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Gut microbiome composition better reflects host phylogeny
than diet diversity in breeding wood-warblers
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Abstract

Understanding the factors that shape microbiomes can provide insight into the im-
2Cornell Lab of Ornithology, Ithaca, New . . . . . .
York, USA portance of host-symbiont interactions and on co-evolutionary dynamics. Unlike for
mammals, previous studies have found little or no support for an influence of host
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evolutionary history on avian gut microbiome diversity and instead have suggested a
greater influence of the environment or diet due to fast gut turnover. Because effects
of different factors may be conflated by captivity and sampling design, examining

natural variation using large sample sizes is important. Our goal was to overcome
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these limitations by sampling wild birds to compare environmental, dietary and evolu-
tionary influences on gut microbiome structure. We performed faecal metabarcoding
to characterize both the gut microbiome and diet of 15 wood-warbler species across a
4-year period and from two geographical localities. We find host taxonomy generally
Handling Editor: Camille Bonneaud explained ~10% of the variation between individuals, which is ~6-fold more variation
of any other factor considered, including diet diversity. Further, gut microbiome simi-
larity was more congruent with the host phylogeny than with host diet similarity and
we found little association between diet diversity and microbiome diversity. Together,
our results suggest evolutionary history is the strongest predictor of gut microbiome
differentiation among wood-warblers. Although the phylogenetic signal of the war-
bler gut microbiome is not very strong, our data suggest that a stronger influence of
diet (as measured by diet diversity) does not account for this pattern. The mechanism
underlying this phylogenetic signal is not clear, but we argue host traits may filter

colonization and maintenance of microbes.
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The taxonomic composition of the gut microbiome can vary,

1 | INTRODUCTION

sometimes dramatically within and between host species (Grond

Microorganisms that form intimate associations with their hosts can
take part in important physiological functions. In particular, the gut
microbiome—the community of microbes that colonize the gastroin-
testinal tract—has been linked to host behaviour, immune function,
development, metabolism and disease (Bodawatta, Hird, et al., 2021;
Sommer & Backhed, 2013; Suzuki, 2017).

etal., 2019; Loo et al., 2019; Song et al., 2020), as well as within indi-
viduals over short timescales (Skeen et al., 2021; Videvall et al., 2019).
However, when host-microbe associations are long-term, gut micro-
biomes may be expected to be species-specific and their assembly to
be dependent on host evolutionary divergence (Brooks et al., 2016).
Consistent with this, host evolutionary history, in addition to diet,
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has been implicated as one of the strongest factors driving verte-
brate gut microbiome similarity (Youngblut et al., 2019).

Recent studies have strongly supported a positive correlation
between host species divergence and gut microbiome divergence—
known as “phylosymbiosis”"—particularly for insects and nonflying
mammals (Brooks et al., 2016; Song et al., 2020). However, in birds,
differences in gut microbiome structure between species are less
pronounced (Song et al., 2020). Despite species-level differences in
the gut microbiota of 37 New Guinean passerine species (14 fam-
ilies), Bodawatta, Koane, et al. (2021) did not find an influence of
host phylogeny on gut microbiome structure. This is in contrast,
however, to a study on 51 passerine species (21 families) breeding
in the Czech Republic (Kropackova et al., 2017) and a study on all 15
crane species (family Gruidae) in captivity which found a weak influ-
ence of host phylogeny, and only when examining female individuals
(Trevelline et al., 2020).

A favoured hypothesis to explain this marked difference in phylo-
symbiosis between bird and nonflying mammal gut microbiota is that
because birds evolved a reduced and simplified gastrointestinal tract
as an adaptation to flight, they have highly reduced gut retention
times from consumption of food to defecation (Song et al., 2020).
This reduced retention time and simplified gut environment may fa-
vour high turnover in the avian gut microbiome, and a larger role of
the diet and environment over host taxonomy in the structuring of
the gut microbiome (Bodawatta, Koane, et al., 2021).

In Darwin's finches, gut microbiome communities cluster more
strongly by host habitat than by host species (Loo et al., 2019). Both
host phylogeny and diet in this group, which is known for adaptive
divergence in beak morphology linked to foraging ecology, show a
moderate influence on gut microbiome variation (Loo et al., 2019).
Further, the gut microbiome of the vampire finch, a diet specialist,
is highly divergent from other species (Michel et al., 2018). Similarly,
captive birds tend to have distinct gut microbiota from their wild
counterparts, probably resulting from artificial diets, built enclo-
sures and human interaction (San Juan et al., 2021). These studies
support a strong role of the environment, including diet, in shaping
the avian gut microbiome.

Although many studies have detected effects of diet on the avian
gut microbiome (Bodawatta, Koane, et al., 2021; Davidson et al., 2020;
Knutie, 2020; Teyssier et al., 2020; Xiao et al., 2021), few have analysed
host diet beyond broad categorizations of diet type (e.g., omnivore vs.
insectivore) and/or included birds that were fed standardized and non-
natural diets (but see Bodawatta et al., 2022, Schmiedova et al., 2022).
Further, many studies that have assessed species-specific differences
in gut microbiome structure have had limited sample sizes including
only one or a few individuals per species or included data collected
and sequenced at different times or in different ways. To gain a holistic
picture of the effects of host diet, evolutionary history and geography
on gut microbiome structure, it will be necessary to sample natural
populations using standardized methods. Understanding the factors
that shape the avian gut microbiome is important for understanding
host-symbiont interactions and co-evolutionary dynamics, and how
these dynamics may differ from other taxonomic groups of animals

(i.e., mammals). The role of the gut microbiome in host evolutionary
processes is largely unexplored and its potential role in facilitating and
responding to avian host adaptive radiation—where species diversi-
fication is tied to ecological differentiation—is a major outstanding
question (Bodawatta, Hird, et al., 2021).

Here, we characterize the gut microbiome of wood-warblers
(family: Parulidae) breeding in sympatry in Eastern North America
across a 4-year period and examine factors that may play a role in
shaping gut microbiome structure. Parulidae is a passerine radia-
tion of >100 insectivorous species that evolved rapidly in the last
7 million years (Barker et al., 2015; Lovette et al., 2010), and is a
classic model for studies of ecological differentiation, including diet
niche partitioning (MacArthur, 1958). In the current study, we use
16S faecal metabarcoding to examine gut microbiomes of 15 species
representing seven genera (Figure 1a). Our aims are to characterize
the “core” parulid gut microbiota (a common set of microbes across
individuals) and to quantify differences in gut microbiome composi-
tion between hosts. We predict that due to genetic and ecological
differentiation among host species, variation in the gut microbiome
will be largely explained by host taxonomy. Further, we explicitly
test the prediction of phylosymbiosis, where host phylogenetic re-
latedness should correlate with gut microbiome similarity. We also
examine the relationship between gut microbiome diversity and diet
diversity by analysing COl metabarcoding sequences amplified from
faecal samples of these same individuals. With the presumption
that a diet characterized by a high diversity of arthropods will incur
ingestion of a greater diversity of bacteria—either associated with
arthropod hosts, or the environments in which they are found—we
predict that diversity of the warbler gut microbiome and diet will be
positively correlated. Finally, we test for other environmental signals
in the structuring of host gut microbiomes by examining effects of

sampling year, locality and diet specialization.

2 | MATERIALS AND METHODS
2.1 | Sample collection and DNA extraction

We used mist-nets to capture birds during four consecutive breeding
seasons (May-July 2017-2020). In all years, we targeted sampling
locations in northern hardwood forests, both in Adirondack Park,
New York, and in 2019 and 2020, we also sampled birds in central
Pennsylvania (Figure S1; Table 1). We selected sites where a diver-
sity of warbler species (up to eight) could be heard singing so as to
maximize sympatry among species included in the study. Upon cap-
ture, we held individuals inside a brown paper bag for up to 10 min
to allow ample time for excretion inside the bag before removal and
subsequent banding. We removed faeces by scraping it from the in-
side of the bag directly into a sample tube containing lysis buffer
(100mm Tris pH 8; 100mmMm Na,EDTA, 10 mm NaCl; 0.5% sodium
dodecyl sulphate; White & Densmore, 1992), and froze samples at
-20°C within 2weeks of collection. Because we were interested in
variation among individuals, we chose a single sample at random to

2SuAIIT suowwo)) aanear) a[qedrjdde o) £q pauIdA0s aIe sa[o1Ie Y fash Jo sa[ni 10 A1eIql] aurjuQ) A3[IA\ UO (SUONIPUOI-PUB-SULIA)/WO0d Ka]1m K1eiqrjauljuo//:sdny) suonipuo)) pue swiad ], ay) 23§ ‘[£70/10/57] uo Areiqry autuQ L3[Ip\ ‘ANSIOAIUN d)v)S BIUBA[ASUUS AQ 79L9[ 09U/ [ [  ['([/10P/w0d Ka[im"A1eIqrjaul[uo//:sdny woly papeojumo(] ‘z ‘€70T ‘X#67S9E 1



520
—I—W] LE Y-2Y(e]#:Xe[8) WN:§:{ele) Xo €)%

@ Diet index
A High diversity ,5,57
B Intermediate é‘\ 6‘&‘
W Low diversity Q;B” R

NOPA OO
BTBW HHE

-
A
-
Ve

Helmitheros . =
g
s

= Setophaga

BAIZ ET AL.
(b)
Bacteria phylum
|| e || other
0754 o | . M Acidobacteriota
= B Actinobacteriota
= ] - Armatimonadota
° .
8 _- Bgctgrmdota
5 Firmicutes
T 0.50
E M Planctomycetota
< Proteobacteria
. Verrucomicrobiota
0.25+
o_oo..<...<....<....;.<.
< wLsw<
EEZEEfREEEEEsT
5s88=2h3223325=23
©)  1.00-

I. I Arthropod order

HOWA HA % || I other
Aran
CAWA A A A?’& Cardellina I I III .Coal‘es;fera
g Diptera
[~ COYE MA “SBW Geothlypis 2o B e
I_ < l Lepidoptera
NAWA H R LelOtthplS I o= pE= M Plecoptera

FIGURE 1 (a) Phylogenetic relationships between host species in this study. Upside down triangles indicate low-diversity diet, triangles
indicate high-diversity diet, and squares indicate intermediate-diet diversity based on our COIl diet index. The full data set represents all
samples collected between 2017 and 2020, and batch 1 represents all samples collected between 2017 and 2019. lllustrations © Lynx
Edicions. (b) Relative abundance of bacterial phyla in the full 16S data set, and (c) relative abundance of arthropod orders in the full COl data
set. See Table 1 for host species codes. [Colour figure can be viewed at wileyonlinelibrary.com]

include in our analyses from individuals that were recaptured in the
same or subsequent years. In total, we sequenced samples from 408
individuals.

We extracted total DNA from faecal samples using an SPRI-
bead faecal DNA extraction method modified from Vo and
Jedlicka (2014). Samples were processed in two sets: those col-
lected in 2017-2019 and in 2020. After thawing faecal samples at
room temperature, we centrifuged sample tubes and used bleach-
sterilized laboratory spatulas after being thoroughly dried and/
or pipetting to transfer ~5 mg of faecal material into 2-ml screw-
cap microcentrifuge tubes each containing 0.25g of 0.1-mm and
0.25g of 0.5-mm zirconia-silica beads. For samples that amounted
to <5 mg of faecal material, we supplemented with a suitable vol-
ume of storage buffer from inside the sample tube as necessary.
We immediately added 818 pul of warmed (65°C) lysis buffer (Vo &
Jedlicka, 2014) and homogenized samples using a Precellys 24 Tissue
Homogenizer (Bertin Instruments) set to three cycles of 6800rpm
for 30s with a 30-s pause between cycles. After transferring the
supernatant to clean microfuge tubes, we incubated samples with
Qiagen Solution C3 (Qiagen DNeasy PowerSoil 12888-100-3) to

remove PCR (polymerase chain reaction) inhibitors. Next, we re-
moved DNA from the supernatant using homemade solid phase
reversible immobilization (SPRI) magnetic beads (“Serapure” beads;
Rohland & Reich, 2012). Serapure beads were added at a 1.9x bead-
to-supernatant volume ratio and, after cleaning with 80% ethanol,
we eluted DNA in 10 mm Tris-HCI. Extracted DNA was stored at
-20°C before proceeding with library preparation.

We sequenced two types of negative controls. First, negative ex-
traction controls followed the same extraction procedure described
above for which the input was sample storage buffer taken from
tubes that were transported to the field, but were not used for col-
lecting faecal material. Second, we included PCR-negative controls,

which are described below.

2.2 | 16S and COIl amplicon sequencing

As with DNA extractions, we prepared and sequenced metabarcod-
ing libraries in two separate batches: (i) samples collected between
2017 and 2019, and (ii) samples collected in 2020.
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We used a two-step multiplex dual-index amplicon approach
to separately prepare 16S libraries and COI libraries for sequenc-
ing again following Vo and Jedlicka (2014) with some adjustments.
We first used universal 515F/806R primers to amplify the V4 re-
gion of the bacterial 16S rRNA gene (Caporaso et al., 2012) and the
“ANML" general arthropod COI mitochondrial primers LCOI-1490/
COI-CFMRa described in Jusino et al. (2019). Each primer pair was
modified with overhanging lllumina adapter sequences. Prior to
PCR, we randomized the order of samples to be amplified to avoid
within-plate batch effects during amplification. Negative PCR con-
trols were included on each plate. In addition to our faecal samples,
we sequenced four negative controls per primer pair in each library
pool, with the exception of the first batch COI library pool which
did not contain any negative controls. Negatives included two “ex-
traction controls” amplified and sequenced from DNA extractions
made from sample tubes containing only buffer (and no faeces) as
well as two negative PCR controls.

We performed initial 16S PCR amplification for each sample
in triplicate in 30-pul reactions comprising 0.2 ul Platinum Il Taq
Hot Start DNA Polymerase (Invitrogen 14966005), 5 pl 5x Buffer
(Invitrogen 14966005), 1.25 ul of each primer (10 um concentration),
13.5 pl molecular-grade water, 0.5 pl 10 mm dNTP mix (Promega
U151A) and 3.3 pl of faecal DNA. Reaction conditions followed the
two-step PCR protocol recommended by the manufacturer: 94°C
for 2 min, followed by 34 cycles of 98°C for 5 s, 68°C for 15s, fol-
lowed by a final extension at 68°C for 5 min, and hold at 12°C. We
performed initial COlI PCR amplification in 30-pl reactions compris-
ing 0.24 ul Platinum Il Tag Hot Start DNA Polymerase, 6 pl 5x Buffer,
1.5 ul of each primer (10 um concentration), 16.16 ul molecular-grade
water, 0.6 pl 10 mm dNTP mix and 4 pl of faecal DNA. Reaction con-
ditions followed Jusino et al. (2019) with minor adjustments: 94°C
for 2 min, followed by five cycles of 94°C for 155, 45°C for 155, 68°C
for 155, followed by 35 cycles of 98°C for 55, 68°C for 15, followed
by a final extension at 68°C for 5 min, and hold at 12°C. We cleaned
initial PCR products by incubating with a 1x volume of Serapure
beads and eluting the bound DNA in 10 mm Tris-HCI. Triplicate 16S
reactions were pooled before this cleaning step. Then we evaluated
amplification success by visualizing the cleaned product on a 1.5%
agarose gel.

Next, we appended dual P5 and P7 Illumina indexes to each
library via PCR. Reactions were 30pl and contained 15pul KAPA
HiFi HotStart ReadyMix (Roche 7958935001), 3 pl of each primer
(10 um concentration) and 9 pl DNA (cleaned initial PCR product).
Reaction conditions followed the manufacturer's recommenda-
tions: 98°C for 45s, followed by five cycles of 98°C for 15s, 60°C
for 15s, 72°C for 15s, followed by a final extension at 72°C for
1 min and hold at 12°C. We then cleaned the indexed PCR product
using a double-sided Serapure bead procedure. We first removed
potential high-molecular-weight contamination by incubating PCR
product with a 0.75x volume of Serapure beads. After placing the
samples on the magnet, we transferred the supernatant to fresh
tubes and incubated it with a 1x volume of Serapure beads to re-
move potential low-molecular-weight contamination. DNA was

eluted in 10 mm Tris-HCI, and we evaluated amplification success
as for the initial PCR.

We quantified DNA in our final PCR products with a Qubit 4.0
Fluorometer (Invitrogen). We then normalized library concentrations
and pooled libraries to a final pool concentration of at least 2 nm. We
submitted the final pool to the Penn State Genomics Core Facility to
perform final quality assessment on a Bioanalyzer Tape Station and
confirm pool concentration with quantitative (q) PCR. Samples were
then sequenced with an lllumina MiSeq using the 600-cycle kit run
as 250x 250 paired-end sequencing.

For the first batch of samples, 16S and COI libraries were inde-
pendently pooled and each pool was sequenced in a single lane of
Illumina sequencing. The second batch included a smaller number of
samples, so to achieve a similar depth of sequencing as in the first
batch, we pooled and sequenced 16S libraries and COI libraries to-

gether in the same sequencing lane.

2.3 | 16S amplicon sequence processing

We used qime 2 version 2020.8 (Bolyen et al., 2019) to process 16S
sequencing reads and obtain a table of counts of amplicon sequence
variants (ASVs, or amplicon sequences representing microbial taxo-
nomic units) across samples. For each sequencing run, we imported
demultiplexed paired-end sequences, used the function giime dada2
denoise-paired to trim primer sequences from the 3’ ends of reads,
and to trim five bases from the 5’ ends of reads before merging read
pairs and detecting ASVs. We then assigned taxonomic classification
to ASVs using the SILVA database (version 138 SSURef NR99, Quast
etal., 2012).

Upon classification, we removed mitochondrial, chloroplast,
unassigned and eukaryotic ASVs. We also identified and removed
possible contaminant ASVs by contrasting the presence/absence of
ASVs in our negative controls with their prevalence in experimen-
tal faecal samples (i.e., non-negative controls) using the R package
decontam (Davis et al., 2018). We used the “prevalence” method to
identify and remove ASVs more prevalent in negative controls than
in experimental samples using a probability threshold of 0.5. We also
manually removed ASVs present in negative controls, but absent in
experimental samples, as these were also probably contaminants. In
total, we removed 87 and 359 contaminant ASVs from the batch 1
and batch 2 data sets, respectively.

At this point, we used aQiME 2 to merge the feature table, rep-
resentative sequences and taxonomy files from the two separate
sequencing runs. We finally generated a phylogenetic tree from the
merged set of ASV sequences for downstream diversity analyses.
We used giime phylogeny align-to-tree-mafft-fasttree to perform mul-
tiple sequence alignment, mask highly variable positions, and first
generate an unrooted tree and finally a tree rooted at the midpoint
of the longest tip-to-tip distance of the unrooted tree.

Finally, we applied several additional filtering steps to achieve a
high-quality representation of warbler gut microbiomes. We excluded
individuals from species represented by fewer than five individuals
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in our data set because we were interested in examining species dif-
ferences in gut microbiome structure. Because very low depth and
uneven depth of sequencing among samples can affect diversity esti-
mates (Hughes & Hellmann, 2005), we next generated a rarefied data
set by randomly downsampling ASVs to a minimum threshold to stan-
dardize total read counts across samples. We determined the minimum
acceptable ASV count threshold by examining rarefaction curves con-
structed using the rarecurve function in vegan (Oksanen et al., 2020)
using a step size of 50. Based on this analysis, we determined a library
size of 4000 reads to be an acceptable threshold since the number of
observed ASVs appears to plateau beyond this point (Figure S2a).

Because we detected a significant effect of sequencing batch on
our diversity estimates (i.e., a “batch effect”; see Results), we also
performed analyses on a subset of the data that only included the
first batch of samples (collected between 2017 and 2019, referred to
as “batch 1"). For these analyses, we performed the same sequence
processing steps as above except for merging-in data from the sam-
ples collected in 2020.

2.4 | COIlamplicon sequence processing

We used the ampTk (version 1.5.3) pipeline to analyse COIl metabarcod-
ing data by applying the default clustering algorithm (vesearcH version
2.17.1) for operational taxonomic units (OTUs) and assigned taxonomy
by pulling from the chordates and arthropods in the BOLDv4 database.
We rooted the OTU phylogeny output from ampTk on a randomly cho-
sen arachnid OTU, as arachnids split from the common arthropod an-
cestor prior to insects. We then imported the COIl metabarcoding data
into pHYLOSEQ for downstream analyses and applied a similar framework
as we did with our 16S data. We first removed OTUs assigned to the
phylum Chordata as this represents off-target amplification, then rare-
fied depth to 15,000 reads per individual (full data set), and 8500 reads
per individual (batch 1 subset; Figure S2b).

For analyses where we directly investigated the effect of diet on
the microbiome at the individual level, we only analysed individuals
with data that passed filtering steps in both microbiome and diet
data sets. This included 216 individuals in the full data set represent-
ing 15 species (mean = 14 individuals per species, SD = 4.7) and 130
individuals in the batch 1 subset representing 14 species (mean = 9
individuals per species, SD = 1.7).

2.5 | Dietdiversity and its relationship with gut
microbiome diversity

We estimated within-individual diversity (alpha diversity) of the diet
and gut microbiome using the Shannon index and the Chaol index
using the diversity function in vegan, and using Faith's phylogenetic
diversity using the estimate_pd function in btools (Battaglia, 2022).
The Shannon index quantifies ASV richness (the number of ASVs) as
well as evenness (the equity in ASV abundances), while Chaol just
quantifies ASV richness. Faith's phylogenetic diversity is a measure

of ASV richness that is the sum of branch lengths in the phylogeny
that connect all ASVs in the community assemblage. We estimated
between-individual differences between microbiomes (beta diver-
sity) using four different metrics: Bray-Curtis, Jaccard, unweighted
UniFrac and weighted UniFrac, calculated using the distance func-
tion in phyloseq (McMurdie & Holmes, 2013). Bray-Curtis measures
differences in community composition and is based on ASV abun-
dances, whereas Jaccard is based only on presence/absence and
does not rely on abundance. Unweighted UniFrac measures the
phylogenetic distance between communities based on presence/
absence of ASVs, whereas weighted UniFrac is similar but weights
branch lengths by ASV abundance.

We used three approaches to examine the relationship be-
tween diet and the gut microbiome. With the prediction that a
generalized diet, characterized by a high diversity of arthropod
taxa, supports a high gut microbiome diversity, we first tested for
a positive correlation between individual diet alpha diversity and
gut microbiome alpha diversity using a Kendall's rank correlation
test. To account for phylogenetic history, we also ran phyloge-
netic linear models to test for a linear relationship between mean
within-species alpha diversities of the gut microbiome and diet
using phylolm (Tung Ho & Ané, 2014). In each model, we included
the host phylogeny with branch lengths scaled using divergence
times (see below) and the lambda model of covariance, using 1000
bootstrap replicates.

Second, at the species level, we tested whether gut microbi-
ome structure differs among species with a more specialized and
less diverse diet, and species with a more generalized and more
diverse diet using permutational multivariate analysis of variance
(PERMANOVA) of beta diversity distances using the adonis2 func-
tion in vegan. For this analysis, we categorized each species as either
a “low diversity” diet, “high diversity” diet or “intermediate” by creat-
ing an index of diet specialization (Figure 1a). To calculate this index,
we summed mean individual within-species diet alpha diversity and
mean within-species diet beta diversity with the assumption that (i)
more specialized diets are characterized by a lower diversity of food
items (low alpha diversity) and individuals within more specialized
species eat a similar diet (low beta diversity), and (ii) more general-
ized diets are characterized by a high diversity of food items (high
alpha diversity), and individuals within more generalized species may
have highly divergent diets depending on local food availability (high
beta diversity). Thus, a low score reflects a less diverse and more
specialized diet, and a high score reflects a more diverse and more
generalized diet. We note that this index quantifies diversity of the
diet and that host species within the same diet categorization may
have dissimilar diets by way of diet content (e.g., proportion that is
flying insects).

For both alpha diversity and beta diversity of the diet, the dif-
ferent diversity metrics we calculated were positively correlated
(with the exception of weighted UniFrac and unweighted UniFrac
beta distance when using the full data set; Table S1) and diet type
classification of each species was consistent across metrics. Thus,
for simplicity we report the index of diet specialization using the
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Shannon index to estimate alpha diversity and the Bray-Curtis met-

ric to estimate beta diversity:

index of diet specialization = mean diet agyann0n + Mean diet fg,y_cyrtis

We note that because we used a subset of individuals to calcu-
late diet index for batch 1, for some species classification of diet di-
versity using the diet index is not consistent between this subset and
the full data set. Four species are classified as intermediate in one
data set and either as high diversity or as low diversity in the other
data set. However, species diet index values are positively correlated
between the full data set and batch 1 (r = 0.516, p = .010, Figure S3),
suggesting this index is robust to individual variation in diet. Our
results do not change when excluding these four species from the
analyses so we include them in our analyses.

Finally, we used topological congruence analysis to determine
whether similarity in gut microbiome structure among host species re-
flects diet similarity with the expectation that if diet directly shapes host
gut microbiomes, then clustering of species by diet similarity will mirror
clustering of species by gut microbiome similarity. To generate dendro-
grams representative of each species, we generated a new ASV table—
each for rarefied COI sequence counts and rarefied 16S sequence
counts—grouped by host species by averaging ASV counts within each
species, recalculated dissimilarity matrices and constructed dendro-
grams by clustering distance matrices using the UPGMA method in the
hclust function in R (following Trevelline et al., 2020). We then com-
pared the observed 16S dendrogram to the observed COIl dendrogram
using TreeCmp (Bogdanowicz et al., 2012) to compute the matching
cluster metric of topological congruence (Bogdanowicz & Giaro, 2013).
Following Brooks et al. (2016), we then compared the observed 16S
dendrogram with 10,000 dendrograms with randomized topology
and calculated a normalized congruence score, which is the observed
matching cluster score divided by the maximum congruence score be-
tween the observed dendrogram and one of the random dendrograms.
Finally, we evaluated significance and report a p-value by dividing the
number of randomized dendrograms with equal or greater congruent
scores to the observed 16S dendrogram than the score between the
two observed dendrograms by 10,000. We also used Mantel tests as a
complementary analysis to examine correlations between the diet and
microbiome beta distance matrices at the individual level, where each
value represents the beta distance between a pair of individuals, using
vegan::mantel with the Spearman correlation method.

2.6 | Gut microbiome diversity and
topological analyses

We identified a “core” wood-warbler gut microbiome as the collec-
tion of ASVs present across a large number of individuals using the
rarefied data set. Because most ASVs had a low prevalence among
individuals (Figure S4), we report the core microbiome as ASVs pre-
sent in >30% of all individuals. Although this threshold is arbitrary,
we believe it is conservative as only 39 ASVs were represented in
more than 30% of individuals (see below). We also report taxa at

high relative abundance across all samples at the phylum level. This
set of ASVs represents bacteria that are most common in the gut
microbiome among breeding male wood-warblers.

To quantify the effect of host taxonomy on the gut microbiome
and the extent to which gut microbiomes covary with host phylog-
eny, we took two approaches using the full set of ASVs. First, we
estimated gut microbiome divergence (beta diversity) among indi-
viduals using four measures of community dissimilarity: Bray-Curtis
distance, Jaccard distance, and weighted and unweighted UniFrac
distances. We then used vegan::adonis2 to conduct PERMANOVA
tests to determine the effect of host species on community dissim-
ilarity. Because our samples were collected across four breeding
seasons, from two geographical localities, and were sequenced in
two different batches we also tested for effects of these factors.
We included each of these factors in our model and set the “by”
parameter to “margin.” However, in the full data set the effects of
sampling year and sequencing batch are confounded since all sam-
ples collected in 2020 were sequenced in batch 2, so we ran two
separate models which included either host species + locality + year,
or host species + locality + sequencing run. Results for host species
and locality were similar between models, so we report results from
the model that included sequencing run for simplicity. We also calcu-
lated multivariate homogeneity of group dispersions for significant
variables using vegan::betadisper and assessed deviations from this
expectation using vegan::permutest because a homogeneous disper-
sion among groups is an assumption for PERMANOVA tests. We vi-
sualized beta distances between gut microbiota using the principal
coordinate analysis (PCoA) method of phyloseq::ordinate.

Our second approach was to test for congruence between the
host phylogeny and microbiome, as phylosymbiosis predicts that
host relatedness and microbiome community similarity should ex-
hibit a positive relationship (Brooks et al., 2016). To do this, we first
used the same topological congruence approach as described above,
but used the topology from Baiz et al. (2021) for Setophaga species,
and from Lovette et al. (2010) for outgroup taxa in place of the diet
dendrogram (Figure 1a). We then also used Mantel tests to test for
correlations between the gut microbiome distance matrix and a ma-
trix of cophenetic distances, representing evolutionary distances,
between individuals. We calculated cophenetic distance between
species using the stats::cophenetic function on a dendrogram repre-
senting the host phylogeny in Figure 1a, with branch lengths scaled
using divergence times from TimeTree of Life (Kumar et al., 2017,
Table S2). Note that an evolutionary distance of zero denotes a pair
of individuals from the same species.

Because we found a significant influence of sequencing batch
on gut microbiome diversity, we separately performed all analyses
on the subset of samples sequenced in the first batch (collected
between 2017 and 2019, referred to as “batch 1") as this batch
included a larger subset of samples, which were collected across
multiple years, than the second batch, which only included sam-
ples collected in 2020. For topology and Mantel analyses, we also
subset our data to account for potentially confounding effects
of (i) geographical locality by only analysing samples collected in
New York between 2017 and 2019 (referred to as “batch 1-NY”)
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and (ii) sampling year by only analysing samples collected in 2020
(referred to as “batch 2”).

3 | RESULTS

3.1 | 16S sequencing output and composition of
the warbler gut microbiome

The number of ASVs yielded by our first 16S sequencing run was
6412 (per-individual median = 36, mean = 53, SD = 65) while our
second 16S sequencing run yielded 10,590 ASVs (per-individual
median = 235, mean = 218, SD = 73). This discrepancy is probably
explained by a higher average depth of sequencing across individu-
als in the second sequencing run (Figure S5), despite our attempt
at normalization. Taxa that were detected in both sequencing runs
represented a small proportion of the total number of ASVs across
runs (6%), contributing to the gut microbiome differentiation we ob-
served for individuals sampled in 2020 (see below).

After merging our 16S data sets, applying our filtering steps and
rarefaction, our full data set consists of 270 individuals representing
15 species (mean 18 individuals per species, with 95% of individu-
als being male, 1% female and 4% of unknown sex). Among these
samples, we detected 12,048 ASVs from 39 bacterial phyla with
the top phylum, Proteobacteria, representing 60% of the total reads
(Figure 1b). Firmicutes was the next most abundant phylum, repre-
senting 13% of the total reads, followed by Actinobacteriota, repre-
senting 6.5% of the total reads. The remaining phyla each represented
<5% of the total reads. We observed considerable variation in relative
abundance of prevalent taxa between individuals of the same species
(Figure Séa). Despite low overlap in ASV identity between sequencing
runs, the composition and relative abundance of prevalent phyla were
very similar across host species when we separately examined sam-
ples that were sequenced in different batches (Figure S7).

Most ASVs were present in <10% of individuals, and only 39
ASVs were represented in >30% of individuals (Figure S4). Each of
these core ASVs was represented in all but one or two of the host
species we analysed (Tables S3 and S4). The most prevalent ASV was
a Gammaproteobacteria of the family Yersiniaceae. This ASV was
foundin all 15 host species and ~60% of samples in both the full data
set and the batch 1 subset. Gut microbiome alpha diversity did not
differ among host species (Kruskal-Wallis rank sum test: Shannon
index: full data set d.f. =14, x2 = 14.68, p = .400; batch 1 df = 13,
X% = 16.354, p = .231, Chaol index: full data set df = 14, x*> = 13.99,
p =.451; batch 1 df =13, )(2 =19.32, p =.113, Faith's PD: full data set
df = 14, x*> = 14.98, p = .380; batch 1 df = 13, x* = 18.764, p = .131).

3.2 | COl sequencing output, diet diversity and its
relationship with gut microbiome diversity

Our first COI sequencing run yielded 3235 OTUs, while the sec-
ond yielded 2668 OTUs. In contrast to the 16S data set, there was

moderate overlap in OTU identity between sequencing runs (37% of
OTUs are represented in both batches).

Our analyses revealed 4397 OTUs in the full COIl data set, which
was reduced to 3227 after filtering and rarefaction. Among warbler
species, ~70% or greater relative abundance of diet taxa consisted of
insects, particularly in the orders Diptera and Lepidoptera (Figure 1c;
Figure S6b). The majority of other diet taxa included Arachnids in the
family Araneae. There was a high degree of overlap among species in
diet PCoA space (Figure 3b). These results were consistent between
analyses that included all individuals and only individuals sequenced
in the first batch.

Warbler species fell into three natural partitions along our index
of diet specialization, and thus we used these partitions to classify
species according to diet type (Figure 2b). We classified two ot three
warbler species with low diversity diets depending on the data set
being analysed (batch 1: American redstart [AMRE], chestnut-sided
warbler [CSWA]; full data set: American redstart [AMRE], chestnut-
sided warbler [CSWA], worm-eating warbler [WEWA]). We classified
two to four species with high diversity diets (batch 1: black-throated
green warbler [BTNW], Canada warbler [CAWA; full data set: black-
and-white warbler [BAWW], Canada warbler [CAWA], common yel-
lowthroat [COYE], hooded warbler [HOWA]), and the remainder of
species as intermediate (Figure 1a).

When considering within-individual diversity, we found no cor-
relation between diet alpha diversity and microbiome alpha diversity
when using Shannon index and Faith's PD, as well as Chaol when
considering the full data set (Kendall's rank correlation, Shannon
index batch 1: 7 = 0.029, p = .619; full data set: - = 0.005, p = .906,
Faith's PD batch 1: © = 0.110, p = .064; full data set: = = -0.034,
p = .459, Chaol full data set: 7 = -0.063, p = .171), but when con-
sidering the batch 1 subset using Chao1l, alpha diversity of the diet
and microbiome were positively correlated (Figure 2a; Kendall's
rank correlation batch 1: 7 = 0.124, p = .038). This indicates that, for
batch 1, individuals that consumed high-richness diets (more OTUs)
tended to have more rich gut microbiota (more ASVs), although the
correlation is weak. After accounting for evolutionary history, our
phylogenetic linear models revealed no relationship between mean
species gut microbiome alpha diversity and mean species diet alpha
diversity (Shannon index batch 1: coefficient = 0.860, p = .089; full
data set: coefficient = -0.405, p = .273, Faith's PD batch 1: coeffi-
cient = -0.145, p = .789; full data set: coefficient = 0.340, p = .624,
Chaol batch 1: coefficient = 0.305, p = .480; full data set: coeffi-
cient =-0.024, p = .956).

Alpha diversity of the microbiome was generally lower for in-
dividuals of species that were diet specialists, and higher for indi-
viduals of species that were diet generalists (Figure 2c), but alpha
diversity of the microbiome did not differ significantly by species
diet type (Kruskal-Wallis df = 2: Shannon index batch 1: )(2 = 2.8,
p = .242; full data set: )(2 =0.014, p = .993, Chaol batch 1: x2 =54,
p = .068; full data set: X2 = 0.31, p = .855, Faith's PD batch 1:
)(2 =44, p=.110; full data set: )(2 =0.13, p =.936), even when only
comparing low-diversity diets to high-diversity diets (Kruskal-Wallis
df = 1: Shannon index batch 1: x> = 1.934, p = .1643, full data set:
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FIGURE 2 Relationship between diet diversity and gut microbiome diversity. (a) Within-individual diversity of the gut microbiome is
weakly correlated with within-individual diet diversity as measured by the Chaol index in the batch 1 data set. Dashed line is a linear model
fit to the data. Point colour in each panel reflects warbler species (see Table 1 for species codes). (b) Distribution of diet index scores by host
species, where a low score is reflective of low diet diversity or diet specialization. Colour indicates assignment to diet type and is consistent
with box plot colour in panel (c) and with ellipse colour in panel (d). (c) Microbiome alpha diversity does not differ among diet types, as
classified by diet index. (d) Principal coordinate analysis (PCoA) of Bray-Curtis distance between host gut microbiomes sequenced in batch
1. Point shape represents species diet type as defined by our index of diet specialization. Ellipses are drawn at 50% confidence level, and line
colour indicates diet type. In each panel, data shown are from sequencing batch 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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X% = 0.049, p = .825, Chaol batch 1: x* = 1.8, p = .181; full data set:
X% = 0.29, p = .592, Faith's PD batch 1: x* = 1.3, p = .259; full data
set: x2=0.17, p = .676).

3.3 | Factors accounting for warbler gut
microbiome structure

When analysing the full data set which included microbiomes se-
quenced in two different sequencing runs, there was a very clear
and strong batch effect where microbiomes sequenced in one run
were more similar to each other than to microbiomes sequenced in
the other run (Figure S8). Yet, PCoA of gut microbiome dissimilarity
matrices revealed a high degree of overlap among hosts of differ-
ent species and among hosts from different geographical locali-
ties (Figure 3a). There was little clustering of microbiomes by diet

type of host species as defined by our index of diet specialization
(Figure 2d).

Our PERMANOVA tests (Table 2) revealed that sequencing run
explained a relatively high degree of variation in Bray-Curtis dis-
tances (13%, p = .001), Jaccard distances (7.1%, p = .001) and un-
weighted UniFrac distances (7.9%, p = .001). This strong batch effect
probably confounded tests of other variables, since the second se-
quencing run only contained samples collected in a single year (2020)
and included an additional species (WEWA, worm-eating warbler)
that is not represented in the first sequencing run. Thus, we anal-
ysed the subset of data from 2017-2019 (i.e., batch 1) separately to
examine the effect of biological factors on microbiome structure in
the absence of the sequencing batch effect, because of the two se-
quencing runs this batch included the largest sample size of individu-
als and included 3years of sampling. This analysis revealed sampling
locality had a significant effect when using all four distance metrics,
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TABLE 2 Results of permutational

multivariate analysis of variance

(PERMANOVA) tests and permutation

tests of dispersion on beta distances Distance matrix

between gut microbiomes
Full data set (2017-2020)

Bray-Curtis

Jaccard

Unweighted UniFrac

Weighted UniFrac

Batch 1 (2017-2019)

Bray-Curtis

Jaccard

Unweighted UniFrac

Weighted UniFrac

Permutation test on

PERMANOVA dispersion
Variable df R? p F p
Species 14 .047 162
Locality 1 .007 .011* 13.186 .001**
Year 3 138 .001** 52.964 .001**
Sequencingrun 1 .130 .001** 171.570 .001**
Diet type 2 .009 435
Species .053 .001** 4.481 .001**
Locality .005 .009** 30.959 .001**
Year .080 .001** 151.68 .001**
Sequencing run .071 .001** 527.04 .001**
Diet type .010 167
Species 14 .057 .001** 3.189 .001**
Locality 1 .006 .012* 0.098 761
Year 3 .087 .001** 8.033 .001**
Sequencingrun 1 .079 .001** 21.312 .001**
Diet type 2 .010 191
Species 14 .062 163
Locality 1 .013 .020* 2.155 146
Year 3 .016 146
Sequencing run 1 .006 194
Diet type 2 .013 190
Species 13 .090 .048* 0.703 762
Locality 1 .014 .002** 0.759 .397
Year 2 .012 .385
Diet type 2 .020 .062
Species .093 .001** 2.409 .009**
Locality .011 .001** 5.607 .020*
Year .015 .001** 5.889 .004**
Diet type .020 .001** 9.067 .001**
Species 13 .103 .001** 3.049 .002**
Locality 1 .009 .014* 0.002 971
Year 2 .015 .034* 2.212 .099
Diet type 2 .022 .013* 2.161 118
Species 13 .085 .380
Locality 1 .017 .039* 0.183 .655
Year 2 .008 .732
Diet type 2 .021 246

Note: Diet type reflects categorization based on our index of diet specialization (i.e., high diversity,
low diversity, intermediate). Asterisks denote significant results: ***p <.001, **p<.01, *p<.05.

although the effect size was small (~1%-2% of the variation ex-
plained; Table 2). Similarly, year explained a small amount of the vari-
ation (~1.5%) when using Jaccard and unweighted UniFrac distances.
In the absence of the sequencing batch effect, host species identity
accounts for the highest degree of variation in microbiome structure

when using Bray-Curtis (9%, p = .048), Jaccard (9.3%, p = .001) and
unweighted UniFrac distances (10.3%, p = .001), generally explain-
ing ~6-fold more of the variation than any other factor considered.
Permutation tests indicated that dispersion among species' Jaccard
and unweighted UniFrac distances is not homogeneous, which could
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account for the significant PERMANOVA result. However, this does

not seem to be the case because although dispersion is high for sev-

eral species causing overlap in PCoA space, species' centroid posi-
tions are largely nonoverlapping when using Bray-Curtis, Jaccard
and unweighted UniFrac distances (Figure S9), probably reflecting
true gut microbiome structuring among species.

In line with our findings of little-to-no correlation between indi-
vidual diet alpha diversity and gut microbiome alpha diversity, host
species diet type did not significantly explain variation between mi-
crobiomes in the full data set, nor in the batch 1 subset—with the
exception of using Jaccard and unweighted UniFrac distance, in
which case diet type explained a small amount of the variation (~2%;
Table 2). Dispersion among diet types for Jaccard distance was not
homogeneous (F = 9.067, p = .001), yet diet type centroid positions
for Jaccard and unweighted UniFrac distances were nonoverlapping
in PCoA space especially for low-diversity diets (Figure S10), indicat-
ing some differentiation among gut microbiota for species with more
specialized diets.

3.4 | Topological congruence analyses

Normalized matching cluster congruence scores for the gut
microbiome-host phylogeny topological comparisons were between
~0.4 and 0.8. As congruence scores of zero indicate complete topo-
logical congruence, and scores of 1 indicate complete incongruence,

these scores reflect intermediate congruences. When analysing all

individuals in the full data set, and within the batch 1 and batch
1-NY subsets, the observed warbler gut microbiome dendrogram
was significantly more congruent with the host phylogeny than with
randomized dendrograms using Bray-Curtis, Jaccard and weighted
UniFrac distances (Table 3, Figure 4a). In the batch 2 subset, the gut
microbiome dendrogram was more congruent with the host phy-
logeny than with randomized dendrograms using Bray-Curtis and
unweighted UniFrac distances (Table 3). Thus, the majority of com-
parisons (N = 11 of 16 comparisons) indicate a positive association
between gut microbiome similarity and host phylogenetic related-
ness. As Bray-Curtis and weighted UniFrac metrics are weighted by
ASV counts, this may indicate that relative abundances of microbial
taxa help contribute to the phylogenetic signal in the warbler gut
microbiome.

To determine whether gut microbiome similarity better reflects
host evolutionary history or host diet similarity, we repeated the
topological analyses above instead using a dendrogram clustered
from the diet OTU distances in place of the host phylogeny (Table 3).
Among comparisons, congruence scores were generally lower (indi-
cating better congruence) for microbiome-host phylogeny compar-
isons than for microbiome-diet comparisons (Figure S11), although
there are some exceptions. Importantly, only six of 16 microbiome-
diet comparisons were significantly more congruent than random.
Three of these comparisons were of Jaccard distance, which only
considerers ASV presence/absence. Further, in two other instances
both considering Bray-Curtis distances, congruence scores for

the microbiome-host phylogeny comparison were lower than for

TABLE 3 Summary of topological congruences between species-level gut microbiome dendrograms and the host phylogeny (left), and
between species-level diet dendrograms (right), and of individual-level Mantel tests

Microbiome-host phylogeny

Microbiome-diet

Matching cluster

Matching cluster

N spp. Distance metric congruence score Mantel r congruence scores Mantel r
Full data set (2017-2020) 15 Bray-Curtis 0.52*** .02 0.57 .06*
Jaccard 0.58** .04 0.56*** A7
Unweighted UniFrac 0.68 .10** 0.74 16
Weighted UniFrac 0.58** .01 0.51** .03
Batch 1 (2017-2019) 14 Bray-Curtis 0.45*** .09* 0.70 .09*
Jaccard 0.45*** .18 0.39*** 21
Unweighted UniFrac 0.71 19 0.64 22
Weighted UniFrac 0.57** -.003 0.61 ={05
Batch 1-NY (2017-2019) 13 Bray-Curtis 0.44*** 5% 0.53* 117
Jaccard 0.52** .23 0.44** .23**
Unweighted UniFrac 0.73 27** 0.69 25%*
Weighted UniFrac 0.52** .07 0.74 -.09
Batch 2 (2020) 14 Bray-Curtis 0.56** .07 0.62* .01
Jaccard 0.72 .03 0.67 -.03
Unweighted UniFrac 0.59* .04 0.64 -.02
Weighted UniFrac 0.79 -.02 0.73 .06

Note: N spp. = number of species analysed, and matching cluster congruence scores are normalized where O = complete congruence and
1 = complete incongruence. Asterisks denote significant results: ***p< .001, **p<.01, *p<.05.
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FIGURE 4 Summary of phylosymbiosis analyses. (a) Topological congruence analyses of the association between the gut microbiome
and host phylogeny (left), the gut microbiome and diet (middle), and the diet and host phylogeny (right). Microbiome and diet dendrograms
were constructed using Bray-Curtis distances of mean within-species ASV/OTU counts. Matching cluster congruence scores are normalized
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the microbiome-diet comparison (batch 2, batch 1-NY; Table 3).
Collectively, these results suggest a closer association between gut
microbiome structure and host evolutionary history than with host
diet.

Finally, we examined the association between the host phylog-
eny and diet dendrograms from the batch 1 subset to determine
whether the significant associations we detected between the gut
microbiome and diet could be due to a phylogenetic signal of the
diet. For all four distance metrics, the diet-host phylogeny compari-
son was significantly more congruent than random (Bray-Curtis nor-
malized matching cluster score = 0.56, p = .007, Jaccard normalized
matching cluster score = 0.52, p = .003, unweighted UniFrac nor-
malized matching cluster score = 0.51, p = .001, weighted UniFrac
normalized matching cluster score = 0.57, p = .017). These scores
reflect intermediate congruence between the diet dendrogram and
host phylogeny, and are similar but slightly higher (less congruent)
on average than significant congruence scores between the microbi-
ome dendrogram and host phylogeny in batch 1 (Figure 4a, Table 3).

3.5 | Mantel tests

Mantel tests indicated a positive relationship between individual-
level microbiome distances and pairwise evolutionary distances
(Mantel r~.09-.27) in the batch 1 and batch 1-NY data sets for Bray-
Curtis, Jaccard and unweighted UniFrac distances, and in the full
data set for unweighted UniFrac distance (Table 3, Figure 4b). Mantel
tests also indicated a positive relationship between individual-level
microbiome distances and diet distances (Mantel r~.06-.25) in the

full data set, batch 1 and batch 1-NY subsets using Bray-Curtis,
Jaccard and unweighted UniFrac distances (Table 3, Figure 4b).

We also tested the relationship between diet matrices and pair-
wise evolutionary distances in the batch 1 subset, and found a pos-
itive association for Jaccard diet distance (Mantel r = .10, p = .027),
and unweighted UniFrac diet distance (Mantel r = .13, p = .004).
Notably, across all Mantel tests, most significant correlations were
detected when using unweighted distance matrices (Jaccard and un-

weighted UniFrac).

4 | DISCUSSION

We performed faecal metabarcoding to examine environmental and
evolutionary influences on gut microbiome structure in breeding
wood-warblers. Our analyses collectively support host taxonomy
as the strongest driver of gut microbiome structure while environ-
mental factors, including diet type, showed lesser effects. At the
individual level, diet alpha diversity showed little to no association
with microbiome alpha diversity. Further, on average, more closely
related species tended to harbour more similar gut microbiomes, and
gut microbiome similarity was less closely associated with diet simi-
larity, suggesting host evolutionary history may play a large role in
shaping host-microbe interactions in this clade. We also detected
a relatively strong batch effect of sequencing run on gut microbi-
ome diversity, and by analysing within-batch subsets of our data we
saw that this had obscured the signal of the biological factors we
considered in our analyses. Thus, these results highlight caution for
other researchers about whether or not to divide samples across

d ‘T “€T0T XP6TSIET

:sdny wouy papeoj

2SULOI'T SuoWWo)) dA1ea1) d[qearjdde ay) Aq pauraA0S aie sa[oIIE Y() (ash JO SA[NI 10§ AIRIqIT Sul[uQ AJ[IA\ UO (SUOHIPUOI-PUB-SULIA) W0 KB[IM" ATeIqI[aur[uo//:sdiy) suonIpuo)) pue suwiia [, 3yl 298 [£707/10/5Z] U0 Areiqry aurjuQ) Ao[ip “ANSIOATUN d)elS BIUBAJASUUS Aq 79L9[ 93U/ [ [ '(]/I0P/WOd AA[Im A.


www.wileyonlinelibrary.com

BAIZ ET AL.

530
—I—W] LE Y-2Y(e]#:Xe[8) WN:§:{ele) Xo €)%

sequencing lanes and this should be a serious consideration in future

metabarcoding studies.

4.1 | The wood-warbler gut microbiome

Wood-warbler gut microbiomes were dominated by Proteobacteria
and Firmicutes, which is consistent with other studies of other
free-living passerines (e.g., Bodawatta, Koane, et al., 2021; Hird
et al., 2015). The most prevalent ASV, a Proteobacteria in the family
Yersiniaceae, was observed in ~60% of individuals and occurred in
all host species examined, but only a very small proportion of ASVs
were represented in >30% of the individuals sequenced. These re-
sults may reflect a shared signature of the passerine gut microbiome
in wood-warblers at higher taxonomic levels, yet a high level of vari-
ability among individuals, especially for lower abundance taxa.

The most dominant bacterial phyla in the current study were also
identified as highly abundant in the only migratory cycle study of
recaptured warblers to date, which focused on Kirtland's warblers
(Setophaga kirtlandii; Skeen et al., 2021), a species that does not breed
in our study areas. Although arrival on the breeding grounds was ac-
companied by a shift from a Kirtland's warbler gut microbiome dom-
inated by Firmicutes to one dominated by Proteobacteria, both phyla
were highly abundant across the migratory cycle. The most preva-
lent taxonomic classes in the current study (Gammaproteobacteria,
Alphaproteobacteria and Bacilli) also dominated gut microbiomes of
breeding Kirtland's warblers (Skeen et al., 2021). However, Clostridia
was one of the most abundant taxa in Kirtland's warblers but was
found at low prevalence among individuals in the current study and
made up only <2% of the total reads sequenced. This may suggest
that Kirtland's warblers, a near-threatened Caribbean migrant with
highly specialized habitat requirements, differ in gut microbiome
structure from closely related parulids breeding nearby. This differ-
entiation would be consistent with our findings of a relatively strong
role of host taxonomy and evolutionary history, and/or associated
environmental factors that we were unable to resolve with our data
set, in shaping the parulid gut microbiome (see below).

In this study, sampling locality consistently explained 1%-2% of
the variation between microbiomes across data sets and distance
metrics considered. Samples were collected from two forested lo-
calities in Eastern North America roughly 400km apart, a distance
that is probably not large enough to generate significant population
genetic structure within warbler host species due to a lack of poten-
tial barriers to gene flow (e.g., yellow-rumped warblers, Setophaga
coronata; Toews et al., 2016). However, our results suggest this dis-
tance may be sufficient in scale to affect subtle changes in gut mi-
crobe communities. Interestingly, the amount of variation explained
by sampling locality here is similar to that reported in other passer-
ine studies (San Juan et al., 2021; Teyssier et al., 2020), despite this
study encompassing a larger geographical area. For example, habitat
type explained ~4% of the variation between passerine microbi-
omes within a 43-km agricultural study area in Costa Rica (San Juan
et al., 2021), suggesting habitat features may be more important

than geographical distance between sites. Although we did not in-
clude habitat features as a factor in our analyses, notable differences
between our study sites include an abundance of Rhododenron (R.
maximum) and mountain laurel (Kalmia latifolia) in the understorey
at our Pennsylvania localities, whereas these shrubs do not occur
in our New York localities. This and other habitat differences could
conceivably contribute to the differences we observed in gut micro-
biota between our sites.

When analysing a subset of samples from a single sequencing
run, sampling year explained a similar proportion of variation be-
tween microbiomes as did sampling locality, but tended not to be
significant. This may indicate that wood-warbler microbiomes are
stable across breeding seasons, despite annual long-distance longi-
tudinal migration to and from tropical nonbreeding grounds, which is
probably associated with changes in foraging strategies. This is con-
sistent with other passerine studies that found no difference in gut
microbiome diversity across consecutive breeding seasons (Benskin
et al., 2015; Escallon et al., 2019), but it is important to note that
in our data set, each year represents a different cohort of individ-
uals. In migratory species, it will be desirable to resample the same
individuals on the nonbreeding and breeding grounds across mul-
tiple cycles to disentangle temporal effects from those of habitat,
diet and geographical locality (Bodawatta, Hird, et al., 2021; Skeen
etal., 2021).

4.2 | Dietdiversity is not tightly linked to gut
microbiome diversity in wood-warblers

By sequencing both arthropod COI gene and bacterial 16S rRNA
gene metabarcoding libraries from the same faecal samples, we
were able to directly examine the relationship between natural diet
diversity and gut microbiome diversity of the same individuals. Our
strategy revealed that when analysing three different metrics of
within-individual (alpha) diversity, diet diversity was not correlated
with microbiome diversity with the exception of a weak correla-
tion in the batch 1 data when using the Chaol index, which is nei-
ther phylogenetically aware nor weighted by ASV/OTU abundance
(Figure 2a). Although individuals of species with low-diversity diets
tended to have reduced gut microbiome alpha diversity and individ-
uals of species with high-diversity diets tended to have increased mi-
crobiome alpha diversity, this pattern was not significant (Figure 2c).
Further, when looking at between-individual (beta) diversity, diet
type explained only ~2% of the variation between individuals and
only when using unweighted distance metrics. In this case, individu-
als of species with more specialized (less diverse) diets tended to
drive this pattern (Figure $S10). This provides some evidence that diet
richness may be weakly associated with gut microbiome richness,
although we were unable to detect significant associations with
these analyses when using our full data set, which may be due to
the batch effect. Similarly, Mantel tests provided some support for
a positive relationship between individual gut microbiome similarity
and diet similarity especially for unweighted distance metrics, but
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the association is not strong (Table 3). Thus, in contrast to our pre-
diction, diversity of the diet generally did not explain variation in
the gut microbiome. This may suggest a high-diversity diet either
does not generally provide wood-warblers with an increased avail-
ability of potential gut colonists, or gut microbe colonization is not
strongly affected by diet diversity. Similarly, in a study of two spe-
cies of freshwater fish, Bolnick et al. (2014) found the relationship
between diet diversity and gut microbiome diversity was not linear
and fish with a specialized diet actually harboured a more diverse
gut microbiome.

Despite our finding of a weak relationship between diet diver-
sity and gut microbiome diversity, many studies have shown host
diet indeed influences the avian gut microbiome. Broad categoriza-
tion of natural feeding guild and diet type explain differences in the
gut microbiomes of wild passerines in New Guinea and of zoo and
farm birds in China, respectively (Bodawatta, Koane, et al., 2021;
Xiao et al., 2021). Further, experimental manipulations of passerine
diets have been associated with shifts in gut microbiome diversity
and composition (Davidson et al., 2020; Knutie, 2020; Pekarsky
et al., 2021; Teyssier et al., 2020). In the current study, we analysed
natural diets of breeding wood-warblers, which are known to pri-
marily eat insects (Birds of the World, 2022; MacArthur, 1958). Our
metabarcoding results indicate a substantial portion of the diet is
also arachnid-based. However, diet alpha diversity did not differ
among species, and relative proportions of arthropod classes in the
diet were similar (Figure 1c). The lack of species with a highly special-
ized diet (at the scale analysed here) that were included in this study
may make wood-warblers a poor system for untangling the effect
of diet diversity on gut microbiome diversity, and future dual diet-
microbiome metabarcoding studies could also include birds with
clear distinctions in dietary guild for comparison (e.g., extreme diet
specialists, aerial insectivores). We note that we did not consider
fine-scale spatial partitioning of the feeding niche as an explanatory
variable in this study, something wood-warblers are well known for
(MacArthur, 1958). Further, it is possible that because we examined
broad-scale patterns in diet diversity at the OTU level, we were not
able to identify components of the diet (e.g., nutritional values of ar-
thropods) that possibly underlie gut microbiome structure. We also
note that although wood-warblers are primarily insectivores, some
species are known to supplement their diet with fruit, especially in
the nonbreeding season (Birds of the World, 2022). Our study design
did not allow us to examine effects of any nonarthropod compo-
nents of the diet, which may influence gut microbiota (Bodawatta
et al., 2022). Nevertheless, our results suggest dietary arthropod
diversity does not scale directly with gut microbiome diversity in

breeding wood-warblers.
4.3 | Host evolution as the main driver of wood-
warbler gut microbiome structure

Among the biological factors considered in this study, host spe-
cies stands out as the variable that explains the largest amount of

variation between microbiomes. Further, species-level 16S dendro-
grams were generally more concordant with the host phylogeny than
with COI dendrograms (Figure 4a, Table 3). We also found the host
phylogeny to be concordant with COI diet dendrograms, suggest-
ing the weaker associations we did detect between the diet and gut
microbiome may have arisen due to a phylogenetic signal of both the
diet (Miller et al., 2022) and microbiome. Together with our findings
of little environmental influence on the wood-warbler microbiome,
this may suggest that host evolutionary history rather than differ-
ences in species' ecological niche is the main driver of microbiome
differentiation between wood-warbler species.

Mantel analyses of individual-level matrices revealed a some-
what contrasting pattern, showing support for positive associations
between the gut microbiome and evolutionary distance and a sim-
ilar level of support for a positive relationship between the gut mi-
crobiome and diet distance. Similar to the topological congruence
analysis, these analyses also showed some support for a relation-
ship between the diet and evolutionary distance. In these analyses,
most of the significant associations involving the diet arose using
unweighted distance metrics. These results are consistent with our
other diet diversity analyses by suggesting community richness is
driving these patterns.

The conflicting pattern revealed by the topological congruence
analyses and Mantel tests may be explained by at least two factors.
First, although they are complementary tests of phylosymbiosis,
topological congruence analyses and Mantel tests fundamentally
rely on different information. Topological congruence analyses do
not rely on branch lengths or directly consider evolutionary or beta
distances, whereas Mantel tests measure the correlation between
two distance matrices. Because changes in microbiome community
structure may be much more rapid than evolutionary changes be-
tween host genomes, topological congruence analyses may be a
more conservative test of phylosymbiosis (Lim & Bordenstein, 2020).

Second, we used species-averaged ASV/OTU counts in the
topological congruence analyses in order to summarize variation
within each species, whereas our Mantel tests were of distance ma-
trices based on individual-level data. Across all of our analyses of
individual-level data, both alpha and beta diversity of the diet and
microbiome were quite variable, even within species. For example,
Bray-Curtis distances between individuals of the same species
ranged from ~0.07 to 1 for the gut microbiome, and from ~0.25to 1
for the diet (Figure 4b). This may suggest that the high level of vari-
ation within species obscured phylogenetic signal in gut microbiome
and diet similarities at the individual level in Mantel tests.

Host species identity was the biological factor that explained the
highest degree of variation between microbiota (Table 2), suggesting
the mean ASV counts used in topological congruence analyses may
capture unique features within host species. Collectively, our anal-
yses support a tighter association between the gut microbiome and
host evolutionary history than between the gut microbiome and diet
similarity when looking at the level of host species. This phylogenetic
signal of gut microbiome structure is well supported in nonflying
mammals and insects, but has been less well supported in birds. Avian
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gut microbiome studies generally support differences between host
species (Hird etal., 2015, San Juan et al., 2020, Capunitan et al., 2020;
but see Hird et al., 2014), but phylosymbiosis was not supported in
New Guinean passerines (Bodawatta, Koane, et al., 2021) and the
signal was weak among captive cranes and in two passerine studies
(Kropackova et al., 2017; Loo et al., 2019; Trevelline et al., 2020).
In the current study, concordance between the wood-warbler phy-
logeny and gut microbiome dendrogram was moderate and similar
to that reported for cranes in captivity (Trevelline et al., 2020) and
passerines in the Czech Republic (Kropackova et al., 2017). Thus, our
results support the view that phylosymbiosis is weaker in birds than
in mammals (Song et al., 2020; Youngblut et al., 2019) and uniquely
demonstrate that in wood-warblers, a stronger influence of diet (as
measured by species-level diet diversity) does not account for this
discrepancy. Our findings of high variability of gut microbiomes for
individuals within the same species may explain the lack of a con-
sensus about phylosymbiosis in the avian literature, and particularly
among studies that analysed fewer individuals per species.

A phylogenetically conserved gut microbiome may provide the
opportunity for co-adaptation between hosts and their gut microbes,
which could implicate microbiomes in complex host evolutionary
processes, including speciation (Brucker & Bordenstein, 2012).
Long-term co-evolution between hosts and microbiota could ex-
plain phylosymbiosis, but this pattern could also arise under ecolog-
ical filtering. Mazel et al. (2018) used simulations to show that under
ecological filtering, the strength of phylosymbiosis is determined by
the strength of the phylogenetic signal in the host trait underlying
microbe colonization. It has been hypothesized that convergence
of bat and avian gut microbiomes is due to reduced gut length, an
adaptation to powered flight, which may favour rapid turnover in
gut microbiota, thus accounting for the weakened phylogenetic sig-
nal in avian gut microbiomes compared to nonflying mammals (Song
et al., 2020). Consistent with this, Bodawatta, Koane, et al. (2021)
found a negative association between passerine body mass—a proxy
for gut length—and both gut microbiome richness and divergence.
This might lead to the prediction that phylogenetic signal of the gut
microbiome should be strongest in large-bodied birds and weakest
in small-bodied birds. However, the current data do not support this,
as is highlighted by the results presented here. The strength of phy-
losymbiosis reported here for wood-warblers—small-bodied species
weighing ~6-20g—is similar to that reported for cranes (Trevelline
et al., 2020), which are several hundred times heavier. Thus, addi-
tional study is necessary to elucidate the effect of gut retention time
on gut microbiome structure, and of other phylogenetically con-
served avian traits or habitat preferences, including diet, that may
mediate the colonization and maintenance of gut microbiomes.

Further study is also necessary to understand the biological rel-
evance of taxonomic differences and of phylogenetic signal in gut
microbiome structure between hosts. Experimental studies have
shown antibiotic treatment administered to nestlings results in faster
growth rates (Coates et al., 1963; Kohl et al., 2018; Potti et al., 2002),
and caeca of germ-free chickens exhibit altered gene expression and
notably do not express immunoglobulins (Volf et al., 2017). Thus, it

is clear that gut microbiota impose constraints on host development
and immune function, but how species-differences in natural gut
microbiota composition might impact host fitness is unknown. It is
important to note that although we observed an effect of host tax-
onomy on gut microbiome structure, this does not necessarily imply
functional differences in gut microbiota between hosts. However,
due to microbiome differentiation between host species we may
predict disruption of these communities for admixed individuals
upon hybridization (Brucker & Bordenstein, 2012). Wood-warblers
are well known to hybridize and occasionally even form intergeneric
hybrids (Toews et al., 2018, 2020), making this clade an excellent
system that can be used to tease apart evolutionary from ecological
influences on the gut microbiome as well as the potential role of the

microbiome in hybrid dysfunction.

4.4 | Limitations of metabarcoding and caution
against sequencing batch effects

Our study faces several limitations inherent to metabarcoding ap-
proaches (Taberlet et al., 2012). First, we used primers to target gut
bacteria and arthropod taxa. However, gut communities are very
complex and also include archaea, fungi, nonarthropod diet taxa (dis-
cussed above) and other eukaryotes including gut parasites. These
other taxa probably influence gut microbiome dynamics, which we
were not able to consider here. Further, we were limited by taxo-
nomic databases to identify gut bacteria and dietary arthropods. A
small proportion of the taxa analysed here could not be identified
beyond domain, including two ASVs in the core warbler gut microbi-
ome (Tables S3 and S4). Finally, PCR steps introduce bias in the de-
tection of taxa and estimates of their abundance (James et al., 2022).
We took steps to minimize the effects of bias by sequencing multiple
individuals per host species, and we analysed mean within-species
OTU counts in certain analyses. This approach should help limit the
impact of artificially biased abundances when analysing differences
among host species, as artificial bias is not expected to be consist-
ent across individuals. We also randomized the order in which we
processed samples during library preparation, such that each plate
contained samples collected across multiple species, years and lo-
calities in case of plate-specific PCR batch effects. To further limit
PCR bias in 16S libraries, we included three technical replicates for
each individual and pooled replicates before sequencing (Caporaso
et al., 2011). However, for COl libraries, we only sequenced a single
PCR per individual. This approach probably led us to underestimate
the richness of diet taxa, and we probably were not able to detect
rare diet taxa (Alberdi et al., 2018).

A strength of our study is that we were able to include large sam-
ple sizes, although we split our sequencing into two batches. We
prepared and sequenced our 16S and COl libraries in two different
batches and the resulting yields were quite different (Figure S5).
This strategy was desirable because it allowed us to process sam-
ples as they became available and it increased our overall sample
sizes. However, we found the technical artefacts this introduced
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were not trivial (Figure S8), and similar to batch effects in other
studies (Gibbons et al., 2018; Lou & Therkildsen, 2022) it obscured
the signal of the biological factors we tested (Table 2). Our topolog-
ical congruence analysis seemed to be robust to the batch effect
as our results were similar across data sets, although it is possible
that batch effects obscured the signal of phylosymbiosis in previ-
ous avian gut microbiome studies. It is possible that batch effects
are less of a concern for mammalian and other systems, where the
signal of host phylogeny on gut microbiome structure is stronger
than in birds. Similarly, the batch effect was less strong in the COI
data, which we also processed and sequenced in two batches (37%
of total arthropod OTUs detected in both batches compared to 6%
for bacterial ASVs). This may be due to a more rapid saturation of the
accumulation curve for arthropod taxa than for bacterial taxa that
are present in the warbler gut (Figure S2).

Future methodological study of the consequences of batch ef-
fects in metabarcoding studies is warranted. We recommend that
metabarcoding studies report sequences of technical replicates
(PCRs amplified from the same sample within a batch) and positives
(same sample sequenced across batches) which may help clarify
when it is appropriate to make direct comparison of data sequenced

in different batches.

5 | CONCLUDING REMARKS

Our data highlight many outstanding questions regarding avian mi-
crobiomes and the ongoing need to characterize microbiomes of wild
birds (Hird, 2017). Wood-warbler gut microbiomes are dominated
by Proteobacteria and Firmicutes, and on average, closely related
host species share more similar gut microbiomes. We found little in-
fluence of sampling year, geographical locality or diet diversity on
gut microbiome structure, and thus the majority of the variation be-
tween microbiota was left unexplained. Our results may suggest the
phylogenetic signal in gut microbiome structure is tied more closely
to host traits than to host environment, yet the mechanisms driving
this signal and possible functional consequences for hosts are not
clear.

The level of phylogenetic signal in gut microbiome structure we
detected is similar to that detected for larger-bodied birds (Trevelline
et al., 2020), suggesting small body size does not preclude phylo-
symbiosis. Further study is necessary to understand the relationship
between host body size, gut retention time and gut microbe coloniza-
tion. Although we found that broad-scale measures of diet diversity
are not closely related to gut microbiome diversity, future studies
should explore how components of the diet (e.g., dominant arthro-
pod taxa, energetic values of food items) might influence the gut
microbiome, including by way of their influence on host traits (e.g.,
gut pH). Wood-warblers represent a promising system to continue
addressing outstanding ecological and evolutionary questions about
the avian microbiome, including how microbiomes may influence
and respond to adaptive radiation (Bodawatta, Hird, et al., 2021).
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