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The life history of human foraging: Cross-cultural 
and individual variation
Jeremy Koster1,2*, Richard McElreath2,3, Kim Hill4, Douglas Yu5,6,7, Glenn Shepard Jr.8, 
Nathalie van Vliet9, Michael Gurven10, Benjamin Trumble4,11, Rebecca Bliege Bird12, Douglas Bird12, 
Brian Codding13, Lauren Coad9,14, Luis Pacheco-Cobos15, Bruce Winterhalder3, Karen Lupo16, 
Dave Schmitt16, Paul Sillitoe17, Margaret Franzen18, Michael Alvard19, Vivek Venkataraman20, 
Thomas Kraft10, Kirk Endicott21, Stephen Beckerman13, Stuart A. Marks22,23, Thomas Headland24, 
Margaretha Pangau-Adam25,26, Anders Siren27, Karen Kramer13, Russell Greaves13, 
Victoria Reyes-García28,29, Maximilien Guèze29, Romain Duda29,30, Álvaro Fernández-Llamazares31, 
Sandrine Gallois32, Lucentezza Napitupulu29, Roy Ellen33, John Ziker34, Martin R. Nielsen35, 
Elspeth Ready2,36, Christopher Healey37, Cody Ross2

Human adaptation depends on the integration of slow life history, complex production skills, and extensive sociality. 
Refining and testing models of the evolution of human life history and cultural learning benefit from increasingly 
accurate measurement of knowledge, skills, and rates of production with age. We pursue this goal by inferring 
hunters’ increases and declines of skill from approximately 23,000 hunting records generated by more than 1800 indi-
viduals at 40 locations. The data reveal an average age of peak productivity between 30 and 35 years of age, 
although high skill is maintained throughout much of adulthood. In addition, there is substantial variation both 
among individuals and sites. Within study sites, variation among individuals depends more on heterogeneity in 
rates of decline than in rates of increase. This analysis sharpens questions about the coevolution of human life 
history and cultural adaptation.

INTRODUCTION
Among hominoids, humans are distinguished by a suite of life his-
tory traits that includes a prolonged juvenile and adolescent period, 
short interbirth intervals, and an extended postreproductive life span 
(1). Multiple conceptual models have been advanced to explain the 
evolution of these traits, focusing on distinctive human behaviors 
such as pair bonding and alloparental care from grandparents and 
others (2–4). Any satisfactory model of human life history evolution 
must simultaneously account for the large brains that characterize 
our species. Foraging complexity and competitive social challenges 
have been alternately championed as the evolutionary prime mover 
of encephalization, while others combine perspectives by citing the 
advantages of flexible cultural learning among juveniles as a solution 
to social and ecological challenges (5).

Progress is made in these debates via models that integrate growth, 
reproduction, cognitive development, skill development, sociality, 
and cultural evolution. The most advanced attempt that we know is 
the optimal control model of González-Forero and Gardner (6). 
Drawing on observed rates of brain and somatic growth, their model 
estimates the relative importance of different ecological and social 
challenges to the evolution of intelligence. In comparison to alter-
natives, the ecological challenge of acquiring food emerges as the 
strongest predictor of the observed pattern of human growth. In this 
model, brains develop first followed by the body because this se-
quence allows a longer period of learning and ultimately higher adult 
productivity. This finding complements recent comparative work 
on the prominence of foraging complexity as a predictor of primate 
brain sizes (7). These findings and predictions direct our attention 
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to age-related variation in foraging skill in human societies. To the 
extent that foraging complexity underlies the evolution of human 
life history traits, we anticipate protracted mastery of foraging tasks 
across the life span.

Here, we focus on age as a predictor of harvests in the largest yet 
assembled database of hunting returns (Fig. 1). We focus on sub-
sistence hunting for multiple reasons. First, because hunting returns 
are evident at the conclusion of an excursion, the modeling of hunt-
ing inputs and outputs generally requires fewer assumptions than 
the analogous analysis of agricultural or pastoralist returns. Second, 
increased hunting is often cited as an adaptive shift that coincides with 
other distinguishing features of the genus Homo (8). However, we 
note that none of the societies in our sample rely exclusively on hunt-
ing (or foraging more generally). Contemporary hunting is not a prim-
itive economy, but rather a recurring one that integrates with other 
means of production. The data should be evaluated accordingly.

RESULTS
There are many ways to summarize the model inferences. We focus 
on three foundational issues that motivated the analysis.

1) What is the overall pattern of skill development?
2) How variable is this pattern within and between societies?
3) Which components of the model—increases early in life or

declines later in life—describe variation?
At the highest level of pooling, the model provides a statistical 

answer to the question, “What is a typical human life history of for-
aging skill?” This is very much an abstraction, one that attempts to 
factor away all the variation in production functions and associated 
elasticities to reveal an underlying, dimensionless life history. It 
cannot say much about absolute levels of production, either within 
or between societies. However, it can inform comparisons of rela-
tive skill at different stages of life.

The statistically average hunter in this sample peaks at 33 years 
of age (top left plot, Fig. 2). However, this peak is not sharp. At age 

18, this fictional average hunter has 89% of maximum skill. In addi-
tion, skill declines slowly, such that skill falls below 89% of maximum 
only after age 56. The blue shading around the posterior mean in 
this plot shows the entire posterior distribution, fading out to trans-
parent as probability declines. There is correspondingly a lot of in-
formation in this sample about the global mean.

 While the overall pattern is clear, not every site nor individual 
forager exhibits the same pattern. The site-level plots in Fig. 2 illus-
trate this variation. Each site displays the mean skill function for each 
hunter in the sample. While there is substantial uncertainty about 
individual skill curves, there is good evidence of individual-level 
variation at some sites, such as the Matsigenka (9 MTS), the Colombian 
site (11 CLB), the Aché (16 ACH), and the Martu (35 MRT). Differ-
ences among individuals can be quite large. Some individuals have 
half the adult skill of others in the same community.

For each site, the figure also shows the age of peak skill for a sta-
tistically average hunter at that site, as indicated by the vertical dashed 
lines. While these peak ages cluster around 30 years of age, there is 
noteworthy variation. On the low end, the Matsigenka (9 MTS) and 
Wola (40 WOL) peak early, near 24 years of age. Note that the best 
hunters at these sites tend to peak even earlier, a trend that is also 
evident among the Barí (7 BAR). On the higher end, the Aché (16 ACH) 
and Valley Bisa (28 BIS) peak at 37 and 45, respectively, but with 
relatively slow declines.

These skill functions are inputs into site-specific production func-
tions that also include labor and technology inputs that vary in im-
portance across sites. This means that the relationship between 
production and age can be different from the relationship between 
skill and age. In the Supplementary Materials, we therefore present 
alternative versions of the plot that incorporate the other components 
of production (figs. S5 to S7). One feature of the production compo-
nents is that variation can arise from different sources, which, in turn, 
have different implications for age-related variation in harvests at 
the individual level. Furthermore, at some sites (e.g., the Dolgan, 
site 30), the skill functions for individual hunters cluster around a 

Fig. 1. Distribution of study sites. For the key, see Table 1.
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central mean. However, this does not necessarily support inferences 
that hunters at these sites have equal skill because there may be in-
sufficient evidence to distinguish them. For an alternative perspective 
on the anticipated variation among hunters within sites, we simu-
late variation from the posterior samples of the model (fig. S8).

Last, skill functions vary both within sites and between sites. 
Which components of skill contribute to this variation? To address 
this question, we examine the model parameters that measure vari-
ation in the components k (rate of increase) and m (rate of decline) 
of the skill function. Since this is a nonlinear model, we cannot exact-
ly partition total variance. The impact of variation in a component 
of skill depends on the values of all the other components. We can, 
however, consider relative sizes of components of variation on the 
latent scale.

First, we find moderately greater variation in m than k within 
sites (note the cyan curve in the top left plot of Fig. 3). By contrast, 
between-site heterogeneity in age-related skill is divided roughly 
evenly between variation in m and k (see the orange curve in the top 
left plot in Fig. 3). Some caution is necessary in these comparisons 
because the relationship between m and k is not additive. However, 
the implication is that among individuals within a given ecology, 
skill varies more later in life than earlier in life.

We also find a modest positive correlation between k and m (top 
right plot), suggesting that hunters who develop skill relatively 
quickly also show advanced skill later in life. Each cyan density in 
the top right plot is the posterior correlation between hunters’ k and 
m parameters at a given site. This correlation is particularly pro-
nounced for the Aché and modest otherwise. This may reflect the 
lack of longitudinal data on individual hunters at most study sites, 
limiting what can be learned about this correlation. In contrast, the 
Aché site contains enough longitudinal data on individuals to make 
stronger inferences about the correlation.

Last, relative variation in m and k can be decomposed within and 
between sites. We show the posterior distributions of the SDs in 
both k (bottom left) and m (bottom right) in Fig. 3. The cyan densi-
ties are the SDs within sites. This corresponds to the plausible values 
for variation among individuals. The orange densities are the SDs 
among sites, corresponding to the plausible values for variation in 
site-level averages. The dashed curves in both plots show the prior 
distributions, which were the same for both within and between 
components. For both k and m, there is relatively less information 
about variation among sites. As a result, the orange curves remain 
flatter than the cyan curves. There is substantially more informa-
tion about variation within sites, and so the cyan curves are rather 
peaked in both cases. While there is a hint that variation between 
sites contributes more to variation in k, while variation within sites 
contributes more to variation in m, strong inferences cannot be drawn 
until more information is available for inferring the between-site 
variance.

DISCUSSION
Overall, these results provide an empirical counterpoint to compu-
tational models of life history evolution [e.g., (6, 9)]. On the one hand, 
there is agreement among models about the central tendencies for 
the ontogeny of skill, which accelerates most rapidly during child-
hood and adolescence before reaching a plateau during adulthood. 
In all study sites, skill peaks after physical and reproductive maturity. 
This result is largely consistent with predictions of embodied capital 

Table 1. Study sites and their numerical and text codes. See the help 
file of the cchunts package for related citations. 

Number Code Country Group Dataset in cchunts 
package

1 CRE Canada Cree Winterhalder
2 MYA Belize Maya Pacheco
3 MYN Nicaragua Mayangna Koster
4 QUI Ecuador Quichua Siren
5 ECH Colombia Embera Chami Ross
6 WAO Ecuador Waorani Franzen
7 BAR Venezuela Bari Beckerman
8 INU Canada Inuit Ready
9 MTS Peru Matsigenka Yu_et_al
10 PIR Peru Piro Alvard

11 CLB Colombia Van_Vliet_et_al_
South_America_sites

12 PME Venezuela Pume Kramer_Greaves

13 TS1 Bolivia Tsimane Fernandez_
Llamazares

14 TS2 Bolivia Tsimane Reyes-Garcia
15 TS3 Bolivia Tsimane Trumble_Gurven
16 ACH Paraguay Aché Hill_Kintigh
17 GB1 Gabon Coad
18 GB2 Gabon Van_Vliet_et_al_Gabon
19 GB3 Gabon Van_Vliet_et_al_Ovan

20 CN1 DR Congo Van_Vliet_et_al_
Phalanga

21 GB4 Gabon Van_Vliet_et_al_
Djoutou

22 BK1 Cameroon Baka Gallois
23 BK2 Cameroon Baka Duda
24 CN2 Congo Van_Vliet_et_al_Ingolo

25 CN3 Congo Van_Vliet_et_al_
Ngombe

26 BFA Central African
Republic Bofi and Aka Lupo_Schmitt

27 CN4 DR Congo Van_Vliet_et_al_Baego
28 BIS Zambia Valley Bisa Marks
29 HEH Tanzania Nielsen
30 DLG Russia Dolgan Ziker
31 BTK Malaysia Batek Venkataraman_et_al
32 PN1 Indonesia Punan Gueze
33 PN2 Indonesia Punan Napitupulu
34 AGT Philippines Agta Headland
35 MRT Australia Martu Bird_Bird_Codding
36 NUA Indonesia Nuaulu Ellen
37 NIM Indonesia Nimboran Pangau_Adam

38 NEN Papua New 
Guinea Nen Healey_Nen_PNG

39 MAR Papua New 
Guinea Maring Healey

40 WOL Papua New 
Guinea Wola Sillitoe
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theory (4), although, on average, the empirical data do not reveal 
the distinct peaks in skill during middle age that are evident in previous 
studies of the Aché (10, 11). Instead, the empirical model suggests 
that skill starts to plateau by early adulthood and that only moderate 
increases are evident subsequently. Declines are typically slow, such 
that an 80-year-old may retain two-thirds of maximum skill.

Another noteworthy result is the extent of variability in skill, both 
among and within sites. Cross-cultural variation is evident in the 
rate at which hunters develop peak skill. Within sites, the rate at 
which hunters develop skill is relatively homogeneous compared to 
the variation that distinguishes young hunters in different study sites. 
To explain cross-cultural variation in the development of foraging 
proficiency, it is common and reasonable for anthropologists to 
emphasize ecological predictors, such as extrinsic mortality risks 
[e.g., (12)]. However, varying rates of skill development may stem 
as well from mediating social factors that relate only indirectly to 
ecological differences. Additional theorizing is needed to generate 
hypotheses about the cross-cultural ontogeny of foraging skill in re-

sponse to variables such as experience, motivation, opportunities for 
social learning, and the physical and cognitive demands of hunting 
in different socioecological environments. As opposed to a canalized 
human life history strategy, this study suggests potential develop-
mental plasticity in traits associated with hunting skill, which manifest 
not only in contemporary settings but also potentially in ancestral 
settings. These results further imply that singular study sites can rarely 
be viewed as straightforward analogs for evolutionarily relevant en-
vironments (13).

Within the respective study sites, the model brings new attention 
to the variation in skill among individual hunters. What explains 
this variation? Data and theory suggest that physical strength and 
stamina, accumulated knowledge, and motivation all plausibly con-
tribute to age-related variation (14, 15). In most empirical datasets, 
however, only data on the hunters’ ages are available as predictors, 
not other attributes of the individuals. The peak in the average skill 
function at approximately 33 years old is also near the age when 
physical strength and ecological knowledge plateau (15–18). From a 
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Fig. 2. Skill functions. The figure depicts the global average of skill (top left plot) and skill at the respective study sites. Within study sites, each curve is the posterior mean 
skill for an individual hunter, standardized to the maximum within each site. In the header of each plot, the site number and three-letter code are shown along with the 
number of individual hunters in each sample, followed by the number of observed harvests in parentheses. The orange span of ages corresponds to ages observed within 
each site, while the gray ranges were unobserved and are instead implied by the underlying model. The vertical dashed lines show the average ages at peak within sites.
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theoretical perspective, an optimal life history should develop these 
components together, with the important caveat that brain growth 
may need to precede body growth, to enable learning (9). To distin-
guish the relative importance of phenotypic traits to variation in 
hunting skill across the life span, data are needed that link measure-
ments of these attributes to individual-level hunting returns, ideally 
longitudinally. In the interim, the currently available data suggest that 
individual hunters develop physical and cognitive abilities in con-
cert, resulting in high hunting success by their late 20s and early 30s.

Estimates from empirical studies provide inputs to the parame-
terization of computational life history models. Our analysis of hunting 
by age provides refined estimates of the average skill function, a target 
of inference for recent theoretical work (6, 9). However, the added 
clarity about average skill is belied by the substantial heterogeneity 
that is evident among individual hunters. For future theoretical de-
velopments about the unique human life history pattern, this varia-
tion in skill merits careful attention. Prevailing hypotheses about the 
adaptive shift to hunting by human ancestors assert that reciprocal 
food sharing in small bands was necessary to smooth variance in 
consumption, given that daily harvests by hunters are unpredictable 
(19–21). In this literature, variability in the skill of individual hunters 

has received relatively little consideration (22). Our analysis suggests 
that this variability typifies communities of human foragers while 
concomitantly altering the effectiveness of food sharing for buffer-
ing risk. That is, when hunters vary substantially in their skill and 
productivity, there are asymmetric benefits to participation in risk- 
pooling distribution systems. To the extent that prosociality and other 
traits in the human lineage stem from the cooperative challenges 
posed by this asymmetry, the high variation in hunting skill across 
the life span merits further attention.

MATERIALS AND METHODS
The total sample contains 23,747 observations of 1821 individual 
foragers across 40 study sites (Fig. 1). There is substantial imbalance 
in sample size across units. One site contributes only six trips from 
two individuals. Another contributes more than 14,000 trips from 
147 individuals. Some individuals contribute only a single outcome, 
while others contribute dozens. The majority of the sample comprises 
male hunters, with too little data on female hunters to infer general-
izable sex differences. Most sites contribute primarily cross-sectional 
data, while a few others exhibit impressive time series.
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Because skill cannot be directly observed, what is required is a model 
with latent age-varying skill, which informs a production function 
for observable foraging returns. The model is described in detail in 
the Supplementary Materials. Building on earlier research (10), our 
modeling framework was developed in a grant proposal and reviewed 
before seeing the assembled sample. Using a Cobb-Douglas produc-
tion function common to economic research, we model hunting returns 
(harvest) on excursions as a standard log-linear function of skill, labor 
inputs, and auxiliary inputs from technology and cooperation

 harvest =  S   η   L   β  α  (1)

where S represents the hunter’s skill with its elasticity, h, the labor 
input and its elasticity are represented by Lb, and a is a linear model 
for covariates such as group size, the number of assistants, the use of 
dogs, and the use of firearms. These latter variables have been shown 
to influence hunting returns (23–26). Note that production requires 
both skill and labor; if either is zero, then there is no harvest. The 
respective elasticities reflect the proportional effects that skill and 
labor have on harvests. That is, increasing either skill or labor results 
in increased harvests, but the scale of the increase is reflected in the 
elasticities. Our parameterization of the function does not impose 
constant returns to scale [cf. (27)].

Data on hunting returns pose the particular challenge of including 
many zeroes (for hunting trips in which nothing was acquired), and 
the harvests on successful hunting trips exhibit positive skew. We there-
fore adapt the Cobb-Douglas function in Eq. 1 to a zero-augmented 
model in which the zeroes and nonzero harvests are modeled via 
separate functions, as detailed in the Supplementary Materials. As 
in previous work (10), we use a Bernoulli distribution to model the 
probability of success versus failure, and the distribution of nonzero 
harvests is assumed to follow a gamma distribution.

To model latent skill across the life span, we adapt the von Bertalanffy 
growth model (28). The benefit of the model is that individuals’ skill 
is assumed to be lowest at birth with eventual declines due to senes-
cence. Within these constraints, the functional form of the model 
potentially exhibits considerable diversity depending on the empirical 
data. Age-related variation in skill is determined by a rate of growth, 
k, and a rate of decline, m. The growth component, k, potentially 
includes ecological knowledge, strength, cognitive function, and other 
traits that underlie foraging success but that exhibit reduced accel-
eration with age. For simplicity, the composite of these attributes can 
be dubbed knowledge. For a hunter of age x, the growth function, K, 
is represented by

  K(x ) = 1 − exp(− kx)   (2)

where k is a parameter greater than zero that reflects the rate of 
increase.

The declining component, m, reflects the senescence of traits re-
lated to hunting skill. For a forager of age x, the decline in produc-
tive ability, M, decreases at a constant rate given by

  M(x ) = exp(−mx )    (3)

where m is a parameter greater than zero that reflects the rate of 
decline.

Age-specific skill is then represented by the weighted product of 
the two preceding functions

  S(x ) = M(x ) K  (x)   b    (4)

where b is represents the elasticity for knowledge in the skill function. 
As detailed in the Supplementary Materials, the von Bertalanffy 
model permits diverse functional forms of skill across the life span, 
ranging from approximately sigmoidal to roughly quadratic shapes. 
Although we assume that the growth and senescence components 
of skill relate to proximate mechanisms, such as age-related varia-
tion in ecological knowledge and physical abilities, the available data 
do not allow us to examine those proximate mechanisms [cf. (15, 18)]. 
As a result, age-related variation in skill must be inferred from its 
effects on the observed productivity of hunters of heterogeneous ages.

The statistical model allows the von Bertalanffy parameters to vary 
across individuals, reflecting different rates of increasing skill or se-
nescence among hunters. The parameters also vary across study 
sites, allowing for different rates of increase and decline in heteroge-
neous environments. As noted previously, we model hunting returns 
using a zero-augmented gamma model, and the respective skill func-
tions of hunters and societies are estimated jointly from the Bernoulli 
and gamma functions. It would have been possible to estimate sep-
arate, correlated individual-level and site-level skill functions for the 
Bernoulli and gamma functions, respectively. Our modeling approach 
instead assumes that increases in skill have comparable effects in 
terms of reducing the probability of unsuccessful excursions and 
increases in the amount of meat acquired on successful outings. This 
assumption receives support from an earlier analysis of the Aché 
dataset, which suggests that there is a positive correlation (and no 
evident tradeoff) between hunters’ probabilities of acquiring some-
thing and the amounts that are harvested on successful trips (10).

In addition to the varying effects on the skill parameters, the model 
also allows the parameters for labor inputs and covariates in the 
linear model to vary across study sites. Missing data, particularly for 
hunt duration and technological variables, are common and addressed 
using Bayesian imputation and averaging methods.

At some study sites, hunters work cooperatively to harvest prey, 
and the data on these excursions assign the hunting returns to the 
group, not individual hunters. In those cases, we replace individual 
hunter skill in the production equation with the weighted average of 
the skill of the group members. The statistical model follows the 
principles of a multiple membership model (29, 30). When hunters 
are observed in different combinations of groups, it is possible to 
distinguish differences in skill between them.

We cannot rule out selection biases that complicate inferences. 
For instance, if there were a study site where highly skilled hunters 
are active regardless of environmental conditions and the relatively 
unskilled hunters are active only when returns are expected to be 
particularly favorable, then the estimated variation in hunters’ skill 
would likely be lower than a site where hunting activity occurs inde-
pendently of skill.

We fit our model using a Hamiltonian Monte Carlo sampling 
algorithm in the Rstan package, version 2.16.1 (31). We implemented 
the model both as a forward simulation and as a statistical model. 
The forward simulation validates that the statistical model can re-
cover parameters from data with known values. The statistical model, 
estimated from 10 chains of 500 iterations, exhibits efficient mixing 
and adequate diagnostics. The data and convenience functions are 
included as part of the cchunts R package, which is available along-
side the model posterior, coding scripts, and accompanying infor-
mation about the Open Science Framework (https://osf.io/2kzb6/).
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SUPPLEMENTAL MATERIALS

1. Description of the data
The total sample contains 1,821 individual hunter, 23,747 hunter-level outcomes, and

21,160 trips across 40 study sites. To compile the dataset, the first author searched for rel-
evant studies on subsistence hunting in the anthropological and biological literature, sub-
sequently contacting authors to invite them to contribute data. The contributors submitted
data in a standardized format that included variables for the biomass acquired on terrestrial
hunting trips, the ages of the hunters at the time of the hunt, the duration of the trip, the
hunting weaponry carried by the hunters, and the presence of dogs or assistants (the dis-
tinction between hunters and assistants was left to the discretion of contributors, who were
counseled to conceptualize ”hunters” as those individuals who made active contributions to
detecting and pursuing prey). Our data are restricted to hunting, and exclude gathering,
because of the paucity of data on gathered plant foods.

There is tremendous imbalance in sample size across units. One site contributes only 6
trips from 2 individuals. Another contributes more than 14,000 trips from 147 individuals.
Some individuals contribute only a single outcome, while others contribute dozens. The
majority of the sample comprises male hunters, with too little data on female hunters to
infer generalizable sex differences. (This does not imply that men’s production and skill is
more relevant to human evolution, nor that women’s foraging skill would necessarily exhibit
either the same or a different functional relationship with age.) Most sites contribute pri-
marily cross-sectional data, while a few others exhibit impressive time series. The statistical
framework is designed to make use of all these data.

2. The life history foraging model
Since skill cannot be directly observed, what is required is a model with latent age-varying

skill. This unobservable skill feeds into a production function for observable hunting returns.
In this section, we define a framework that satisfies this requirement. We explain it one piece
at a time, with a focus on the scientific justification.

One advantage of the latent skill approach is that it allows us to use different observations
from different contexts—both solo and group hunting, for example—to infer a common
underlying dimension of skill. But modeling even the simplest foraging data benefits from
this approach, as hunting returns often are highly zero-augmented. Separate production
functions for zeros and non-zeros are needed to describe such data. In principle, more
than one dimension of latent skill could be modeled. We restrict ourselves to only one in
the current analysis. With more detailed data, describing additional dimensions should be
possible.
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Figure S1. The age-specific skill model. Top row: Increasing components,
“knowledge,” and decreasing components, “senescence,” multiply to produce
relative productive potential at each age, “skill.” Bottom row: Variation in
the components combines to produce a diverse array of possible skill func-
tions.

2.1. Latent skill model. One of the simplest life history models is the von Bertalanffy
asymptotic growth model. We use this model to represent the increasing components
of hunting skill as a function of age. These increasing components include knowledge,
strength, cognitive function, and many other aspects that contribute to hunting success and
increase but decelerate with age. For convenience, label the composite of these components
knowledge. Assume that the rate of change in knowledge with respect to age x is given by
dK/dx = k(1 − K(x)). This means only that knowledge increases at a rate proportional
to the remaining distance to the maximum—the more there is left to learn, the more one
learns. Solving this differential equation yields the age-specific knowledge of a hunter at
age x:

K(x) = 1− exp(−kx) (1)
where k > 0 is a parameter that determines the rate of increase. To account for senes-
cence, we assume that production capacity M declines at a constant rate, given by dM/dx =
−mM(x). Solving this yields:

M(x) = exp(−mx) (2)
where m > 0 represents the rate of decline. The total age-specific skill is given by a weighted
product of these two functions:

S(x) = M(x)K(x)b (3)
where the parameter b controls the relative importance of K. In economic terms, b is the
knowledge elasticity of skill. We assume that k and m may vary across individuals—some
people learn faster or senesce more slowly—while b is a property of the production context
at a given study site.



This model is among the simplest we can construct. Nevertheless, it is capable of de-
scribing diverse age-specific skill curves. Figure S1 illustrates the general shapes of each
component of the model, as well as how variation in each component may produce variable
life histories. Each plot in this figure shows age on the horizontal axes. The top row of
the figure illustrates the general shape of each component (left and middle) and one pos-
sible resulting lifetime skill curve (right). The bottom row shows 10 different, randomly
simulated knowledge and senescence curves, with their implied random skill curves. These
demonstrate that even a model as simple as this one, with only three parameters, is nev-
ertheless capable of producing many diverse age-specific curves. This approach brings two
more advantages, as compared to the use of polynomial functions of age. First, the parame-
ters have straightforward biological interpretations. Second, these functions do not exhibit
instabilities such as Runge’s phenomenon that complicate fitting and prediction.

These functions also have clear weaknesses. Neither the rate of gain k nor the rate of
loss m is plausibly constant over large age ranges. The rate of variation in body growth,
for example, will produce rate variability in skill growth. And near the end of life, skill
loss should accelerate rather than slow down. Although the data analyzed in this paper do
not span the age ranges in which this variation would occur, we should be cautious about
overgeneralizing from this analysis.

The final component of the core skill model is partial pooling of information. Since
these data contain repeat measurements on the same units—individuals and sites—as well
as substantial imbalance in sampling of these units, partial pooling via multilevel modeling
provides superior estimates. We employ two levels of hierarchical pooling (Figure S2).
First, the life history parameters k and m are pooled across individuals within each site (left
column, Figure S2). In standard terminology, kid and mid for each individual are random
effects drawn from a bivariate distribution. Each site also has its own value for b, reflecting
variation in the relative importance of knowledge across sites. Therefore each site has its own
distribution of skill functions (middle column). Finally, the site distributions are pooled
together to regularize inference at the second level (right column), producing a distribution
of site distributions. To an extent, this global distribution is a statistical fiction that is
necessary to pool information properly among sites. However, it is also a target of inference,
providing a weighted summary of all of the evidence across sites. The weights arise from
the structure of the multilevel model and are functions of the sample sizes, the differences
in site means, and the variation among those means. For example, a site could have a large
sample size but contribute little to the global mean if its own mean were extreme.
2.2. Production model. Skill is not directly observable. Rather, we must infer it by its
effects on hunting productivity. This requires introducing a layer of production functions
through which skill acts. The production data available to us contain two correlated com-
ponents: (1) the probability of a successful trip that produces a non-zero harvest and (2)
the size of harvests obtained on successful trips. We model each with a standard log-linear
function of labor, skill, and technology. Specifically, for successful trips, the mean expected
harvest at skill S is given by:

h(S) = SηhLβh expαh (4)
where ηh is the elasticity of skill, which determines the magnitude of skill differences on
harvest, Lβh is the labor allocated with its elasticity βh, and αh is a linear model including
terms for technology and cooperation variables. (In this equation, the h subscript denotes
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Figure S2. Hierarchical structure of skill functions within the inferential
model. Within each site (left) a skill curve is inferred for each hunter. In-
dividuals within each site are pooled using a distribution of individual skill
curves (middle). Finally, the distributions of parameters within each site are
again pooled using a distribution of distributions (right). This formulation
allows variation among individuals to vary by site.

that this is the function for the non-zero harvests, as distinguished from the subsequent
Bernoulli function for successes and failures in Equation 5, which features the p subscript.)
Notice that harvest increases with both skill and labor, but that the elasticity of each de-
termines the impact of any increase. The full distribution of harvests is assumed to follow
a gamma distribution, which allows for the highly skewed distributions typical of many
hunting data sets. However, a log-normal distribution of harvests would work as well. The
important features are to impose a zero lower bound and to allow for positive skew. If we
had detailed data on the encounters and pursuits of individual prey types, we could build a
mixture distribution to better describe observed harvest sizes. But such data are available
in very few cases. For comparability across sites and compatibility with the logit function
described next (equation 5), we have proportionally standardized harvests relative to average
harvest sizes at the respective study sites. When evaluating sources of variation in the data,
it is important to bear in mind this standardization, which limits the inferences that can be
made about between-site variation in this analysis.
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Figure S3. Example production functions for observed harvests. Expected
harvest (righthand column) is the product of the probability of a non-zero
harvest (lefthand column) and the expected size of a non-zero harvest (mid-
dle column). The top row shows how each component may vary with skill.
The bottom row shows how each may vary with number of hunters.

A similar approach provides a Bernoulli distribution of success/failure. The probability
that a trip produces a non-zero harvest is:

p(S) = 2
(logit−1(SηpLβp expαp)− 1

2

) (5)
The terms enclosed within the interior parentheses recapitulate the log-linear production
function of the above equation (4). The remainder of the function re-scales the log-linear
model so that p(S) varies continuously from zero to one and p(0) = 0.

This is a descriptive approach. It has the advantage of being able to describe many possible
relationships between skill, labor, and technology. Figure S3 illustrates some of the model’s
features. Each plot in this figure shows labor input—hours allocated to foraging—on the
horizontal axis. From left to right, the plots show the probability of a non-zero harvest, the
expected harvest size on a successful trip, and the expected returns resulting from the product
of the two. Each row illustrates the impact of one type of variation—variation in individual
skill in the top row and variation in hunting group size in the bottom row. The first thing
to notice is that the function implies monotonic returns to labor. Marginal returns must
always either increase or decrease with labor. Second, skill and labor can influence hunting
success and harvest size quite differently. There is no assumption that skill or labor is equally
important for both components of production. And since technology can influence elasticity
of skill and labor, technology can have independent effects as well.
2.3. Cooperative trips and aggregated harvests. Many of the hunting trips in our sam-
ple are cooperative, in the sense that multiple hunters of varying skill interact in producing
returns. The harvests on these trips may be assignable to individual hunters or alternatively
credited to the group as a whole. We handle cooperative trips by treating them as analo-
gous to technology, with group size represented as a coefficient in the production equation.



When returns are aggregated to the level of the group rather than assigned to individual
hunter, we replace individual hunter skill in the production equation with a weighted aver-
age of the skill of the group members.
2.4. Missing values and measurement error. Our sample embodies common statistical
challenges. First, there are many missing values, notably for trip duration and the presence
of dogs on trips. Second, there is measurement error, notably for individual ages. The
customary solution to these problems is to drop all cases with any missing values and to
replace uncertain measurements with their means. Instead of dropping cases with missing
values, however, we model the unknown values. This allows Bayesian imputation of missing
values, averaging over uncertainty in unobserved durations. We rely upon the same principle
to handle measurement error in age. In some cases, co-authors who contributed datasets
to our sample assigned a standard error to the recorded ages of hunters. Within the model,
each hunter’s date-of-birth is replaced with an unknown parameter with a prior centered
on the recorded age and with standard deviation equal to the recorded standard error. In a
few cases, no age is recorded for an individual. In those cases, we assign a vague prior that
covers the entire range of observed ages.
2.5. Inference. The full model contains just under 28,000 parameters. Many of these cor-
respond to missing durations and age uncertainties, and so contribute little fit to the sample.
Many of the remaining parameters arise from the hierarchical structure of the life history
model. These parameters do not make it easier to fit the sample, but rather harder. They
reduce overfitting, by pooling information among sampling units. For the remaining pa-
rameters, we adopt regularizing priors that are more conservative than the implied flat priors
of typical non-Bayesian procedures. We present a complete description of the priors in the
supplemental code. Having fit alternative parameterizations of the model, we believe the
results that we present in the next sections are qualitatively robust to changes in priors and
even the hierarchical structure of the model. To facilitate alternative estimates of model
parameters, though, we provide our annotated modeling code in this supplemental material
(Appendix A), and we provide the full code and auxiliary scripts in the online supplements
(https://osf.io/2kzb6/).

3. Formal model definition
As a complement to the above qualitative description of the modeling approach, we turn

to a formal description of the model. Let y be an indicator variable for hunting success
(produced a non-zero harvest) and h any observed non-zero harvest. Let i index observed
outcomes (harvests). Then:

yi ∼ Bernoulli(pi)

hi ∼ Gamma(µi2, νsite[i])

The expressions for p and µ specify the production functions, indexed by j for the outcome
type (for successes or harvest size, respectively):

pi = 2
(logit−1(µi1)− 1

2

)

log(µij) = ηsite[i]jStrip[i] + βsite[i]1j log Li + αij

The labor input is Li, the duration of the trip, standardized so that the average trip at each
site has L = 1.



The skill input S into the above is given by the average skill among the individuals con-
tributing labor to a particular observed harvest:

Strip[i] = n−1
trip[i]

ntrip[i]∑

f=1

exp(−mid[f]%id[f],trip[i])
(
1− exp(−kid[f]%id[f],trip[i])

)bsite[trip[i]]

where n is the number of productive foragers for trip[i] (excluding individuals categorized
as assistants, such as porters) and id[f] is the forager ID of the f-th forager on each trip. This
means that for aggregated harvests, in which individual contributions cannot be identified,
the model uses average skill. The age %f,trip[i] is the estimated age for forager f at the time of
trip[i]. We describe the age model further down. Note that all ages within the model are
standardized by dividing calendar age by the reference age of 80, making % = 1 equivalent
to 80 years old.

The intercept component of each production function, αij, is composed from:
• A site-specific intercept asite[i]j
• A site-specific and outcome-type specific set of coefficients (elasticities) for the im-

pact of group size, number of assistants, firearms, and dogs. The latter two variables
are binary variables indicating whether the hunter had use of a gun (as opposed to
other weaponry) or at least one dog.

On the log scale, these combine additively:
αij = asite[i]j + groupsize + assistants + firearms + dogs

All of these effects are allowed to vary by site as random effects. These assumptions are
visible in precise detail in the statistical code.

Randomeffects on skill. The life history parameters k, m, and b make use of partial pooling
both within and between sites. We use a two-level pooling structure that allows each site
to have its own covariance between k and m. Specifically, let id be the unique ID number
of each forager. Then each kid and mid are defined by:

kid = exp(W1 + Vsite[id[i]],1 + vid,1)

mid = exp(W2 + Vsite[id[i]],2 + vid,2)

The parameters W1 and W2 are overall means, across all sites, and the parameters Vs,1 and
Vs,2 are the offsets of these means for site s. This leaves vid,1 and vid,2 as the offsets for
individual id.

Starting at the lowest level, each pair of parameters vid = {vid,1, vid,2} are allocated
probability from a bivariate normal:

vid ∼ MVNormal((0, 0),Σsite[id])

ΣS =
(

σ2
S,1 σS,1σS,2ρS

σS,1σS,2ρS σ2
S,2

)

Each site is characterized by 6 parameters: site-level offsets for k, m, and b, as well as
standard deviations for hunter-level k and m and their correlation ρ. These 6 parameters are
themselves pooled across sites. This produces the distinction between variance among sites
and the variance of the individual hunters, as described in the text.



Age error model. We accommodate uncertainty in observed ages by defining:
%id,i = (agei − υid)/80

υid ∼ Normal(lid, eid)

where lid is the observed year of birth and eid is the assigned standard error. In the limit
where eid → 0, the age is purportedly known with certainty. Some sites reported ages
using uniform intervals. We converted those to Gaussian representations with equivalent
variances, so that the imputed ages were unconstrained. In most cases, when a researcher
records a uniform age interval, they imply that the true age is closer to the middle of the
interval and do not imply that it is impossible for the true age to be outside the interval.
To allow this information into the model, we had to use something other than a uniform
probability distribution. Gaussian is the most conservative choice, in that case. The irony
of the effort put into dealing with age uncertainty is that it has no detectable impact on
inference. Fixing all of the ages at their central value produces the same inferences that we
reported in the main text. On the one hand, this is disappointing, because it really was not
trivial to model the uncertainty, and it did not seem to matter much. On the other hand, it
is important to do the right thing, even if it turns out not to matter.

4. Supplemental Results
4.1. Production functions. The skill functions presented in Figure 2 of the main text are
inputs into site-specific production functions. These functions have their own elasticities
and therefore characteristic shapes. Here we present alternatives to Figure 2 that illustrate
these production functions. There are three different perspectives on the production func-
tion. The first component is the probability of success at each age. The second component
is the distribution of harvest sizes at each age. These two components multiply to produce
the distribution of expected harvests at each age.

To make these components easier to understand, consider all four implied components of
the production function for only the Aché sample (Figure S4). The orange functions in the
upper-left are the same latent skill functions as in the main text. The red functions in the
upper-right are the probabilities of success for each hunter, with the horizontal dashed line
showing 50% success rate. The points are the raw data—the proportion of successes at each
observed age, aggregated across individuals who were observed at those ages. The lower-
left blue functions are the expected harvest sizes, conditional on a non-zero harvest. Again
the points are raw data—the average harvest observed at each age. The violet functions in
the lower-right are just the product of the red and blue functions, showing the expected
production at each age.

Each component may be of interest in itself. In some sites, such as the Aché (16 ACH),
the success of each hunt contributes more to variation than does the harvest size. The red
curves in Figure S4 vary more both across age and across individuals than do the blue curves.
As a result, more of the variation in the resulting expected production curves, seen in violet,
arises from success rates rather than variation in harvest sizes. As seen in the subsequent
plots (Figure S5, Figure S6, Figure S7) the Matsigenka sample (9 MTS) shows the same
pattern—more variation in success rates than harvest sizes. This is possibly a result of the
prey types available at the respective sites. Regardless of the explanation, decomposing
the expected production in this way shows how skill can influence some aspects more than
others.
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Figure S4. Components of the forager production functions for the Aché
sample. See text for description.
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Figure S5. Posterior mean probabilities of hunting success across age. The
axis ranges from 0 to 1, and is the probability of hunting success (a non-
zero harvest). Model predictions are for a solitary excursion by a lone hunter
without companions or assistants, and the predictions assume average hunt
duration and the absence of dogs and firearms. Several sites, such as GB4
(21) and DLG (30), show essentially no variation in hunting success, since
virtually all documented trips result in a non-zero harvest. Other sites, such
as MRT (35) and WOL (40), show substantial failure rates and variation
arising from it. nb: Variation in methods for documenting unsuccessful
hunts imposes limitations on comparisons across sites – see the help files
in the cchunts package for details.
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Figure S6. Posterior mean non-zero harvest size across age. Model pre-
dictions are for a solitary excursion by a lone hunter without companions or
assistants, and the predictions assume average hunt duration and the absence
of dogs and firearms. The vertical axis is proportion of maximum harvest at
each site. While the units are not comparable across sites, therefore, hunter-
level variation within sites is informative.
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Figure S7. Expected production across age. These functions are the product
of the success function and the expected harvest function. In considering
relative expected energy contributions of individuals at different ages, these
curves are perhaps the most relevant representations of the data.
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Figure S8. Simulated samples from the posterior distributions of skill func-
tions in each site. This figure is similar to the skill grid in the main text, but it
shows simulated hunters, not the posterior means for the observed hunters.
This representation of the skill functions shows that, at many study sites, the
model expects more empirical variation than can be seen in the previous skill
figure (Figure 2).



Marginal posterior distributions. Many of the parameters in the production functions are
interesting in themselves. For example, the marginal effects of group size and technology
potentially inform debates about human subsistence strategies. In the figures that follow,
we present marginal posterior distributions for all of these parameters, labeled informa-
tively. In general, many of the parameters exhibit cross-cultural variation. For instance,
in a small number of sites, the use of firearms or dogs increases the respective probabili-
ties of a successful hunt or the amounts of biomass acquired. In most sites, however, the
posterior distributions of these parameters are largely indistinguishable from the priors. (In
some cases, this potentially reflects the lack of variation in the use of firearms or dogs within
sites.) The elasticities of labor and skill inputs exhibit analogous cross-site variation.
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Figure S9. Marginal posterior distributions for production components
(success). In the code, these parameters are named af[1], af[2], af[3],
af[4], sef, and bhours[1], respectively. Note that marginal distributions
centered on zero with standard deviation 0.5 correspond to the prior. In
those cases, the society contained no information to inform the parameter.
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Figure S10. Marginal posterior distributions for production components
(harvest). In the code, these parameters are named ah[1], ah[2], ah[3],
ah[4], seh, and bhours[2], respectively. Note that marginal distributions
centered on zero with standard deviation 0.5 correspond to the prior. In
those cases, the society contained no information to inform the parameter.
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Figure S11. Marginal posterior distributions for dogs (top row) and
firearms (bottom row). In the code, these parameters are named dogs_mu,
bdogs[1], bdogs[2], firearms_mu, bfirearms[1], and bfirearms[2],
respectively. Marginal distributions centered on zero with standard devia-
tion 0.5 correspond to the prior. In those cases, the society contained no
information to inform the parameter. Dogs are used at two sites, MTS and
HEH, in which their use on trips was not documented. These missing data
were averaged into the intercept and set to zero in this figure.
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Figure S12. Marginal posterior distributions for dispersion and variance
components. In the code, these parameters are named hscale (top-left),
sigmas_hunters[1] (top-middle), sigmas_hunters[2] (top-right), and
sigma_societies (bottom-middle). In the bottom-middle, k indicates the
standard deviation among sites in mean skill growth, m the standard devi-
ation among sites in mean skill decay, b the standard deviation in b across
sites, rho_km the standard deviation (on the latent scale) of the correlations
between k and m across sites, and then sigma_k and sigma_m are standard
deviations across sites of standard deviations among foragers in each site.



Appendix A
Detailedmodel code. The full code for the model is available in the accompanying R pack-
age and scripts (https://osf.io/2kzb6/). In this section, we explain the model block of the
code, focusing on how the marginalization over missing values is accomplished.

The first portion of the model block defines local variables, used in calculations, and pri-
ors. The only unusual code here is the Jacobian adjustment applied to lifehistmeans[4]
and lifehistmeans[5]. This adjustment allows us to apply the prior on the natural, in-
stead of logarithmic, scale.
model{

// temp variables
real k[N_hunters];
real m[N_hunters];
real b[N_societies];
vector[N_trips] lm_f;
vector[N_trips] lm_h;
real p;
real mu;
matrix[2,2] Sigma;
vector[N_trips] trip_duration_merge;

// priors
// society-level life history means --- centered on global means
// equivalent to:
//vs~multi_normal(lifehistmeans,quad_form_diag(Rho_societies,sigma_societies));
//see transformation in transformed parameters block
to_vector(zs) ~ normal(0,1);

lifehistmeans[1:2] ~ normal( 1, prior_scale ); // log k,m
lifehistmeans[3] ~ normal( 1, prior_scale ); // log b
lifehistmeans[6] ~ normal( 0, prior_scale ); // shifted logit rho_km
// do prior for stddev k,m between [4,5] as normal on transformed scale
// this allows us to define same prior for sigma_societies[1:2]
exp(lifehistmeans[4]) ~ normal( 0 , prior_scale );
exp(lifehistmeans[5]) ~ normal( 0 , prior_scale );
// need Jacobian adjustments for these priors
// log|d/dy exp y| = log|exp y| = y
// see also section 33.2 of Stan reference manual
target += lifehistmeans[4];
target += lifehistmeans[5];

sigma_societies[1:3] ~ normal( 0 , prior_scale2 );
sigma_societies[4] ~ normal( 0.5 , prior_scale2 );
sigma_societies[5:6] ~ normal( 0 , prior_scale2 );

dogs_mu ~ beta(2,10); // weighted to stop mode switching in site 8
guns_mu ~ beta(2,4);



ache_fix_rho ~ normal( 0, prior_scale );

afbar ~ normal(0, prior_scale );
ahbar ~ normal(0, prior_scale );
sigma_af ~ normal(0, prior_scale );
sigma_ah ~ normal(0, prior_scale );

for ( s in 1:N_societies ) {
af[1,s] ~ normal(afbar,sigma_af);
ah[1,s] ~ normal(ahbar,sigma_ah);
for ( i in 2:4 ) {

af[i,s] ~ normal(0,prior_scale);
ah[i,s] ~ normal(0,prior_scale);

}
sef[s] ~ normal(0,prior_scale);
seh[s] ~ normal(0,prior_scale);
for ( i in 1:2 ) {

b_hours[i,s] ~ normal(0,prior_scale);
b_dogs[i,s] ~ normal(0,prior_scale);
b_firearms[i,s] ~ normal(0,prior_scale);
se_dogs[i,s] ~ normal(0,prior_scale);
se_firearms[i,s] ~ normal(0,prior_scale);

b_xday[s,i] ~ normal(0,prior_scale);
}

}//s
hscale ~ normal( 1 , prior_scale );

// varying effects
// foragers --- these are zero-centered
// see translation to vh in transformed parameters block
to_vector(zh) ~ normal(0,1);

The next chunk of code handles imputation of missing ages and trip durations. For each
missing age, there is a corresponding standard error of the age. This comprises a Gaussian
prior for the error of each missing age. Combined with the prior for each missing age, this
provides a way to average over the uncertainty. For each missing trip duration, similarly a
parameter is used. Then a vector that merges observed and missing values is generated. The
prior formed from each site’s (standardized) trip durations constrains the imputed values.
// age imputation
for ( i in 1:N_hunters ) {

if ( age_impute_idx[i] > 0 ) {
if ( age_impute_table[i,1]==1 )

age_err[age_impute_idx[i]] ~
normal( 0 , age_impute_table[i,3] );

}



}

// trip durations
for ( j in 1:N_societies ) trip_duration_mu[j] ~ normal(0,1);
trip_duration_sigma ~ exponential(1);
for ( i in 1:N_trips ) {

if ( trip_hours[i]<0 ) {
// missing
trip_duration_merge[i] = trip_duration_imputed[hours_miss_idx[i]];

} else {
// observed
trip_duration_merge[i] = log(trip_hours[i]);

}
// prior (when missing) or likelihood (when observed)
trip_duration_merge[i] ~ normal( trip_duration_mu[trip_soc_id[i]] ,

trip_duration_sigma[trip_soc_id[i]] );
}//i

The next short section computes hunter-specific and society-specific skill parameters.
These are then reused in the likelihood calculations to follow.
// prep hunter effects so can re-use
for ( j in 1:N_hunters ) {

k[j] = exp( lifehistmeans[1] + vs[forager_soc_id[j],1] + vh[j,1] );
m[j] = exp( lifehistmeans[2] + vs[forager_soc_id[j],2] + vh[j,2] );

}
// prep b for each society, so only have to compute once
for ( s in 1:N_societies ) {

b[s] = exp( lifehistmeans[3] + vs[s,3] ); // ensure positive with log link
}

The main loop of the model block comes next. This loop passes over trips, and then
harvests within trips. The first chunk of code just prepares local variables. The xdogsvec
and xgunsvec arrays exist to help us construct marginal log-probabilities when both dogs
and firearms are unobserved (missing). The relevant code appears later down.
// likelihoods
lm_f = rep_vector(0,N_trips);
lm_h = lm_f;
// loop over trips and compute likelihoods
for ( i in 1:N_trips ) {

real skillj;
real sefx;
real sehx;
real ai;
int hid;
real avg_skill;
vector[2] LLterms;
vector[4] LL4terms;
int xdogs;



int xguns;
int n_foragers_index;
int coopidx;
// prep binary tree for possible combinations of missing values
int xdogsvec[4];
int xgunsvec[4];
xdogsvec[1] = 1;
xdogsvec[2] = 1;
xdogsvec[3] = 0;
xdogsvec[4] = 0;
xgunsvec[1] = 1;
xgunsvec[2] = 0;
xgunsvec[3] = 1;
xgunsvec[4] = 0;

Next, when a trip has a pooled harvest, average skill for the entire group of hunters must
be calculated. This is because we assume that production depends upon average skill in this
case, where we cannot identify individual contributions. The coopidx variable tells us later
which intercept parameter is needed, as the intercept in production differs depending upon
pooled or individual harvests.
// compute avg skill (when needed)
avg_skill = 0;
if ( trip_pooled[i]==1 ) {

// pooled harvest
// compute average skill in foraging group
for ( j in 1:n_foragers[i] ) {

hid = forager_ids[i,j];
if ( age_impute_idx[hid]==0 ) {

// simple case, just fetch observed age
ai = forager_age[i,j]; // from trip variables

} else {
// need some kind of imputation
ai = forager_age[i,j] + age_err[age_impute_idx[hid]];

}
ai = ai/ref_age;
skillj = exp(-m[hid]*ai)*pow(1-exp(-k[hid]*ai),b[trip_soc_id[i]]);
avg_skill = avg_skill + skillj;

}//j
avg_skill = avg_skill/n_foragers[i] + 0.001;
n_foragers_index = 1; // loop over just "one" forager
coopidx = 3;

} else {
// independent harvests
n_foragers_index = n_foragers[i];
coopidx = 2;

}



The big loop over individual foragers comes next. The loop begins by calculating indi-
vidual forager skill, but only when harvest is not pooled. This code is structural the same as
that used above to compute average skill, but it omits the averaging.
for ( j in 1:n_foragers_index ) {

// if trip pooled, only one harvest (n_foragers_index==1)
// otherwise loops over each harvest and predicts each

if ( trip_pooled[i]==1 ) {
skillj = avg_skill;

} else {
hid = forager_ids[i,j];
if ( age_impute_idx[hid]==0 ) {

// simple case, just fetch observed age
ai = forager_age[i,j]; // from trip variables

} else {
// need some kind of imputation
ai = forager_age[i,j] + age_err[age_impute_idx[hid]];

}
ai = ai/ref_age;
skillj = exp(-m[hid]*ai)*pow(1-exp(-k[hid]*ai),b[trip_soc_id[i]]) + 0.001;

}
Next we build “stem” expressions for each harvest log-probability. These stems contain

all terms except those for dogs and firearms. Dogs and firearms must be added conditional
on missingness. In that case, these stems are reused for each missingness state.
// failures production
lf_stem = exp( af[1,trip_soc_id[i]] +

af[coopidx,trip_soc_id[i]]*(n_foragers[i]-1) +
af[4,trip_soc_id[i]]*n_assistants[i,j] +
b_xday[trip_soc_id[i],1]*trip_xday[i]

) *
exp(trip_duration_merge[i])^b_hours[1,trip_soc_id[i]];

// harvests production
lh_stem = exp( ah[1,trip_soc_id[i]] +

ah[coopidx,trip_soc_id[i]]*(n_foragers[i]-1) +
ah[4,trip_soc_id[i]]*n_assistants[i,j] +
b_xday[trip_soc_id[i],2]*trip_xday[i]

) *
exp(trip_duration_merge[i])^b_hours[2,trip_soc_id[i]];

// failures skill elasticity
sef_stem = exp( sef[trip_soc_id[i]] );
// harvests skill elasticity
seh_stem = exp( seh[trip_soc_id[i]] );

Now we can do target updates. Different expressions need to be built, depending upon
whether dogs, firearms, or both are missing. The simplest case is when both are observed.
In this case, we just add the observed values to the stems, compute probability of failure,
average harvest, and update. Note that −1 as the missingness indicator is chosen during



data initialization. Note that the code here considers the probability of a zero harvest,
instead of the probability of a non-zero harvest. This is equivalent to the analytical model
definition given earlier, even though the expression looks different.
if ( n_dogs[i,j] != -1 && n_firearms[i,j] != -1 ) {

// dogs and guns both observed
// use obs values to update base rates of dogs and guns
n_dogs[i,j] ~ bernoulli(dogs_mu[trip_soc_id[i]]);
n_firearms[i,j] ~ bernoulli(guns_mu[trip_soc_id[i]]);
// build production functions with observed values
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
// compute failure probability and harvest mean
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;
if ( trip_harvests[ i , j ]==0 )

// failure
1 ~ bernoulli(p);

else {
// observed harvest
0 ~ bernoulli(p);
trip_harvests[ i , j ] ~ gamma( mu/hscale[trip_soc_id[i]] ,

1/hscale[trip_soc_id[i]] );
}

}
The next two cases are when either dogs or firearms are missing. In these cases, we need to

marginalize over missingness states. This generates two log-probability terms in a mixture.
// now dogs missing, guns observed
if ( n_dogs[i,j] == -1 && n_firearms[i,j] != -1 ) {

n_firearms[i,j] ~ bernoulli(guns_mu[trip_soc_id[i]]);
// average over missingness
// LLterms holds terms to mix over
// LLterms[1] is where dogs == 0
// LLterms[2] is where dogs == 1
for ( nterm in 1:2 ) {

xdogs = nterm-1;
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*xdogs +

b_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*xdogs +

b_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*xdogs +



se_firearms[1,trip_soc_id[i]]*n_firearms[i,j] );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*xdogs +

se_firearms[2,trip_soc_id[i]]*n_firearms[i,j] );
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;
LLterms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {

LLterms[nterm] = LLterms[nterm] + log(p);
} else {

LLterms[nterm] = LLterms[nterm] + log1m(p);
LLterms[nterm] = LLterms[nterm] +

gamma_lpdf( trip_harvests[i,j] |
mu/hscale[trip_soc_id[i]] , 1/hscale[trip_soc_id[i]] );

}
}// nterm
// do the mixture
// Pr(dogs==1)*Pr(harvest|dogs==1) + Pr(dogs==0)Pr(harvest|dogs==0)
// log_mix here is for numerical stability
target += log_mix( dogs_mu[trip_soc_id[i]] , LLterms[2] , LLterms[1] );

}
// now dogs observed but firearms missing
if ( n_dogs[i,j] != -1 && n_firearms[i,j] == -1 ) {

n_dogs[i,j] ~ bernoulli(dogs_mu[trip_soc_id[i]]);
// average over missingness
// similar to above, but LLterms now average over missing guns
for ( nterm in 1:2 ) {

xguns = nterm-1;
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[1,trip_soc_id[i]]*xguns );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

b_firearms[2,trip_soc_id[i]]*xguns );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[1,trip_soc_id[i]]*xguns );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*n_dogs[i,j] +

se_firearms[2,trip_soc_id[i]]*xguns );
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;
LLterms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {

LLterms[nterm] = LLterms[nterm] + log(p);
} else {

LLterms[nterm] = LLterms[nterm] + log1m(p);
LLterms[nterm] = LLterms[nterm] +

gamma_lpdf( trip_harvests[i,j] |
mu/hscale[trip_soc_id[i]] , 1/hscale[trip_soc_id[i]] );

}



}//nterm
// do the mixture
target += log_mix( guns_mu[trip_soc_id[i]] , LLterms[2] , LLterms[1] );

}
Finally, both dogs and firearms could be missing. In this case, we need a mixture over

four possible states.
// finally, both dogs and guns missing
if ( n_dogs[i,j] == -1 && n_firearms[i,j] == -1 ) {

// L4terms holds combinations of possible values of dogs and guns
// dogs guns {probability at site k}
// [1] 1 1 dogs_mu[j] * guns_mu[k]
// [2] 1 0 dogs_mu[j] * ( 1 - guns_mu[k] )
// [3] 0 1 ( 1 - dogs_mu[j] ) * guns_mu[k]
// [4] 0 0 ( 1 - dogs_mu[j] ) * ( 1 - guns_mu[k] )
for ( nterm in 1:4 ) {

xdogs = xdogsvec[nterm];
xguns = xgunsvec[nterm];
lm_f[i] = lf_stem * exp( b_dogs[1,trip_soc_id[i]]*xdogs +

b_firearms[1,trip_soc_id[i]]*xguns );
lm_h[i] = lh_stem * exp( b_dogs[2,trip_soc_id[i]]*xdogs +

b_firearms[2,trip_soc_id[i]]*xguns );
sefx = sef_stem * exp( se_dogs[1,trip_soc_id[i]]*xdogs +

se_firearms[1,trip_soc_id[i]]*xguns );
sehx = seh_stem * exp( se_dogs[2,trip_soc_id[i]]*xdogs +

se_firearms[2,trip_soc_id[i]]*xguns );
p = 2*(1 - inv_logit( skillj^sefx * lm_f[i] ));
mu = lm_h[i] * skillj^sehx;
LL4terms[nterm] = 0;
if ( trip_harvests[i,j]==0 ) {

LL4terms[nterm] = LL4terms[nterm] + log(p);
} else {

LL4terms[nterm] = LL4terms[nterm] + log1m(p);
LL4terms[nterm] = LL4terms[nterm] +

gamma_lpdf( trip_harvests[i,j] |
mu/hscale[trip_soc_id[i]] ,
1/hscale[trip_soc_id[i]] );

}
// add leading factor for probability of combination of missingness
if ( xdogs==1 )

LL4terms[nterm] = LL4terms[nterm] + log(dogs_mu[trip_soc_id[i]]);
else

LL4terms[nterm] = LL4terms[nterm] + log1m(dogs_mu[trip_soc_id[i]]);
if ( xguns==1 )

LL4terms[nterm] = LL4terms[nterm] + log(guns_mu[trip_soc_id[i]]);
else

LL4terms[nterm] = LL4terms[nterm] + log1m(guns_mu[trip_soc_id[i]]);



}//nterm
// do the mixture
target += log_sum_exp( LL4terms );

}
In the end, the model block just loops over foragers j and trips i until all trips have been

processed.
} //j over foragers

} //i over trips
} //model
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