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The optical force density as a function of position and time provides fundamental information to
model local and, through integration, macroscopic kinetic motion of condensed matter. Here, the
boundary condition associated with the optical force density is developed and investigated using
an expression stemming from the work of Einstein and Laub, and in conjunction with Maxwell’s
equations to describe the electromagnetic fields. Consequently, a constraint is formed that allows
a unique relationship between the total force and the force density, one that is achieved by virtue
of the conservation principles for physical materials and described by locally homogenized consti-
tutive parameters. Further insight can be garnered from new experimental studies, as summarized.
The mathematical steps presented form a basis for modeling various optomechanical phenomena,
including optical forces in and on solid state systems such as membranes, beams, cantilevers, and
waveguides, and can be interpreted in terms of a suite of related theoretical work. This specification
of the force density boundary condition is relevant for basic scientific fields including those involved
with various quantum cooling issues, molecular optomechanics, photochemistry, and biophysics (in-
cluding mechanotransduction). The technologies impacted encompass integrated optomechanics
(silicon photonics, where new optical device concepts can be enabled), communication systems (in
which optical forces could supplant electronic switching), remote control and actuation, propulsion,
sensing, and navigation.

I. INTRODUCTION TO OPTICAL FORCES

While there have been many important papers writ-
ten on the theory of electromagnetic forces, we still lack
complete understanding of how photons interact mechan-
ically with materials. This has consequences for the in-
terpretation of experimental data and for optomechanics
in condensed matter, as well as for a range of applica-
tions. In the work presented here, a force density theory
that has been used to explain key experiments and based
on the work of Einstein and Laub [1] is used to develop
the boundary conditions that are appropriate at material
interfaces and for optical frequencies. This leads to a the-
ory for the total force and pressure that can be further
evaluated through various experiments, and the concepts
can be applied to other models.

Since a prediction of an optical force by Maxwell [2]
and subsequent measurement [3, 4], many basic develop-
ments have occurred. Notable among these, after the in-
vention of optical tweezers in the 1980s [5], optical manip-
ulation has become important in biology, physical chem-
istry, and condensed matter physics [6]. Optical rheol-
ogy and mechanotransduction in cells has enabled new
experimental regimes [7], and the range of forces realiz-
able [6, 8–13] are useful for biological and macromolecu-
lar systems research [14–16]. In addition, optomechanics
has led to surprising findings in classical statistical me-
chanics [17], including anomalous attraction [18], oscil-
latory colloidal interactions [19–22], and hydrodynamic
fluctuations [23]. Optical traps have been studied ex-
tensively for use in achieving Bose-Einstein condensates
[24, 25] and in regards to photon momentum exchange
[26]. Non-classical states have been investigated using
optical traps as a means to enhance sensitivity [27] and

for atomic clocks [28]. There have been studies of ways to
regulate the phonon spectra in solid state materials and
devices during the past decade or so. Membrane cool-
ing for cavity optomechanics facilitates improved sens-
ing or a platform for quantum signal processing [29, 30].
In Tamm plasmon resonators, efficient light-sound trans-
duction has been shown [31], as has been found in dis-
tributed Bragg reflector GaAs/AlAs vertical cavities [32].
Such optical-phonon interactions can facilitate nonrecip-
rocal elements, important in realizing optical isolators
(a challenge for integrated photonics) [33–35] and direc-
tional amplifiers [36]. More generally, there are interest-
ing lines of physics related to topological phases of sound
and light [37].

Optical forces in nanostructured media are relevant in
a variety of technologies. Nano-optomechanical actua-
tors have been demonstrated that have the potential to
impact optical signal processing [38], and a Si microdisk
provided high frequency signal processing, sensing, and
metrology [39]. Other opportunities in quantum infor-
mation processing [40], thermal/humidity sensing [41],
optical logic gates [42], channel routing/switching, dis-
persion compensation, and tunable lasers [43] have also
been considered. In addition, concepts for applying all-
optical control to mechanical or physical devices present
exciting opportunities for optomechanical systems. For
example, the energy consumed in the electronic control
of optical communication networks has driven interest in
all-optical means of communication between computers
[44] and in radio frequency photonics [45].

Based on the aforementioned and other related
achievements, it is indeed remarkable that more than one
century after the first measurements of optical force there
remains such uncertainty with regard to force densities
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in condensed matter. By contrast, Maxwell’s equations
projected in Poynting’s theorem is widely accepted as
a means to describe electromagnetic energy. As an il-
lustration, the physics behind photon drag with surface
plasmons has recently been brought into question [46],
despite the relatively long history of this phenomenon.
To resolve open questions related to optical force den-
sity, a combined basic theoretical and experimental effort
is needed. The key interface problem treated here relates
to this goal.
Section II provides background on the force density

model, and the specific boundary issues developed are
introduced. The mathematical treatment in Sect. III is
the key contribution of this work. Section IV considers
mathematical and physical interpretations in relation to
experiments, including suggestions for studies to evaluate
the theory, as well as broader impacts in current appli-
cation spaces. Following some conclusions in Sect. V,
acknowledgments are presented.

II. OPTICAL FORCE DENSITY AND MODEL

To understand how light imparts a force throughout
condensed matter, one must build a theory for the force
density. In this way only, can a model be formed to
determine mechanical mode excitation, as a result of
the spatially dependent optical force density. The rig-
orous way to obtain the total force on a region of mate-
rial is to integrate the force density over volume. With
suitable boundary conditions, this integration can be
moved across material interfaces with complete rigor.
One should anticipate that there is a unique force den-
sity for a particular electromagnetic field distribution and
physical problem, and hence a unique result from inte-
gration, based on the physics. The goal of the present
work is to evaluate the requirement of the optical force
density at material interfaces, in order to correctly con-
nect force density internal to a material to the external
force, for example, the pressure.
The force density theory considered here stems from

work done by Einstein and Laub [1], yielding results of
note for the conservation of momentum in physical mate-
rials. This theory correctly predicts the important water
experiment done by Ashkin and Dziedzic [47], as verified
by us and previously described [48]. In that experiment,
the fluid moved according to the local force density, and
this was measured to produce a bulge or squeezing ef-
fect that is independent of incident laser direction [47].
This is the theory for force density that has been used
to describe forces (deflections) in structured Au on SiN
membranes [49]. It or related theory has been widely
studied [50–54], but not in the sense of the boundary
condition treated here.
At optical frequencies, where magnetism (impacting

the magnetization) is negligible, it is the locally homoge-
nized polarization (exhibited in the complex electric sus-
ceptibility or dielectric constant, possibly in tensor form)

that describes the material in both an electromagnetic
and force density sense. All force formulations must con-
tend with a spatially-varying dielectric and hence inter-
faces. By way of example, the laser optical trap model
with dielectric beads relies on a gradient force involving
the spatial derivative of the electric field, E [5]. Relevant
is the dipole force density of the form (P · ∇)E, where P
is the polarization [51, 52]. Treatment of this dipole term
is important in such inhomogeneous material systems, as
will become apparent here.

In the theoretical development that follows, the ba-
sis for the force density is derived from electromagnetic
principles to make clear how kinetic force (that moves
condensed matter) can be related to the field description
in a way that is meaningful for optical materials. This
allows boundary conditions that conserve momentum to
be developed, leading to the primary contribution of the
present work.

III. FORCE DENSITY BOUNDARY

CONDITION

A. Electromagnetic fields and related mathematics

The starting point is assumed to be Maxwell’s equa-
tions and a stationary reference frame. Consequently, a
non-relativistic form of the kinetic force density is de-
rived using the classical form of the Abraham momen-
tum. Using the standard assumption of sufficient bound-
ary smoothness to allow a locally planar assumption for
an interface, the usual field boundary conditions are ex-
tended to those that apply to the momentum density. As
a result, a boundary condition applicable for the force
density is obtained, assuming physical materials and op-
tical frequencies. Resulting is a kinetic force density with
Cauchy principal value integration to obtain local forces,
including at boundaries. The implications in relation to
experiments is addressed in Sect. IV.

Maxwell’s equations are written with all source terms
on the right-hand side, leading to

∇×E+ µ0

∂H

∂t
= −µ0

∂M

∂t
(1)

∇×H− ǫ0
∂E

∂t
=

∂P

∂t
+ J (2)

ǫ0∇ · E = −∇ ·P+ ρ (3)

∇ ·H = −∇ ·M, (4)

with H the magnetic field, M the magnetization, J the
source electric current density, ρ the electric charge den-
sity, µ0 the permeability of free space, and ǫ0 the permit-
tivity of free space. Taking the cross product of ǫ0E with
(1) and µ0H with (2), and adding the resulting equations,
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gives

ǫ0E × (∇× E) + µ0H× (∇×H)

+ µ0ǫ0E×
∂H

∂t
− µ0ǫ0H×

∂E

∂t

= −µ0ǫ0E×
∂M

∂t
+ µ0H×

∂P

∂t
+ µ0H× J. (5)

With a little work [51], the triple cross product terms in
(5) can be written in the form

ǫ0E × (∇×E) + µ0H× (∇×H)

= ∇ ·TE + ǫ0 (∇ · E)E+ µ0 (∇ ·H)H, (6)

with

TE =
1

2
(ǫ0E · E+ µ0H ·H) I− ǫ0EE− µ0HH (7)

being the so-called Maxwell stress tensor [55], and where
I is the identity matrix. Here, the divergence of the ten-
sor in the (x1, x2, x3) coordinate system is

∇ ·T =









∂T11

∂x1

+ ∂T21

∂x2

+ ∂T31

∂x3

∂T12

∂x1

+ ∂T22

∂x2

+ ∂T32

∂x3

∂T13

∂x1

+ ∂T23

∂x2

+ ∂T33

∂x3









(8)

and the dyadic product of two vectors is defined accord-
ing to (ab)ij = aibj[50], giving, for example,

EE =







E2
1 E1E2 E1E3

E2E1 E2
2 E2E3

E3E1 E3E2 E2
3






. (9)

Substituting (6) into (5) gives

∇ ·TE + ǫ0 (∇ · E)E+ µ0 (∇ ·H)H

= −µ0ǫ0E×
∂H

∂t
+ µ0ǫ0H×

∂E

∂t

−µ0ǫ0E×
∂M

∂t
+ µ0H×

∂P

∂t
+ µ0H× J. (10)

We shall consider the Abraham momentum density,
which is given by

g =
1

c2
E×H, (11)

with c the speed of light in vacuum. In free space,
all forms of the photon momentum give ~k0, with ~ =
h/(2π), h being Planck’s constant, and k0 = ω/c the
free space wave number at circular frequency ω (see ap-
pendix). In background media, the description of a pho-
ton has been the subject of considerable attention (see
[26], for example).
Taking the time derivative of (11), we have

∂g

∂t
= µ0ǫ0E×

∂H

∂t
− µ0ǫ0H×

∂E

∂t
. (12)

Using (10) and (12),

∇ ·TE + ǫ0 (∇ · E)E+ µ0 (∇ ·H)H+
∂g

∂t

= −µ0ǫ0E×
∂M

∂t
+ µ0H×

∂P

∂t
+µ0H× J. (13)

The Einstein-Laub momentum flow or stress tensor is
defined as [1, 51, 53]

T =
1

2
(ǫ0E ·E+ µ0H ·H) I−DE−BH, (14)

with D = ǫ0E + P the electric flux density and B =
µ0 (H+M) the magnetic flux density. One arrives at
(14) by considering the free space contribution, in the
form of (7), and those due to polarization and magne-
tization, as described by a number of people (see [51]).
This amounts to writing TE + TP + TM = T , with
TP = −PE and TM = −µ0MH providing the polariza-
tion and magnetization contributions, respectively (i.e.,
the material effects).
With use of the vector identities

− (∇ ·P)E = −∇ · (PE) + (P · ∇)E (15)

− (∇ ·M)H = −∇ · (MH) + (M · ∇)H, (16)

and incorporating (14) into (13), we have the key result

∇ ·T+
∂g

∂t
= µ0H×

∂P

∂t
− µ0ǫ0E×

∂M

∂t
+ µ0H× J

− ρE− (P · ∇)E− µ0 (M · ∇)H, (17)

which we draw upon throughout the remainder of this de-
velopment. Equation (17) provides a basis to consider ar-
bitrary material responses (nonlocal in time and with ma-
terial and geometric dispersion). For source-free (where
the incident field, that without the material, is due to
some remote source), non-magnetic materials, (17) be-
comes

∂g

∂t
= −∇ ·T−

[

∂P

∂t
× µ0H+ (P · ∇)E

]

, (18)

where loss and hence free charge motion is incorpo-
rated into the temporal Fourier form for the polariza-
tion, which for isotropic materials becomes P(r, ω) =
ǫ0χE(r, ω)E(r, ω) = ǫ0 [ǫ(r, ω)− 1]E(r, ω), with complex
electric susceptibility χE and dielectric constant ǫ.

B. Boundary conditions

Maxwell’s curl equations applied to boundaries with
sufficient smoothness and for physical materials (preclud-
ing a perfect electric conductor) yield the tangential field
boundary conditions

n̂21 × (H1 −H2) = Js = 0 (19)

n̂21 × (E1 −E2) = 0, (20)
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with n̂21 the unit normal vector directed from Region 2
into Region 1. These follow from Ampere’s law (2) and
Faraday’s law (1), respectively, transformed into integral
form with use of Stokes’ theorem, and then applied to a
small (rectangular) domain spanning the interface, in the
usual manner. The boundary conditions in (19) and (20),
i.e., continuity of tangential magnetic and electric fields,
combined with the momentum density in (11), yield

n̂21 · (g1 − g2) = 0 (21)

as a momentum density boundary condition. Equa-
tion (21) is quite interesting, because it implies that the
normal component of the Abraham momentum density
is preserved across an interface, by virtue of the field
boundary conditions. It also indicates that the momen-
tum density in media with χE other than zero has the
same form as that in vacuum (or some other material),
as expected for the Abraham form. Of course, the nor-
mal components of the Poynting vector (S = E×H) are
also preserved across interfaces, a statement of energy
conservation based on Poynting’s theorem,

∮

(E×H) · ds = −

∫
(

E ·
∂D

∂t
+H ·

∂B

∂t

)

dv, (22)

applied here to a source-free region (J = 0) containing lo-
cally homogenized material parameters [dictating D(r, t)
and B(r, t)] and derived from Maxwell’s equations with
use of a vector identity and the divergence theorem.
Let us assume that the condensed matter experienc-

ing an optical force is fixed in position for a time that
is large relative to the temporal period of the optical
wave. This is discussed in some detail in Sect. IV, but is
reasonable for material having a spatial support on the
few-nanometer scale or larger (with significant mass and
where a classical field description with locally homoge-
nized parameters can be applied). Mathematically, we
can simply assume that the material is fixed in space
during some time interval. As a result, the complex spa-
tiotemporal optomechanics problem can be simplified in
a manner representative of many experimental situations.
Integrating (18) over suitably small spatial and temporal
supports results in

∫

v

∫

t

∂g

∂t
dvdt = −

∫

v

∫

t

∇ ·T dvdt

−

∫

v

∫

t

[

∂P

∂t
× µ0H+ (P · ∇)E

]

dvdt.(23)

More specifically, the constraint underlying (23) would
be that, given a specific spatial support, a time inter-
val is specified as being sufficiently short. Computation-
ally, this would relate to a numerical convergence criteria.
With these caveats, we proceed with evaluation of (23).
Within any domain, it is straight forward to evaluate
(23) using computational electromagnetics, once the lo-
cally homogenized material parameters (ǫ(r, ω) for all ω)
are defined.

One can apply the divergence theorem to (23), assum-
ing a locally smooth surface that is fixed during the rel-
evant time interval, allowing the first term on the right
to be expressed as a closed surface integral for the re-
gion defining the volume. Therefore, with consideration
of an infinitesimally small region that spans an interface
between Regions 1 and 2, (23) becomes

∫

v

∫

t

∂g

∂t
dvdt = −

∮ ∫

t

Tijdskdt−

∫

v

∫

t

[

∂P

∂t
× µ0H+ (P · ∇)E

]

dvdt, (24)

where the appropriate permutations of the surface inte-
gral variables are implied. Assuming finite fields (suf-
ficient local boundary smoothness, as used to arrive at
(19) and (20), and thus finite E and H and hence g and
P), we have

lim
v→0

{
∫

v

∫

t

∂g

∂t
dvdt

}

= 0 (25)

lim
v→0

{

−

∮ ∫

t

Tijdskdt−

∫

v

∫

t

[

∂P

∂t
× µ0H+ (P · ∇)E

]

dvdt

}

= lim
v→0

{

−

∮ ∫

t

Tijdskdt−

∫

v

∫

t

(P · ∇)E dvdt

}

= 0. (26)

Equations (25) and (26) are key to evaluating boundary
condition requirements for the kinetic force density, yet
to be formed.
Selecting the normal components from (26) yields

lim
v→0

{

n̂21 ·

∮ ∫

t

Tij dskdt

}

= lim
v→0

{

−n̂21 ·

∫

v

∫

t

(P · ∇)E dvdt

}

. (27)

If we assume that n̂21 = ŷ and 2D Cartesian coordinates
(no field variation in the third dimension), then

lim
v→0

{
∮ ∫

t

(Tyx dydz + Tyydxdz) dt

}

= lim
v→0

{
∮ ∫

t

Tyy dxdzdt

}

(28)

= lim
v→0

{
∫

v

∫

t

−ŷ · [(P · ∇)E] dvdt

}

. (29)

The point here is that a Dirac delta function term that
exists from the spatial derivative (formation of (P · ∇)E
at the interface) is associated with the step in Tyy, so
that

lim
v→0

{
∮ ∫

t

Tyy dxdzdt +

∫

v

∫

t

ŷ · [(P · ∇)E] dvdt

}

= 0.

(30)

Physical materials are dispersive, so (27) is correctly in-
terpreted in the temporal Fourier domain and with spec-
tral superposition. In phasor form, (P · ∇)E is complex
and frequency dependent, as is the Dirac delta function
coefficient at an interface.
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C. The kinetic force density

We now ascribe a kinetic force based on the electro-
magnetic field description, with consideration of the rel-
evant physics and with the goal of predicting experimen-
tal observations. This development will utilize (17) and
the associated boundary conditions that assume local
smoothness.

At the interface between two materials, say free space
and some solid state material, there is in general an elec-
tric field component normal to the interface. In the math-
ematical (and non-physical) case of a perfect electric con-
ductor, an unlimited charge can respond instantaneously,
and n̂21 ·D1 = ρs, with ρs the local surface charge den-
sity. Here, Region 2 is the perfect conductor and ρ in
(17) exists at the surface and is described as a Dirac
delta function with respect to the normal direction. This
surface charge would experience a force just as Lorentz
described [56]. The angle-dependent force on a mirror,
as presented by Planck [57], also follows. Likewise, for
the electrostatic case with free charge (ω = 0), one as-
sociates a similar force density with the surface charge
density from the normal electric flux density boundary
condition (and Gauss’ law). We can consider both of
these situations as being a local force on a charged sur-
face, at least in the context of (17). In such situations,
charge is experiencing a force, and to the degree that a
local solid state material contains such net (local) charge,
one might anticipate a resulting force.

What about interfaces with neutral materials and at
optical frequencies? While an electric dipole moment is
established in a material (resulting in the local, average
dipole moment per unit volume, i.e., the polarizationP, a
complex quantity in the temporal Fourier domain), mov-
ing this material with a kinetic force requires collective
motion of these dipoles (the neutral material picture) or
free charge motion over length scales large relative to an
underlying atomic or lattice dimension (thereby achiev-
ing a locally charged material, most rapidly from elec-
tron transport). One could speculate that the ability
to translate material relates to local neutrality and to
the distance and time scale for local charge transport.
At optical frequencies, a simple charge transport analy-
sis (Lorentz force with a practical laser beam power and
the associated electric field that accelerates an electron)
indicates that the femtosecond-time-scale displacement
of charge (local electron motion, within a unit cell, or
free, with the time scale involved for an optical wave
that moves charge back and forth) is very small. By
small, this means relative to atomic scales, as can be ver-
ified for the electric field from a high-power laser and
with use of the rest mass and charge for an electron [58].
Because the free charge does not respond fast enough to
the optical field (a phenomenon that results in kinetic in-
ductance), one arrives at the conclusion that free charge
motion can be neglected in the boundary representation
for optical forces (but not in longer-range force density
phenomena, because this is exhibited in loss and hence

the imaginary part of the dielectric constant [59]). The
charge-neutral material at the interface will respond as
an electric dipole over the atomic or unit cell (with ho-
mogenization) length scales that are small relative to the
penetration depth for optical fields. One thus arrives
at the conclusion that there will be no net force on these
dipoles very close to the interface for physical neutral ma-
terials, and hence zero force density as the boundary is
approached. Equivalently, the atoms in an infinitesimally
thin material slice will be predominantly forward scatter-
ing, resulting in vanishingly small momentum transfer.
All of this suggests that the force density at the interface
cannot be infinite physically (in such neutral materials),
and that any Dirac delta terms associated with (P · ∇)E
would not exist in reality in this situation at optical fre-
quencies (despite the presence of a polarization surface
charge density). A separate question might be whether
this Dirac delta term represents an equivalent effect that
is not captured classically by another means, but that
position is unsatisfying. Physically, then, and at optical
frequencies, we might be inclined to reject a Dirac delta
term in the kinetic force density, that involved in creating
motion of material and associated with the electromag-
netic description.
The electromagnetic momentum density (g) in mate-

rial has a long history of debate. Without belaboring
the point, this is of relevance because of the boundary
treatment. We consider here a mathematical field inter-
pretation that, when folded into a conservation condition
related to momentum, can be interpreted in a physical
sense without ambiguity. Equation (21) presents a re-
quirement on (the normal component of the) momentum
density on either side of an interface based on electromag-
netic boundary conditions. The momentum flow (stress)
tensor (T) can have discontinuous components at an in-
terface if the force density has a Dirac delta term, and
this can only come from (P · ∇)E in (18) for dielectric
media. If one considers that photon momentum must
flow across an interface, then the relevant components of
T have to be continuous across the interface, i.e., the Tij

are conserved quantities. If one accepts an infinite Dirac
delta force density at the boundary, then T can have dis-
continuous steps. To force continuity in T and hence mo-
mentum flow, one can add the Dirac delta contribution
from (P · ∇)E to the integral of ∇·T. Doing so requires
consideration of the external stress tensor elements while
adhering to momentum conservation requirements.
This backdrop leads to an interpretation of the electro-

magnetic expression in (17) for the description of kinetic
force density as

[∇ ·T]
PV

+
∂g

∂t
= µ0H×

∂P

∂t
− µ0ǫ0E×

∂M

∂t
+ µ0H× J

−ρE− [(P · ∇)E]
PV

− µ0 [(M · ∇)H]
PV

= −fk, (31)

with fk the kinetic force density and the implication of
[·]PV, the principal value in the Cauchy sense with inte-
gration, is that the Dirac delta boundary contributions
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from the right have been separated and added to the di-
vergence of the momentum flow tensor on the left, if the
boundary is moved across the interface. Consequently,
the kinetic force density, that associated with collective
material motion, becomes

fk =
∂P

∂t
× µ0H−

∂M

∂t
× µ0ǫ0E+ J× µ0H+ ρE

+ [(P · ∇)E]
PV

+ µ0 [(M · ∇)H]
PV

. (32)

Equation (32) is the key result developed here.
At optical frequencies and for physical materials, we

might conclude that the force density in (32), without
boundary Dirac delta terms and hence within the spa-
tial support of material media, be applied. Electromag-
netic momentum flow in the field sense is thus persevered
across boundaries, as is shown in (25) and (26), in a man-
ner that is physically satisfying. This implies that the
total kinetic force becomes

Fk = −

∫

v

∫

t

[

∂P

∂t
× µ0H−

∂M

∂t
× µ0ǫ0E

+ J× µ0H+ ρE

+ (P · ∇)E+ µ0 (M · ∇)H] dvdt, (33)

where the volume integral is interpreted in the Cauchy
principal value sense (so the PV subscripts are removed
from the relevant terms in the kernel). Both the tempo-
ral and spatial integration requirements are addressed in
Sect. IV. Briefly, the normalized time integral (preserv-
ing units) is over a period or an interval that is sufficiently
small relative to the kinetics of the system, and could be
over the carrier period for modulated light, so the force
becomes a function of the modulation time variable (see,
for example, prior work on force [52] and energy [60] in
dispersive materials). The volume integral also assumes
that the spatial distribution of material is fixed over the
time interval considered.
It is important to note that (32) and (33) impose all

relevant boundary conditions and momentum flow is con-
served. That model was matched to subsequent experi-
mental studies with membrane deflection that supported
the existence of enhanced optical pressure [49]. The
broader implications of this theory holding physically,
and hence (32), are significant, as outlined in Sect. IV.

IV. DISCUSSION

Interpretations of the optical force boundary condition
theory developed in Sect. III are described in relation to
material properties and how solutions to optomechanical
problems can be formed to describe experimental situa-
tions. The role of new experiments in exploring the forces
near interfaces and at the nanometer length scale is ex-
plored, and the impact on several current research trends
is outlined. Throughout this section, published numerical
simulation results and data from experiments are noted,

as they relate to the central theme of a boundary con-
straint for optical forces, i.e., electromagnetic force the-
ory in condensed matter and at optical frequencies, as
would be the case with use of lasers.

A. Motion of solid state media

Consider a condensed matter system with mass, as
would apply in the laboratory setting with say membrane
motion. Flexural modes generally accessed in SiN mem-
branes of typical dimensions used in optomechanics ex-
periments [49, 61] have lower-order resonances below the
MHz range. A thin plate model for the eigenmodes for a
100 nm thick, low-stress SiN membrane [62, 63] suggests
that the local linear velocity is of the order of 103 m/s.
In one optical cycle, say 10−15 s, the membrane moves
10−12 m (10−2 Å). The quality factors in Au plasmonic
cavities are modest, less than 100 typically [64], which
results in a cavity lifetime of less than 10−13 s. Dur-
ing this time (10−13 s), the membrane will move about
10−10 m (1Å). Both these timescales (optical period and
cavity excitation time in plasmonics [49]) suggest ma-
terial motion might be neglected in the optomechanical
analysis for such solid state systems over these periods.
This leads to a practical interpretation for (32) and (33)
in experimental situations involving membranes, beams,
cantilevers, beads, etc. Consequently, and as done pre-
viously [60], a temporal average over the carrier period
presents the modulated light description and the plau-
sible time frame for a mechanical response. Hence, the
time variation measured with a sensing system for mem-
brane deflection measures (at or below) the modulation
temporal profile for the (laser) light.

B. Time-averaging in force density

The time integrations in Sect. III and specifically in
(32) and (33) can be written more precisely. Modulated
light and a local average over the optical (carrier) having
period t0 can be described as

〈f(t)〉(tn) =
1

t0

∫ tn+t0/2

tn−t0/2

f(t)dt, (34)

where f(t) is a scalar function that varies with time (and
position), such as a component of the vector force density,
and tn is the time variable relevant for the mechanical
system. With this definition, averages of the force density
[〈f(r, t)〉(tn)] and total force or pressure can be formed to
achieve time dependent results that vary with the mod-
ulation temporal envelope. This produces a (modulated-
light) time variation in the force quantities that is com-
mensurate with mechanical motion time scales [52].
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C. Implications regarding the total optical force

and conservation of momentum

The fundamental way we should view optical forces in
materials is through the spatially and temporally depen-
dent force density, as exhibited in (32). This forms the
basis to obtain components of force and torque through
integration, and to predict motion in 3D space. Conser-
vation of momentum is thus point-wise and comes from
(31).
All materials must have continuity of the normal com-

ponent of the Abraham momentum density, based on the
field boundary conditions and as given in (21). Likewise,
the constraints involving ∂g/∂t and Tij , (25) and (26)
respectively, must hold at interfaces, as well as along any
contour within a locally homogeneous domain. Equa-
tion (25) follows directly from the constraint in (21). In
a sense, more interesting is the conservation condition
in (26), where the integral of a (possible) Dirac delta
force density term (from (P(r, t) · ∇)E(r, t), with a nor-
mal component of the electric field) must be precisely
compensated by the surface integral of respective stress
tensor elements Tij(r, t). What appears not to have been
widely appreciated is that the condition in (26) holds
with either: (i) a Dirac delta component of the force
density at all dielectric interfaces added to the bulk force
density, or (ii) with the Dirac delta contribution added
to the stress tensor (so that the force density is inte-
grated to form the total force without the Dirac term).
Both precisely satisfy all mathematical constraints, but
only one should be physically meaningful in a given sit-
uation. The point made in Sect. III C is that only case
(ii) conforms to the physics of the system (with optical
frequencies and physical, neutral materials), thus driving
the choice of the principal value representation and the
form for the kinetic force density (fk(r, t)) in (32), with-
out the Dirac delta contribution. In special cases like
normal incidence on a planar interface, interpretations (i)
and (ii) are identical. Therefore, based on charge trans-
port time constants and at optical frequencies, the total
kinetic force, that which can move a structure in a man-
ner measured by spatial motion or matter, would appear
to be dictated by (33).

D. External momentum flow tensor

Equations (32) and (33) are applied within the spatial
support of the medium. From the left of (31), the result
from [∇ ·T]+∂g/∂t or its integral, respectively, gives the
identical result. In this case, T from (14) is that in the
material. If one moves the integration just across a mate-
rial interface with, for example, free space, T assumes its
free space value, resulting in (7). Then, the result from
the integration of the Dirac delta at the surface is added
to the stress tensor integration to obtain the same result
as from the spatial integration within the material. This
produces a consistent internal and external description

of the kinetic force and allows correct interpretation of
the time-dependent momentum flow into the material.

E. Nonlocal-in-time fields and impact on the force

density

The fields in all physical materials are a result of cur-
rent and all earlier excitations in time, making the de-
scription nonlocal in time (see [65], for example). Like-
wise, a nonlocal temporal response should also apply for
the optical force in material and in (32), where the force
at each point in matter is the result of the excitation
history as conveyed by the nonlocal field responses. The
same nonlocal-in-time situation holds for geometry-based
means to store optical energy, such as cavities in materi-
als [66], which opens new opportunities for optical force
control, such as with optimization-based aperiodic struc-
tures [67]. On this basis, the established principles of
nonlocal fields in materials is reviewed, as relevant to
understanding the impact in (32).
The (locally homogenized [68]) polarization is correctly

written in the frequency domain at each point in space
as

P(r, ω) = ǫ0χE(r, ω)E(r, ω), (35)

with the simple case of a scalar complex electric suscep-
tibility, χE , being assumed for the constitutive param-
eter. Material responses in the form of (35) are how
materials are modeled either quantum mechanically or
through a classical picture, and generally how they are
characterized experimentally. Taking the inverse Fourier
transform of (35), we have

P(r, t) =
1

2π

∫ +∞

−∞

ǫ0χE(r, ω)E(r, ω)e−iωtdω (36)

=

∫ +∞

−∞

ǫ0χE(r, τ)E(r, t − τ)dτ. (37)

Equation (37) is of course the standard treatment of di-
electric materials expressed in convolution form [65] and
subject to causality associated with the velocity c, where
we assume a local space result. However, here the rel-
evance is that the force density in condensed matter is
also the result of the time history of the excitation. The
nonlocal-in-time concept for optical forces is thus impor-
tant and essential in the correct theoretical description,
and it is incorporated into the theory in (32) and (33).
The fact that materials respond non-locally in time

requires consideration of this phenomenon in all optome-
chanical situations, including those described by modu-
lated light and in sinusoidal steady state (with monochro-
matic illumination). Because materials store energy, this
impacts both the energy exchange with the outside world
[60] and also the force imparted. Optical cavities in var-
ious forms provide energy storage and this impacts the
force [49, 66]. Materials with gain (optical activity) can
have negative pressure [52, 59], also by virtue of the time
history of the system.
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F. Momentum flow into a volume

While the force density, i.e., a pointwise result as a
function of time, provides a fundamental path to kinetic
information, it is instructive to reflect on on a widely
disseminated presentation of momentum flow into a vol-
ume and conservation conditions in relation to the re-
sults in Sect. III. For this purpose, Jackson [65] (3rd
edition, Sect. 6.7, pages 260 – 261) is primarily drawn
upon. That material follows the argument in Stratton
[69] (pages 156 – 159). By starting with the development
in Sect. III, we shall arrive at Eq. (6.122) in Jackson [65],
then interpret the result in terms of what is and is not im-
plied in this volume-based conservation result. In Jack-
son (pages 260 – 261), the simple situation of charges (ρ)
and current density (J) in free space is treated, avoid-
ing interfaces and non-local-in time phenomena associ-
ated with physical material (physical atomic and molec-
ular states), where the established Lorentz force density
(f = ρE + J × B) is utilized. Here, we use the more
general Einstein-Laub description (Sect. III) because of
an interest in condensed matter, but the same general
expression (Eq. (6.122) [65]) can be found. Following
this, we consider the meaning of each term in light of the
spatiotemporal boundary conditions for force density to
ensure momentum flow.
From (31) and suppressing the PV, we have

fk(r, t) +
∂g(r, t)

∂t
= −∇ ·T(r, t). (38)

Integrating (38) over some volume and applying the di-
vergence theorem (under the assumption that a fixed
boundary is meaningful, implying some local time pic-
ture), we have

∫
(

fk(r, t) +
∂g(r, t)

∂t

)

dv = −

∮

Tij(r, t)dsk. (39)

Using the notation of Jackson, (39) can be written as

d

dt
[Pmech(t) +Pfield(t)] = −

∮

Tij(r, t)dsk, (40)

which (in mathematical form) is Eq. (6.122) in Ref. [65].
Here, dPmech(t)/dt =

∫

fk(r, t)dv is the sum of all me-
chanical momenta associated with the optical field in the
volume at each instant of time and Pfield(t) is the inte-
gral of the (Abraham) field momentum g(r, t). In words,
(40) says that the momentum flow into the volume (de-
scribed by the right-hand side) is exactly the time rate of
change of the sum of the total mechanical and field mo-
menta in this volume. There are two important points
to note about (40). One is that this conservation condi-
tion relates to the total time rate of change of mechan-
ical plus field momenta and does not in general allow
the two to be distinguished, or at least the mechanical
component of the force is not uniquely determined with-
out a suitable forward model. This means that, except

with specific assumptions of the situation being modeled,
one cannot determine the mechanical force from photon
momentum flow. The other is that, beyond this ambi-
guity, there is no information about the spatiotemporal
distribution of the forces in the volume. This prevents
a general interpretation of how matter is translated by
photons (e.g., there could be a number of regions within
the volume or a contiguous material that could move in
some fashion). Related momentum challenges in materi-
als has been broached in a long line of papers, and, for
example, Shockley proposed the concept of hidden mo-
mentum [70, 71]. Without doing justice to the enormous
scope of related papers, another example is the question
of whether the Abraham or Minkowski momentum may
hold in materials, and preservation of the total momen-
tum was proposed as being implied through the kinetic
and canonical momenta of the light [72]. We should also
note that the relevance of the boundary description has
been presented [73].

In Sect. III, we considered boundary conditions that
must hold at interfaces, and a special case is a condensed
matter boundary with vacuum. Equation (27) specifies
the requirement for continuity of the normal component
of momentum flow. Applying (40) to a small domain
spanning the vacuum-material interface produces exactly
the same conclusion. Thus, in a vacuum environment,
the right-hand side of (40) would have elements from
the free space stress tensor in (7), but in the presence of
a material boundary (defined as being sufficiently close
with regard to the temporal character of T(r, t), in a
causal sense), continuity of momentum flow may require
adding the contribution from (P(r, t) · ∇)E(r, t), assum-
ing a dielectric interface. In the sense that (40) pro-
vides a statement of momentum conservation by flow
into a volume, the boundary conditions developed in
Sect. III B must hold, including when the photons are
incident from vacuum with a well-defined photon mo-
mentum (~k0). This result is implicit in the boundary
condition of (27) and with application of the resulting
spatiotemporal force density in (32). Without this step
and when n21 · (P(r, t) · ∇)E(r, t) 6= 0, momentum flow
in this context would not be enforced (with application
of TE). One can thus preserve photon flow, as in the
free space example treated in Jackson. In the case of free
space and with some charge and current distribution in
the enclosed volume, the momentum flow integral on the
right-hand side of (40) is simply given by the time do-
main form of the elements of the Maxwell free space stress
tensor in (7) [65], but with an optical pulse overlapping
a physical boundary, Sect. III shows that additional con-
siderations are needed to preserve the momentum flow
from vacuum into and out of the material.

The electromagnetic system described by (40) may be
open, so other forces can be involved [50], and we consider
two such situations. The first is mathematical, where
the material is fixed in position, so, referring to (39),
fk(r, t) = −fs(r, t), with fs a force due to the (coupled)
system which negates dPmech/dt associated with opti-
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cal fields in (40); this will be used here. The second is
where a physical system is involved, and inertia, tension
or structure support diminishes the net kinetic force den-
sity inducing motion. Such coupled system forces need
to be incorporated to solve the kinematic problem in re-
lation to experiments. Thus, use of the right-hand side of
(40) and photon momenta through an external boundary
does not provide the fundamental conservation condition
related to motion of media, i.e., in general, it is not pos-
sible at that level to separate field and mechanical pa-
rameters (but some simple cases of practical interest can
be treated in this manner).
With pulsed light, we could have the right-hand side

of (40) be zero and only dPfield(t)/dt gives rise to non-
zero dPmech(t)/dt. This illustrates the need to specify
temporal initial conditions to determine motion, and em-
phasizes the the role of non-local material temporal re-
sponses. This prior information would incorporate earlier
excitation and energy storage. Also, causality exists with
the densities (through the fields) but not locally from the
volume integrals – because the local field-matter interac-
tions are not measured. We now have a sense that care
is needed in applying the time domain form in (40) to
infer the kinetic force. However, for ideal charges and
currents in vacuum, which are described as being local in
time (Lorentz in the case of the picture in Jackson [65]),
interpretation of (40) is reasonably straight forward.

G. Sinusoidal steady state

The sinusoidal steady state case having a single circu-
lar frequency ω is mathematically and computationally
convenient and provides access to the basic constitutive
parameters. Such a model could also be of practical im-
portance, because relatively coherent laser light or low-
frequency modulated light may be involved. In practice,
the time frame for excitation to a quasi-monochromatic
case may need only be long compared to a measure such
as the average photon lifetime in the material, possibly
encompassing structured resonances [66, 74]. The mathe-
matical requirement is that the system modeled be linear
and time invariant. This means, strictly speaking, there
can be no motion and hence no momentum exchange.
Assuming the momentum density in (11), one can show
that 〈∂g/∂t〉 = 0, regardless of the material properties
(see the appendix of Ref. [54]).
With time dependence exp(−iωt), used in the inverse

temporal Fourier transform, and considering the source-
free dielectric (non-magnetic material case), the time-
average sinusoidal steady state kinetic force density, from
(32), can be written as

〈fk〉 =
ωµ0

2
ℑ{P×H∗}+

1

2
ℜ{(P · ∇)E∗} , (41)

where 〈·〉 is the temporal average (which does not vary
with time because there is no modulation), ℜ{·} is the
real part and ℑ{·} is the imaginary part, and P, E, and

H are (the polarization, electric field, and magnetic field)
phasors, with complex conjugates indicated by the super-
script asterisks. The average total force (or pressure with
area normalization) becomes

〈Fk〉 = −

∫

v

[

ωµ0

2
ℑ{P×H∗}+

1

2
ℜ{(P · ∇)E∗}

]

dv,

(42)
with principal value interpretation of the integral.
The physical situation described by (42) is one where

the entire constellation of materials (at each point in
space) has been invariant for infinite time. This implies
that all points in the material are fixed in space (at least
in the mathematical description). In practice and in an
experiment, at some time, the local laboratory time or
with reference to the optical modulation or mechanical
time, the system could be considered released and to re-
spond mechanically. Prior to this time, nothing is free
to move in this mathematical description as a result of
the time history of momentum transfer. Upon (mathe-
matical/physical/conceptual) release, a kinematic prob-
lem would be addressed in a different model with the ini-
tial conditions presented by geometry, material, and the
excitation conditions, all resulting from particular field
and force density distributions. The local time average
from (41) (force density) and (42) (force) would then pro-
vide an estimate of this average over the optical period
at the initiation of motion. The external excitation field
after this release time point would lead to a relativistic
consideration.
Returning to (40), we can understand the relevance of

the sinusoidal steady state situation in this context. The
integrated parameters over some volume in (40) leads to

〈Fk〉 = 〈
dPmech(t)

dt
〉 =

∮

〈Tij(r, t)〉dsk, (43)

because 〈dPfield(t)/dt〉 = 0. This result can now readily
be interpreted based on the results of Sect. III, notable
here in terms of boundary conditions for momentum flow.
To conform to a steady state field solution, the media
must be immobilized, so we have an additional force (re-
lated to a system force, so 〈Fs〉 = −〈Fk〉). After having
been excited for an infinite time, consider that we al-
low release. Equation (43) no longer holds and we must
return to the form in (40) for a volumetric description.
However, (40) does not allow determination of kinetic
motion in and of condensed matter, so we need to apply
the force density in the time domain. Conceptually, the
field energy stored in material at release now contributes
to the field momentum, so the kinetic force is the result
of this plus the flux of incident and scattered photons
expressed by the right-hand side in (40).
Equation (43) cannot be applied in isolation, other-

wise the sinusoidal steady state condition is violated,
and requires the additional force 〈Fs〉. Consequently,
regardless of the incident photon flux with correspond-
ing momentum (~k0 per photon), the structure is fixed
in space (mathematically). The boundary condition for
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the photon flow must be imposed on the right of (43),
and this is the frequency domain form of (27). Doing so
means that the light is correctly treated at the boundary,
regardless of whether it is in free space or not. With-
out including contributions from 〈(P(r, t) · ∇)E(r, t)〉 =
ℜ{(P(r) · ∇))E∗(r)} /2 into the right-hand side of (43),
the physical material boundary condition (such as at a
vacuum interface) is violated (Sect. III). The point here
is that even though motion is strictly precluded, the field-
based transfer of energy into the material needs to be
preserved. Rather than (43), it is the time harmonic
force density in (41) that presents a more useful result in
relation to experiments and through 〈fk(r, ω)〉.

H. Modeling the general time-dependent optical

force

Optomechanics involves the coupled electromagnetic
and mechanical problems where momentum is trans-
ferred from fields to matter, and the time and space do-
main differential operators are not in general indepen-
dent. However, one can take simplifying steps based
on either the physical situation of macroscopic objects
(composed of a substantial number of atoms in a con-
densed state) having mass and hence inertia or numerical
discretization descriptions for the differential operators
and hence time steps. Practical aspects of mechanical
timescales broached in Sect. IVA are drawn upon here.
Consider the discretized domain typical of finite differ-

ence and finite element solutions (computational physics,
in this case, computational electromagnetics), for the
solution of Maxwell’s equations. By way of example,
solution of the two coupled curl equations (Ampere’s
and Faraday’s laws) represented in point form has be-
come known as the finite difference time domain (FDTD)
method [75]. In FDTD, the Yee algorithm utilizes dis-
placed Cartesian grids for formation of the curl opera-
tors and finite difference representations (leading to cen-
tral differences from Taylor series expansions). While not
necessarily the most computationally efficient approach,
the simplicity of this algorithm and the broad availabil-
ity of inexpensive computational resources have led to
its popularity, and it serves the purpose of illustrating
the time step issues in optomechanics of interest here.
Materials are specified only at a set of discrete points.
At each time step, a spatial grid problem is solved, and
the staggered grid arrangement allows updates according
to the time step. Convergence can be proven in electro-
magnetics with a time step (times the background wave
velocity) that is sufficiently small relative to the spatial
grid size (the so-called Courant condition). One can con-
sider that the optomechanical problem is treated in this
manner. Any two time steps must be small relative to
all other time scales. The object can be translated only
in the time step after the wave (the field) enters the ma-
terial, and as a result of the momentum transfer. As a
result, one can assume that the condensed matter system

is fixed in space at some time step and all the boundary
conditions are enforced, both electromagnetic [(19) and
(20)] and optical force density, reflected in (32). Obvi-
ously, either a fixed medium or a coupled mechanical-
electromagnetic problem needs to be addressed over the
relevant time scales. Extensions of the FDTD approach
may in fact be a simple way to implement an algorithm
for the general coupled optical and mechanical problem,
although material dispersion needs to be implemented as
a temporal convolution, as in (37).

I. Forces in relation to the energy density picture

from Maxwell

It is interesting to read Maxwell’s description of the
force (on a planar surface) as being related to electro-
magnetic energy, leading to the “stress of radiation” [2]
(pages 440-441). While this was before the mathemati-
cal details were developed, including by Lorentz [56] and
Einstein and Laub [1], the position still stands true in the
sense of the underlying meaning of (31), where an elec-
tromagnetic field result is equated to the negative of the
kinetic force density. Later, the “Maxwell-Bartoli” pres-
sure was presented by Nichols and Hull [4] and Lebedev
[3] (because of the joint conclusion both Maxwell and
Bartoli made related to special cases), with the form

PMB =
〈Si〉

c

(

1 + |Γ|2
)

, (44)

where 〈Si〉 is the magnitude of the time-average
normally-incident Poynting vector (a positive quantity)
and Γ is the field reflection coefficient. Neither Maxwell
nor Bartoli write the precise form of (44), but rather
they consider situations that allow this result to be in-
ferred (at least in certain circumstances). The form in
(44) has been widely used for understanding the pres-
sure on opaque (non-transmissive) materials.
Equation (44) can be derived for the sinusoidal steady

state (single ω) situation and under the assumption that
there is a single plane wave (normally incident and re-
flected) from an infinite planar material interface in vac-
uum. This involves writing the field as a superposition
of incident and reflected plane waves (in the frequency
domain), with field reflection coefficient magnitude |Γ|.
Thus, the frequency domain forms of (7) or (14) (free
space) or the right-hand side of (43) provide for this re-
sult. Again, there can be no motion and hence no mo-
mentum exchange. With the assumption that the closed
surface integral of the components 〈Tij(r, t)〉 has non-zero
contributions only along the incident/reflected (planar)
boundary, (44) results. The maximum pressure from (44)
is thus 2〈Si〉/c, the case for a perfect mirror.
What we now understand from the treatment in

Sect. III is that (44) applies in a specific set of situations
and that, depending on factors involving excitation, ge-
ometry, and time-history, pressures outside of [0, 2〈Si〉/c]
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are in principle possible (see Sects IVC and IVE). Sys-
tems offering optical gain can have negative pressure [52]
and hence do not conform to (44). Separately, asymmet-
ric plasmonic cavities were found numerically to have a
pressure greater than 2〈Si〉/c, based on application of
(32) [66] and experiments were supportive [49]. In addi-
tion, there is a proposal for a system with surface wave
modes induced on the back that may yield a negative
pressure [54].
Let us again return to (43), offering the relevant condi-

tions (assuming the immobilizing force is added). With
imposition of the momentum flow boundary conditions
implied by (25) and (26), resulting in a modified exter-
nal region description for continuity of momentum flow
at surfaces, it becomes possible to exceed 2〈Si〉/c (de-
pending on the geometry and incident field conditions).
Again, this can be established from the right-hand side
of (43) with the enforcement of momentum flow conti-
nuity across boundaries. This frequency domain revision
to momentum flow is legitimate because the material is
fixed in position for infinite time and the resulting fields,
force density, force and momentum must satisfy these
constraints. Strictly speaking then, (44) comes from a
momentum flow description and not a conservation of
momentum, where the latter would require specifics of
the pointwise momentum exchange and hence motion.
With release, this single planar interface situation (which
needs to be redefined in an experimental context, where
infinite geometries are not possible), having some time-
average pressure (PMB, for example), would then move
according to a kinetic problem solution. With motion,
we no longer have the sinusoidal steady state condition.
However, what about slow motion where we approximate
this to be case? In situations where only the planar in-
terface contributes to the reflected photons and all those
incident on the medium are either reflected or eventually
absorbed, and a single plane wave incident and reflected,
then we expect (44) to continue to apply. This is the case
for planar mirrors, making the result of great practical
importance. Notably, this implies a local-in-time mate-
rial description (and in that manner being analogous to
ρ and J in free space and the situation treated in Jack-
son [65]). We are thus left with a position that (44) is a
statement of momentum flow through a surface (a math-
ematical boundary in free space) and for a single plane
wave problem with a local material response – and not a
general conservation statement.

J. Experimental studies

The theory in (32) and (33) conforms with early pres-
sure measurements [3, 4], the Ashkin-Dziedzic water ex-
periment [47], the extracted pressure on nanostructured
membranes from deflection measurements [49], and the
picture introduced by Maxwell for the situation he con-
sidered [2]. However, additional experimental studies are
important to evaluate (32) for materials at optical fre-

quencies. Such experiments are not easy, and there is
a need to extract the relevant optical force density in-
formation from measurement of the physical observable,
displacement, for example.

An optomechanics experimental effort we pursued in-
volved a SiN membrane with patterned Au that sup-
ported a surface plasmon mode [49]. The resonance-
enhanced plasmon modes were contributors and the sur-
face waves involved have an electric field component per-
pendicular to the interface, conforming to the mathe-
matical situation involving a Dirac delta function at the
interface due to (P · ∇)E (Sect. III). Results from those
experiments (with multiple measurements and statistical
and error studies) were found to be consistent with an
enhanced optical pressure, one that exceeded that with
the same incident field power density normally incident
on a perfect mirror. The enhancement follows from ap-
plication of (32), so the consistency of the model and
the experiments is notable. However, consistency is dis-
tinct from uniqueness in the force density, and addi-
tional validation experiments are in order. Physically,
this enhancement involves the dimension perpendicular
to the “interface” and the nonlocal-in-time excitation of
the asymmetric cavity modes – and hence energy storage
in the material (over a time scale short relative to that
associated with mechanical motion but long compared to
the optical period).

Separately, we know that the force density in (32) de-
scribes the bulging water experiment done by Ashkin and
Dziedzic [47]. However, this does not specifically address
a force theory at interfaces. Likewise, despite the im-
portant experiments done by Jones and Leslie [76], more
studies are needed.

From an electromagnetic field basis, the force density
and pressure calculations applied within a resonant plas-
monic cavity and yielding enhancement [49] can satisfy
all physical requirements. Interestingly, this also allows
for the possibility of pulling structures with light [54]
in a manner that is fundamentally different from optical
tweezing of beads in a trap [5]. In this case, it is the
promotion of a plasmon surface wave on the back of a
membrane that could produce pulling, something that is
yet to be shown experimentally. Thus, evidence of pulling
would provide further support for (32).

New experiments are needed to allow evaluation of
the force density with optical electric fields normal to
interfaces. These could involve a laser beam illuminat-
ing a planar membrane and a suitable measurement of
displacement that is then calibrated to determine rel-
ative force and hence allow inference of the force den-
sity in the appropriate region. Alternatively, exper-
iments could focus on various 3D objects that have
the appropriate modes excited. While it is reasonably
straight forward to obtain sub-nanometer displacement
precision, based upon the success achieved in sensing
motion in atomic force microscopes (motion of a sens-
ing laser on a quadrant detector was used in Ref. [49]
to monitor nanmometer-scale membrane displacement),
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the challenge here is a set of experiments that provides
a uniquely-interpretable force density result. Meaning-
ful conclusions require beam characterization, adequate
measurement diversity, and the adjustment of key pa-
rameters (such as polarization, position, beam angle, and
material). In addition, either through the calibration or
separately, parameterized models (mechanical, electro-
magnetic, force) may need to be utilized that also require
careful consideration. A pragmatic approach would be
to perform a set of experiments and apply (32), along
with any necessary thermal and mechanical model, to fit
to the experimental data over a substantial parameter
range. The ability of a theory to explain such a suite of
experiments would then lead to a position on the optical
force density in condensed matter and near to interfaces.

K. Contemporary applications

Several developing application domains are presented
where improved understanding of the theory for the opti-
cal force density in condensed matter will have immediate
ramifications. The set summarized here is anecdotal but
serves the role of illustrating the need in contemporary
physics to develop a rigorous optical force density theory.
Rather than optical cooling in a vacuum chamber to

reduce vibrational modes, patterned silicon nitride (SiN)
membranes have been studied [77]. To reduce external
coupling and achieve low mass, tethered trampoline ge-
ometries have been recently considered [61]. With a goal
of achieving high Qf at room temperature, where Q is
the mechanical quality factor of a resonance and f is the
operating frequency, photonic crystals were fabricated in
SiN membranes to achieve mechanical mode bandgaps
[77]. A design approach based on topology optimization
has been pursued and related to trampoline-like geome-
tries [78]. In all of this work, the structure of the ma-
terial has been modified to achieve a desired mechanical
property. Understanding of the theory describing opti-
cal force density could enable structured material with
optical force control to better regulate vibrational modes
at higher temperatures. This might also prove valuable
for control with exciton condensates in bilayer transition
metal dichalcogenides [79].
Substantial use has been made of optical tweezers,

traps with a high-power laser to manipulate beads, for
example, and calibration procedures related to trap stiff-
ness have been developed [80]. With a suitable model for
the optical force density in a bead in solution, additional
information useful for characterizing the force and torque
on biological molecules [16, 81] should become available.
The field of nanophotonics has been driven in large

part by the small mode volumes possible with cavities
formed with MIM modes. Notably, the field of molecu-
lar optomechanics [82–84] offers promise to employ such
plasmonic cavities filled with molecules whose assembly
arrangement is enabled through laser illumination. Un-
derstanding the spatially- and temporally-dependent op-

tical force density in such situations is clearly impor-
tant. Plasmonic cavities in various configurations have
been shown to provide enhanced Raman scattering sig-
nals [85, 86], allowing more sensitive (surface enhanced
Raman scattering – SERS) measurements for molecules
in the neighborhood of these cavities. With molecular
optomechanics, enhanced Raman scatter in such pico-
cavities is proposed as a platform for coherent control,
optomechanics, and quantum signal processing [82]. Co-
herent Raman-sideband up-conversion with a few hun-
dred molecules in a picocavity has been presented at the
terahertz/mid-infrared to visible light [83], illustrating
tailorable molecular or plasmonic properties within small
cavities. Molecular oscillators in small cavities, a new
frontier, could benefit from knowledge of the force distri-
bution throughout the picocavity and in the constituent
molecules or nanoparticles. All of these domains have a
need for an established optical force density theory.
Light [87, 88] and electric field [89] can induce motility

(chemical reconfiguration in polymers, resulting in mo-
tion), and this has been found to be related to chemical
structure and be reversible. Photoisomerizable rods can
bend upon absorption of photon energy and then be re-
turned to the original state (molecular trans ↔ cis) [87].
However, the regulation and speed of this process might
be improved with optical forces in additional to optical-
energy-induced chemical forces, such as through a way
to initiate the motion. Optical forces in nanostructured
material may thus aid photomotility, hence the need to
build insight.

L. Relationship to enhanced pressure

Among the interesting optical force phenomena that
results from the force density in (32) and total force in
(33) is an enhanced optical pressure, that exceeding the
Maxwell-Bartoli result in (44), and this depends on both
polarization and structure. This result follows directly
from the boundary condition development in Sect. III.
It was discovered through sinusoidal steady state simula-
tions with surface plasmon mode cavities in Au [90], and
then found to conform to a set of experiments with a laser
illuminating patterned Au on SiN membranes and mea-
surements of deflection (incorporating a statistical treat-
ment and with use of optical force density and thermal
models, and with parameter fitting) [49]. This effect, be-
ing nonlocal in time and associated with an asymmetric
cavity, requires an excitation time that is long relative to
the cavity lifetime (Sect. IVE). This is of course satisfied
in sinusoidal steady state, where there can be no motion
and hence no photon momentum exchange inducing such
motion (Sect. III). In relation to the experiment, there is
thus the requirement of a system force (Sects. IVF and
IVG) that resists motion over time scales commensurate
with the optical period and cavity lifetime, and these re-
late to the mechanical system (tension, membrane frame
mount, attachment to an optical bench that also supports
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the laser) [49]. Section IVG considered in substantial
detail the requirements for the sinusoidal steady state
model and how this might relate to experimental situ-
ations. Notably, enhancement is not evident based on
(44), which can easily be established from related plas-
monic cavity reflectance measurements [74] for structures
similar to Ref. [90], as reviewed in Sect. IV I.

A recent comment [91] on Ref. [90] describes inter-
nal force density calculations that indeed have an en-
hanced pressure for resonant plasmonic cavity modes,
but also calculations with application of the free space
stress tensor in (7) produce no pressure enhancement
(a point made previously [54]), a result that was con-
firmed with application of the Maxwell-Bartoli form in
(44). This should be no surprise, because the free space
stress tensor (7), in the frequency domain (sinusoidal
steady state), and under the assumption of a single, nor-
mal plane wave incident and a single (normal) propagat-
ing plane wave reflected, leads to (44) mathematically.
Earlier measurements for reflected power from similar
structures (nano-imprinted Au plasmonic cavities) [74],
in conjunction with (44), takes us precisely to this re-
sult (as does any consideration of a plane wave reflection
coefficient). Based on (44), it was concluded that any
pressure beyond 2〈Si〉/c is a violation of momentum con-
servation. However, sinusoidal steady state conditions
preclude direct inference of (44) in regard to conversa-
tion of momentum (see the preceding discussions in this
section, including Sect. IVG). The correct way to think
about this is with optical momentum flow subject to the
steady state motionless requirement. Separately, inter-
pretation of a sinusoidal steady state force model to an
experimental situation (Sects. IVG and IV J) needs to
be considered in relation to the specific situation (see
Sects. IVF, IVG, and IV I). Section III develops a force
density boundary condition that, when interpreted in the
frequency domain, leads a meaningful way to consider the
vacuum-Au interface in Ref. [90]. This leads directly to
a conclusion that enhanced pressure (beyond 2〈Si〉/c) is
possible without violation of conservation principles.

The specific situation considered in [90, 91] is a pe-
riodic slot array in a thick Au film supporting plasmon
modes and in free space [90, 91], with a normally in-
cident plane wave (transverse magnetic 2D simulation
for the fields, with magnetic field out of the plane), un-
der sinusoidal steady state conditions. The structure is
thus infinitely wide and thick enough for there to be neg-
ligible penetration. Scatter from the structure excites
metal-insulator (MI) surface waves on the top and metal-
insulator-metal (MIM) modes in the slot within the unit
cell. With adjustment of the geometry and fixed wave-
length, the waveguide modes can resonate, resulting in
substantial fields in the material and hence energy den-
sity, with a corresponding impact on the force density.
With regard to further investigation of this situation, the
salient points from Ref. [91] are extracted and considered
in the following.

Momentum: There is a sense that maximum momentum

exchange with ~k0 per photon leads to 2〈Si〉/c being the
maximum force density for opaque materials [91]. We
learn from Sect. III that this is true only in specific situa-
tions and not that considered in Ref. [90] (see Sects. IVC,
IVF, IVG, and IV I). Rather than in an integral sense,
the fundamental way to enforce momentum conservation
is pointwise throughout space and through the force den-
sity in the time domain, as in Sect. III. This is how (40)
is developed from the Lorentz force density through in-
tegration over a volume in free space [65]. While the
stationarity and boundary condition arguments are clear
for the sinusoidal steady state situation, projecting these
in the volume description of Sects. IVF and IVG is per-
haps illustrative – although we need to take care in in-
ferring conservation conditions related to kinetic force.
Importantly, (32) appears to satisfy requirements for the
correct force density, as developed here and based on nec-
essary boundary conditions.

What is known: It is assumed in Ref. [91] that the mea-
sure of force from the electromagnetic description in a
free space region around any object is established and
irrefutable – but there may be debate about the force
in the material itself. In general, this cannot be cor-
rect, because the internal and external descriptions are
coupled (Sect. III). The exterior mathematical picture
comes from various steps stemming from the (presum-
ably unique) force density in material and so cannot be
independent of the result inside the material. In so far
as the theory related to the mechanical interaction of
photons with material remains open, so too does the ex-
terior description, because of this exact relationship from
superposition. More precisely, what has been established
would be the photon momentum flow in free space. Dis-
tinct is a relationship between this and kinetic motion of
material.

Physical picture: In describing the maximum momen-
tum exchange between a photon and an object as the
interpretation for the sinusoidal state state simulations
presented, the assumptions in the model (see Sect. IVG)
and the relationship to an experimental situation is miss-
stated in Ref. [91]. With a monochromatic field solution
and corresponding force description used, it is implicit
that the object is fixed in space and unchanged for in-
finite time. By using the term “floating” in Ref. [91], a
physical situation that violates the requirements of the
mathematical model is implied, which is misleading. A
distinction is made between forces on part of the object
(say the interior) and the total force (exterior, forced to
adhere to some restriction, as from (44)). To be precise,
there is an electromagnetic field formulation that leads
to a vector force density and hence components of a total
force through integration (Sect. III). The object moves
most fundamentally due to the spatiotemporal mechani-
cal force density, and this provides the basic link between
photons and induced mechanical action (flexural and lon-
gitudinal modes in a membrane, for instance).

Mathematics: The sentiment in Ref. [91] that using the
external, free space stress tensor [the frequency domain
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form of (7)] to circumvent a non-physical Dirac delta
function at surfaces [91] is fundamentally wrong. The line
of mathematics starts with an electromagnetic field de-
scription, ascribes a meaningful force density, and then,
through integration, one arrives at a force or, with a
suitable structure and area normalization, the pressure
(Sect. III). With condensed matter described by a dielec-
tric constant, the free space stress tensor implies the pres-
ence of a Dirac delta term when the normal component
of the electric field is discontinuous and there is a spatial
derivative with respect to that direction – see Sect. III
for the details. There is concern in Ref. [91] about nu-
merically evaluating a Dirac term (under FDTD) [91],
driving implementation of a Lorentz force density eval-
uation that involves ∇ · P (that, incidentally, does not
describe correctly the Ashkin-Dziedzic water experiment
[47]). However, there remains a Dirac delta term at di-
electric interfaces (from the derivative of a Heaviside step
function describing the spatial extent of a well-defined
P), i.e., this does not circumvent the influence of spatial
derivatives of fields at interfaces, should they be rele-
vant. One must conclude that the total force results in
Ref. [91] are effectively determined using one approach,
that involving a free space stress tensor in the frequency
domain (which leads to (44)), rather than there being
distinct approaches, and these identical results are pre-
sented in separate figures. The point to consider here is
that the mathematics (in the frequency domain here) has
a firm basis that does not benefit from loose concepts of
what the incident momentum per photon implies in this
situation with stationary material and infinite excitation
time, and that physical and experimental interpretation
then has a viable foundation.

To summarize in regard to Ref. [91], Sect, III makes it
clear why the enhanced pressure result in Ref. [90] sat-
isfies momentum and boundary condition requirements
when treated in the sinusoidal steady state where the
periodic plasmonic cavity is fixed in space. As described
earlier in this section, the experimental situation would
relate to some release point in time, and motion dictated
by both the incident and internal fields. The situation in
Ref. [90] is incorrectly portrayed in Ref. [91].

Consider now some broader conclusions in relation
to the possibility of enhanced optical pressure (beyond
2〈Si〉/c). The theoretical development of the force den-
sity boundary condition (the key contribution here) in
Sect. III, with subsequent analysis (Sect. IV), proves that
pressure enhancement is possible. It would seem prudent
to emphasize force density in a path forward and not re-
ply on inferences from a free space stress tensor (momen-
tum flow) description, in order to understand how ma-
terial moves in response to electromagnetic fields. This
is important when describing experimental situations in-
volving laser illumination. This is important because,
formally, the purpose of a mathematical model is to de-
scribe experimental observations. Conveniently, the stan-
dard description of momentum flow into a volume can be
adapted [65].

V. CONCLUSIONS

This work probes the fundamental way in which light
interacts with condensed matter and transfers momen-
tum from the photon to the material, as exhibited in the
electromagnetic force density applicable in physical ma-
terials and at optical frequencies. A boundary condition
relevant for the force density in materials and inhomo-
geneous condensed matter that provides a basis for the
unique interpretation of total force is derived and mo-
tivated to be interpreted in the Cauchy principal value
sense, using an example force theory that presents a rep-
resentative field interface situation [(32) and (33)]. The
physical argument relates to neutral materials and to the
transport of free charge during the period of the electro-
magnetic wave to provide an interface screening charge.
How far the frequency range for the application of (32)
and (33) extends into the terahertz and microwave do-
main is both temperature and material dependent, but
certainly for statics and even cryogenic temperatures, the
interface surface charge densities should be considered in
force calculations. New experiments are needed that al-
low extraction of force (density) information near to the
surface in solid state materials, and these will need to be
carefully designed. With this new experimental informa-
tion, it should be possible to not only better understand
optical forces at nanometer length scales, but also arrive
at a force theory that can be used with generality to con-
sider systems with material and spatial dispersion and of
interest in the physical sciences and for the development
of related technologies.

The momentum of a photon in vacuum is understood
to be ~k0, as can be readily found from energy principles
and based on classical electromagnetics. Application of
(32) enforces momentum flow across boundaries (math-
ematical and physical), and the boundary conditions in
(25) and (26) do this for the general interface situation
while allowing for the accepted vacuum photon momen-
tum. As the optical pulse enters the material from vac-
uum, the theory developed here describes the boundary
condition that allows momentum flow, Poynting vector,
and field boundary conditions to be simultaneously sat-
isfied. It is interesting that measurement of the photon
momentum requires interaction with a sensor of some
kind, and likely this involves a flux of photons enter-
ing a material that can be described by locally homog-
enized electromagnetic constitutive parameters (such as
the spatially-dependent dielectric constant). This means
that the vacuum-matter interface is an essential part of
sensing. Also, all macroscopic electromagnetic force den-
sities utilize homogenized material systems. Thus, re-
gardless of the description used, the principles developed
here should apply, where the force density boundary con-
dition is shown to be an essential part of the correct de-
scription of interfaces. This work therefore impacts the
mechanical attributes of various photonic applications.

A point of note in the treatment of optical forces in
solid state materials is the assumption that is either im-
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plicit in the mathematical picture or present in the time
frame for mechanical motion. Frequency domain models
describing sinusoidal steady state preclude motion, i.e.,
the system must be spatially fixed over the infinite time
period. Motion is then at some initiation time and with
the appropriate initial conditions that exist. In the lab-
oratory, the complex and coupled electromagnetic and
mechanical problem is greatly simplified through the as-
sumption that measurable motion of macroscopic objects
(like membranes) cannot occur during the optical period,
nor during even low quality factor cavity excitation times
(that exist in nanophotonic systems like plasmonic cav-
ities). There are thus coupled force systems to consider
in regard to laboratory settings, where, for example, one
may have a mounted membrane being deflected by a laser
beam with local material tension and a support frame on
a stage on an optical bench on which a laser is mounted,
i.e., the electromagnetic system is not closed. These situ-
ations have been treated here. Finally, one aspect of op-
tomechanics that may not be widely appreciated is that
the material and the structure both provide nonlocal-
in-time contributions to the optical force density, mean-
ing that the temporal history dictates the mechanical
response at any given time.
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VII. APPENDIX

The development of the photon momentum, a quan-
tum phenomenon [92], is reviewed for a free space plane
wave. This follows a classical field description [93]
From (22), Poynting’s theorem, and in vacuum, gives

∂u0

∂t
= ǫ0E ·

∂E

∂t
+ µ0H ·

∂H

∂t
. (45)

Ignoring the spatial dependence and for a monochro-
matic plane wave, we set E = êE0 cos(ωt) and H =

ĥ(E0/η0) cos(ωt), where the free space wave impedance

is η0 =
√

µ0/ǫ0, and the energy density can be written
from (45) as

u0(t) =
1

2
ǫ0E

2 +
1

2
µ0H

2

= ǫ0E
2. (46)

The free space momentum density is

g0 =
1

c2
E×H

= ê× ĥ
ǫ0E

2

c
(47)

From the instantaneous momentum density in (47), we
write the peak value as

g0p =
ǫ0E

2
0

c

=
N~ω

c
= N~k0, (48)

with N photons per unit volume. This gives the vacuum
photon momentum as

p0 = ~k0, (49)

in accordance with quantum theory [92].
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Pavone, F. Jülicher, and H. Flyvbjerg, Rev. Sci. Instrum.
77, 103101 (2006).

[81] J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Busta-
mante, Annu. Rev. Biochem. 77, 205 (2008).

[82] F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy,
Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi,
B. De Nijs, R. Esteban, J. Aizpurua, and J. J. Baum-
berg, Science 354, 726 (2016).

[83] P. Roelli, C. Galland, N. Piro, and T. J. Kippenberg,
Nat. Nanotechnol. 11, 164 (2016).

[84] W. Chen, P. Roelli, H. Hu, S. Verlekar, S. P. Amirtharaj,
A. I. Barreda, T. J. Kippenberg, M. Kovylina, E. Verha-
gen, A. Mart́ınez, and C. Galland, Science 374, 1264
(2021).

[85] K. J. Webb and J. Li, Phys. Rev. B 73, 073404 (2006).
[86] K. J. Webb and J. Li, Phys. Rev. B 72, 201402(R) (2005).
[87] H. Finkelmann, E. Nishikawa, G. G. Pereira, and

M. Warner, Phys. Rev. Lett. 87, 015501 (2001).
[88] Y. Yu, M. Nakano, and T. Ikeda, Nature 425, 145

(2003).
[89] Y. Osada, H. Okuzaki, and H. Hori, Nature 355, 242

(1992).
[90] A. H. Velzen and K. J. Webb, Phys. Rev. B 92, 115416

(2015).
[91] D. Feng, R. A. Wambold, Y. Xiao, C. Wan, Z. Yu, V. W.

Brar, and M. A. Kats, Phys. Rev. B 105, 207401 (2022).
[92] J. J. Sakurai, Modern Quantum Mechanics (Ben-

jamin/Cummings, Menlo Park, California, 1985).
[93] C. Baxter and R. Loudon, J. Mod. Opt. 57, 830 (2010).


