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Incarcerated individuals are a highly vulnerable population for infection with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding
the transmission of respiratory infections within prisons and between prisons and
surrounding communities is a crucial component of pandemic preparedness and
response. Here, we use mathematical and statistical models to analyze publicly
available data on the spread of SARS-CoV-2 reported by the Ohio Department
of Rehabilitation and Corrections (ODRC). Results from mass testing conducted
on April 16, 2020 were analyzed together with time of first reported SARS-
CoV-2 infection among Marion Correctional Institution (MCI) inmates. Extremely
rapid, widespread infection of MCI inmates was reported, with nearly 80% of
inmates infected within 3 weeks of the first reported inmate case. The dynamical
survival analysis (DSA) framework that we use allows the derivation of explicit
likelihoods based on mathematical models of transmission. We find that these
data are consistent with three non-exclusive possibilities: (i) a basic reproduction
number >14 with a single initially infected inmate, (ii) an initial superspreading
event resulting in several hundred initially infected inmates with a reproduction
number of approximately three, or (iii) earlier undetected circulation of virus
among inmates prior to April. All three scenarios attest to the vulnerabilities of
prisoners to COVID-19, and the inability to distinguish among these possibilities
highlights the need for improved infection surveillance and reporting in prisons.
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1. Introduction

The COVID-19 pandemic has demonstrated the tremendous vulnerability of
incarcerated individuals to respiratory infections. More than 600,000 COVID-19 cases and
close to 3,000 deaths were reported among incarcerated individuals in the United States as of
October 2022 (1), and case rates for incarcerated individuals are more than five times higher
than for the general population (2). Factors contributing to SARS-CoV-2 transmission
in prisons include shared housing, crowding, hygiene challenges, and inability to social
distance (3). Outbreak sizes within facilities can be high: infections in more than 80% of
prisoners at the Marion Correctional Institution (MCI) in Ohio have been identified (4-
7), and similarly high levels of infection have been observed at correctional facilities in
other jurisdictions (8, 9). The vulnerability of prisoners and prison staff to COVID-19,
the epidemiological connections between prisons and between prisons and surrounding
communities, and the potential for prisons to become amplifiers of transmission have been
noted by many authors (10-21).
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Studies of COVID-19 outbreaks in correctional facilities can
help us understand transmission in prisons and jails and identify
practices to prevent and control future outbreaks. Research during
the COVID-19 pandemic addressed vaccine efficacy and uptake
studies among inmates and staff (22, 23), examination of policies
by state corrections departments (24), studies of outbreaks started
by transfer of infected inmates between prisons (20), quantitative
analyses of relationships between correctional facility cases and
cases in surrounding communities (18, 19), and analysis of
interventions such as decarceration, single-celling, and testing of
asymptomatic individuals (25). Analyses of outbreaks in specific
facilities include time series analysis (9), assessment of outbreak
response in a California state prison (16), and network analyses
based upon inmate housing and staff assignments (26). Modeling
studies include stochastic simulations of transmission among
inmates and staff (27) and fitting compartmental models to case
time series data (28). In particular, Puglisi et al. (28) use model fits
to estimate the basic reproduction number (Ry) for the ancestral
strain of SARS-CoV-2 in a large urban jail. Several of these studies
point to the need for improved data collection and reporting (21).

Here, we study the COVID-19 outbreak in MCI in the
spring of 2020 using publicly available time series data from the
Ohio Department of Rehabilitation and Corrections (ODRC). In
particular, our main contribution is a rigorous and statistically
principled analysis of the results of mass testing conducted at
MCI in April 2020. The analysis is based on a compartmental
mathematical model of transmission that is fit to data using
a statistical approach called the dynamical survival analysis
(DSA) (29, 30), which allows the calculation of explicit likelihoods
to summarize uncertainty. Our results highlight the explosive
potential for transmission of respiratory infections in prisons as
well as the critical need for improved monitoring and reporting of
infection in correctional facilities.

2. Data and methods
2.1. Case data

Mass RT-PCR testing of all inmates and partial testing of staff at
MCI was conducted on April 16, 2020. The total number of inmates
and the number of inmates and staff testing positive for SARS-
CoV-2 over time were obtained from public ODRC reports (7).
Results from early SARS-CoV-2 tests were available with a slight
time-lag, so we accumulate the cases reported at MCI over April
16-23, 2020 as a single mass testing data point assigned to April 16,
which was the date of mass testing. The mass testing event received
significant media coverage and was reported widely in numerous
news articles (4-6).

2.2. Mathematical model

We use a compartmental susceptible-exposed-infectious-
recovered (SEIR) model of SARS-CoV-2 dynamics in MCI. Such
compartmental models have been used extensively in the literature
because they tend to provide a good approximation to the process
of disease spread (31). Assuming a well-mixed population, under
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the standard SEIR model, the proportions of individuals in the
susceptible (S;), exposed (E;), infectious (I), and recovered (R;)
compartments as a function of time ¢ satisfy the following system
of differential equations:

St = —BS;,

Et = ﬁStIt —aE,,
I, = aE —yI,
Ry =y,

where the positive parameters 8, «, and y denote the infection rate,
incubation rate, and recovery rate, respectively.

2.3. Statistical analysis

We derive a likelihood function for observing n positives out
of N incarcerated individuals on day u as follows: Using the DSA
approach of (29, 30, 32, 33), we interpret S; as an improper survival
function. The mathematical justification for such an interpretation
is provided by the Sellke construction by which the function S; can
be identified as the limiting probability of an initially susceptible
individual not getting infected by time ¢. Note that the function §;
satisfying (1) is indeed a decreasing function and, when properly
scaled, we set So = 1. However, unlike proper survival functions
that vanish at infinity (i.e., decrease to zero in the limit), the
function Sy — Seo > 0 ast — 00 so it is an improper survival
function. However, we make it a proper survival function by
conditioning on ever being infected. Given observation up to time
T > 0, the time T that an initially susceptible individual becomes
infected and enters the E compartment follows the conditional
probability density function

frt)=——, 2

where T = 1 — St. The time Ty to becoming infectious has the
conditional density

E
gr(t) = “t— (3)

and the recovery time T has the conditional density

vy — pe” V)
Tr ’

hr(t) = (4)

Note that the random variables Ty, Ty — Tg, and Tp — T;
are mutually independent and that T — Tg and Tgp — T7 have
exponential distributions with rates & and y, respectively (29). The
parameter p is the initial proportion of infectious individuals.

Mass testing yields a number of individuals who test positive
and a total number of tests administered on the day of mass testing.
To use these data, let Ty denote the time when virus first becomes
undetectable in an individual. We then describe the epidemic
process by the pair of random variables (T, Tn). Let e = T — T.
Then, the probability of an individual testing positive on the day of
the mass testing (at time u) is given by

Ppu=Pr(Tg <u<TN)=Pr(0 <u—Tg < é). (5)
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FIGURE 1
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Positive tests over time among (A) inmates and (B) staff at MCI, as reported by the Ohio Department of Corrections and Rehabilitation (7).
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FIGURE 2

Time to infect 80% of the population in SEIR model with median
incubation period of 5.1 days and mean infectious period of 5.6
days.

We fix ¢ = 21 days, corresponding to detectable virus for 3 weeks
following an individual becoming infectious (34, 35). We set 1 /oo =
5.1/log(2) days [corresponding to a median incubation period of
5.1 days (36)] and assume a mean infectious period 1/y of 5.6
days (37).

If n out of N individuals test positive on the day of the mass
testing u, the log-likelihood function is given by

£(B|n,N) = log ((IZ)PZ(I - Pu)N_"), (6)

with the probability of testing positive p, as described in Equation
(5). Note that the above likelihood function is a consequence of the
functional law of the large numbers for Poisson processes and the
Sellke construction.

The crux of the DSA method is that it allows one to interpret
functions that describe the large-population limiting proportions
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of individuals in different compartments as probabilistic quantities,
such as survival functions or probability density functions of
transfer times from one compartment to another. This change in
perspective has a number of statistical advantages. For instance,
it makes available the entire toolkit of survival analysis, by virtue
of which it can account for censoring, truncation and aggregation
of data in a natural way. Variations of the DSA method have been
recently applied to analyze not only COVID-19, but also the 2001
foot-and-mouth disease (FMD) outbreak in the United Kingdom
(30) and multiple waves of the 2018-2020 Ebola epidemic in the
Democratic Republic of Congo (32). It is important to note that
the date considered in this article are from the first phase of
the pandemic when vaccines were not yet available. Nevertheless,
the DSA method is capable to incorporating vaccination regimes.
For instance, the method was applied to assess the potential
impact of vaccination in Israel in (38). See also Klaus et al. (39)
where the method was applied to COVID-19 data in the state of
Ohio, USA.

3. Results

3.1. Reported outbreak time course

According to ODRC reports (7), the first identified COVID-19
case at MCI was an infected staff member on March 29. Following
this initial case, precautions such as cohorting and modified
movement were enacted in order to restrict mixing and reduce
transmission. As stated in the publicly available ODRC report from
March 30, 2020:

Based on a staff member reporting a positive COVID
test, MCI is operating under modified movement and the
population is being separated by unit along with other
precautionary measures. Every inmate at MCI is monitored
daily and has their temperature taken along with a check for
symptoms. Currently, there are no inmates symptomatic for
COVID-19.
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FIGURE 3

Log-likelihood in the (Ro, outbreak onset date) plane for mass testing data under a SEIR model with a 3 week test-positive window following the
onset of infectiousness. The R values that maximize the likelihood as a function of outbreak onset date are shown as a solid red line that follows the
right-most branch of the ‘wishbone' in the log-likelihood plot. The R values consistent with the reported data (with onsets in late March or later) are
as large as 10. Onset dates prior to March, while inconsistent with the reported data, give more realistic Ro values of less than five
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The first COVID-19 case among inmates was identified on
April 3. Mass RT-PCR testing of all inmates and partial testing
of staff was conducted on April 16. By April 20, SARS-CoV-2
infection had been identified in 79% (1,950/2,453) of inmates and
35% (154/446) of staff. These numbers come directly from data on
the ODRC website. We take the May 5, 2020 listing of 2,453 inmates
at MCI as the denominator. There is a lag of a few days between
when mass testing occurred (April 16) and when jumps in case
counts are reported in the ODRC data (April 18-19 for inmates and
April 20 for staff), which may reflect delay in data entry. Figure 1
shows a time series of reported COVID-19 cases at MCI.

3.2. Basic reproduction number and initial
exposure size

The basic reproduction number R is one of the key parameters
in models of infectious diseases (31). It is defined as the expected
number of secondary cases generated by an infected individual in a
population where all individuals are susceptible to infection. When
Ro > 1, disease can spread rapidly and cause a large epidemic
with positive probability. When Ry < 1, the spread of disease dies
out stochastically and a large epidemic cannot occur. Ry can also
be used to calculate the so-called “herd immunity threshold” for
interventions like vaccination that effectively reduce the susceptible
population.

To examine which values of the basic reproduction number
Ro are consistent with the rapid spread of COVID-19 observed
at MCI, we use the SEIR model (1). In order for mass screening
to identify 80% of the population as positive for COVID-19 on
April 16, at least 80% of the population must have been infected
by that date. Figure 2 shows the time needed to infect 80% of
the population in the SEIR model as a function of Ry and the
initial number of exposed individuals (Ep). While Ry values of
two or larger are able to eventually infect 80% or more of the
population, this can take on the order of months for modest values

Frontiersin Public Health

of Ry. Reproduction numbers >14 are needed before outbreaks
originating from a single exposed individual are able to generate a
3-week cumulative incidence consistent with that reported for MCI.

An alternative explanation is that the outbreak involved more
than one initially infected prisoner. Figure 2 shows that, for a fixed
Ry value, increasing Ey decreases the time needed to infect 80% of
the population. However, an initial condition of Ey > 563 is needed
for an outbreak with Ry = 3 to infect 80% of the population within
3 weeks.

3.3. Time of initial outbreak circulation

A third possibility is that SARS-CoV-2 was circulating among
prisoners prior to April 3. Figure 3 shows the log-likelihood (6)
for observing the mass testing results in MCI according to
the SEIR model (1) as a function of Ry and the outbreak
onset date, with Ey fixed at one. The outbreak onset date
and R( are unidentifiable from the mass testing data alone,
with the “wishbone” shape running diagonally across Figure 3
corresponding to pairs of outbreak onset and R that are
almost equally likely given the observed data. Outbreak onsets
in late March or later correspond to Ryp > 10, while earlier
outbreak onsets correspond to smaller R values. Note that onset
dates prior to March are required to give R values of less
than five.

In general, the larger the value of the parameter Ry, the
more difficult it is to control the epidemic. Our analysis is
consistent with this. Both the first and the third possibilities
explained above suggest that the Ry values consistent with
the reported data must be extremely high, calling attention to
the explosive potential for COVID-19 transmission in prisons.
Both the second and the third possibilities underscore the
implausibility of the reported disease introduction date and/or
the initial amount of infection, calling attention to the need
for more reliable monitoring and reporting of infection in
correctional facilities.
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4. Discussion and conclusion

The official reports from ODRC describe widespread infection
of MCI inmates with SARS-CoV-2 within the span of 3 weeks.
Our primary contribution is a rigorous analysis of the data
using an SEIR compartmental model fit to these data using
the DSA approach, which allows us to use all of the tools
of likelihood-based inference. This analysis indicates three non-
exclusive possible explanations for this rapid spread: (i) values
for the basic reproduction number that are far higher than the
Ro values between two and three that have been estimated for
the ancestral strain of SARS-CoV-2 in non-prison settings in
the United States (37), (ii) initial exposure of a large number
of infected prisoners as in an extreme superspreading event, or
(iii) early undetected circulation of SARS-CoV-2 among prisoners
prior to April 3. We note that the Ry values in (i) are even
greater than the already high estimates of the basic reproduction
number in a large urban jail (28). All three possibilities speak
to the vulnerabilities of prison inmates and staff to COVID-19.
Distinguishing between these different scenarios is impossible
without improved data collection and reporting. An arguable
weakness of our analysis is that it is retrospective in nature.
However, we believe studies such as ours will lead to improvements
that allow more detailed insight into the transmission of
respiratory infections within prisons are critical for protecting the
health of prison inmates, staff, and surrounding communities in
future pandemics.

Permissive conditions for spread within correctional facilities,
challenges for disease surveillance and care in these settings,
and the inextricable link between COVID-19 within correctional
facilities and disease spread in the surrounding community,
have been discussed eloquently by others (10-14). Structural
changes such as lower inmate densities (25, 40) and improved
ventilation (9, 16) are needed to decrease transmission potential
in correctional facilities. Efforts to increase vaccine coverage
are also important, particularly among prison staff who may
have relatively low vaccine uptake (23). Community case rates
are associated with cases in prisons (18), inmate transfers can
allow outbreaks to jump from one prison to another (20),
and staff can be an epidemiological link between correctional
facilities and surrounding communities. Without changes to
protect the health of staff and inmates, it is predictable
prisons will be vulnerable to extremely rapid spread of future
respiratory pathogens.

Improved surveillance and reporting are critical for
pandemic preparedness and for preventing or controlling
future outbreaks of respiratory diseases in prisons. Testing
policies during the COVID-19 pandemic varied widely across
state corrections departments (24). Testing protocols changed
over time, and state reporting of COVID-19 cases in prisons
was often incomplete or absent (41). Swift response is essential
for preventing and controlling large outbreaks, and it has
been identified as a distinguishing feature for countries with
successful COVID-19 pandemic responses (42). This swift
response is impossible without pathogen detection and reporting
that include correctional facilities.

efforts Going forward,
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we urge health departments and corrections departments to
collect accurate data and to make these data available for
analysis with appropriate protections for human subjects in this
vulnerable population.
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