe that by (5.4), almost periodicity (according to Definition[1.1]) is maintained
with the new x(t) and N(t) = v

At)
Proof: Use the implicit function theorem. For § > 0, let
(5.5) Us={uecL?: ||u— Q| < 26},
and for u € L2(R), A\; > 0, 1 € R, define
(5.6) enn () = N ulhy +21) - Q
Define the functionals

Q

6D A= [ @@y A0 = [ 0 + @)

Then by direct computation,

86)\1111

6%1 = )\}/2u1()‘1y+xl>a

(5.8)
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and
86)\1@1
oM

1 _
(5.9) = 5)\1 1/2u()\1y +x1)+ /\}/Zyux(/\ly + x1).

Integrating by parts,

o 1
a0 = [, (o) @)Wy = — [ AT a0y + 20 (0Qu + Q)W)
(5.11)

903, . _
—Aum /A}/zux(A1y+x1)(gQ+y2Qy)(y)dy: _//\1 Y2yt (2

5y 2
o d

P, =, 1

vl / (G Py + 1) + A yus Oy +20)](9Q,) (v)dy
1 - —_

o1 N / 2Oy + 1)yQy )y - //\1 2y + 20y’ Qyy (y)dy

—2/A;1/2u(A1y + 21)yQy(y)dy,

and
(5.13)

03ser _ [ 1
2 = AT a0y + 00) 4 My (g + o)) (§Q + Q) )y
1

=5 [ us o) B@ + Q) — [ AT a0y +0)WQ + JuQy + Q) ()dy

This implies that (py, , ,p3, ,,) are C' functions of (A, z1).

Also,
3P>\1 x1|/\1 Lz =0,u=Q —/Qy yQydy = 0,
(5.14) aphmlkl “hermeme /Qv 5 TYQy) = /(%+y62y)2dy>o,
| a?)iwl hu=te1=0u=0 = /(% +yQy)yQy = /(% +yQy)?dy > 0,

apil ]

(%ci IAi=1,01=0,u=Q = /(Q +yQy)y (Q +yQy)dy = 0.

Therefore, by the implicit function theorem, if

(5.15) [|lu(z) — Q(x)]| L2 < 26,
then there exist A\, x such that
(5.16) A =1+ [a] + [lellrz < llu — Q|2 < 26,
satisfying
Q
(5.17) (6,yQy) = (€, y(5 +yQy)) =0

2
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Now take a general Ao(t) and xo(t) such that

(5.18) luly) = 25" * QU e < 25
Then after translation and rescaling,
(5.19) 1N 2oy + 20) — Q(y)l|2 < 20.

Then there exist | + |A| < [Ju — Q][> such that
A2 (1 = N Y2u(Xo(1 = Ny + Ao + 20), 2Qy) = 0,

(5.20)
+2Q.))=0

821 = 220 (1 = Ay 4+ o + o), 2

Since || < 6, |%{)_5‘)| < 6. Also, [MZ| < Aod, so Iwg}\;:“l < 4. This completes the proof of Lemma
6.1 O

Introduce the variable

(5.21) / dv valently 95— L
. ) EVITRE equivalently o8

Lemma 5.3 (Properties of the decomposition). (1) The function €(s,y) satisfies the equation

(622 =Ly + 2T 100 + (5 1@+ 22(E ) + (5 ey~ (R,
where
(5.23) Le = —€3 + € — 5Q%, and R(e) = 10Q%* + 10Q%¢® 4 5Qe* 4 €°.

(2) X and x are C* functions of s and

(G +v@tir— [+ v Queds) - (5 - 1) [0Qu +Qedy

(5.24) A2
— [ L@+ Q) ey~ [ ROy,
and
(5.25)
_)\7 e(yQ + _Qy +y ny)dy + ( )\ 1)(/(% + yQy)Qdy - /(% + %Qy + y2ny)€dy)

= /L(% + ?Qy + y2ny) -edy — /(% + 5_2yQu + QQny)R(E)d?J-

Proof: See [16]. O
This lemma has an important corollary.

Corollary 5.4. For all s € R,

As

(5.26) 57!

T
+ 15 =1 S llellze + lel o2 el
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Proof. First observe that by Holder’s inequality and the boundedness of @,

(5.27) / L(yQyy + Q) - edy - / ROQy)dy < [lellze + llell llelLe.
and
5 5
6.2 [L(E+ 2+ ay— [( 420, + QRO S elze + el ozl

Since [(£ +yQy)*dy > 0,

As s
51+ Oell2)) + 157 = 1Ol ) S Nellz + lell 2 lellzs,
(5.29)

As T
15 10Mellz2) + 157 = (@ + O(llelz2)) < llell 2= + lellz2llell s,

so after doing some algebra,

(5.30) 1521+ 155 =10 S Nellza + el el
O
Next, by Strichartz estimates, rescaling, and perturbation theory, for any k € Z,
(5.31) ||u(57y)||L§,w([k,k+1]xR) S luoll 2 < [|Q) 2
Therefore, by the triangle inequality,
(5.32) lellzs , (rpr1xr) S NQlls + flullzs, S 1.
Also, by perturbative arguments, for ||eol|z2 sufficiently small, if A(k) =1 and x(k) = 0,
(5.33) lu(t,z) — Q(x — t)||l Lo 2 ((kk+11xR) S €0l z2-

Thus using scaling and translation symmetries, along with Strichartz estimates,
(5.34) €l sz (k,k+11xR) + llellzs  (rkt1xr) S [l€(R)]| 2.

Combining (5.31), (5.34), Lemmal5.1] and the fact that |@Q||rs is uniformly bounded, along with
choosing ||€o||z2 to be the infimum of ||¢|| ;2 on the interval [k, k + 1],
(5.35)

k+1 A ) z ) k+1 ) )
2P dsS/ €l|72ds + ||e|| 7 /
‘/k; | A | | A | X || ||L2 || ||Lt Li([k,kJrl]XR) X

6. EXPONENTIAL DECAY ESTIMATES OF u

k+1 k+1
lel$ods < /k lel2.ds.

Having obtained a decomposition of u close to the soliton, the next step is to prove exponential
decay of a solution that stays close to @ in the case when N (t) > 1 and [; N(t)*dt = co. The proof
follows a similar argument in [20] and utilizes the fact that w is close to a soliton, and the soliton
moves to the right while a dispersive solution moves to the left.

Recall that
1 x — x(t)

2 = — 2 <
(6.) sup (D)l 2oy = sup luft,2) ~ 3 @3 Dl < 6

Observe that N(¢) > 1 implies A(t) < 1, where A(t) is given by Lemma [5.1] It is convenient to
rescale so that A(¢) <1 for all ¢t € I. Note that after rescaling N(t) > 1. See Remark[5.2]
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Lemma 6.1 (Exponential decay to the left of the soliton). There exists some ag such that for
xo > 10aq, if u satisfies Theorem [4.1], and ||uol|lL2 < ||@Ql L2, then

(6.2) lu(t, z + (D)3 (< _ppy < 10c1e™ 7

Remark: It is important to note that ag does not depend on the § > 0 in .

Proof. Suppose there exists some ty € R and xg > 10ag such that

(6.3) / u(to, z + z(to))2dz > 10cie~ s .
rz<—xg
Let K = 3/2, and let
(6.4) o(x) = Q(12),
where
(6.5) =
' . K [ Q(x)dz
Define
(6.6) vle) = [ ol
Then,
(6.7) Jim g =0, lim g =1

Next, define a modification of z(s), #(s), such that z(k) = (k) for all k € Z, and for any s € R,
and for any k < s < k+ 1, Z(s) is the linear interpolation between Z(k) and Z(k + 1). Then by

635,
k+1
T+ 1) — 5(k) = 2k +1) — a(k) = /k 24(s)ds
(6.8) k+1 k+1 k41
= [ M@ (s 26 ([ el = ([ Ms)ds) - (14 0G))
k k k

k<s<k+1

The last estimate follows from the fact that A(s) ~ A(k) for any k < s < k+ 1. It also follows from
that for any k < s <k +1,

k+1
(6.9) |2(s) = x(s)] < [2(s) = 2(R)[ + |2(s) —2(R)| S (/k A(s)ds).

For technical reasons, it is useful to consider two cases separately. First, suppose that

sup(]) 0
(6.10) / N(t)?dt = N(t)*dt = +oc.
0 inf(I)

In this case, suppose without loss of generality that tg = 0, where ¢ is given by (6.3)). Then,
(6.11) / w(0, 2 4 2(0))2dz > 10cie” o .
rz<—xg

Define the function

(6.12) I(t) = /u(t,x)%/;(x —z(0) + zo — %(i(t) — Z(0)))dz.
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Then by (6.3)), since £(0) = z(0),
1 x
(6.13) I(0) < /u(O,:v)zdx - —/ u(0,2)2dx < /u(O,x)2dx — b K.
2 z<—z0+Z(0)

Integrating by parts,

I'(t) = —3/uw(t x)?p(x — #(0) + 20 — i(i(t) —7(0)))dx
+ [ ult 00" (@~ #(0) + w0 — L (#0) ~ #(0)))do

(6.14)
+§ / w(t, )0z — 7(0) + 20 — i(i(t) — #(0)))d

Following |20], observe that

(6.15) at) & _

Also observe that

(6.16) ¢'(@) = 155 Qua(2) < 75 Q) = 759(2) = T26(@).
Since A(t) <1,
(6.17) - i(—;ga;(x) + () < -2
Therefore,
10 < =3 [ walt,20( — 5(0) + 20 ~ §(3(0) - 5(0)))da

(6.18) +§/u(t,x)6¢(x —2(0) +xo — %(:E(t) — %(0)))dx

_1i8 u(t, )’ p(x — #(0) 4+ zo — i(j(t) — 2(0)))dz.

Next, using Lemma 6 from [20] and Holder’s inequality,

(6.19)

N 1. - 2.,1/2)2 2

|z—&(t)|>a0 ult,2)°¢(@ — 5(0) + 70 - Z(x(t) — 2(0))dz < [lu”e / |L°°(|w—i(t)|>“°(/|ma"c(t)|>ao ulds =) de)

1
< w(t, z)?dx)?( | ug(t, 2)%p(x — #(0) + o — = (2(t) — %(0)))dx
S wlt e ([ ol — 50 + 0 - 3(60) - 20)
+/u(t,:v)2¢(:v —2(0) + 2o — i(i(t) — 7(0)))dz).
Since A(t) <1 and |z — Z(t)| < 1,

(6:20) [ xR e s e
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and by (6.1),
—x(t
(6.21) / A Te(t, T2 W2 g, < g2,
lz—Z(t)|>ao )‘(t)
Therefore, for ag sufficiently large, plugging (6.21) into (6.18),
1
(6.22) I'(t) < / e u(t, z)%p(z — #(0) 4 o — Z(:Tc(t) — 2(0)))dz.
T—T <aop
By direct computation,
(6.23) 6(z) < ceFNe=EO 20— FEOFO) Z o la=3(0)+3 @0 -3(0)) +ao]
Since Z(t) > Z(0) and |x — Z(¢)| < ao,
(6.24) _ o E@-E () +2(E()-F(0)+x0)
Therefore, since from (6.15), Z(t) > ﬁ, S0
(6.25) I'(t) < Ce " e~ ar FO=T0) 3 (1) / A(t)2u(t, z)0da.

Making a change of variables, for any 7" > 0,
T g k+1 3 - B
(6.26) / I'(t)ydt < ZC@?/ z4(s)e” 1K (@()=2(0)) /A(s)2u(t(s),x)6d;vds.
0 k>0 k
Then by (5.31), conservation of mass, and a change of variables,
(6.27) <CKex'.

However, by the fundamental theorem of calculus, , the fact that by concentration compact-
ness,

(6.28) I(t) /‘/u(O,x)%l:E, as t S sup(I),

and K = 3v/2 > 6 gives a contradiction for ay sufficiently large.

Proving is the only place where is used. (Since [0, o] is a compact set for any to € I,
and N (t) is a continuous function, (6.10) would also hold when 0 is replaced by any to € I.) Then
by (6.15)), for any T'> 0, T € I,

T . T 1 T
(6.29) #(T) — #(0) :/ z(t)dt > / —dt ~/ N(t)?dt — 400,
0 0 2N 0
as T/ sup(]). This proves (6.28). O

Now prove exponential decay to the right.

Lemma 6.2 (Exponential decay to the right of the soliton). For xo > 10ay,

(6.30) lu(t, = + (D)3 (4500 < 10c1e™ 7.
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Proof. In this case, observe that if u(¢, z) solves (1.1)), then so does v(t,z) = u(—t, —z). Once again
assume without loss of generality that fails at tg = 0. Define the function

1
(6.31) 1) = [ v(t. 0 (e + 50) + 0 + (1) = 5(0)))da,
If fails at tg = 0 for some xq, then
(6.32) 1(0) < /u(t,x)2daz — Beye” O

Again by direct calculation,

I'(t) = —3/%(1&, z)2p(x + £(0) 4+ 2o + i(i(—t) —7(0)))dx
+/v(t, 2)2¢" (x + #(0) + mo + %(:E(—t) — £(0)))dz
(6.33) 5 1
+3 v(t,2)%p(x + T(0) + 2o + Z(ic(—zt) — 7(0)))dz
—”E(;t) /v(t z)2p(x + #(0) + 20 + i(;ﬁ(—t) — 7(0)))dz.

Making the same argument as in Lemma [6.1] and making a change of variables

r'w < / e (=t —2)0(w + #(0) + o + ~(F(—t) — #(0))dx

4
(6.34) .
-/ w(—t, 28§ + F(0) + w0 + + (F(~1) — F(0))d.
|z~ (t)| <ao 4
Then
(6.35) P(z) < Ce~ & (CetE(=)+1(@(0)-F(=0))+20) < o 7r E0)=Z(-1))-F
Therefore, as in Lemma we can show that
T v
(6.36) / I'(t)dt SCKe &
0
This proves (6.30). g

Remark: Once again K = 3v/2.
It only remains to prove

Theorem 6.3. There does not exist an almost periodic solution to (I.I)) that satisfies N(t) > 1 for
allt €1,

sup(1)
(6.37) / N(t)%dt = oo,
0
and
0
(6.38) N(t)%dt < .

inf (1)
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Proof. By and (6.37), exponential decay to the left must hold for such a solution. That is,

(6.39) lu(t, = + ()| 2 (o< o) < 1016 KCT.

Now let x be a smooth function such that x(z) = 0 for < 1 and x(z) = 1 when = > 2. Then
define the functional

(6.40) M(t) = /X(xio)u(t,x + 2(0))2dz.

The fact that N(¢) > 1 combined with implies inf(I) > —oo. This fact implies that N (¢) * co
as t \inf(7), so combined with almost periodicity imply that

6.41 li M(t) =
(6.41) i (t)
Then integrating by parts,
(6.42)
d 3 T 5 T 1 T
—M@t)=—— [ X' (—)ug(t 0 — [ X' (—)u(t 0))°d "= )ult 0))%d
ZME) === [X(Dyuslta+2(0))? + 5 M%Mw+dﬁx+ﬁ/x%wmwﬂnx
)
<o X(;O) u(t, = + 2(0)) dx+—/ "Ntz + 2(0))2da.
Then by ,
(6.43) /O dM(t)dt < ' N(t)2at Ly f(I) < ! ( ' N(t)2dt)
. — S — —in S — .
inf(1) dt 320 Jint(1) y Zo Jin(r)
This implies that for any ¢ € (inf(I), 0],
T 1 0
(6.44) /x(—)u(t,x +2(0))%dr < —( N(t)dt).
Zo Lo Jinf(I)

Since |x'(75)| < x( ﬁ), plugging back in to (6.43),

0
/ d<w<h<mW%mW%t

; dt
nf(I)
(6.45) Lo L L g
S —7( N(t)%dt)/? - —( N(t)dt) = —73 N(t)2dt)*/?.
inf(I) Lo Jint(I) T inf(I)
Therefore, since fi?]f(l) N(t)*dt = R < 0,
(6.46) / u(t, x4 2(0))?zdr < oo,
>0
which combined with implies
(6.47) / |z|u(t, z 4+ 2(0))*dz < oo,

Then following the proof of Proposition [4.3]

(6.48) / /um t,x)*dzdt < oo.
inf(I)



28 BENJAMIN DODSON AND CRISTIAN GAVRUS

By the Sobolev embedding theorem, F(u) < co. Then by conservation of energy and the Gagliardo-
Nirenberg inequality, the solution to cannot blow up in finite time, which gives a contradiction.

O
The proof that there does not exist a solution satisfying
sup(I) 0
(6.49) / N(t)%dt < oo, / N(t)2dt =
0 inf(I)

is identical.

7. VIRIAL IDENTITIES

Next, use the virial identity from [14] to show that, on average, the inner product (¢, @) is
bounded by ||e[|2..

Theorem 7.1. For any T > 0,

T
(7.1) [ 30 [t @entasl £ 0+ [ A6 o) s
0
Proof. Define the quantity,
(7.2) J(s) = A(s)/? /e(s,:v)/ (% + 2Q.)dzdz — A(s)Y 2k,
where k = ([ Q)?. By rescaling, Lemmas|[6.1] and and the fact that A(s) <1
(7.3) sup J(s) < oo.
seR
Then compute
(7.4)

d 1/2 °Q As R As
dsJ( s) = A(s) /es(s,x) w/—oo(i +2Q.)dzdx + N2 (s, x) —00(5 +2Q.)dzdx — R
Then taking the expression of €5 given by (5.22), and integrating by parts,

Q
@5 - [re, [ Gty = [ ROE + 90y S el + el el
Next, integrating by parts, by (5.26]),
Q
10 G- fo [ Lasquandy=- -1 [« 4 1@ S lRs + Il

Next, integrating by parts and using € L y(7 +yQy);

Ag € Y As 4
7/(5 -i-yey)/_ (22 +2Q.)dzdy = —%7 e(s,y) /_OO(% +2Q.)dzdy

(7.7)

As Q 1A vQ
5 [esnnG @ty =55 [ o) [ (G +2Qudzay

By direct calculation,

(7.9 2oy fa, [ Lhiqaa -G -y oG +ia) -
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Also, since @ is an even function,

As [,Q Y Q A1 Q@ 9 As
Finally, since L is a self-adjoint operator,
Y Q _ Q _ Q
(7.10) (Le)y | 5 +2Q:dz=— [(Le)(5 +yQy)dy = — [ - L(5 +yQy)dy.
Now, by direct computation,
rxr 5
L(% + wa) = _Q2 + % - 5@5 - waww - 2QLE:IJ - 5xQ4QLE + :EQ;E

(7.11) - 0
= :Eam(_sz - Q5 + Q) - E(sz + Q5) + 5 = —2@.

Plugging this into (7.10),

(7.12) - Q/Qe.

Therefore, we have proved,

d

(7.13) - (5) = 2A(5)"/2 /Q(y)e(& y)dy + O((s)llel|Z2) + OA(s)ell L2 le|zs)-

Using to estimate ||¢|[zs ~proves the theorem. O

We are now ready to finish the proof of the main result.

Proof of Theorem . Theorem [1.7] may now be proved using a second virial identity. Let
1
(7.14) M(9) = 576) [ vels P

Lemmas and imply that (7.14) is uniformly bounded for all s € R.
Now, by the product rule,

(7.15) M) =26 [ vetssentsin)dy + 50 [ els.)dy,

Again use to compute €,. Integrating by parts,

/ye(Le)ydy = /ye(—eyyy + €y — 20Q3de — 5Q46y)dy

1
— =5 [ [ear-10 [@Queay - [Qteay = o,
(

Next, since e L yQ, and e L y % +yQ,) for all s € R,

(7.16)

(7.17) % /ye(% +yQy)dy = (x—; - 1) /yerdy =0.

Next, integrating by parts and using (5.26)),

Zs

Zs 11/2 3/2
(T18) (5 - 1) / yee, = —(5- — 1) / Edy < el (U + llelzs) < lellfa + el lley 175"
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Also,
(7.19)
—/R(e)ye(s,y)ydy = —/y6(10Q362 +10Q%* +5Qe* + €°),dy = /Q3 3 10/Q Quye’

-5 [Qauet+ 3 /Q264+4/Qe - [ Qe+ 3¢

3/2 3/2 5/2 1/2
S Nel322 el + NellSe < lell35 leyllhs” + lellalley |22

Finally, integrating by parts,

As € As As
2 — = =-22M
(7.20) = v ve) =35 [ve =-3m00),
Multiplying - by A(s) and plugging in to ,
(7.21)

T T
/0 A(s)H (e, )ds < Clu) + / A elZs + A el Y2 ey 13/2ds
/ A2 l122 + A el Lalley|Zads < Clu) + / ) ellZads + 6 / 9 lley|Zads.

The last inequality follows from .

Now then, take
(€. Q)
Q17

Since @ L x(% +2Q:), ¢1 L Q and € L 3:(% + 2Q.). Therefore, from [13], there exists some
01 > 0 such that

(7.22) € =€—

Q=¢€—aQq.

(723) H(el,el) Z 51”61”%{1.
Also, integrating by parts,
(7.24) 2X(s)H (e1,aQ) + A(s)H (aQ, aQ) S A(s)"/?[al - A(5)"/*[len| 12 + A(s)a®
Therefore, (7.21) and (7.22) imply
(7.25)
T T T
51/ As)erllZnds < Cu) + 5/ §)llel2ds +/ A(s)a(s)2ds +/ As)a(s)|jer || pods
0 0
T T
)+ 5/ s) €13 ds +/ A(s)a(s)*ds —I—/ A(s)a(s)]ler]|r2ds.
0
Furthermore, for 6 < 61, absorbing § fo s)|le1]|%:1ds into the left hand side,
51 T T
(7.26) B )\(s)||61||%pds < Clu) —I—/O )\(s)a(s)st—l—/O A(s)a(s)||er]|L2ds.

Also, by the Cauchy-Schwarz inequality,

01

T 1 /7
(7.27) i A(s)|l€e1]|3ds < C(u) + _/0 A(s)(e, Q)%ds.

01
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Also, since
(7.28) leliF < el + (e, QNQIZ
6 [T ) I )
(7.29) T A(s)|€ellFnds S Cu) + 5 A(s)(e, Q) ds.
1Jo
Next, by conservation of mass and scaling invariance of the L? norm,
1 1 1 1
(7.30) Slhuoll2: = 51@+ el3 = 31QU3 +(6,@) + 3 el
and therefore, after doing some algebra,
1 1 1
(731) ~(€Q) = 3IQI3 — Slhuoll3s + 3 el
Since 3[|Q[12. — Flluoll32 > 0 is a conserved quantity, it is convenient to label this quantity
1 1
(7.32) M = 2[Qlzz = 5lluollZ:-
Plugging into the right hand side of ,
(7.33) — As)|l€ell3ds < C(u) + —/ A(s)ds + —/ NOIE S
4 Jo o1 Jo 01 Jo
Since ||e]| 2 < J, the second term in the right hand side may be absorbed into the left hand side, so
5 T M2 T
(7.34) — [ AG)ell?n S Cu) + —/ A(s)ds.
8 Jo o Jo
Likewise, by Theorem [7.1] and ,
T T
(7.35) M/ A(s)2ds < C(u) —l—/ ()2 €22 ds.
0 0
Letting
T T
(7.36) K= / A(s)ds, and R= / A(s)'/2ds,
0 0
combining (7.34)) and (7.35)),
& [T MK [T MK
(7.37) — | AG)lelfnds S o= [ M) [lelfads + Cu) + =—=C(u).
8 R(Sl 0 R(Sl

If it were the case that A(s) = 1 for all s € R, (as in [14]), the proof would be complete, since
in that case, K = R =T and M < |l¢|]|r2 < 4, so for § > 0 sufficiently small, along with the
fact that

T T
(7.38) lim A(s)ds = lim A(s)Y%ds = oo,
T,/ Jo T/ Jq
would imply that there exists a sequence s,, — 400 such that
(7.39) lle(sn)llzr — 0,

as n — oo. However, this would contradict the fact that ||uo|lz2 < ||Q|lL2-

In the general case, the proof will make use of the fact that A(s) <1 for all s € R along with the
fact that conservation of energy gives a lower bound (depending on M) on A(s).
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BQ+o-; [+ [Que+y [ &
R PO POy PR N P PR

First, note that

(7.41) B@=; [@-; [@ =0

Next, integrating by parts, by (7.31)),

(7.42) [ [@e=- [d@ur@)== [c@q=r+] [

Therefore, by Holder’s inequality and the Sobolev embedding theorem,

Expanding out the energy,

(7.40)

1 1
(143 B@+o=M+y [y [e-2 [Qie Ol + Ieltaleli).
Also, scaling symmetry implies
(7.44) E(Q+¢) = \(s)?Ej.

Recalling and (7.23),
1 1 5 1 2
3 [ ey [e-5 Qe zalal - 5 €@? 2 ald - 5 (€

(7.45)
2 2 01 M?
> 0 lellF — 5—1M2 - aHEH%z 2 5H6H§{1 - 0(5—1)~
Since M < 0 and ||e||2 < 4§, for § > 0 sufficiently small,
M
(7.46) A(s)’Eqy > —H 13+ = 5
Since Fy and both of the terms on the right hand side are positive, implies
(7.47) M < \(s)?E,
and therefore,
M E
(7.48) —— < A(s)?,  which implies  A(s)"V/2 < (524,
Ey ™ M
Plugging this into (7.37)),
5 [T M3AE/ K MK
(1a9) 2 [ A@)elnds < 7/ $) e Fads + Jo-Clw) + Clw)

Since A(s) <1, K < R, so
01
8
Assuming for a moment that Ey <1, M < ¢ and (7.38) imply that (7.39) must hold in this case as
well, obtaining a contradiction.

T T
(7.50) NOIEEES M3/4Eé/4 ; A(s)|lell2zds + C(u).
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The fact that Fy < 1 is a straightforward consequence of Lemmas and Suppose without

loss of generality that

(7.51) A0) > % — Laupacs).

2 seR

Lemmas [6.1] and [6.2] imply that

(7.52) A(s)

ye(s,y)’dy <1,

—

with implicit constant independent of u, so long as u satisfies (6.1)). Then by (7.29)),
(7.53) / A elBeds S 1+ 5/ A3 el s

Since (5.30) guarantees that A(s) ~ 1 on [0, 1],

(7.54) / Nellzds < 145 / eliZads <1

The last inequality follows from (6.1). Therefore, the proof that Ey < 1 is complete. O

[1]
2]
[3]

[4]

=)

(10]
11]
12]
(13]
[14]
(15]
[16]

(17]

REFERENCES

J. Bourgain and W. Wang. Construction of blowup solutions for the nonlinear schréodinger equation with critical
nonlinearity. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 25(1-2):197-215, 1997.

T. Cazenave and F. B. Weissler. The Cauchy problem for the critical nonlinear Schrodinger equation in H*.
Nonlinear Analysis: Theory, Methods € Applications, 14(10):807-836, 1990.

M. Christ, M. J. T. Colliander, and M. J. T. Tao. Asymptotics, frequency modulation, and low regularity
ill-posedness for canonical defocusing equations. American Journal of Mathematics, 125:1235 — 1293, 2003.

B. Dodson. Global well-posedness and scattering for the mass critical nonlinear Schrodinger equation with mass
below the mass of the ground state. Advances in Mathematics, 285:1589 — 1618, 2015.

B. Dodson. Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrodinger equation
when d= 1. American Journal of Mathematics, 138(2):531-569, 2016.

B. Dodson. Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrédinger equation
when d= 1. American Journal of Mathematics, 138(2):531-569, 2016.

B. Dodson. Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation.
Annals of PDE, 3(1):5, 2017.

P. Drazin. Solitons, volume 85 of London Mathematical Society Lecture Note Series, 1983.

C. Fan. The L? Weak Sequential Convergence of Radial Focusing Mass Critical NLS Solutions with Mass Above
the Ground State. International Mathematics Research Notices, 07 2018.

C. E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized korteweg-de vries
equation via the contraction principle. Communications on Pure and Applied Mathematics, 46(4):527-620, 1993.
C. E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries
equation via the contraction principle. Communications on Pure and Applied Mathematics, 46(4):527-620, 1993.
R. Killip, S. Kwon, S. Shao, and M. Visan. On the mass-critical generalized KdV equation. Discrete Contin.
Dyn. Syst., 32(1):191-221, 2012.

Y. Martel and F. Merle. A Liouville theorem for the critical generalized Korteweg—de Vries equation. Journal
de mathématiques pures et appliquées, 79(4):339-425, 2000.

Y. Martel and F. Merle. Instability of solitons for the critical generalized Korteweg de Vries equation. Geometric
& Functional Analysis GAFA, 11(1):74-123, 2001.

Y. Martel and F. Merle. Blow up in finite time and dynamics of blow up solutions for the L2—critical generalized
KdV equation. Journal of the American Mathematical Society, 15(3):617-664, 2002.

Y. Martel and F. Merle. Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized
kdv equation. Annals of mathematics, pages 235-280, 2002.

Y. Martel, F. Merle, and P. Raphaél. Blow up for the critical generalized Korteweg—de Vries equation. i: Dy-
namics near the soliton. Acta Mathematica, 212(1):59-140, 2014.



34

BENJAMIN DODSON AND CRISTIAN GAVRUS

[18] Y. Martel, F. Merle, and P. Raphaél. Blow up for the critical gKdV equation. II: Minimal mass dynamics. J.

Eur. Math. Soc. (JEMS), 17(8):1855-1925, 2015.

[19] F. Merle. Blow-up phenomena for critical nonlinear Schrédinger and Zakharov equations. In Proc. of the ICM,

volume 3, pages 57-66, 1998.

[20] F. Merle. Existence of blow-up solutions in the energy space for the critical generalized KdV equation. Journal

of the American Mathematical Society, 14(3):555-578, 2001.

[21] M. Schechter. Spectra of partial differential operators. North-Holland series in applied mathematics and me-

chanics, 14, 1986.

[22] S. Shao. The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy

Strichartz inequality. Anal. PDE, 2(1):83-117, 2009.

[23] T. Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete and Continuous Dynamical

Systems, 18:1-14, 2006.

[24] E. C. Titchmarsh. Elgenfunction Ezpansions Associated With Second Order Differential Equations. Read Books

Ltd, 2011.

[25] M. I. Weinstein. Nonlinear Schrédinger equations and sharp interpolation estimates. Communications in Math-

ematical Physics, 87(4):567-576, 1983.

[26] M. I. Weinstein. Modulational stability of ground states of nonlinear Schrédinger equations. SIAM journal on

mathematical analysis, 16(3):472-491, 1985.

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD, 21218
Email address: bdodson4@jhu.edu

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD, 21218
Email address: cgavrus1@jhu.edu



	1. Introduction
	2. Preliminaries
	2.1. Notation and linear estimates
	2.2. Solutions to gKdV
	2.3. Stability and corollaries
	2.4. Almost periodicity
	2.5. The embedding of NLS into gKdV
	2.6. The Airy profile decomposition and decoupling

	3. Reduction to an almost periodic solution - Proof of Theorem 1.6
	4. Reductions of an almost periodic solution
	5. Decomposition of the solution near a soliton
	6. Exponential decay estimates of u
	7. Virial identities
	References

