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ABSTRACT 

Federal and state departments of transportation, the U.S. Army Corps of Engineers, electric utility 
companies, and other decision-makers need accurate and timely information about the condition of 
infrastructure to prioritize investment decisions. Currently, there are no broadly applicable automated 
tools to provide timely information about structural health. Artificial intelligence (AI) provides a 
forward-looking perspective to conceptualize and implement a data-driven and physics-informed 
structural health monitoring (SHM) strategy to overcome some of the challenges in traditional 
approaches. In September 2020, the National Science Foundation funded a project to demonstrate the 
proof-of-concept of an AI-driven SHM platform. The project team interacted with potential end-users 
and decision-makers to identify important aspects to consider in an AI-driven SHM platform. This 
paper summarizes the feedback received from the stakeholders and presents the project's preliminary 
results that serve as proof of concept. 

INTRODUCTION 

Reliable methods for evaluating and monitoring structural conditions are necessary to support 
decisions regarding the maintenance, repair, or replacement of structures. Federal and state 
departments of transportation, the U.S. Army Corps of Engineers (USACE), electrical utility 
companies, and other decision-makers need accurate and timely data on structural health to inform 
and help prioritize investment decisions. Much research has been performed to develop automated 
tools to assess the condition of civil infrastructure; however, systems are usually designed for a very 
specific application, and there is not a standard system that has been deployed broadly.  

The USACE defines structural health monitoring (SHM) as "the science of making accurate 
condition assessments about the current and future ability of an asset or system of assets, particularly 
infrastructure assets, to perform the intended design function(s), based on sensor and inspection data, 
numerical engineering models, and statistical analyses" (Smith 2018). Traditional contact sensor-
based SHM approaches have limitations, such as high costs for installation and maintenance and data 
quality issues due to environmental and operational conditions. As the applicability of traditional 
contact sensor-based methods to large and complex structures has not yet been sufficiently 
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demonstrated at a broad scale, decision-makers remain highly skeptical of the accuracy and reliability 
of traditional SHM approaches. 

Artificial intelligence (AI) provides a forward-looking perspective to conceptualize and 
implement a data-driven and physics-informed SHM strategy to overcome some of the challenges of 
traditional approaches. In September 2020, the National Science Foundation funded a project to 
demonstrate the proof-of-concept of an AI-driven SHM platform that uses video cameras as non-
contact sensors. The project team conducted surveys and semi-structured interviews with potential 
end-users and decision-makers to identify important aspects to be considered in an AI-driven SHM 
platform. This paper summarizes the team's findings from these interactions and presents a proof-of-
concept of the proposed platform.   

STAKEHOLDER FEEDBACK ON AI-DRIVEN SHM PLATFORMS 

The project team sought feedback from potential end-users and decision-makers regarding their needs 
and expectations from an AI-driven SHM platform. These interactions were in the form of semi-
structured interviews and survey questions. Key findings from these interactions are summarized 
below.  

Interview Overview and Results 

The semi-structured interviews included questions that were customized based on the background of 
the interviewees. Feedback was requested on topics such as (a) current needs in damage detection and 
localization methods, (b) necessary demonstrations/evidence that would convince the skeptics on 
automated damage detection and condition monitoring of structures, (c) identification of candidate 
structures to be used for benchmarking, (d) data and information required to make critical decisions, 
and (e) anticipated obstacles for the implementation of the proposed AI-driven SHM platform.  

Forty-two (42) semi-structured interviews were administered to personnel from the state and 
federal government (Department of Transportation, District Department of Transportation, The 
National Institute of Standards and Technology, Los Alamos National Laboratory, the United States 
Army Corps of Engineers, and the U.S. Department of Housing and Urban Development), 
experimental facilities (Insurance Institute for Business & Home Safety, Wall of Wind at Florida 
International University, and the NHERI Experimental Facility at the University of Florida), a 
nonprofit organization (Development Corporation of Columbia Heights), industry (Walter P Moore, 
Michael Baker International, Applied Research Associates, Inc., Structural Integrity Associates, 
Berkshire Hathaway Specialty Insurance, Washington Metropolitan Area Transit Authority, the 
Potomac Electric Power Company, among others), and academia (faculty from  the University of 
Illinois at Urbana-Champaign, the University of Texas at Austin, University of California, Berkeley, 
among others). 

The interviewees provided useful feedback on various aspects to consider in the development 
of an AI-driven SHM platform and offered new insight into potential uses of the platform that the 
team had not previously considered. The benefits of an AI-driven SHM platform for damage detection 
were evident to the interviewees. Below are the key takeaways from the interviews: 
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• Traditional monitoring approaches relying on a network of wired or wireless sensors for 
data collection offer limited damage detection capability due to the practical limitations on the 
number and placement of the sensors used.  
• Collecting data on structures is less complicated today; what is lacking are reliable data 
analysis tools for decision-making.  
• Existing damage detection algorithms are typically derived using simple laboratory models 
or numerical simulations. Their applicability rarely translates to real, in-service structures. An 
AI-driven platform should be validated and calibrated using field data from actual structures.  
• Output-only damage detection approaches are desirable, as application of controlled input 
to civil engineering structures is a difficult and expensive task.   
• AI-driven SHM platforms can offer great benefits for the monitoring of operations and 
maintenance.  
• AI-driven SHM platforms would be of great value to property owners concerned with 
assessing the progression of damage.  
• Many interviewees do not consider traditional SHM a decision-making tool due to the lack 
of data analysis tools that provide actionable insight. 
• Interviewees emphasized the need for automated data analysis tools that provide 
quantitative metrics about the condition of the structure that are easy to interpret.  
• AI-driven SHM platforms need to go beyond the cost-benefit assessment to be considered 
for adoption in practice. 
• Existing vibration-based SHM tools can detect global stiffness changes but not local 
damages. AI-driven SHM tools that are able to detect local, minor damages are of interest. 
• AI-driven SHM tools should not be generic; they should be customized to the structure and 
the damage type of concern.  
• When vibration response is measured on actual structures, the influence of operational and 
environmental conditions must be considered. 
• Inaccuracies due to numerical integration/differentiation errors must be adequately 
addressed when the measured response is converted to another type of response (e.g., from 
acceleration to displacement).    
• Correlations between the responses measured at different points can be used to distinguish 
damage from the large-amplitude, elastic response. 

The responses from the semi-structured interviews were used to help develop a stakeholder 
survey. The 20-question survey was administered to 89 stakeholders. The purpose of the survey was 
to gather additional data on the perceived need, usefulness, and feasibility of an AI-driven SHM 
platform.  

Survey Overview and Results 

Figure 1 shows the survey respondents' characteristics. A majority of the respondents were from the 
government sector (72%), industry (13%), or academia (10%). Of the respondents, 36% have roles in 
maintaining their organization's facilities, and 30% work as technical consultants. 72% of respondents 
have more than ten years of experience. Figure 2 provides some details of the roles of the respondents. 
More than half (53%) of respondents work in an organization overseeing more than a hundred 
structures; most use safety inspections at least once per year and need more than ten people to perform 
those inspections.  
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Figure 1. Survey respondent characteristics 

Figure 2. Roles of respondents 

The survey data indicates the interviewed stakeholders are primarily interested in an AI driven 
SHM system to help inform the condition of structural elements and mechanical systems, as shown 
in Figure 3. A lack of data to support the practical value of SHM is the largest obstacle to the 
widespread implementation of any SHM platform, as seen in Figure 4. The American Society of Civil 
Engineers (ASCE) Structural Identification of Constructed Systems Committee (Çatbaş et al. 2013) 
identified the skepticism of the potential end-users as a major barrier to the widespread adoption of 
SHM in public and government sectors. This skepticism could be overcome by producing an accurate 

10% 13%

72%

0%
4%

36%

13%

0%

30%

20%

3%

13% 12%

72%

16%
23%

1%
9%

51%

0%

10%

20%

30%

40%

50%

60%

70%

80%

E
du

ca
ti

on

In
du

st
ry

G
ov

er
nm

en
t

C
om

m
er

ce

O
th

er

F
ac

ili
tie

s/
M

ai
nt

en
an

ce

A
dm

in
is

tr
at

io
n/

L
ea

de
rs

hi
p

P
ub

li
c 

re
la

ti
on

s

T
ec

hn
ic

al
 c

on
su

lt
an

t

O
th

er

1 
ye

ar
 o

r 
le

ss

1-
5 

ye
ar

s

5-
10

 y
ea

rs

M
or

e 
th

an
 1

0 
ye

ar
s

B
ri

dg
es

C
om

m
er

ci
al

/ I
ns

ti
tu

tio
na

l…

R
es

id
en

ti
al

 b
ui

ld
in

gs

U
ti

lit
y 

st
ru

ct
ur

es

O
th

er

Organization Role Years of experience Structures of concern

7% 9%

19%

12%

53%

38%

30%

11%

21%

6%

27%

10%

56%

0%

10%

20%

30%

40%

50%

60%

1-
5

5-
10

10
-5

0

50
-1

00

O
ve

r 
10

0

M
ul

ti
pl

y 
ti

m
es

 p
er

 y
ea

r

A
nn

ua
ll

y

B
i-

an
nu

al
ly

O
nl

y 
w

he
n 

ne
ed

ed

0 
pe

op
le

1-
5 

pe
op

le

5-
10

 p
eo

pl
e

M
or

e 
th

an
 1

0 
pe

op
le

Number of projects or structures
your company oversees

Frequency of safety
inspections

 Personnel  dedicated to
inspections



5 
 
 

system. A minimum level of accuracy of at least 80% would be needed to achieve buy-in for critical 
decisions from the majority of stakeholders surveyed in this study, as shown in Figure 5. 

  

Figure 3. Desired uses of the platform Figure 4. Primary concerns  

 

Figure 5. Minimum acceptable level of accuracy 

PROTOTYPE DEVELOPMENT 

Reduced technology costs and exponential increases in computational power have led to an increase 
in the research and development of computer vision-based tools for inspection and monitoring of 
infrastructure (Alexander et al. 2022). Using computer vision-based tools, each pixel of a frame acts 
as a sensor. The research team explored this technology in the development of a prototype platform 
consisting of video tracking and damage detection components, with the goal of achieving at least 
80% accuracy to meet the accuracy desired for the highest level of buy-in. The video tracking 
component uses video cameras as non-contact sensors tracking points of interest at specific locations. 
The damage detection component uses machine learning algorithms to detect, locate, and quantify 
stiffness changes. It incorporates physical laws and constraints into the pretraining of machine 
learning algorithms to ensure the compatibility of the predictions with physical principles while 
reducing computational requirements. Figure 6 illustrates the general concept of the prototype 
integrating the video data and damage detection models. 
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Figure 6. The general concept of the prototype integrating video data and damage detection 

Video Tracking Prototype (VTP) 

The team developed a video tracking prototype (VTP) to track points of interest across video frames. 
The prototype was tested using video footage recorded during shake table experiments for which 
experimental data was available, and the optical flow between subsequent frames when tracking 
visible pixels was determined (Whiteman et al. 2021). The VTP was also tested on a small-scale 
model of a five-story shear frame, which was placed on a shake table and subjected to a sinusoidal 
load exciting the first mode of the structure. Figure 7 shows the model frame, with accelerometers 
placed on the shake table at the base (Point 10) and the top of the frame (Point 11).  

The acceleration data was used to determine the relative displacements using both cumulative 
trapezoidal numerical integration (Papazafeiropoulos 2021) and the least-squares support vector 
machine (LSSVM) method (Tezcan et al. 2018). Linear baseline correction was applied to the 
acceleration time history before the trapezoidal method to minimize the overall drift of the 
displacement obtained from double integration. The displacements calculated from the accelerations 
(i.e., using the trapezoidal method (Papazafeiropoulos 2021) and the LSSVM method (Tezcan et al. 
2028)) are found to be in good agreement with the displacements predicted using the video tracking 
program.  

The VTP estimated peak displacements are up to 20% smaller than those predicted by the 
trapezoidal integration and LSSVM methods; still, the overall histories of responses have similar 
trends to the LSSVM method. Previous assessments comparing the video predictions to sensor 
measurements were closer in magnitude when the sensors used provided displacements directly (i.e., 
from potentiometers) . 
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Figure 7. Five-story frame and displacements at the base (Point 10) and top of the frame 
(Point 11) predicted using the VTP and calculated from the acceleration data  

Damage Identification Prototype (DIP) 

An AI-based prototype was developed to identify linear damages, which appear as a sudden loss of 
stiffness. This prototype includes three successive levels of damage identification: Level 1: detection 
of the occurrence of damage, Level 2: estimation of the location of the damage, and Level 3: 
quantification of the damage severity. 

Considering Level 1 damage identification (i.e., damage occurrence), it was found that in 
systems whose displacement behavior can be adequately described using a few degrees of freedom, 
time-frequency analysis of the vibration response at any of the degrees of freedom can reveal the 
occurrence of sudden damage along with the time instance(s) at which damage occurs. Figure 8a 
describes a damage scenario, depicting an 80% cumulative loss in stiffness occurring over three 
instances. This damage was imposed on the first floor of a 4-story shear building described in (Bernal 
et at. 2000). The wavelet synchrosqueezed transform (WSST) of the displacement of the first floor 
under the El Centro ground motion is shown in Figure 8b. The WSST ridge shown as a white line 
closely follows the damage scenario considered. The ridges obtained using the displacement of the 
other floors followed similar trends.  
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Figure 8. Detection of stiffness changes using wavelet synchrosqueezed transform 

For Level 2 damage identification (i.e., damage location), independent component analysis 
(ICA) was explored as a tool to locate damages based on discrete wavelet coefficients of measured 
accelerations. Damage locations were estimated by examining the absolute values of the mixing 
coefficients corresponding to each spiky independent component. The method's performance was 
evaluated using the acceleration readings collected during the full-scale testing of a 5-story reinforced 
concrete building (Chen et al. 2016). Figure 9 shows the main steps of the damage location method. 
Damage locations indicated by the ICA algorithm matched, to a large extent, the damages observed 
during post-test inspections.  

 

Figure 9. Finding damage locations on a test building using independent component 
analysis 

For Level 3 damage identification (i.e., damage quantification), convolutional neural 
networks (CNNs) were investigated to classify the extent of damage to a 5-story reinforced concrete 
building (Chen et al. 2016) subjected to white noise base excitations and experimentally measured 
base excitations. The damage state of the structure is predicted using the Fourier amplitude spectra of 
floor acceleration or displacement time histories. The team used numerically simulated data to train 
the model. The results of the study were presented at the 2022 Natural Hazards Research Summit 
(Whiteman et al. 2022). The model achieved a probability distribution prediction with an accuracy of 
99.98% for experimentally measured responses. 

CONCLUSION 

Interactions with potential end-users and decision-makers revealed the lack of data to support the 
practical value of SHM as a major obstacle to the widespread implementation of any SHM platform. 
Additionally, organizations were concerned about the safety associated with accessing the sensor 
locations, the resources associated with collecting the data, and the accuracy of the results. As such, 
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it is important to develop an automated SHM system that is simple to deploy, using sensors that do 
not have to be installed on the structure and that produce results with a high level of accuracy.   

Preliminary results have shown that an AI-driven SHM platform can successfully detect and 
locate damage and quantify damage severity by tracking structural responses from video recordings. 
The team developed a small-scale prototype of a five-story shear frame to test the platform's 
components.  
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