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1  |  INTRODUC TION

Microorganisms that form intimate associations with their hosts can 
take part in important physiological functions. In particular, the gut 
microbiome—the community of microbes that colonize the gastroin-
testinal tract—has been linked to host behaviour, immune function, 
development, metabolism and disease (Bodawatta, Hird, et al., 2021; 
Sommer & Bäckhed, 2013; Suzuki, 2017).

The taxonomic composition of the gut microbiome can vary, 
sometimes dramatically within and between host species (Grond 
et al., 2019; Loo et al., 2019; Song et al., 2020), as well as within indi-
viduals over short timescales (Skeen et al., 2021; Videvall et al., 2019). 
However, when host–microbe associations are long-term, gut micro-
biomes may be expected to be species-specific and their assembly to 
be dependent on host evolutionary divergence (Brooks et al., 2016). 
Consistent with this, host evolutionary history, in addition to diet, 
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Abstract
Understanding the factors that shape microbiomes can provide insight into the im-
portance of host–symbiont interactions and on co-evolutionary dynamics. Unlike for 
mammals, previous studies have found little or no support for an influence of host 
evolutionary history on avian gut microbiome diversity and instead have suggested a 
greater influence of the environment or diet due to fast gut turnover. Because effects 
of different factors may be conflated by captivity and sampling design, examining 
natural variation using large sample sizes is important. Our goal was to overcome 
these limitations by sampling wild birds to compare environmental, dietary and evolu-
tionary influences on gut microbiome structure. We performed faecal metabarcoding 
to characterize both the gut microbiome and diet of 15 wood-warbler species across a 
4-year period and from two geographical localities. We find host taxonomy generally 
explained ~10% of the variation between individuals, which is ~6-fold more variation 
of any other factor considered, including diet diversity. Further, gut microbiome simi-
larity was more congruent with the host phylogeny than with host diet similarity and 
we found little association between diet diversity and microbiome diversity. Together, 
our results suggest evolutionary history is the strongest predictor of gut microbiome 
differentiation among wood-warblers. Although the phylogenetic signal of the war-
bler gut microbiome is not very strong, our data suggest that a stronger influence of 
diet (as measured by diet diversity) does not account for this pattern. The mechanism 
underlying this phylogenetic signal is not clear, but we argue host traits may filter 
colonization and maintenance of microbes.
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has been implicated as one of the strongest factors driving verte-
brate gut microbiome similarity (Youngblut et al., 2019).

Recent studies have strongly supported a positive correlation 
between host species divergence and gut microbiome divergence—
known as “phylosymbiosis”—particularly for insects and nonflying 
mammals (Brooks et al., 2016; Song et al., 2020). However, in birds, 
differences in gut microbiome structure between species are less 
pronounced (Song et al., 2020). Despite species-level differences in 
the gut microbiota of 37 New Guinean passerine species (14 fam-
ilies), Bodawatta, Koane, et al.  (2021) did not find an influence of 
host phylogeny on gut microbiome structure. This is in contrast, 
however, to a study on 51 passerine species (21 families) breeding 
in the Czech Republic (Kropáčková et al., 2017) and a study on all 15 
crane species (family Gruidae) in captivity which found a weak influ-
ence of host phylogeny, and only when examining female individuals 
(Trevelline et al., 2020).

A favoured hypothesis to explain this marked difference in phylo-
symbiosis between bird and nonflying mammal gut microbiota is that 
because birds evolved a reduced and simplified gastrointestinal tract 
as an adaptation to flight, they have highly reduced gut retention 
times from consumption of food to defecation (Song et al., 2020). 
This reduced retention time and simplified gut environment may fa-
vour high turnover in the avian gut microbiome, and a larger role of 
the diet and environment over host taxonomy in the structuring of 
the gut microbiome (Bodawatta, Koane, et al., 2021).

In Darwin's finches, gut microbiome communities cluster more 
strongly by host habitat than by host species (Loo et al., 2019). Both 
host phylogeny and diet in this group, which is known for adaptive 
divergence in beak morphology linked to foraging ecology, show a 
moderate influence on gut microbiome variation (Loo et al., 2019). 
Further, the gut microbiome of the vampire finch, a diet specialist, 
is highly divergent from other species (Michel et al., 2018). Similarly, 
captive birds tend to have distinct gut microbiota from their wild 
counterparts, probably resulting from artificial diets, built enclo-
sures and human interaction (San Juan et al., 2021). These studies 
support a strong role of the environment, including diet, in shaping 
the avian gut microbiome.

Although many studies have detected effects of diet on the avian 
gut microbiome (Bodawatta, Koane, et al., 2021; Davidson et al., 2020; 
Knutie, 2020; Teyssier et al., 2020; Xiao et al., 2021), few have analysed 
host diet beyond broad categorizations of diet type (e.g., omnivore vs. 
insectivore) and/or included birds that were fed standardized and non-
natural diets (but see Bodawatta et al., 2022, Schmiedová et al., 2022). 
Further, many studies that have assessed species-specific differences 
in gut microbiome structure have had limited sample sizes including 
only one or a few individuals per species or included data collected 
and sequenced at different times or in different ways. To gain a holistic 
picture of the effects of host diet, evolutionary history and geography 
on gut microbiome structure, it will be necessary to sample natural 
populations using standardized methods. Understanding the factors 
that shape the avian gut microbiome is important for understanding 
host–symbiont interactions and co-evolutionary dynamics, and how 
these dynamics may differ from other taxonomic groups of animals 

(i.e., mammals). The role of the gut microbiome in host evolutionary 
processes is largely unexplored and its potential role in facilitating and 
responding to avian host adaptive radiation—where species diversi-
fication is tied to ecological differentiation—is a major outstanding 
question (Bodawatta, Hird, et al., 2021).

Here, we characterize the gut microbiome of wood-warblers 
(family: Parulidae) breeding in sympatry in Eastern North America 
across a 4-year period and examine factors that may play a role in 
shaping gut microbiome structure. Parulidae is a passerine radia-
tion of >100 insectivorous species that evolved rapidly in the last 
7 million years (Barker et al.,  2015; Lovette et al.,  2010), and is a 
classic model for studies of ecological differentiation, including diet 
niche partitioning (MacArthur, 1958). In the current study, we use 
16S faecal metabarcoding to examine gut microbiomes of 15 species 
representing seven genera (Figure 1a). Our aims are to characterize 
the “core” parulid gut microbiota (a common set of microbes across 
individuals) and to quantify differences in gut microbiome composi-
tion between hosts. We predict that due to genetic and ecological 
differentiation among host species, variation in the gut microbiome 
will be largely explained by host taxonomy. Further, we explicitly 
test the prediction of phylosymbiosis, where host phylogenetic re-
latedness should correlate with gut microbiome similarity. We also 
examine the relationship between gut microbiome diversity and diet 
diversity by analysing COI metabarcoding sequences amplified from 
faecal samples of these same individuals. With the presumption 
that a diet characterized by a high diversity of arthropods will incur 
ingestion of a greater diversity of bacteria—either associated with 
arthropod hosts, or the environments in which they are found—we 
predict that diversity of the warbler gut microbiome and diet will be 
positively correlated. Finally, we test for other environmental signals 
in the structuring of host gut microbiomes by examining effects of 
sampling year, locality and diet specialization.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and DNA extraction

We used mist-nets to capture birds during four consecutive breeding 
seasons (May–July 2017–2020). In all years, we targeted sampling 
locations in northern hardwood forests, both in Adirondack Park, 
New York, and in 2019 and 2020, we also sampled birds in central 
Pennsylvania (Figure S1; Table 1). We selected sites where a diver-
sity of warbler species (up to eight) could be heard singing so as to 
maximize sympatry among species included in the study. Upon cap-
ture, we held individuals inside a brown paper bag for up to 10 min 
to allow ample time for excretion inside the bag before removal and 
subsequent banding. We removed faeces by scraping it from the in-
side of the bag directly into a sample tube containing lysis buffer 
(100 mm Tris pH  8; 100 mm Na2EDTA, 10  mm NaCl; 0.5% sodium 
dodecyl sulphate; White & Densmore, 1992), and froze samples at 
−20°C within 2 weeks of collection. Because we were interested in 
variation among individuals, we chose a single sample at random to 
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include in our analyses from individuals that were recaptured in the 
same or subsequent years. In total, we sequenced samples from 408 
individuals.

We extracted total DNA from faecal samples using an SPRI-
bead faecal DNA extraction method modified from Vo and 
Jedlicka  (2014). Samples were processed in two sets: those col-
lected in 2017–2019 and in 2020. After thawing faecal samples at 
room temperature, we centrifuged sample tubes and used bleach-
sterilized laboratory spatulas after being thoroughly dried and/
or pipetting to transfer ~5 mg of faecal material into 2-ml screw-
cap microcentrifuge tubes each containing 0.25 g of 0.1-mm and 
0.25 g of 0.5-mm zirconia-silica beads. For samples that amounted 
to <5 mg of faecal material, we supplemented with a suitable vol-
ume of storage buffer from inside the sample tube as necessary. 
We immediately added 818 μl of warmed (65°C) lysis buffer (Vo & 
Jedlicka, 2014) and homogenized samples using a Precellys 24 Tissue 
Homogenizer (Bertin Instruments) set to three cycles of 6800 rpm 
for 30 s with a 30-s pause between cycles. After transferring the 
supernatant to clean microfuge tubes, we incubated samples with 
Qiagen Solution C3 (Qiagen DNeasy PowerSoil 12888-100-3) to 

remove PCR (polymerase chain reaction) inhibitors. Next, we re-
moved DNA from the supernatant using homemade solid phase 
reversible immobilization (SPRI) magnetic beads (“Serapure” beads; 
Rohland & Reich, 2012). Serapure beads were added at a 1.9× bead-
to-supernatant volume ratio and, after cleaning with 80% ethanol, 
we eluted DNA in 10 mm Tris–HCl. Extracted DNA was stored at 
−20°C before proceeding with library preparation.

We sequenced two types of negative controls. First, negative ex-
traction controls followed the same extraction procedure described 
above for which the input was sample storage buffer taken from 
tubes that were transported to the field, but were not used for col-
lecting faecal material. Second, we included PCR-negative controls, 
which are described below.

2.2  |  16S and COI amplicon sequencing

As with DNA extractions, we prepared and sequenced metabarcod-
ing libraries in two separate batches: (i) samples collected between 
2017 and 2019, and (ii) samples collected in 2020.

F I G U R E  1  (a) Phylogenetic relationships between host species in this study. Upside down triangles indicate low-diversity diet, triangles 
indicate high-diversity diet, and squares indicate intermediate-diet diversity based on our COI diet index. The full data set represents all 
samples collected between 2017 and 2020, and batch 1 represents all samples collected between 2017 and 2019. Illustrations © Lynx 
Edicions. (b) Relative abundance of bacterial phyla in the full 16S data set, and (c) relative abundance of arthropod orders in the full COI data 
set. See Table 1 for host species codes. [Colour figure can be viewed at wileyonlinelibrary.com]
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We used a two-step multiplex dual-index amplicon approach 
to separately prepare 16S libraries and COI libraries for sequenc-
ing again following Vo and Jedlicka (2014) with some adjustments. 
We first used universal 515F/806R primers to amplify the V4 re-
gion of the bacterial 16S rRNA gene (Caporaso et al., 2012) and the 
“ANML” general arthropod COI mitochondrial primers LCOI-1490/
COI-CFMRa described in Jusino et al. (2019). Each primer pair was 
modified with overhanging Illumina adapter sequences. Prior to 
PCR, we randomized the order of samples to be amplified to avoid 
within-plate batch effects during amplification. Negative PCR con-
trols were included on each plate. In addition to our faecal samples, 
we sequenced four negative controls per primer pair in each library 
pool, with the exception of the first batch COI library pool which 
did not contain any negative controls. Negatives included two “ex-
traction controls” amplified and sequenced from DNA extractions 
made from sample tubes containing only buffer (and no faeces) as 
well as two negative PCR controls.

We performed initial 16S PCR amplification for each sample 
in triplicate in 30-μl reactions comprising 0.2  μl Platinum II Taq 
Hot Start DNA Polymerase (Invitrogen 14966005), 5 μl 5× Buffer 
(Invitrogen 14966005), 1.25 μl of each primer (10 μm concentration), 
13.5  μl molecular-grade water, 0.5  μl 10  mm dNTP mix (Promega 
U151A) and 3.3 μl of faecal DNA. Reaction conditions followed the 
two-step PCR protocol recommended by the manufacturer: 94°C 
for 2 min, followed by 34 cycles of 98°C for 5 s, 68°C for 15 s, fol-
lowed by a final extension at 68°C for 5 min, and hold at 12°C. We 
performed initial COI PCR amplification in 30-μl reactions compris-
ing 0.24 μl Platinum II Taq Hot Start DNA Polymerase, 6 μl 5× Buffer, 
1.5 μl of each primer (10 μm concentration), 16.16 μl molecular-grade 
water, 0.6 μl 10 mm dNTP mix and 4 μl of faecal DNA. Reaction con-
ditions followed Jusino et al.  (2019) with minor adjustments: 94°C 
for 2 min, followed by five cycles of 94°C for 15 s, 45°C for 15 s, 68°C 
for 15 s, followed by 35 cycles of 98°C for 5 s, 68°C for 15 s, followed 
by a final extension at 68°C for 5 min, and hold at 12°C. We cleaned 
initial PCR products by incubating with a 1× volume of Serapure 
beads and eluting the bound DNA in 10 mm Tris–HCl. Triplicate 16S 
reactions were pooled before this cleaning step. Then we evaluated 
amplification success by visualizing the cleaned product on a 1.5% 
agarose gel.

Next, we appended dual P5 and P7 Illumina indexes to each 
library via PCR. Reactions were 30 μl and contained 15 μl KAPA 
HiFi HotStart ReadyMix (Roche 7958935001), 3 μl of each primer 
(10 μm concentration) and 9 μl DNA (cleaned initial PCR product). 
Reaction conditions followed the manufacturer's recommenda-
tions: 98°C for 45 s, followed by five cycles of 98°C for 15 s, 60°C 
for 15 s, 72°C for 15 s, followed by a final extension at 72°C for 
1 min and hold at 12°C. We then cleaned the indexed PCR product 
using a double-sided Serapure bead procedure. We first removed 
potential high-molecular-weight contamination by incubating PCR 
product with a 0.75× volume of Serapure beads. After placing the 
samples on the magnet, we transferred the supernatant to fresh 
tubes and incubated it with a 1× volume of Serapure beads to re-
move potential low-molecular-weight contamination. DNA was 

eluted in 10 mm Tris–HCl, and we evaluated amplification success 
as for the initial PCR.

We quantified DNA in our final PCR products with a Qubit 4.0 
Fluorometer (Invitrogen). We then normalized library concentrations 
and pooled libraries to a final pool concentration of at least 2 nm. We 
submitted the final pool to the Penn State Genomics Core Facility to 
perform final quality assessment on a Bioanalyzer Tape Station and 
confirm pool concentration with quantitative (q) PCR. Samples were 
then sequenced with an Illumina MiSeq using the 600-cycle kit run 
as 250 × 250 paired-end sequencing.

For the first batch of samples, 16S and COI libraries were inde-
pendently pooled and each pool was sequenced in a single lane of 
Illumina sequencing. The second batch included a smaller number of 
samples, so to achieve a similar depth of sequencing as in the first 
batch, we pooled and sequenced 16S libraries and COI libraries to-
gether in the same sequencing lane.

2.3  |  16S amplicon sequence processing

We used qiime 2 version 2020.8 (Bolyen et al., 2019) to process 16S 
sequencing reads and obtain a table of counts of amplicon sequence 
variants (ASVs, or amplicon sequences representing microbial taxo-
nomic units) across samples. For each sequencing run, we imported 
demultiplexed paired-end sequences, used the function qiime dada2 
denoise-paired to trim primer sequences from the 3′ ends of reads, 
and to trim five bases from the 5′ ends of reads before merging read 
pairs and detecting ASVs. We then assigned taxonomic classification 
to ASVs using the SILVA database (version 138 SSURef NR99, Quast 
et al., 2012).

Upon classification, we removed mitochondrial, chloroplast, 
unassigned and eukaryotic ASVs. We also identified and removed 
possible contaminant ASVs by contrasting the presence/absence of 
ASVs in our negative controls with their prevalence in experimen-
tal faecal samples (i.e., non-negative controls) using the R package 
decontam (Davis et al., 2018). We used the “prevalence” method to 
identify and remove ASVs more prevalent in negative controls than 
in experimental samples using a probability threshold of 0.5. We also 
manually removed ASVs present in negative controls, but absent in 
experimental samples, as these were also probably contaminants. In 
total, we removed 87 and 359 contaminant ASVs from the batch 1 
and batch 2 data sets, respectively.

At this point, we used qiime 2 to merge the feature table, rep-
resentative sequences and taxonomy files from the two separate 
sequencing runs. We finally generated a phylogenetic tree from the 
merged set of ASV sequences for downstream diversity analyses. 
We used qiime phylogeny align-to-tree-mafft-fasttree to perform mul-
tiple sequence alignment, mask highly variable positions, and first 
generate an unrooted tree and finally a tree rooted at the midpoint 
of the longest tip-to-tip distance of the unrooted tree.

Finally, we applied several additional filtering steps to achieve a 
high-quality representation of warbler gut microbiomes. We excluded 
individuals from species represented by fewer than five individuals 
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in our data set because we were interested in examining species dif-
ferences in gut microbiome structure. Because very low depth and 
uneven depth of sequencing among samples can affect diversity esti-
mates (Hughes & Hellmann, 2005), we next generated a rarefied data 
set by randomly downsampling ASVs to a minimum threshold to stan-
dardize total read counts across samples. We determined the minimum 
acceptable ASV count threshold by examining rarefaction curves con-
structed using the rarecurve function in vegan (Oksanen et al., 2020) 
using a step size of 50. Based on this analysis, we determined a library 
size of 4000 reads to be an acceptable threshold since the number of 
observed ASVs appears to plateau beyond this point (Figure S2a).

Because we detected a significant effect of sequencing batch on 
our diversity estimates (i.e., a “batch effect”; see Results), we also 
performed analyses on a subset of the data that only included the 
first batch of samples (collected between 2017 and 2019, referred to 
as “batch 1”). For these analyses, we performed the same sequence 
processing steps as above except for merging-in data from the sam-
ples collected in 2020.

2.4  |  COI amplicon sequence processing

We used the amptk (version 1.5.3) pipeline to analyse COI metabarcod-
ing data by applying the default clustering algorithm (vesearch version 
2.17.1) for operational taxonomic units (OTUs) and assigned taxonomy 
by pulling from the chordates and arthropods in the BOLDv4 database. 
We rooted the OTU phylogeny output from amptk on a randomly cho-
sen arachnid OTU, as arachnids split from the common arthropod an-
cestor prior to insects. We then imported the COI metabarcoding data 
into phyloseq for downstream analyses and applied a similar framework 
as we did with our 16S data. We first removed OTUs assigned to the 
phylum Chordata as this represents off-target amplification, then rare-
fied depth to 15,000 reads per individual (full data set), and 8500 reads 
per individual (batch 1 subset; Figure S2b).

For analyses where we directly investigated the effect of diet on 
the microbiome at the individual level, we only analysed individuals 
with data that passed filtering steps in both microbiome and diet 
data sets. This included 216 individuals in the full data set represent-
ing 15 species (mean = 14 individuals per species, SD = 4.7) and 130 
individuals in the batch 1 subset representing 14 species (mean = 9 
individuals per species, SD = 1.7).

2.5  |  Diet diversity and its relationship with gut 
microbiome diversity

We estimated within-individual diversity (alpha diversity) of the diet 
and gut microbiome using the Shannon index and the Chao1 index 
using the diversity function in vegan, and using Faith's phylogenetic 
diversity using the estimate_pd function in btools (Battaglia, 2022). 
The Shannon index quantifies ASV richness (the number of ASVs) as 
well as evenness (the equity in ASV abundances), while Chao1 just 
quantifies ASV richness. Faith's phylogenetic diversity is a measure 

of ASV richness that is the sum of branch lengths in the phylogeny 
that connect all ASVs in the community assemblage. We estimated 
between-individual differences between microbiomes (beta diver-
sity) using four different metrics: Bray–Curtis, Jaccard, unweighted 
UniFrac and weighted UniFrac, calculated using the distance func-
tion in phyloseq (McMurdie & Holmes, 2013). Bray–Curtis measures 
differences in community composition and is based on ASV abun-
dances, whereas Jaccard is based only on presence/absence and 
does not rely on abundance. Unweighted UniFrac measures the 
phylogenetic distance between communities based on presence/
absence of ASVs, whereas weighted UniFrac is similar but weights 
branch lengths by ASV abundance.

We used three approaches to examine the relationship be-
tween diet and the gut microbiome. With the prediction that a 
generalized diet, characterized by a high diversity of arthropod 
taxa, supports a high gut microbiome diversity, we first tested for 
a positive correlation between individual diet alpha diversity and 
gut microbiome alpha diversity using a Kendall's rank correlation 
test. To account for phylogenetic history, we also ran phyloge-
netic linear models to test for a linear relationship between mean 
within-species alpha diversities of the gut microbiome and diet 
using phylolm (Tung Ho & Ané, 2014). In each model, we included 
the host phylogeny with branch lengths scaled using divergence 
times (see below) and the lambda model of covariance, using 1000 
bootstrap replicates.

Second, at the species level, we tested whether gut microbi-
ome structure differs among species with a more specialized and 
less diverse diet, and species with a more generalized and more 
diverse diet using permutational multivariate analysis of variance 
(PERMANOVA) of beta diversity distances using the adonis2 func-
tion in vegan. For this analysis, we categorized each species as either 
a “low diversity” diet, “high diversity” diet or “intermediate” by creat-
ing an index of diet specialization (Figure 1a). To calculate this index, 
we summed mean individual within-species diet alpha diversity and 
mean within-species diet beta diversity with the assumption that (i) 
more specialized diets are characterized by a lower diversity of food 
items (low alpha diversity) and individuals within more specialized 
species eat a similar diet (low beta diversity), and (ii) more general-
ized diets are characterized by a high diversity of food items (high 
alpha diversity), and individuals within more generalized species may 
have highly divergent diets depending on local food availability (high 
beta diversity). Thus, a low score reflects a less diverse and more 
specialized diet, and a high score reflects a more diverse and more 
generalized diet. We note that this index quantifies diversity of the 
diet and that host species within the same diet categorization may 
have dissimilar diets by way of diet content (e.g., proportion that is 
flying insects).

For both alpha diversity and beta diversity of the diet, the dif-
ferent diversity metrics we calculated were positively correlated 
(with the exception of weighted UniFrac and unweighted UniFrac 
beta distance when using the full data set; Table S1) and diet type 
classification of each species was consistent across metrics. Thus, 
for simplicity we report the index of diet specialization using the 
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Shannon index to estimate alpha diversity and the Bray–Curtis met-
ric to estimate beta diversity:

We note that because we used a subset of individuals to calcu-
late diet index for batch 1, for some species classification of diet di-
versity using the diet index is not consistent between this subset and 
the full data set. Four species are classified as intermediate in one 
data set and either as high diversity or as low diversity in the other 
data set. However, species diet index values are positively correlated 
between the full data set and batch 1 (τ = 0.516, p = .010, Figure S3), 
suggesting this index is robust to individual variation in diet. Our 
results do not change when excluding these four species from the 
analyses so we include them in our analyses.

Finally, we used topological congruence analysis to determine 
whether similarity in gut microbiome structure among host species re-
flects diet similarity with the expectation that if diet directly shapes host 
gut microbiomes, then clustering of species by diet similarity will mirror 
clustering of species by gut microbiome similarity. To generate dendro-
grams representative of each species, we generated a new ASV table—
each for rarefied COI sequence counts and rarefied 16S sequence 
counts—grouped by host species by averaging ASV counts within each 
species, recalculated dissimilarity matrices and constructed dendro-
grams by clustering distance matrices using the UPGMA method in the 
hclust function in R (following Trevelline et al., 2020). We then com-
pared the observed 16S dendrogram to the observed COI dendrogram 
using TreeCmp (Bogdanowicz et al.,  2012) to compute the matching 
cluster metric of topological congruence (Bogdanowicz & Giaro, 2013). 
Following Brooks et al.  (2016), we then compared the observed 16S 
dendrogram with 10,000 dendrograms with randomized topology 
and calculated a normalized congruence score, which is the observed 
matching cluster score divided by the maximum congruence score be-
tween the observed dendrogram and one of the random dendrograms. 
Finally, we evaluated significance and report a p-value by dividing the 
number of randomized dendrograms with equal or greater congruent 
scores to the observed 16S dendrogram than the score between the 
two observed dendrograms by 10,000. We also used Mantel tests as a 
complementary analysis to examine correlations between the diet and 
microbiome beta distance matrices at the individual level, where each 
value represents the beta distance between a pair of individuals, using 
vegan::mantel with the Spearman correlation method.

2.6  |  Gut microbiome diversity and 
topological analyses

We identified a “core” wood-warbler gut microbiome as the collec-
tion of ASVs present across a large number of individuals using the 
rarefied data set. Because most ASVs had a low prevalence among 
individuals (Figure S4), we report the core microbiome as ASVs pre-
sent in >30% of all individuals. Although this threshold is arbitrary, 
we believe it is conservative as only 39 ASVs were represented in 
more than 30% of individuals (see below). We also report taxa at 

high relative abundance across all samples at the phylum level. This 
set of ASVs represents bacteria that are most common in the gut 
microbiome among breeding male wood-warblers.

To quantify the effect of host taxonomy on the gut microbiome 
and the extent to which gut microbiomes covary with host phylog-
eny, we took two approaches using the full set of ASVs. First, we 
estimated gut microbiome divergence (beta diversity) among indi-
viduals using four measures of community dissimilarity: Bray–Curtis 
distance, Jaccard distance, and weighted and unweighted UniFrac 
distances. We then used vegan::adonis2 to conduct PERMANOVA 
tests to determine the effect of host species on community dissim-
ilarity. Because our samples were collected across four breeding 
seasons, from two geographical localities, and were sequenced in 
two different batches we also tested for effects of these factors. 
We included each of these factors in our model and set the “by” 
parameter to “margin.” However, in the full data set the effects of 
sampling year and sequencing batch are confounded since all sam-
ples collected in 2020 were sequenced in batch 2, so we ran two 
separate models which included either host species + locality + year, 
or host species + locality + sequencing run. Results for host species 
and locality were similar between models, so we report results from 
the model that included sequencing run for simplicity. We also calcu-
lated multivariate homogeneity of group dispersions for significant 
variables using vegan::betadisper and assessed deviations from this 
expectation using vegan::permutest because a homogeneous disper-
sion among groups is an assumption for PERMANOVA tests. We vi-
sualized beta distances between gut microbiota using the principal 
coordinate analysis (PCoA) method of phyloseq::ordinate.

Our second approach was to test for congruence between the 
host phylogeny and microbiome, as phylosymbiosis predicts that 
host relatedness and microbiome community similarity should ex-
hibit a positive relationship (Brooks et al., 2016). To do this, we first 
used the same topological congruence approach as described above, 
but used the topology from Baiz et al. (2021) for Setophaga species, 
and from Lovette et al. (2010) for outgroup taxa in place of the diet 
dendrogram (Figure 1a). We then also used Mantel tests to test for 
correlations between the gut microbiome distance matrix and a ma-
trix of cophenetic distances, representing evolutionary distances, 
between individuals. We calculated cophenetic distance between 
species using the stats::cophenetic function on a dendrogram repre-
senting the host phylogeny in Figure 1a, with branch lengths scaled 
using divergence times from TimeTree of Life (Kumar et al.,  2017; 
Table S2). Note that an evolutionary distance of zero denotes a pair 
of individuals from the same species.

Because we found a significant influence of sequencing batch 
on gut microbiome diversity, we separately performed all analyses 
on the subset of samples sequenced in the first batch (collected 
between 2017 and 2019, referred to as “batch 1”) as this batch 
included a larger subset of samples, which were collected across 
multiple years, than the second batch, which only included sam-
ples collected in 2020. For topology and Mantel analyses, we also 
subset our data to account for potentially confounding effects 
of (i) geographical locality by only analysing samples collected in 
New York between 2017 and 2019 (referred to as “batch 1-NY”) 

index of diet specialization = mean diet �Shannon +mean diet �Bray−Curtis
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and (ii) sampling year by only analysing samples collected in 2020 
(referred to as “batch 2”).

3  |  RESULTS

3.1  |  16S sequencing output and composition of 
the warbler gut microbiome

The number of ASVs yielded by our first 16S sequencing run was 
6412 (per-individual median = 36, mean = 53, SD = 65) while our 
second 16S sequencing run yielded 10,590 ASVs (per-individual 
median = 235, mean = 218, SD = 73). This discrepancy is probably 
explained by a higher average depth of sequencing across individu-
als in the second sequencing run (Figure  S5), despite our attempt 
at normalization. Taxa that were detected in both sequencing runs 
represented a small proportion of the total number of ASVs across 
runs (6%), contributing to the gut microbiome differentiation we ob-
served for individuals sampled in 2020 (see below).

After merging our 16S data sets, applying our filtering steps and 
rarefaction, our full data set consists of 270 individuals representing 
15 species (mean 18 individuals per species, with 95% of individu-
als being male, 1% female and 4% of unknown sex). Among these 
samples, we detected 12,048 ASVs from 39 bacterial phyla with 
the top phylum, Proteobacteria, representing 60% of the total reads 
(Figure 1b). Firmicutes was the next most abundant phylum, repre-
senting 13% of the total reads, followed by Actinobacteriota, repre-
senting 6.5% of the total reads. The remaining phyla each represented 
<5% of the total reads. We observed considerable variation in relative 
abundance of prevalent taxa between individuals of the same species 
(Figure S6a). Despite low overlap in ASV identity between sequencing 
runs, the composition and relative abundance of prevalent phyla were 
very similar across host species when we separately examined sam-
ples that were sequenced in different batches (Figure S7).

Most ASVs were present in <10% of individuals, and only 39 
ASVs were represented in >30% of individuals (Figure S4). Each of 
these core ASVs was represented in all but one or two of the host 
species we analysed (Tables S3 and S4). The most prevalent ASV was 
a Gammaproteobacteria of the family Yersiniaceae. This ASV was 
found in all 15 host species and ~60% of samples in both the full data 
set and the batch 1 subset. Gut microbiome alpha diversity did not 
differ among host species (Kruskal–Wallis rank sum test: Shannon 
index: full data set d.f. = 14, χ2 = 14.68, p =  .400; batch 1 df = 13, 
χ2 = 16.354, p = .231, Chao1 index: full data set df = 14, χ2 = 13.99, 
p = .451; batch 1 df = 13, χ2 = 19.32, p = .113, Faith's PD: full data set 
df = 14, χ2 = 14.98, p = .380; batch 1 df = 13, χ2 = 18.764, p = .131).

3.2  |  COI sequencing output, diet diversity and its 
relationship with gut microbiome diversity

Our first COI sequencing run yielded 3235 OTUs, while the sec-
ond yielded 2668 OTUs. In contrast to the 16S data set, there was 

moderate overlap in OTU identity between sequencing runs (37% of 
OTUs are represented in both batches).

Our analyses revealed 4397 OTUs in the full COI data set, which 
was reduced to 3227 after filtering and rarefaction. Among warbler 
species, ~70% or greater relative abundance of diet taxa consisted of 
insects, particularly in the orders Diptera and Lepidoptera (Figure 1c; 
Figure S6b). The majority of other diet taxa included Arachnids in the 
family Araneae. There was a high degree of overlap among species in 
diet PCoA space (Figure 3b). These results were consistent between 
analyses that included all individuals and only individuals sequenced 
in the first batch.

Warbler species fell into three natural partitions along our index 
of diet specialization, and thus we used these partitions to classify 
species according to diet type (Figure 2b). We classified two ot three 
warbler species with low diversity diets depending on the data set 
being analysed (batch 1: American redstart [AMRE], chestnut-sided 
warbler [CSWA]; full data set: American redstart [AMRE], chestnut-
sided warbler [CSWA], worm-eating warbler [WEWA]). We classified 
two to four species with high diversity diets (batch 1: black-throated 
green warbler [BTNW], Canada warbler [CAWA]; full data set: black-
and-white warbler [BAWW], Canada warbler [CAWA], common yel-
lowthroat [COYE], hooded warbler [HOWA]), and the remainder of 
species as intermediate (Figure 1a).

When considering within-individual diversity, we found no cor-
relation between diet alpha diversity and microbiome alpha diversity 
when using Shannon index and Faith's PD, as well as Chao1 when 
considering the full data set (Kendall's rank correlation, Shannon 
index batch 1: τ = 0.029, p = .619; full data set: τ = 0.005, p = .906, 
Faith's PD batch 1: τ =  0.110, p =  .064; full data set: τ =  −0.034, 
p =  .459, Chao1 full data set: τ = −0.063, p =  .171), but when con-
sidering the batch 1 subset using Chao1, alpha diversity of the diet 
and microbiome were positively correlated (Figure  2a; Kendall's 
rank correlation batch 1: τ = 0.124, p = .038). This indicates that, for 
batch 1, individuals that consumed high-richness diets (more OTUs) 
tended to have more rich gut microbiota (more ASVs), although the 
correlation is weak. After accounting for evolutionary history, our 
phylogenetic linear models revealed no relationship between mean 
species gut microbiome alpha diversity and mean species diet alpha 
diversity (Shannon index batch 1: coefficient = 0.860, p = .089; full 
data set: coefficient = −0.405, p = .273, Faith's PD batch 1: coeffi-
cient = −0.145, p = .789; full data set: coefficient = 0.340, p = .624, 
Chao1 batch 1: coefficient = 0.305, p =  .480; full data set: coeffi-
cient = −0.024, p = .956).

Alpha diversity of the microbiome was generally lower for in-
dividuals of species that were diet specialists, and higher for indi-
viduals of species that were diet generalists (Figure 2c), but alpha 
diversity of the microbiome did not differ significantly by species 
diet type (Kruskal–Wallis df = 2: Shannon index batch 1: χ2 = 2.8, 
p = .242; full data set: χ2 = 0.014, p = .993, Chao1 batch 1: χ2 = 5.4, 
p  =  .068; full data set: χ2  =  0.31, p  =  .855, Faith's PD batch 1: 
χ2 = 4.4, p = .110; full data set: χ2 = 0.13, p = .936), even when only 
comparing low-diversity diets to high-diversity diets (Kruskal–Wallis 
df = 1: Shannon index batch 1: χ2 = 1.934, p = .1643, full data set: 
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χ2 = 0.049, p = .825, Chao1 batch 1: χ2 = 1.8, p = .181; full data set: 
χ2 = 0.29, p = .592, Faith's PD batch 1: χ2 = 1.3, p = .259; full data 
set: χ2 = 0.17, p = .676).

3.3  |  Factors accounting for warbler gut 
microbiome structure

When analysing the full data set which included microbiomes se-
quenced in two different sequencing runs, there was a very clear 
and strong batch effect where microbiomes sequenced in one run 
were more similar to each other than to microbiomes sequenced in 
the other run (Figure S8). Yet, PCoA of gut microbiome dissimilarity 
matrices revealed a high degree of overlap among hosts of differ-
ent species and among hosts from different geographical locali-
ties (Figure 3a). There was little clustering of microbiomes by diet 

type of host species as defined by our index of diet specialization 
(Figure 2d).

Our PERMANOVA tests (Table 2) revealed that sequencing run 
explained a relatively high degree of variation in Bray–Curtis dis-
tances (13%, p =  .001), Jaccard distances (7.1%, p =  .001) and un-
weighted UniFrac distances (7.9%, p = .001). This strong batch effect 
probably confounded tests of other variables, since the second se-
quencing run only contained samples collected in a single year (2020) 
and included an additional species (WEWA, worm-eating warbler) 
that is not represented in the first sequencing run. Thus, we anal-
ysed the subset of data from 2017–2019 (i.e., batch 1) separately to 
examine the effect of biological factors on microbiome structure in 
the absence of the sequencing batch effect, because of the two se-
quencing runs this batch included the largest sample size of individu-
als and included 3 years of sampling. This analysis revealed sampling 
locality had a significant effect when using all four distance metrics, 

F I G U R E  2  Relationship between diet diversity and gut microbiome diversity. (a) Within-individual diversity of the gut microbiome is 
weakly correlated with within-individual diet diversity as measured by the Chao1 index in the batch 1 data set. Dashed line is a linear model 
fit to the data. Point colour in each panel reflects warbler species (see Table 1 for species codes). (b) Distribution of diet index scores by host 
species, where a low score is reflective of low diet diversity or diet specialization. Colour indicates assignment to diet type and is consistent 
with box plot colour in panel (c) and with ellipse colour in panel (d). (c) Microbiome alpha diversity does not differ among diet types, as 
classified by diet index. (d) Principal coordinate analysis (PCoA) of Bray–Curtis distance between host gut microbiomes sequenced in batch 
1. Point shape represents species diet type as defined by our index of diet specialization. Ellipses are drawn at 50% confidence level, and line 
colour indicates diet type. In each panel, data shown are from sequencing batch 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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although the effect size was small (~1%–2% of the variation ex-
plained; Table 2). Similarly, year explained a small amount of the vari-
ation (~1.5%) when using Jaccard and unweighted UniFrac distances. 
In the absence of the sequencing batch effect, host species identity 
accounts for the highest degree of variation in microbiome structure 

when using Bray–Curtis (9%, p = .048), Jaccard (9.3%, p = .001) and 
unweighted UniFrac distances (10.3%, p = .001), generally explain-
ing ~6-fold more of the variation than any other factor considered. 
Permutation tests indicated that dispersion among species' Jaccard 
and unweighted UniFrac distances is not homogeneous, which could 

Distance matrix Variable

PERMANOVA
Permutation test on 
dispersion

df R2 p F p

Full data set (2017–2020)

Bray–Curtis Species 14 .047 .162

Locality 1 .007 .011* 13.186 .001**

Year 3 .138 .001** 52.964 .001**

Sequencing run 1 .130 .001** 171.570 .001**

Diet type 2 .009 .435

Jaccard Species .053 .001** 4.481 .001**

Locality .005 .009** 30.959 .001**

Year .080 .001** 151.68 .001**

Sequencing run .071 .001** 527.04 .001**

Diet type .010 .167

Unweighted UniFrac Species 14 .057 .001** 3.189 .001**

Locality 1 .006 .012* 0.098 .761

Year 3 .087 .001** 8.033 .001**

Sequencing run 1 .079 .001** 21.312 .001**

Diet type 2 .010 .191

Weighted UniFrac Species 14 .062 .163

Locality 1 .013 .020* 2.155 .146

Year 3 .016 .146

Sequencing run 1 .006 .194

Diet type 2 .013 .190

Batch 1 (2017–2019)

Bray–Curtis Species 13 .090 .048* 0.703 .762

Locality 1 .014 .002** 0.759 .397

Year 2 .012 .385

Diet type 2 .020 .062

Jaccard Species .093 .001** 2.409 .009**

Locality .011 .001** 5.607 .020*

Year .015 .001** 5.889 .004**

Diet type .020 .001** 9.067 .001**

Unweighted UniFrac Species 13 .103 .001** 3.049 .002**

Locality 1 .009 .014* 0.002 .971

Year 2 .015 .034* 2.212 .099

Diet type 2 .022 .013* 2.161 .118

Weighted UniFrac Species 13 .085 .380

Locality 1 .017 .039* 0.183 .655

Year 2 .008 .732

Diet type 2 .021 .246

Note: Diet type reflects categorization based on our index of diet specialization (i.e., high diversity, 
low diversity, intermediate). Asterisks denote significant results: ***p < .001, **p < .01, *p < .05.

TA B L E  2  Results of permutational 
multivariate analysis of variance 
(PERMANOVA) tests and permutation 
tests of dispersion on beta distances 
between gut microbiomes
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account for the significant PERMANOVA result. However, this does 
not seem to be the case because although dispersion is high for sev-
eral species causing overlap in PCoA space, species' centroid posi-
tions are largely nonoverlapping when using Bray–Curtis, Jaccard 
and unweighted UniFrac distances (Figure  S9), probably reflecting 
true gut microbiome structuring among species.

In line with our findings of little-to-no correlation between indi-
vidual diet alpha diversity and gut microbiome alpha diversity, host 
species diet type did not significantly explain variation between mi-
crobiomes in the full data set, nor in the batch 1 subset—with the 
exception of using Jaccard and unweighted UniFrac distance, in 
which case diet type explained a small amount of the variation (~2%; 
Table 2). Dispersion among diet types for Jaccard distance was not 
homogeneous (F = 9.067, p = .001), yet diet type centroid positions 
for Jaccard and unweighted UniFrac distances were nonoverlapping 
in PCoA space especially for low-diversity diets (Figure S10), indicat-
ing some differentiation among gut microbiota for species with more 
specialized diets.

3.4  |  Topological congruence analyses

Normalized matching cluster congruence scores for the gut 
microbiome–host phylogeny topological comparisons were between 
~0.4 and 0.8. As congruence scores of zero indicate complete topo-
logical congruence, and scores of 1 indicate complete incongruence, 
these scores reflect intermediate congruences. When analysing all 

individuals in the full data set, and within the batch 1 and batch 
1-NY subsets, the observed warbler gut microbiome dendrogram 
was significantly more congruent with the host phylogeny than with 
randomized dendrograms using Bray–Curtis, Jaccard and weighted 
UniFrac distances (Table 3, Figure 4a). In the batch 2 subset, the gut 
microbiome dendrogram was more congruent with the host phy-
logeny than with randomized dendrograms using Bray–Curtis and 
unweighted UniFrac distances (Table 3). Thus, the majority of com-
parisons (N = 11 of 16 comparisons) indicate a positive association 
between gut microbiome similarity and host phylogenetic related-
ness. As Bray–Curtis and weighted UniFrac metrics are weighted by 
ASV counts, this may indicate that relative abundances of microbial 
taxa help contribute to the phylogenetic signal in the warbler gut 
microbiome.

To determine whether gut microbiome similarity better reflects 
host evolutionary history or host diet similarity, we repeated the 
topological analyses above instead using a dendrogram clustered 
from the diet OTU distances in place of the host phylogeny (Table 3). 
Among comparisons, congruence scores were generally lower (indi-
cating better congruence) for microbiome–host phylogeny compar-
isons than for microbiome–diet comparisons (Figure S11), although 
there are some exceptions. Importantly, only six of 16 microbiome–
diet comparisons were significantly more congruent than random. 
Three of these comparisons were of Jaccard distance, which only 
considerers ASV presence/absence. Further, in two other instances 
both considering Bray–Curtis distances, congruence scores for 
the microbiome–host phylogeny comparison were lower than for 

TA B L E  3  Summary of topological congruences between species-level gut microbiome dendrograms and the host phylogeny (left), and 
between species-level diet dendrograms (right), and of individual-level Mantel tests

N spp. Distance metric

Microbiome-host phylogeny Microbiome-diet

Matching cluster 
congruence score Mantel r

Matching cluster 
congruence scores Mantel r

Full data set (2017–2020) 15 Bray–Curtis 0.52*** .02 0.57 .06*

Jaccard 0.58** .04 0.56*** .17**

Unweighted UniFrac 0.68 .10** 0.74 .16**

Weighted UniFrac 0.58** .01 0.51** .03

Batch 1 (2017–2019) 14 Bray–Curtis 0.45*** .09* 0.70 .09*

Jaccard 0.45*** .18** 0.39*** .21**

Unweighted UniFrac 0.71 .19** 0.64 .22**

Weighted UniFrac 0.57** −.003 0.61 −.05

Batch 1-NY (2017–2019) 13 Bray–Curtis 0.44*** .15** 0.53* .11*

Jaccard 0.52** .23** 0.44*** .23**

Unweighted UniFrac 0.73 .27** 0.69 .25**

Weighted UniFrac 0.52** .07 0.74 −.09

Batch 2 (2020) 14 Bray–Curtis 0.56** .07 0.62* .01

Jaccard 0.72 .03 0.67 −.03

Unweighted UniFrac 0.59* .04 0.64 −.02

Weighted UniFrac 0.79 −.02 0.73 .06

Note: N spp. = number of species analysed, and matching cluster congruence scores are normalized where 0 = complete congruence and 
1 = complete incongruence. Asterisks denote significant results: ***p < .001, **p < .01, *p < .05.
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    |  529BAIZ et al.

the microbiome–diet comparison (batch 2, batch 1-NY; Table  3). 
Collectively, these results suggest a closer association between gut 
microbiome structure and host evolutionary history than with host 
diet.

Finally, we examined the association between the host phylog-
eny and diet dendrograms from the batch 1 subset to determine 
whether the significant associations we detected between the gut 
microbiome and diet could be due to a phylogenetic signal of the 
diet. For all four distance metrics, the diet–host phylogeny compari-
son was significantly more congruent than random (Bray–Curtis nor-
malized matching cluster score = 0.56, p = .007, Jaccard normalized 
matching cluster score = 0.52, p =  .003, unweighted UniFrac nor-
malized matching cluster score = 0.51, p =  .001, weighted UniFrac 
normalized matching cluster score = 0.57, p =  .017). These scores 
reflect intermediate congruence between the diet dendrogram and 
host phylogeny, and are similar but slightly higher (less congruent) 
on average than significant congruence scores between the microbi-
ome dendrogram and host phylogeny in batch 1 (Figure 4a, Table 3).

3.5  |  Mantel tests

Mantel tests indicated a positive relationship between individual-
level microbiome distances and pairwise evolutionary distances 
(Mantel r ~ .09–.27) in the batch 1 and batch 1-NY data sets for Bray–
Curtis, Jaccard and unweighted UniFrac distances, and in the full 
data set for unweighted UniFrac distance (Table 3, Figure 4b). Mantel 
tests also indicated a positive relationship between individual-level 
microbiome distances and diet distances (Mantel r ~ .06–.25) in the 

full data set, batch 1 and batch 1-NY subsets using Bray–Curtis, 
Jaccard and unweighted UniFrac distances (Table 3, Figure 4b).

We also tested the relationship between diet matrices and pair-
wise evolutionary distances in the batch 1 subset, and found a pos-
itive association for Jaccard diet distance (Mantel r = .10, p = .027), 
and unweighted UniFrac diet distance (Mantel r =  .13, p =  .004). 
Notably, across all Mantel tests, most significant correlations were 
detected when using unweighted distance matrices (Jaccard and un-
weighted UniFrac).

4  |  DISCUSSION

We performed faecal metabarcoding to examine environmental and 
evolutionary influences on gut microbiome structure in breeding 
wood-warblers. Our analyses collectively support host taxonomy 
as the strongest driver of gut microbiome structure while environ-
mental factors, including diet type, showed lesser effects. At the 
individual level, diet alpha diversity showed little to no association 
with microbiome alpha diversity. Further, on average, more closely 
related species tended to harbour more similar gut microbiomes, and 
gut microbiome similarity was less closely associated with diet simi-
larity, suggesting host evolutionary history may play a large role in 
shaping host–microbe interactions in this clade. We also detected 
a relatively strong batch effect of sequencing run on gut microbi-
ome diversity, and by analysing within-batch subsets of our data we 
saw that this had obscured the signal of the biological factors we 
considered in our analyses. Thus, these results highlight caution for 
other researchers about whether or not to divide samples across 

F I G U R E  4  Summary of phylosymbiosis analyses. (a) Topological congruence analyses of the association between the gut microbiome 
and host phylogeny (left), the gut microbiome and diet (middle), and the diet and host phylogeny (right). Microbiome and diet dendrograms 
were constructed using Bray–Curtis distances of mean within-species ASV/OTU counts. Matching cluster congruence scores are normalized 
where 0 = complete congruence, and 1 = complete incongruence. See Table 1 for species codes. (b) Scatter plots of individual-level 
microbiome vs. host evolutionary distances (left), microbiome vs. diet distances (middle), and diet vs. host evolutionary distances. Diet and 
microbiome distances are of the Bray–Curtis metric. [Colour figure can be viewed at wileyonlinelibrary.com]

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Diet distance (Bray−Curtis)

E
vo

lu
tio

na
ry

 d
is

ta
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Microbiome distance (Bray−Curtis)

E
vo

lu
tio

na
ry

 d
is

ta
nc

e
Host phylogeny Gut microbiome DietHost phylogeny

(b)

Gut microbiome Diet

Congruence score: 0.45, P<0.001
Congruence score: 0.70, P=0.74

Congruence score: 0.56, P<0.01

0.0 0.2 0.4 0.6 0.8 1.0
0.

2
0.

4
0.

6
0.

8
1.

0

Microbiome distance (Bray−Curtis)

D
ie

t d
is

ta
nc

e 
(B

ra
y−

C
ur

tis
)

Mantel r=0.09
P<0.05

Mantel r=0.09
P<0.05 Mantel r=0.08

P=0.07

(a)

 1365294x, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16762 by Pennsylvania State U
niversity, W

iley O
nline Library on [25/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

www.wileyonlinelibrary.com


530  |    BAIZ et al.

sequencing lanes and this should be a serious consideration in future 
metabarcoding studies.

4.1  |  The wood-warbler gut microbiome

Wood-warbler gut microbiomes were dominated by Proteobacteria 
and Firmicutes, which is consistent with other studies of other 
free-living passerines (e.g., Bodawatta, Koane, et al.,  2021; Hird 
et al., 2015). The most prevalent ASV, a Proteobacteria in the family 
Yersiniaceae, was observed in ~60% of individuals and occurred in 
all host species examined, but only a very small proportion of ASVs 
were represented in >30% of the individuals sequenced. These re-
sults may reflect a shared signature of the passerine gut microbiome 
in wood-warblers at higher taxonomic levels, yet a high level of vari-
ability among individuals, especially for lower abundance taxa.

The most dominant bacterial phyla in the current study were also 
identified as highly abundant in the only migratory cycle study of 
recaptured warblers to date, which focused on Kirtland's warblers 
(Setophaga kirtlandii; Skeen et al., 2021), a species that does not breed 
in our study areas. Although arrival on the breeding grounds was ac-
companied by a shift from a Kirtland's warbler gut microbiome dom-
inated by Firmicutes to one dominated by Proteobacteria, both phyla 
were highly abundant across the migratory cycle. The most preva-
lent taxonomic classes in the current study (Gammaproteobacteria, 
Alphaproteobacteria and Bacilli) also dominated gut microbiomes of 
breeding Kirtland's warblers (Skeen et al., 2021). However, Clostridia 
was one of the most abundant taxa in Kirtland's warblers but was 
found at low prevalence among individuals in the current study and 
made up only <2% of the total reads sequenced. This may suggest 
that Kirtland's warblers, a near-threatened Caribbean migrant with 
highly specialized habitat requirements, differ in gut microbiome 
structure from closely related parulids breeding nearby. This differ-
entiation would be consistent with our findings of a relatively strong 
role of host taxonomy and evolutionary history, and/or associated 
environmental factors that we were unable to resolve with our data 
set, in shaping the parulid gut microbiome (see below).

In this study, sampling locality consistently explained 1%–2% of 
the variation between microbiomes across data sets and distance 
metrics considered. Samples were collected from two forested lo-
calities in Eastern North America roughly 400 km apart, a distance 
that is probably not large enough to generate significant population 
genetic structure within warbler host species due to a lack of poten-
tial barriers to gene flow (e.g., yellow-rumped warblers, Setophaga 
coronata; Toews et al., 2016). However, our results suggest this dis-
tance may be sufficient in scale to affect subtle changes in gut mi-
crobe communities. Interestingly, the amount of variation explained 
by sampling locality here is similar to that reported in other passer-
ine studies (San Juan et al., 2021; Teyssier et al., 2020), despite this 
study encompassing a larger geographical area. For example, habitat 
type explained ~4% of the variation between passerine microbi-
omes within a 43-km agricultural study area in Costa Rica (San Juan 
et al.,  2021), suggesting habitat features may be more important 

than geographical distance between sites. Although we did not in-
clude habitat features as a factor in our analyses, notable differences 
between our study sites include an abundance of Rhododenron (R. 
maximum) and mountain laurel (Kalmia latifolia) in the understorey 
at our Pennsylvania localities, whereas these shrubs do not occur 
in our New York localities. This and other habitat differences could 
conceivably contribute to the differences we observed in gut micro-
biota between our sites.

When analysing a subset of samples from a single sequencing 
run, sampling year explained a similar proportion of variation be-
tween microbiomes as did sampling locality, but tended not to be 
significant. This may indicate that wood-warbler microbiomes are 
stable across breeding seasons, despite annual long-distance longi-
tudinal migration to and from tropical nonbreeding grounds, which is 
probably associated with changes in foraging strategies. This is con-
sistent with other passerine studies that found no difference in gut 
microbiome diversity across consecutive breeding seasons (Benskin 
et al., 2015; Escallón et al., 2019), but it is important to note that 
in our data set, each year represents a different cohort of individ-
uals. In migratory species, it will be desirable to resample the same 
individuals on the nonbreeding and breeding grounds across mul-
tiple cycles to disentangle temporal effects from those of habitat, 
diet and geographical locality (Bodawatta, Hird, et al., 2021; Skeen 
et al., 2021).

4.2  |  Diet diversity is not tightly linked to gut 
microbiome diversity in wood-warblers

By sequencing both arthropod COI gene and bacterial 16S rRNA 
gene metabarcoding libraries from the same faecal samples, we 
were able to directly examine the relationship between natural diet 
diversity and gut microbiome diversity of the same individuals. Our 
strategy revealed that when analysing three different metrics of 
within-individual (alpha) diversity, diet diversity was not correlated 
with microbiome diversity with the exception of a weak correla-
tion in the batch 1 data when using the Chao1 index, which is nei-
ther phylogenetically aware nor weighted by ASV/OTU abundance 
(Figure 2a). Although individuals of species with low-diversity diets 
tended to have reduced gut microbiome alpha diversity and individ-
uals of species with high-diversity diets tended to have increased mi-
crobiome alpha diversity, this pattern was not significant (Figure 2c). 
Further, when looking at between-individual (beta) diversity, diet 
type explained only ~2% of the variation between individuals and 
only when using unweighted distance metrics. In this case, individu-
als of species with more specialized (less diverse) diets tended to 
drive this pattern (Figure S10). This provides some evidence that diet 
richness may be weakly associated with gut microbiome richness, 
although we were unable to detect significant associations with 
these analyses when using our full data set, which may be due to 
the batch effect. Similarly, Mantel tests provided some support for 
a positive relationship between individual gut microbiome similarity 
and diet similarity especially for unweighted distance metrics, but 
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the association is not strong (Table 3). Thus, in contrast to our pre-
diction, diversity of the diet generally did not explain variation in 
the gut microbiome. This may suggest a high-diversity diet either 
does not generally provide wood-warblers with an increased avail-
ability of potential gut colonists, or gut microbe colonization is not 
strongly affected by diet diversity. Similarly, in a study of two spe-
cies of freshwater fish, Bolnick et al.  (2014) found the relationship 
between diet diversity and gut microbiome diversity was not linear 
and fish with a specialized diet actually harboured a more diverse 
gut microbiome.

Despite our finding of a weak relationship between diet diver-
sity and gut microbiome diversity, many studies have shown host 
diet indeed influences the avian gut microbiome. Broad categoriza-
tion of natural feeding guild and diet type explain differences in the 
gut microbiomes of wild passerines in New Guinea and of zoo and 
farm birds in China, respectively (Bodawatta, Koane, et al.,  2021; 
Xiao et al., 2021). Further, experimental manipulations of passerine 
diets have been associated with shifts in gut microbiome diversity 
and composition (Davidson et al.,  2020; Knutie,  2020; Pekarsky 
et al., 2021; Teyssier et al., 2020). In the current study, we analysed 
natural diets of breeding wood-warblers, which are known to pri-
marily eat insects (Birds of the World, 2022; MacArthur, 1958). Our 
metabarcoding results indicate a substantial portion of the diet is 
also arachnid-based. However, diet alpha diversity did not differ 
among species, and relative proportions of arthropod classes in the 
diet were similar (Figure 1c). The lack of species with a highly special-
ized diet (at the scale analysed here) that were included in this study 
may make wood-warblers a poor system for untangling the effect 
of diet diversity on gut microbiome diversity, and future dual diet–
microbiome metabarcoding studies could also include birds with 
clear distinctions in dietary guild for comparison (e.g., extreme diet 
specialists, aerial insectivores). We note that we did not consider 
fine-scale spatial partitioning of the feeding niche as an explanatory 
variable in this study, something wood-warblers are well known for 
(MacArthur, 1958). Further, it is possible that because we examined 
broad-scale patterns in diet diversity at the OTU level, we were not 
able to identify components of the diet (e.g., nutritional values of ar-
thropods) that possibly underlie gut microbiome structure. We also 
note that although wood-warblers are primarily insectivores, some 
species are known to supplement their diet with fruit, especially in 
the nonbreeding season (Birds of the World, 2022). Our study design 
did not allow us to examine effects of any nonarthropod compo-
nents of the diet, which may influence gut microbiota (Bodawatta 
et al.,  2022). Nevertheless, our results suggest dietary arthropod 
diversity does not scale directly with gut microbiome diversity in 
breeding wood-warblers.

4.3  |  Host evolution as the main driver of wood-
warbler gut microbiome structure

Among the biological factors considered in this study, host spe-
cies stands out as the variable that explains the largest amount of 

variation between microbiomes. Further, species-level 16S dendro-
grams were generally more concordant with the host phylogeny than 
with COI dendrograms (Figure 4a, Table 3). We also found the host 
phylogeny to be concordant with COI diet dendrograms, suggest-
ing the weaker associations we did detect between the diet and gut 
microbiome may have arisen due to a phylogenetic signal of both the 
diet (Miller et al., 2022) and microbiome. Together with our findings 
of little environmental influence on the wood-warbler microbiome, 
this may suggest that host evolutionary history rather than differ-
ences in species' ecological niche is the main driver of microbiome 
differentiation between wood-warbler species.

Mantel analyses of individual-level matrices revealed a some-
what contrasting pattern, showing support for positive associations 
between the gut microbiome and evolutionary distance and a sim-
ilar level of support for a positive relationship between the gut mi-
crobiome and diet distance. Similar to the topological congruence 
analysis, these analyses also showed some support for a relation-
ship between the diet and evolutionary distance. In these analyses, 
most of the significant associations involving the diet arose using 
unweighted distance metrics. These results are consistent with our 
other diet diversity analyses by suggesting community richness is 
driving these patterns.

The conflicting pattern revealed by the topological congruence 
analyses and Mantel tests may be explained by at least two factors. 
First, although they are complementary tests of phylosymbiosis, 
topological congruence analyses and Mantel tests fundamentally 
rely on different information. Topological congruence analyses do 
not rely on branch lengths or directly consider evolutionary or beta 
distances, whereas Mantel tests measure the correlation between 
two distance matrices. Because changes in microbiome community 
structure may be much more rapid than evolutionary changes be-
tween host genomes, topological congruence analyses may be a 
more conservative test of phylosymbiosis (Lim & Bordenstein, 2020).

Second, we used species-averaged ASV/OTU counts in the 
topological congruence analyses in order to summarize variation 
within each species, whereas our Mantel tests were of distance ma-
trices based on individual-level data. Across all of our analyses of 
individual-level data, both alpha and beta diversity of the diet and 
microbiome were quite variable, even within species. For example, 
Bray–Curtis distances between individuals of the same species 
ranged from ~0.07 to 1 for the gut microbiome, and from ~0.25 to 1 
for the diet (Figure 4b). This may suggest that the high level of vari-
ation within species obscured phylogenetic signal in gut microbiome 
and diet similarities at the individual level in Mantel tests.

Host species identity was the biological factor that explained the 
highest degree of variation between microbiota (Table 2), suggesting 
the mean ASV counts used in topological congruence analyses may 
capture unique features within host species. Collectively, our anal-
yses support a tighter association between the gut microbiome and 
host evolutionary history than between the gut microbiome and diet 
similarity when looking at the level of host species. This phylogenetic 
signal of gut microbiome structure is well supported in nonflying 
mammals and insects, but has been less well supported in birds. Avian 

 1365294x, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16762 by Pennsylvania State U
niversity, W

iley O
nline Library on [25/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



532  |    BAIZ et al.

gut microbiome studies generally support differences between host 
species (Hird et al., 2015, San Juan et al., 2020, Capunitan et al., 2020; 
but see Hird et al., 2014), but phylosymbiosis was not supported in 
New Guinean passerines (Bodawatta, Koane, et al., 2021) and the 
signal was weak among captive cranes and in two passerine studies 
(Kropáčková et al.,  2017; Loo et al.,  2019; Trevelline et al.,  2020). 
In the current study, concordance between the wood-warbler phy-
logeny and gut microbiome dendrogram was moderate and similar 
to that reported for cranes in captivity (Trevelline et al., 2020) and 
passerines in the Czech Republic (Kropáčková et al., 2017). Thus, our 
results support the view that phylosymbiosis is weaker in birds than 
in mammals (Song et al., 2020; Youngblut et al., 2019) and uniquely 
demonstrate that in wood-warblers, a stronger influence of diet (as 
measured by species-level diet diversity) does not account for this 
discrepancy. Our findings of high variability of gut microbiomes for 
individuals within the same species may explain the lack of a con-
sensus about phylosymbiosis in the avian literature, and particularly 
among studies that analysed fewer individuals per species.

A phylogenetically conserved gut microbiome may provide the 
opportunity for co-adaptation between hosts and their gut microbes, 
which could implicate microbiomes in complex host evolutionary 
processes, including speciation (Brucker & Bordenstein,  2012). 
Long-term co-evolution between hosts and microbiota could ex-
plain phylosymbiosis, but this pattern could also arise under ecolog-
ical filtering. Mazel et al. (2018) used simulations to show that under 
ecological filtering, the strength of phylosymbiosis is determined by 
the strength of the phylogenetic signal in the host trait underlying 
microbe colonization. It has been hypothesized that convergence 
of bat and avian gut microbiomes is due to reduced gut length, an 
adaptation to powered flight, which may favour rapid turnover in 
gut microbiota, thus accounting for the weakened phylogenetic sig-
nal in avian gut microbiomes compared to nonflying mammals (Song 
et al., 2020). Consistent with this, Bodawatta, Koane, et al.  (2021) 
found a negative association between passerine body mass—a proxy 
for gut length—and both gut microbiome richness and divergence. 
This might lead to the prediction that phylogenetic signal of the gut 
microbiome should be strongest in large-bodied birds and weakest 
in small-bodied birds. However, the current data do not support this, 
as is highlighted by the results presented here. The strength of phy-
losymbiosis reported here for wood-warblers—small-bodied species 
weighing ~6–20 g—is similar to that reported for cranes (Trevelline 
et al., 2020), which are several hundred times heavier. Thus, addi-
tional study is necessary to elucidate the effect of gut retention time 
on gut microbiome structure, and of other phylogenetically con-
served avian traits or habitat preferences, including diet, that may 
mediate the colonization and maintenance of gut microbiomes.

Further study is also necessary to understand the biological rel-
evance of taxonomic differences and of phylogenetic signal in gut 
microbiome structure between hosts. Experimental studies have 
shown antibiotic treatment administered to nestlings results in faster 
growth rates (Coates et al., 1963; Kohl et al., 2018; Potti et al., 2002), 
and caeca of germ-free chickens exhibit altered gene expression and 
notably do not express immunoglobulins (Volf et al., 2017). Thus, it 

is clear that gut microbiota impose constraints on host development 
and immune function, but how species-differences in natural gut 
microbiota composition might impact host fitness is unknown. It is 
important to note that although we observed an effect of host tax-
onomy on gut microbiome structure, this does not necessarily imply 
functional differences in gut microbiota between hosts. However, 
due to microbiome differentiation between host species we may 
predict disruption of these communities for admixed individuals 
upon hybridization (Brucker & Bordenstein, 2012). Wood-warblers 
are well known to hybridize and occasionally even form intergeneric 
hybrids (Toews et al.,  2018, 2020), making this clade an excellent 
system that can be used to tease apart evolutionary from ecological 
influences on the gut microbiome as well as the potential role of the 
microbiome in hybrid dysfunction.

4.4  |  Limitations of metabarcoding and caution 
against sequencing batch effects

Our study faces several limitations inherent to metabarcoding ap-
proaches (Taberlet et al., 2012). First, we used primers to target gut 
bacteria and arthropod taxa. However, gut communities are very 
complex and also include archaea, fungi, nonarthropod diet taxa (dis-
cussed above) and other eukaryotes including gut parasites. These 
other taxa probably influence gut microbiome dynamics, which we 
were not able to consider here. Further, we were limited by taxo-
nomic databases to identify gut bacteria and dietary arthropods. A 
small proportion of the taxa analysed here could not be identified 
beyond domain, including two ASVs in the core warbler gut microbi-
ome (Tables S3 and S4). Finally, PCR steps introduce bias in the de-
tection of taxa and estimates of their abundance (James et al., 2022). 
We took steps to minimize the effects of bias by sequencing multiple 
individuals per host species, and we analysed mean within-species 
OTU counts in certain analyses. This approach should help limit the 
impact of artificially biased abundances when analysing differences 
among host species, as artificial bias is not expected to be consist-
ent across individuals. We also randomized the order in which we 
processed samples during library preparation, such that each plate 
contained samples collected across multiple species, years and lo-
calities in case of plate-specific PCR batch effects. To further limit 
PCR bias in 16S libraries, we included three technical replicates for 
each individual and pooled replicates before sequencing (Caporaso 
et al., 2011). However, for COI libraries, we only sequenced a single 
PCR per individual. This approach probably led us to underestimate 
the richness of diet taxa, and we probably were not able to detect 
rare diet taxa (Alberdi et al., 2018).

A strength of our study is that we were able to include large sam-
ple sizes, although we split our sequencing into two batches. We 
prepared and sequenced our 16S and COI libraries in two different 
batches and the resulting yields were quite different (Figure  S5). 
This strategy was desirable because it allowed us to process sam-
ples as they became available and it increased our overall sample 
sizes. However, we found the technical artefacts this introduced 
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were not trivial (Figure  S8), and similar to batch effects in other 
studies (Gibbons et al., 2018; Lou & Therkildsen, 2022) it obscured 
the signal of the biological factors we tested (Table 2). Our topolog-
ical congruence analysis seemed to be robust to the batch effect 
as our results were similar across data sets, although it is possible 
that batch effects obscured the signal of phylosymbiosis in previ-
ous avian gut microbiome studies. It is possible that batch effects 
are less of a concern for mammalian and other systems, where the 
signal of host phylogeny on gut microbiome structure is stronger 
than in birds. Similarly, the batch effect was less strong in the COI 
data, which we also processed and sequenced in two batches (37% 
of total arthropod OTUs detected in both batches compared to 6% 
for bacterial ASVs). This may be due to a more rapid saturation of the 
accumulation curve for arthropod taxa than for bacterial taxa that 
are present in the warbler gut (Figure S2).

Future methodological study of the consequences of batch ef-
fects in metabarcoding studies is warranted. We recommend that 
metabarcoding studies report sequences of technical replicates 
(PCRs amplified from the same sample within a batch) and positives 
(same sample sequenced across batches) which may help clarify 
when it is appropriate to make direct comparison of data sequenced 
in different batches.

5  |  CONCLUDING REMARKS

Our data highlight many outstanding questions regarding avian mi-
crobiomes and the ongoing need to characterize microbiomes of wild 
birds (Hird,  2017). Wood-warbler gut microbiomes are dominated 
by Proteobacteria and Firmicutes, and on average, closely related 
host species share more similar gut microbiomes. We found little in-
fluence of sampling year, geographical locality or diet diversity on 
gut microbiome structure, and thus the majority of the variation be-
tween microbiota was left unexplained. Our results may suggest the 
phylogenetic signal in gut microbiome structure is tied more closely 
to host traits than to host environment, yet the mechanisms driving 
this signal and possible functional consequences for hosts are not 
clear.

The level of phylogenetic signal in gut microbiome structure we 
detected is similar to that detected for larger-bodied birds (Trevelline 
et al.,  2020), suggesting small body size does not preclude phylo-
symbiosis. Further study is necessary to understand the relationship 
between host body size, gut retention time and gut microbe coloniza-
tion. Although we found that broad-scale measures of diet diversity 
are not closely related to gut microbiome diversity, future studies 
should explore how components of the diet (e.g., dominant arthro-
pod taxa, energetic values of food items) might influence the gut 
microbiome, including by way of their influence on host traits (e.g., 
gut pH). Wood-warblers represent a promising system to continue 
addressing outstanding ecological and evolutionary questions about 
the avian microbiome, including how microbiomes may influence 
and respond to adaptive radiation (Bodawatta, Hird, et al., 2021).
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