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Incarcerated individuals are a highly vulnerable population for infection with

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding

the transmission of respiratory infections within prisons and between prisons and

surrounding communities is a crucial component of pandemic preparedness and

response. Here, we use mathematical and statistical models to analyze publicly

available data on the spread of SARS-CoV-2 reported by the Ohio Department

of Rehabilitation and Corrections (ODRC). Results from mass testing conducted

on April 16, 2020 were analyzed together with time of first reported SARS-

CoV-2 infection among Marion Correctional Institution (MCI) inmates. Extremely

rapid, widespread infection of MCI inmates was reported, with nearly 80% of

inmates infected within 3 weeks of the first reported inmate case. The dynamical

survival analysis (DSA) framework that we use allows the derivation of explicit

likelihoods based on mathematical models of transmission. We find that these

data are consistent with three non-exclusive possibilities: (i) a basic reproduction

number >14 with a single initially infected inmate, (ii) an initial superspreading

event resulting in several hundred initially infected inmates with a reproduction

number of approximately three, or (iii) earlier undetected circulation of virus

among inmates prior to April. All three scenarios attest to the vulnerabilities of

prisoners to COVID-19, and the inability to distinguish among these possibilities

highlights the need for improved infection surveillance and reporting in prisons.
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1. Introduction

The COVID-19 pandemic has demonstrated the tremendous vulnerability of

incarcerated individuals to respiratory infections. More than 600,000 COVID-19 cases and

close to 3,000 deaths were reported among incarcerated individuals in the United States as of

October 2022 (1), and case rates for incarcerated individuals are more than five times higher

than for the general population (2). Factors contributing to SARS-CoV-2 transmission

in prisons include shared housing, crowding, hygiene challenges, and inability to social

distance (3). Outbreak sizes within facilities can be high: infections in more than 80% of

prisoners at the Marion Correctional Institution (MCI) in Ohio have been identified (4–

7), and similarly high levels of infection have been observed at correctional facilities in

other jurisdictions (8, 9). The vulnerability of prisoners and prison staff to COVID-19,

the epidemiological connections between prisons and between prisons and surrounding

communities, and the potential for prisons to become amplifiers of transmission have been

noted by many authors (10–21).
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Studies of COVID-19 outbreaks in correctional facilities can

help us understand transmission in prisons and jails and identify

practices to prevent and control future outbreaks. Research during

the COVID-19 pandemic addressed vaccine efficacy and uptake

studies among inmates and staff (22, 23), examination of policies

by state corrections departments (24), studies of outbreaks started

by transfer of infected inmates between prisons (20), quantitative

analyses of relationships between correctional facility cases and

cases in surrounding communities (18, 19), and analysis of

interventions such as decarceration, single-celling, and testing of

asymptomatic individuals (25). Analyses of outbreaks in specific

facilities include time series analysis (9), assessment of outbreak

response in a California state prison (16), and network analyses

based upon inmate housing and staff assignments (26). Modeling

studies include stochastic simulations of transmission among

inmates and staff (27) and fitting compartmental models to case

time series data (28). In particular, Puglisi et al. (28) use model fits

to estimate the basic reproduction number (R0) for the ancestral

strain of SARS-CoV-2 in a large urban jail. Several of these studies

point to the need for improved data collection and reporting (21).

Here, we study the COVID-19 outbreak in MCI in the

spring of 2020 using publicly available time series data from the

Ohio Department of Rehabilitation and Corrections (ODRC). In

particular, our main contribution is a rigorous and statistically

principled analysis of the results of mass testing conducted at

MCI in April 2020. The analysis is based on a compartmental

mathematical model of transmission that is fit to data using

a statistical approach called the dynamical survival analysis

(DSA) (29, 30), which allows the calculation of explicit likelihoods

to summarize uncertainty. Our results highlight the explosive

potential for transmission of respiratory infections in prisons as

well as the critical need for improved monitoring and reporting of

infection in correctional facilities.

2. Data and methods

2.1. Case data

Mass RT-PCR testing of all inmates and partial testing of staff at

MCI was conducted on April 16, 2020. The total number of inmates

and the number of inmates and staff testing positive for SARS-

CoV-2 over time were obtained from public ODRC reports (7).

Results from early SARS-CoV-2 tests were available with a slight

time-lag, so we accumulate the cases reported at MCI over April

16–23, 2020 as a single mass testing data point assigned to April 16,

which was the date of mass testing. The mass testing event received

significant media coverage and was reported widely in numerous

news articles (4–6).

2.2. Mathematical model

We use a compartmental susceptible-exposed-infectious-

recovered (SEIR) model of SARS-CoV-2 dynamics in MCI. Such

compartmental models have been used extensively in the literature

because they tend to provide a good approximation to the process

of disease spread (31). Assuming a well-mixed population, under

the standard SEIR model, the proportions of individuals in the

susceptible (St), exposed (Et), infectious (It), and recovered (Rt)

compartments as a function of time t satisfy the following system

of differential equations:

Ṡt = −βStIt ,

Ėt = βStIt − αEt ,

İt = αEt − γ It ,

Ṙt = γ It ,

(1)

where the positive parameters β ,α, and γ denote the infection rate,

incubation rate, and recovery rate, respectively.

2.3. Statistical analysis

We derive a likelihood function for observing n positives out

of N incarcerated individuals on day u as follows: Using the DSA

approach of (29, 30, 32, 33), we interpret St as an improper survival

function. The mathematical justification for such an interpretation

is provided by the Sellke construction by which the function St can

be identified as the limiting probability of an initially susceptible

individual not getting infected by time t. Note that the function St
satisfying (1) is indeed a decreasing function and, when properly

scaled, we set S0 = 1. However, unlike proper survival functions

that vanish at infinity (i.e., decrease to zero in the limit), the

function St → S∞ > 0 as t → ∞ so it is an improper survival

function. However, we make it a proper survival function by

conditioning on ever being infected. Given observation up to time

T > 0, the time TE that an initially susceptible individual becomes

infected and enters the E compartment follows the conditional

probability density function

fT(t) = −
Ṡt

τT
, (2)

where τT = 1 − ST . The time TI to becoming infectious has the

conditional density

gT(t) =
αEt

τt
, (3)

and the recovery time TR has the conditional density

hT(t) =
γ (It − ρe−γ t)

τT
. (4)

Note that the random variables TE, TI − TE, and TR − TI

are mutually independent and that TI − TE and TR − TI have

exponential distributions with rates α and γ , respectively (29). The

parameter ρ is the initial proportion of infectious individuals.

Mass testing yields a number of individuals who test positive

and a total number of tests administered on the day of mass testing.

To use these data, let TN denote the time when virus first becomes

undetectable in an individual. We then describe the epidemic

process by the pair of random variables (TE,TN). Let ε = TN − TE.

Then, the probability of an individual testing positive on the day of

the mass testing (at time u) is given by

pu = Pr(TE < u < TN) = Pr(0 < u− TE < ε). (5)
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FIGURE 1

Positive tests over time among (A) inmates and (B) sta� at MCI, as reported by the Ohio Department of Corrections and Rehabilitation (7).

FIGURE 2

Time to infect 80% of the population in SEIR model with median

incubation period of 5.1 days and mean infectious period of 5.6

days.

We fix ε = 21 days, corresponding to detectable virus for 3 weeks

following an individual becoming infectious (34, 35). We set 1/α =

5.1/ log(2) days [corresponding to a median incubation period of

5.1 days (36)] and assume a mean infectious period 1/γ of 5.6

days (37).

If n out of N individuals test positive on the day of the mass

testing u, the log-likelihood function is given by

ℓ(β | n,N) = log

((

N

n

)

pnu(1− pu)
N−n

)

, (6)

with the probability of testing positive pu as described in Equation

(5). Note that the above likelihood function is a consequence of the

functional law of the large numbers for Poisson processes and the

Sellke construction.

The crux of the DSA method is that it allows one to interpret

functions that describe the large-population limiting proportions

of individuals in different compartments as probabilistic quantities,

such as survival functions or probability density functions of

transfer times from one compartment to another. This change in

perspective has a number of statistical advantages. For instance,

it makes available the entire toolkit of survival analysis, by virtue

of which it can account for censoring, truncation and aggregation

of data in a natural way. Variations of the DSA method have been

recently applied to analyze not only COVID-19, but also the 2001

foot-and-mouth disease (FMD) outbreak in the United Kingdom

(30) and multiple waves of the 2018–2020 Ebola epidemic in the

Democratic Republic of Congo (32). It is important to note that

the date considered in this article are from the first phase of

the pandemic when vaccines were not yet available. Nevertheless,

the DSA method is capable to incorporating vaccination regimes.

For instance, the method was applied to assess the potential

impact of vaccination in Israel in (38). See also Klaus et al. (39)

where the method was applied to COVID-19 data in the state of

Ohio, USA.

3. Results

3.1. Reported outbreak time course

According to ODRC reports (7), the first identified COVID-19

case at MCI was an infected staff member on March 29. Following

this initial case, precautions such as cohorting and modified

movement were enacted in order to restrict mixing and reduce

transmission. As stated in the publicly available ODRC report from

March 30, 2020:

Based on a staff member reporting a positive COVID

test, MCI is operating under modified movement and the

population is being separated by unit along with other

precautionary measures. Every inmate at MCI is monitored

daily and has their temperature taken along with a check for

symptoms. Currently, there are no inmates symptomatic for

COVID-19.
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FIGURE 3

Log-likelihood in the (R0, outbreak onset date) plane for mass testing data under a SEIR model with a 3 week test-positive window following the

onset of infectiousness. The R0 values that maximize the likelihood as a function of outbreak onset date are shown as a solid red line that follows the

right-most branch of the ‘wishbone’ in the log-likelihood plot. The R0 values consistent with the reported data (with onsets in late March or later) are

as large as 10. Onset dates prior to March, while inconsistent with the reported data, give more realistic R0 values of less than five.

The first COVID-19 case among inmates was identified on

April 3. Mass RT-PCR testing of all inmates and partial testing

of staff was conducted on April 16. By April 20, SARS-CoV-2

infection had been identified in 79% (1,950/2,453) of inmates and

35% (154/446) of staff. These numbers come directly from data on

the ODRCwebsite.We take theMay 5, 2020 listing of 2,453 inmates

at MCI as the denominator. There is a lag of a few days between

when mass testing occurred (April 16) and when jumps in case

counts are reported in the ODRC data (April 18–19 for inmates and

April 20 for staff), which may reflect delay in data entry. Figure 1

shows a time series of reported COVID-19 cases at MCI.

3.2. Basic reproduction number and initial
exposure size

The basic reproduction numberR0 is one of the key parameters

in models of infectious diseases (31). It is defined as the expected

number of secondary cases generated by an infected individual in a

population where all individuals are susceptible to infection. When

R0 > 1, disease can spread rapidly and cause a large epidemic

with positive probability. WhenR0 < 1, the spread of disease dies

out stochastically and a large epidemic cannot occur. R0 can also

be used to calculate the so-called “herd immunity threshold” for

interventions like vaccination that effectively reduce the susceptible

population.

To examine which values of the basic reproduction number

R0 are consistent with the rapid spread of COVID-19 observed

at MCI, we use the SEIR model (1). In order for mass screening

to identify 80% of the population as positive for COVID-19 on

April 16, at least 80% of the population must have been infected

by that date. Figure 2 shows the time needed to infect 80% of

the population in the SEIR model as a function of R0 and the

initial number of exposed individuals (E0). While R0 values of

two or larger are able to eventually infect 80% or more of the

population, this can take on the order of months for modest values

of R0. Reproduction numbers >14 are needed before outbreaks

originating from a single exposed individual are able to generate a

3-week cumulative incidence consistent with that reported forMCI.

An alternative explanation is that the outbreak involved more

than one initially infected prisoner. Figure 2 shows that, for a fixed

R0 value, increasing E0 decreases the time needed to infect 80% of

the population. However, an initial condition of E0 > 563 is needed

for an outbreak withR0 = 3 to infect 80% of the population within

3 weeks.

3.3. Time of initial outbreak circulation

A third possibility is that SARS-CoV-2 was circulating among

prisoners prior to April 3. Figure 3 shows the log-likelihood (6)

for observing the mass testing results in MCI according to

the SEIR model (1) as a function of R0 and the outbreak

onset date, with E0 fixed at one. The outbreak onset date

and R0 are unidentifiable from the mass testing data alone,

with the “wishbone” shape running diagonally across Figure 3

corresponding to pairs of outbreak onset and R0 that are

almost equally likely given the observed data. Outbreak onsets

in late March or later correspond to R0 > 10, while earlier

outbreak onsets correspond to smaller R0 values. Note that onset

dates prior to March are required to give R0 values of less

than five.

In general, the larger the value of the parameter R0, the

more difficult it is to control the epidemic. Our analysis is

consistent with this. Both the first and the third possibilities

explained above suggest that the R0 values consistent with

the reported data must be extremely high, calling attention to

the explosive potential for COVID-19 transmission in prisons.

Both the second and the third possibilities underscore the

implausibility of the reported disease introduction date and/or

the initial amount of infection, calling attention to the need

for more reliable monitoring and reporting of infection in

correctional facilities.
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4. Discussion and conclusion

The official reports from ODRC describe widespread infection

of MCI inmates with SARS-CoV-2 within the span of 3 weeks.

Our primary contribution is a rigorous analysis of the data

using an SEIR compartmental model fit to these data using

the DSA approach, which allows us to use all of the tools

of likelihood-based inference. This analysis indicates three non-

exclusive possible explanations for this rapid spread: (i) values

for the basic reproduction number that are far higher than the

R0 values between two and three that have been estimated for

the ancestral strain of SARS-CoV-2 in non-prison settings in

the United States (37), (ii) initial exposure of a large number

of infected prisoners as in an extreme superspreading event, or

(iii) early undetected circulation of SARS-CoV-2 among prisoners

prior to April 3. We note that the R0 values in (i) are even

greater than the already high estimates of the basic reproduction

number in a large urban jail (28). All three possibilities speak

to the vulnerabilities of prison inmates and staff to COVID-19.

Distinguishing between these different scenarios is impossible

without improved data collection and reporting. An arguable

weakness of our analysis is that it is retrospective in nature.

However, we believe studies such as ours will lead to improvements

that allow more detailed insight into the transmission of

respiratory infections within prisons are critical for protecting the

health of prison inmates, staff, and surrounding communities in

future pandemics.

Permissive conditions for spread within correctional facilities,

challenges for disease surveillance and care in these settings,

and the inextricable link between COVID-19 within correctional

facilities and disease spread in the surrounding community,

have been discussed eloquently by others (10–14). Structural

changes such as lower inmate densities (25, 40) and improved

ventilation (9, 16) are needed to decrease transmission potential

in correctional facilities. Efforts to increase vaccine coverage

are also important, particularly among prison staff who may

have relatively low vaccine uptake (23). Community case rates

are associated with cases in prisons (18), inmate transfers can

allow outbreaks to jump from one prison to another (20),

and staff can be an epidemiological link between correctional

facilities and surrounding communities. Without changes to

protect the health of staff and inmates, it is predictable

prisons will be vulnerable to extremely rapid spread of future

respiratory pathogens.

Improved surveillance and reporting are critical for

pandemic preparedness and for preventing or controlling

future outbreaks of respiratory diseases in prisons. Testing

policies during the COVID-19 pandemic varied widely across

state corrections departments (24). Testing protocols changed

over time, and state reporting of COVID-19 cases in prisons

was often incomplete or absent (41). Swift response is essential

for preventing and controlling large outbreaks, and it has

been identified as a distinguishing feature for countries with

successful COVID-19 pandemic responses (42). This swift

response is impossible without pathogen detection and reporting

efforts that include correctional facilities. Going forward,

we urge health departments and corrections departments to

collect accurate data and to make these data available for

analysis with appropriate protections for human subjects in this

vulnerable population.
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