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Scalings and decay of homogeneous, nearly isotropic turbulence
behind a jet array
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Homogeneous and isotropic turbulence can be generated by many different mechanisms,
from classical passive grids to jet arrays. By using high-speed jets, a jet array becomes
a promising way to produce intense turbulence with large energy dissipation rates in
water and wind tunnels. In this paper, a systematic experimental investigation was con-
ducted to understand how the turbulence decay scales with the jet velocity, nozzle size,
and nozzle spacings. Three-dimensional particle tracking was performed to quantify the
spatial distribution of different turbulent characteristics. Combined with several previous
experiments focusing on near-field measurements, our results provide a clear picture of the
decay of the kinetic energy and the energy dissipation rate as well as the development of
the inhomogeneity and anisotropy of turbulence generated by a jet array. Suggestions and
design considerations for future wind and water tunnels are also provided.
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I. INTRODUCTION

Turbulent dispersed multiphase flows are ubiquitous in many engineering and environmental
applications, such as mineral separation by bubbles in flotation [1], catalytic particles and bubble
columns in process technology [2], pollutants dispersed in the atmosphere [3], and plankton in
the oceans and sediment-laden river flows [4]. For all these applications, the background flow is
turbulent, covering a wide range of temporal and spatial scales. The complex interactions between
the dispersed phase and the turbulent carrier phase produce many new phenomena.

To investigate the effect of turbulence, homogeneous and isotropic turbulence (HIT) is commonly
used because HIT is a canonical turbulence that retains its universal characteristics without the
complications such as the mean shear. Nevertheless, despite the simplicity of HIT, it is nontrivial to
produce such an ideal flow in a laboratory setting in a controlled way. HIT can only be approximately
generated in the laboratory because it is challenging to produce turbulent energy across the entire
flow domain uniformly. The most common and successful way of generating HIT is by adding a
periodic grid or mesh in wind or water tunnels, which was first attempted by Simmons and Salter
[5]. In these systems, flows were shown to be homogeneous in two-dimensional (2D) planes parallel
to the grid [6,7] with the spatial decay of turbulent kinetic energy (TKE) in the third direction. To
reach a state of satisfactory isotropy, the individual wakes induced by a “passive” grid require at
least 30 mesh lengths to fully mix and merge with each other [8]. At such a distance, turbulence
has weakened, resulting in a moderate Taylor-Reynolds number [9–11], Reλ = u′λ/ν between 50
and 150 [u′ is the root-mean-squared (rms) fluctuation velocity, λ is the Taylor microscale λ =√
15ν/εu′, ε is the turbulent energy dissipation rate, and ν is the kinematic viscosity of the fluid].

In attempts to increase the Reλ, “active” grids with randomly flapped agitator wings [12] replaced
the passive predecessors, and it can significantly enhance Reλ [13–16].
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However, both turbulence and its Reynolds number will not be kept constant in wind or water
tunnels driven by a grid; they continue to decay as turbulence moves away from the grid. Such decay
is controlled directly by the energy dissipation rate ε = 2ν〈Si jSi j〉 (ν is the kinematic viscosity and
Si j represents the rate-of-strain tensor). If the turbulence attained is homogeneous and isotropic and
Taylor’s frozen flow hypothesis is used, the decay of the kinetic energy as a function of distance
away from the grid can be converted to the decay in time, which follows a power-law relationship
k = u′2/2 ∼ t−n; the same applies to the growth of the integral length scale L ∼ tm [17,18]. At high
enough Reynolds numbers, the exponent n is believed to be a universal constant [9,19,20]. Invoking
self-similarity, it was shown by Batchelor [9] that n = 1 and m = 1/2. Assuming invariants related
to the energy spectrum near small wave number, different power-law exponents were derived before,
which shows n = 6/5 and m = 2/5 by Birkhoff [19] and Saffman [20]. Furthermore, assuming the
growth of the length scale is limited by the size of the turbulence box L ∼ t0 and the decay is driven
by the mean energy dissipation rate 〈ε〉, one can also acquire n = 2 and m = 0 [21–23].

Such a wide spread of the exponent for the decaying turbulence was also reported in experiments
by using conventional grids [10,24], fractal grids [7,25–28], rotating grid rods [29], as well as active
grids [11,12]. The reported exponent n ranges from 1 to 2 with the majority of experiments using
conventional grids consistent with Birkhoff-Saffman prediction of n = 6/5.

In addition to grids (active or passive), turbulence can also be generated by jets. An important
work that should be noted is by Gad-el Hak and Corrsin [8], in which an array of nozzles were
integrated with a conventional passive grid. Jets from these nozzles can be independently controlled
and, depending on the injection rate from the nozzle, a systematical change of the decay power-law
exponent from n = 1.325 to 1.0 as the jet-injection rate increases was observed. This finding is
counterintuitive because jets are shown to improve the energy transfer in the high-wave-number
regions, which is expected to increase instead of decrease the decay rate. This inconsistency calls
for more studies to understand turbulence decay driven by a jet array.

Note that, in this previous work, the jet array was used primarily to assist the passive grid to
generate turbulence. The flow rate through the jets was only 8.55% of the co-flow. In a more recent
work by Variano and Cowen [30], the jet array was employed to drive turbulence without a co-flow,
and the results suggested a much larger exponent of n = 2, which seems to imply that increasing
the jet flow rate tends to first reduce and then increase the decay exponent. A similar exponent
ranging from n = 1.89 to 2.13 can also be extracted from the measured decay of the turbulent
kinetic energy for different jet actuation patterns by Pérez-Alvarado, Mydlarski, and Gaskin [31].
A slightly lower exponent close to 1.65 can be roughly estimated from Fig. 6 reported by Johnson
and Cowen [32]. Note that, in this case, the turbulence generated was confined in a box so the decay
could be affected.

To cover the range of the jet flow rates between these two limits, the goal in this paper is
to understand the turbulence decay driven by a jet array with the jet flow rate ranging from
18.5% to 87.2% of the total flow rates. In particular, the paper focuses on how different turbulent
characteristics scale with the jet nozzle diameter and jet velocity. The detail of the experiments is
introduced in Sec. II. In Sec. III, we first derive the location where HIT starts to form based on
previous experiments and present the results on the decay of fluctuation velocity and the dissipation
rate. Based on the measurements, a simple empirical equation is proposed to quantify the decay.
Finally, some practical design considerations are shared for future experimental studies.

II. EXPERIMENTAL SETUP

All the experiments were performed in a closed-loop vertical water tunnel, called a vertical
octagonal noncorrosive stirred energetic turbulence (V-ONSET), as shown in Fig. 1. In this tunnel,
turbulence was powered by a three-dimensional (3D) printed jet array facing downward at the top
of a transparent octagonal test section (for details, see Masuk et al. [33]).

For the jet array, there are four important parameters, including the number N of nozzles, the
nozzle size d , the nozzle spacing M, the co-flow velocity Uc, and the jet velocity Vjet at the nozzle
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FIG. 1. Pictures of (a) the V-ONSET with an optical diagnostic system and (b), (c) two different jet arrays:
(b) Array 1 and (c) Array 2.

exit. Note that, for a given jet array, the jet spacing is fixed, but M can vary by turning on more or
fewer jets in experiments. As shown in Fig. 1, two different arrays were printed: (Array 1) N = 88,
d = 5 mm, M = 2.1 cm, (Array 2) N = 21, d = 8 mm, M = 5 cm. Here, the values of M are
referred to the case when all the jets are on.

As shown in Fig. 2(a), each nozzle was connected through internal channels to their individual
side openings, which can be controlled separately by solenoid valves. Although jets can be turned
on and off randomly in space and time, the experiments reported in this work were conducted
by keeping the designated jets running continuously in order to keep a constant spacing between
neighboring jets. In addition, squared through holes between these nozzles allow co-flow to merge
coaxially with the firing jets. To drive the flow, a single centrifugal pump with a variable frequency
controller was used. The split of the flow coming out of the pump between the co-flow and jet array
can be controlled by a regulating valve. This method allows for independent control of the co-flow
Uc and the jet exit velocity Vjet, which were precisely measured by two flow meters installed in the
system.

To measure turbulence and acquire its statistics, three high-speed cameras were used to capture
the tracer motion inside the tunnel. The shadows of the seeded polyamide tracer particles with
60 μm in diameter and density close to 1.03 g/cm3 were cast by a dedicated LED panel onto the
imaging plane of each camera. These images were then reconstructed into 3D trajectories via our
in-house open-source Lagrangian particle tracking algorithm, OpenLPT [34,35]. The entire optical
diagnostic system was mounted on a frame that can be slid to different positions away from the jet
array.

To investigate turbulence decay driven by a jet array, we conducted experiments by changingVjet,
M, and the measurement location x from the jet array. Each experimental condition was repeated to
cover at least four times the integral timescale TL. The view volume is around 6 cm in width and
3 cm in height, which covers at least one integral length scale L to ensure that the inertial range
statistics are fully resolved. For all the data presented, Vjet was varied between 2.4 to 12.1 m/s; the
jet spacing ranges fromM = 2.8 to 5.4 cm. The jet spacing was controlled by changing the number
of jets that are on since individual nozzles can be independently controlled by the solenoid valves.
The statistics were acquired up to 100 times the nozzle diameter away from the jet array. Details of
the experimental conditions are summarized in Table I.

III. RESULTS

A. Homogeneity

Previous works have shown that a jet array can produce turbulence close to a homogeneous
and isotropic condition [8,30,33,36–38]. However, in most cases, the measurements were limited to
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FIG. 2. (a) Section view of a jet array to show the internal channels and key geometric parameters;
(b) Schematic of the mean velocity profile at two different axial locations.

TABLE I. Control parameters for experiments.

Experiment Array Vjet (m/s) Uc (m/s) M (cm) x/d

I.1 Array 1 5.5 0.27 2.8 [53,165]
I.2 Array 1 5.5 0.27 3.2 [53,165]
I.3 Array 1 5.5 0.27 4.0 [53,165]
I.4 Array 1 5.5 0.27 5.4 [53,165]
II.1 Array 1 2.5 0.22 5.9 76
II.2 Array 1 5.33 0.22 5.9 76
II.3 Array 1 5.46 0.22 5.9 76
II.4 Array 1 7.2 0.22 5.9 76
II.5 Array 1 7.75 0.22 5.9 76
II.6 Array 1 10.3 0.22 5.9 76
II.7 Array 1 11.8 0.22 5.9 76
II.8 Array 1 12.1 0.22 5.9 76
III Array 2 7 0 6.9 37.5
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regions that are sufficiently far from the jet array. Since turbulence continues to decay as it moves
away from the jet array, for studies that aim at reaching intense turbulence, it is beneficial to stay
close to the jet array. It is therefore important to know the minimum distance away from the jet array
so that one can assume homogeneity and isotropy.

Although such near-field data are not available from the turbulence community, many experi-
ments and simulations were conducted before to understand interacting jets, including those aligned
in a row [39], an array [40–44], or just between two [45–48]. These studies focused exclusively on
the near-field jet dynamics so they provided a detailed description of the flow velocity profile, jet
interaction, and the decay of the centerline velocity.

Figure 2(b) shows the mean flow profile developed in the near field of a jet array. In this case,
three boxes represent the three nozzle exits. Close to the array, the signature of each individual
jet is visible; as the flow continues to move downstream, the jets start to merge. To fully capture
this evolution, a dataset from Ghahremanian et al. [44] is used. In this work, the jet array was not
connected to a water tunnel but exposed to a large ambient environment. As a result, jets near the
edges were affected by the pressure gradient so only the velocity profiles from the two center jets
are used. The time-averaged axial velocity 〈Vi〉 normalized by Vjet is shown in Fig. 3 as a function
of the transverse direction (y axis) normalized by the jet diameter d . Different colors represent the
velocity profiles at different axial locations away from the nozzle exits, and it is evident that the
mean flow is almost uniform along the transverse direction at around 5.5M away from the jet array.

For a single statistically axisymmetric, stationary nonswirling jet, the problem can be solved by
using the boundary-layer momentum equation [50] with the Reynolds stress modeled by the eddy
viscosity method. However, the problem becomes much more complicated when multiple jets are
considered. Since such a solution is not readily available, we can simplify the problem by assuming
that, in the near field close to the jet array, individual jets still follow the self-similar velocity profile,
which can be expressed as

f (η) = 〈V1(x, y)〉
Vc(x)

= 1

(1 + aη2)2
, (1)

where the mean axial jet velocity 〈V1(x, y)〉 normalized by the jet centerline velocity Vc(x) is a
function of η = y/(x − x0) (x0 is the virtual origin). The coefficient a = (

√
2 − 1)/S2 is related to

the spreading rate S = 0.094 in a single jet [50]. The centerline velocity Vc(x) at a particular axial
location follows

Vc(x)

Vjet
= Bd

(x − x0)
, (2)

where B is an empirical constant that depends only on the jet configuration, e.g., whether the jet is
surrounded by a nonzero co-flow in the background.

As shown in Fig. 2, the simplest way to estimate the mean velocity profile is by assuming a linear
superposition of the individual jet profile between two adjacent jets located at y1 = 0 and y2 = M
with a spacing of M, which yields

〈V1(x, y)〉
Vc(x)

= 1

[1 + a(y/x)2]2
+ 1

{1 + a[(y − M )/x]2}2 . (3)

The results are shown as solid lines in Fig. 3(a), which are in good agreement with the experiment
data and implies that the estimation based on the linear superposition works well for predicting the
mean flow profile produced by a jet array. In particular, at around x/M = 5.5, the profile is close to
being flat, indicating that the mean flow is uniform along the lateral direction.

Apart from the mean flow, the homogeneity of turbulence has to be quantified by the fluctuation
velocity vi = Vi − 〈Vi〉 (i = 1, 2, 3 for three directions), particularly the variance of its axial compo-
nent, i.e., v′

1 = 〈v2
1〉1/2. From the same experiment, the profile of v′

1 downstream of a jet array is also
available, which is shown in Fig. 3(b) at three different axial locations. It is evident that the flow
inhomogeneity decays with x. Close to x/M = 5.5, the profile of v′

1 is almost flat. To predict where
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FIG. 3. The profile of (a) the mean and (b) the fluctuation velocity for two adjacent jets, located at y = 0 and
y = 2.9d , in a jet array along the transverse direction y. In both figures, the symbols represent the experimental
measurements [44] at different downstream locations. The solid lines in panel (a) are obtained from Eq. (3), and
those in panel (b) are calculated by multiplying the mean velocity with a coefficient C0 = 0.28. The dashed
lines in panel (b) show the results of superposing the velocity fluctuations of two single jets based on the
measurements by Hussein, Capp, and George [49].

the homogeneous condition is reached, the linear superposition, but using the profile of v′
1 from a

single jet obtained from a previous work [49], is attempted [see dashed lines in Fig. 3(b)]. Although
the data agree well with the superposed result at x/M = 1.8, the difference grows as x increases. In
particular, for x/M > 1.8, the superposed results indicate that the peak of v′

1 is not located at the
centerline as the data suggest, but about 0.3d away from each nozzle. This deviation clearly shows
the limitation of this method.

The alternative way to estimate the fluctuation velocity profile is via the mean velocity profile.
For a single jet, the ratio between v′

1 and 〈V1〉 is consistent at different x locations. The fluctuation
velocity profile for the jet array can therefore be estimated by multiplying 〈V1〉 [Eq. (3)] with a
coefficient of C0 = 0.28. Such a coefficient should vary in a large range and depend on the radial
direction away from the jet centerline. Nevertheless, for simplicity, it is assumed to be a constant,
independent of the y axis. This assumption should only overestimate the inhomogeneity of the
turbulence because v′

1/〈V1〉 grows as it moves away from the jet centerline, which will only serve
to smooth the profile of v′

1. The prediction is plotted in Fig. 3(b) as the solid lines. This estimation
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cannot capture the profile at x/M = 1.8 as expected because, unlike v1 that peaks at the jet edges due
to the growing shear layer, the mean flow does not. But as it moves downstream and flow becomes
fully developed, e.g., x/M = 3.7 and x/M = 5.5, the prediction based on the mean flow works much
better, capturing the evolution of the velocity profile. The only problem with this method is that it
overestimates the overall magnitude of the fluctuation velocity because C0 was assumed to be a
constant. But this deviation does not affect the estimation of the flow inhomogeneity.

To quantitatively define the inhomogeneity level, the maximum and minimum fluctuation veloc-
ity between two adjacent jets can be expressed as

v′
1,max(x)

Vc(x)
= C0 + C0

(1 + aM2/x2)2
,

v′
1,min(x)

Vc(x)
= 2C0

[1 + a(M/2x)2]2
. (4)

From these two fluctuation velocities, the turbulence inhomogeneity factor can be defined as
IH (x) = (v′

1,max − v′
1,min)/v

′
1,max = 1 − v′

1,min/v
′
1,max, which varies between 0 and 1 and can be

expressed explicitly as a function of x:

IH (x) = 1 − 2(1 + aM2/x2)2

(1 + aM2/4x2)2[(1 + aM2/x2)2 + 1]
. (5)

IH = 0.1 is set as the threshold for inhomogeneity, and flows with IH lower this threshold can be
assumed to be homogeneous. This model clearly suggests that the flow reaches the homogeneous
condition for x > 5.5M, matching exactly to what was acquired from the experimental results.

This solution suggests that the minimum distance away from an array of jets to reach fully
homogeneous turbulence is around six times the jet spacing and is independent of the jet velocity
Vjet and the nozzle diameter d as long as d is small enough (d � x) to meet the condition for the
self-similar jet velocity profile expressed in Eq. (1). This conclusion is consistent with a previous
work [36], which suggested that the flow becomes homogeneous at 6M.

Note that the condition discussed here assumes a weak co-flow, and the turbulence is driven
solely by the jet momentum. The other limit can be reached if the co-flow is as strong as the jet, in
which case turbulence will not be generated. Between these two limits, we anticipate that adding
co-flow will result in weaker turbulence, lower spreading rate [51], and possibly a longer distance
before the homogeneity condition can be reached. The exact number can be roughly estimated based
on Eq. (1) by updating the spreading rate S used in a.

B. Turbulence in V-ONSET

In the previous section, we focused on the profile of the jet velocity, including 〈Vi〉 and vi, as
two neighboring jets mix. In this section, we shift our attention to the fully developed turbulence
generated by a jet array. In particular, the statistics was taken at x = 5.7M away from a jet array
(Array 1) with the jet spacing of M = 5.4 cm in V-ONSET (Experiment I.4 in Table I). According
to the prediction in Sec. III A, turbulence at this location should be homogeneous. To distinguish the
turbulence statistics in this system from the discussion of jets, the mean velocity and the variance
of the fluctuation velocity in the test section are denoted as 〈Ui〉 and ui (i = 1, 2, 3 represents three
directions), respectively.

Figure 4 shows the probability density function (PDF) of ui in three directions plotted against
the standard normal distribution. As seen in Fig. 4, all components of velocity fluctuation are nearly
identical and match the Gaussian distribution. Figures 5(a) and 5(b) show the spatial variation of
both 〈Ui〉 and u′

i along the x and y axes, respectively, where u′
i is the mean-square fluctuation. In

Fig. 5, each data point is shown with error bars indicating the 95% confidence intervals (CIs) of the
estimations. But the error bar is too small to discern from the markers because of the large number
of tracer trajectories acquired in each experiment. As seen in both Figs. 5(a) and 5(b), the profile
for all velocities, including both the mean and the fluctuation components, remains almost constant
along both the axial and transverse directions, suggesting that the flow is nearly homogeneous.
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FIG. 4. The PDF of the fluctuation velocity normalized by their standard deviation from Experiment I.4 at
x = 5.7M. The dashed line indicates the standard normal distribution.

From the data shown in Fig. 5, one can also calculate the ratio u′
2/u

′
3 ≈ 0.9887, with 95% CI

of [0.9874 0.9898], and u′
1/u

′
2 ≈ 1.163, with 95% CI of [1.160 1.167], both of which are close to

1, indicating that the turbulence is also nearly isotropic, although the vertical component is slightly
larger than the horizontal components since it gains the energy directly from the jet flow.

Another way to investigate the isotropy of turbulence is by using the Reynolds stress tensor
τi j = 〈uiu j〉, which can be decomposed into the isotropic (i = j) and anisotropic part (i 	= j). The
anisotropic part should be zero in isotropic turbulence. One component, normalized by the TKE,
k = 〈uiui〉/2, is shown in Fig. 6, which covers a range of x/d from 5.0 to 51.8. Two dashed lines
represent ±10% about zero. Close to the nozzle, the Reynolds stress shows a significant variation,
and such a variation decays rapidly. To ensure all the anisotropic components of τi j are close to zero
in all directions in the far field, Fig. 7 shows the remaining components along all three directions
at x/d = 61.6 using Array 1. It is evident that all symbols are well within the two dashed lines,
suggesting that the flow is nearly isotropic.

The decay of the anisotropic component of τi j along the x axis can be more quantitatively shown
by taking the spatial standard deviation along the y direction, i.e., ξi j (x) = [〈τ 2

i j (x, y)〉]1/2y , for each
x position. The results obtained from the experiments using Array 1 at different jet spacings are
shown in Fig. 8. The measured Reynolds stress is plotted against x/d instead of x/M because the
data only collapse when x is normalized by the nozzle diameter. Consistent with Fig. 6, the variation
of τi j decays continuously as a function of x/d . And it falls below 10% at around x = 20d .

As a result, the criteria for reaching homogeneous versus isotropic conditions are not the same.
The homogeneous condition relies more on the mixing between neighboring jets with a spacing
of M, while the isotropic condition is driven primarily by the turbulence transported from the shear
layer within the individual jets along the x axis to the other two directions. The two criteria (x > 6M
and x > 20d) may not coincide for a given jet configuration, and the axial location should be selected
to meet both requirements for reaching nearly homogeneous and isotropic turbulence.

C. Turbulence decay

After reaching nearly homogeneous and isotropic conditions, turbulence continues to decay as
it moves away from the jet array. To investigate the turbulence decay along the axial direction,
u′ ≡ (u′2

1 + u′2
2 + u′2

3)
1/2 was measured at multiple x away from the jet array, as described in Sec. II.

In addition to our datasets, the near-field measurements [44] at two smaller x locations along with
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FIG. 5. The profile of both the mean and fluctuation velocities along the axial and transverse directions
from Experiment I.4 at x = 5.7M.

a result from another jet array experiment [36] are also included. Together, the data covers over a
decade of the axial distance for understanding the decay of turbulence produced by a jet array.

u′/Vjet is plotted against x normalized by the jet diameter d or by the jet spacing M (inset) in
Fig. 9. It is evident that the only way to collapse all the datasets is by using the jet diameter as
the characteristic length scale, not the jet spacing M, even though M was used to determine where
the homogeneous condition is reached. Therefore, the roles played by these two length scales are
different: M controls the lateral mixing to determine where the jet is fully mixed with each other,
but turbulence is driven by the shear layer instability from individual nozzles. The nozzle diameter
imprints on the statistics much further downstream even after the neighboring jets are fully mixed.

The compiled data suggests that u′ seems to scale with x−1, which is consistent with the finding
by Variano and Cowen [30]. But the scaling exponent of the decaying kinetic energy n = 2 is larger
than those reported by most experiments studying decaying-turbulence [7,10–12,24–29] and also
by an earlier work conducted in the Johns Hopkins University Stanley Corrsin wind tunnel [8]. In
this wind tunnel, jets were integrated with the classical passive grid, and n is found to range between
1 and 1.325.
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FIG. 6. One component of the Reynolds stress at four different axial locations downstream of a jet array.
The three near-field measurements (x/d � 15) were from the work by Ghahremanian et al. [44] (GSTM 2014)
and the remaining far-field result (x/d � 15) was acquired from Experiment I.4 using Array 1 at x = 5.7M.

An important distinction between the two setups needs to be drawn. In our experiments, the
goal is to increase turbulence in a configuration with a relatively weak co-flow. The injection rate
J , defined as the ratio between the mass flow rate by the jets to the co-flow, ranges from 18.5% to
87.2%. For the wind tunnel experiments [8], the momentum of jets was maintained to be below 10%
of that of the co-flow, the turbulence production method is still dominated by the co-flow passing
through a grid.
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0 40
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FIG. 7. The spatial profile of the three components of the Reynolds stress tensor normalized by the local
TKE from Experiment I.4 at x = 5.7M. The dashed lines show the 10% variation.
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FIG. 8. The decay of the spatial variation of the Reynolds stress as a function of the normalized axial
location. Purple diamonds represent the near-field data from the work by Ghahremanian et al. [44] (GSTM
2014), and other markers represent our data from Experiment I.1–I.4 using different jet spacings M.

Furthermore, Gad-el Hak and Corrsin [8] found out that n decreases from 1.325 to 1 as J
increases from 4.7% to 8%, which implies that stronger jets yield slower turbulence decay. This
finding was originally hypothesized to be linked to the possible more energy in small wave numbers
in power spectra. But the authors realize later in their paper that this hypothesis is opposite to their
measured results, in which the jets actually introduced more energy in high wave numbers. This
inconsistency led to the conclusion that the jets may have dynamic interaction with the turbulent
wake after the passive grid that changes the decaying rate.

One way to model the decay of u′ driven by a jet array is to assume that the memory of the
jet configuration survives far downstream, and the decay follows a similar way as that for a single
jet. Following the same argument about the relationship between the mean and the fluctuation, the

101 102
10-2

10-1

5 10
10-2

10-1

FIG. 9. The decay of turbulent velocity fluctuations as a function of the axial location normalized by d
or M (inset). Data presented in this figure are the same as those described in Fig. 8. The black solid line is
obtained from Eq. (6).
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FIG. 10. The compensated velocity structure functions versus the separation between the two velocity
vectors from Experiment I.4 at x = 2.9M.

decay of u′ can be modeled based on Eq. (2) following,

u′(x)
Vjet

= C0Bd

x
, (6)

where the virtual origin x0 is neglected for the far-field statistics. The parameter B will be discussed
later. The result is shown in Fig. 9 as the solid line, which agrees well with not only our data but
the previous near-field measurements [44]. This finding confirms our conjecture that the decay of
turbulence driven by a jet array shares similarities with that driven by a single jet even at a distance
far away from the array, where the neighboring jets have already fully merged.

D. Decay of turbulent energy dissipation rate

The key advantage of employing a jet array, instead of a grid (passive or active), to drive
turbulence is the large range of turbulence characteristics that can be acquired with a simple control
system. Other than the fluctuation velocity that pertains to the large-scale flows, the small-scale
dynamics is determined by the energy dissipation rate ε, which is another key quantity of interest.
In our study, ε is estimated from the calculation of the second-order velocity structure function
Di j (r) = 〈ui(x)u j (x + r)〉, where x and r are the position of fluid particles and the separation
between a pair. Based on the well-known Kolmogorov theory [52], it is known thatDLL = C2(εr)2/3

and DNN = 4C2(εr)2/3/3, where DLL and DNN are the longitudinal and transverse components
of Di j (r) respectively. The Kolmogorov constant C2, although depending on Reλ [53], can be
assumed to be about 2.1. In addition, the third-order structure function in the inertial range follows
DLLL = −4εr/5. Figure 10 shows a plot of the three structure functions compensated by their
respective scaling laws from Experiment I.4 at x = 15.9 cm downstream. The plateau, albeit narrow,
in Fig. 10 suggests that ε ≈ 0.19 m2/s3.

To establish the relationship between ε with the axial position x away from the jet array, we
can leverage a well-known relation, ε ≈ Cεu′3/L where Cε is an order-unity constant [54], i.e.,
Cε ≈ 0.73 for Reλ > 100. For decaying isotropic turbulence, the integral scale follows L ∼ x−1/2

based on the work by George [55]. To confirm this scaling, in Fig. 11, the measured dissipation rate
is shown as a function of u′3/x1/2, and the solid line indicates a linear relationship. If L does scale
with x−1/2, the data should agree with the solid line. The evident overall agreement between the two
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FIG. 11. The correlation between the turbulent energy dissipation rate ε and u′3/x1/2 for all the datasets
collected from Experiment I.1–I.4.

in the figure indeed confirms that the growth of the integral scale in decaying turbulence driven by
a jet array is similar to those driven by a passive grid.

In addition, since the data containing different jet spacings M collapse together, it implies that ε
may be insensitive to M, and the nozzle diameter is the only length scale that matters to ε. So the
integral scale L(x) can be expressed as

L(x) = K (dx)1/2, (7)

where K is a coefficient that can be obtained by fitting Eq. (7) with the experimental data shown in
Fig. 11, yielding K ≈ 3.31.

By using Eqs. (6) and (7), we arrive at the equation for ε as follows:

ε

V 3
jet/d

= CεC3
0B

3

K (x/d )7/2
. (8)

This formulation suggests that the energy dissipation rate is only a function of the jet velocity and
the jet diameter, independent of the jet spacing.

Figure 12 shows the normalized energy dissipation rate at different normalized axial locations
for Array 1. In addition, the solid line shows the model prediction. The only parameter that has not
been discussed before in the model is B, which comes from Eq. (2). B depends on whether the jet is
surrounded by a co-flow. Its value has been independently obtained before in a different experiment
that systematically studied the jet profile with and without a co-flow [56]. Based on the velocity
ratio for all the experiments with Array 1, the velocity ratio is close to 20.4, withVjet = 5.5 m/s and
the co-flow velocity near the nozzle being 0.27 m/s. For the closest velocity ratio R = 20 reported
by Or, Lam, and Liu [56], the parameter B is roughly 5.47, which is used for plotting the solid line
in Fig. 12. Despite the scatter in the data, it seems to agree with our data within the measurement
uncertainty.

In addition to Array 1, Array 2 was tested without a co-flow, and the turbulent energy dissipation
rate generated is found to be larger than the data taken using Array 1. Furthermore, the result from
Variano and Cowen [30] using d = 21.9 mm and Vjet = 0.6 m/s without a co-flow is also added,
which also seems to be larger. To account for this difference, the parameter B in Eq. (8) is modified
by using the value from the work by Hussein, Capp, and George [49], i.e., B = 5.8. The prediction
is shown as the dashed line, which agrees perfectly with the two datasets mentioned before in a
configuration without a co-flow.
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FIG. 12. The decay of the normalized energy dissipation rate versus the normalized axial location. The
purple diamond represents the data from experiments by Variano, Bodenschatz, and Cowen [36] (VBC 2004).
The brown hexagram is acquired from Experiment III and other markers from Experiment I.1–I.4. The black
solid and dash lines are obtained from Eq. (8).

E. Design suggestions

From a practical standpoint, Eqs. (2), (7), and (8) provide a way to estimate u′, L, ε in a water
tunnel driven by a jet array, by controlling the jet velocity, nozzle size, and jet spacing. Although
these equations are simple to use, there are several important design considerations that need to be
discussed for future experiments. First of all, in Eq. (8), it is shown that ε scales with V 3

jet. Most
datasets reported in previous figures used the same jet velocity. To confirm the scaling of the energy
dissipation with the jet velocity, experiments were conducted to measure ε at a constant x/d = 76
away from the jet array (Array 1) for different jet velocities, the results of which are shown in
Fig. 13. The jet velocity spans almost a decade and it is clear that the data follows the cubic scaling,
i.e., ε ∝ V 3

jet.

2 4 6 8 10 12
10-3

10-2

10-1

FIG. 13. The turbulence energy dissipation rate as a function of the jet velocity collected from Experiment
II.1–II.8. The black solid line is obtained by Eq. (8).
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The jet velocity here was varied by using the variable frequency controller of the pump. The
maximum jet velocity is determined both by the pump capacity as well as the nozzle size and
number. To further increase ε, one may attempt reducing the nozzle size; with the same flow rate,
Vjet can be increased further. This only works if x/d is maintained the same, which means the
measurement window needs to move closer to the jet array with a small nozzle size. The price that
one has to pay is to have more jets and smaller spacing M to ensure the flow is homogeneous and
isotropic.

Another key aspect is related to the pump and the piping systems that drive the jet array. Each
jet needs to be connected to the pressure vessel through at least one solenoid valve. A pressure
manifold is also needed to distribute an even pressure head to all jets. All these systems will add to
the pressure drop of the system. It is important to select the nozzle and pipe size to balance the flow
rate and pressure drop of the system so the pump operates at its highest efficiency. Deviating from
this point too much could result in pump cavitation and other undesired effects.

IV. CONCLUSION

We have shown the decay of turbulence powered by a jet array in a vertical water tunnel.
Two arrays with different nozzle sizes and spacings were printed to systematically investigate how
different turbulent characteristics scale with the control parameters. In addition to the experimental
results, a simple model relying on the superposition of two jets was designed to explain the flow
development. It is found that, for the multijet flow to develop into homogeneous turbulence, a
distance of at least 5.5 times the jet spacing downstream from the array is required. The isotropy
condition can be met at around 20 times the nozzle diameter, which was examined both by the
velocity profile along different directions and also by whether the Reynolds stress is close to zero.

After homogeneous and isotropic turbulence is reached, turbulence continues to decay down-
stream with the magnitude of rms velocity decreasing as x−1. Such decay is mainly determined by
the nozzle diameter and insensitive to the jet spacing M because turbulence is driven by the shear
layer instability originating from individual nozzles. Furthermore, the decay exponent of the kinetic
energy is roughly n = 2, which is higher than those reported by most experiments using a classical
passive grid. This higher exponent is attributed to the memory of the jet, which is different from the
one caused by the wake after a grid.

Based on the evolution of the velocity fluctuation and the integral length scale downstream,
a formulation of the energy dissipation rate ε is derived, which matches well with not only our
experimental data with a co-flow but also with a previous work without a co-flow. Finally, design
considerations were provided to help future wind or water tunnels use this method to drive turbu-
lence, which can potentially reach much more intense turbulence with a higher energy dissipation
rate than that produced by classical passive or active grids.
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