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Enigma of the vortex state in a strongly correlated d-wave superconductor
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We show that strong electronic repulsion transforms a vortex core from a metallic type in the overdoped
regime to a Mott insulator at underdoping of a strongly correlated d-wave superconductor. This changeover is
accompanied by an accumulation of electron density at the vortex core toward local half filling in the underdoped
region, which in turn facilitates the formation of the Mott-insulating core. We find that the size of vortices evolves
nonmonotonically with doping. A similar nonmonotonicity of critical field Hc2, as extracted from superfluid
stiffness, is also found. Our results explain some recent experimental puzzles of cuprate superconductors.
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Introduction. Topological defects, such as vortices, have
drawn significant research interest ever since Kosterlitz and
Thouless [1,2] established a melting mechanism mediated by
them. Vortices are low-lying excitations of type-II supercon-
ductors in the presence of magnetic fields. In conventional
superconductors, a magnetic field produces a periodic array
of vortices [3,4] with a normal metallic core of size ξ with
circulating currents around the vortex on the scale of the
penetration depth λ [5]. With increasing fieldH , the density of
vortices increases. Beyond the critical field Hc2, overlapping
cores suppress pairing amplitude everywhere and the super-
conductor transitions into a metal [3]. The study of vortices in
unconventional superconductors has gathered recent momen-
tum due to several experimental puzzles [6–8].

One such mystery lies in the mapping of the local
density of states (LDOS) at the vortex core in cuprate su-
perconductors, a prototype of strongly correlated d-wave
superconductors (dSCs). Differential conductance in cuprates
(in both YBa2Cu3O7−δ [9] and Bi2Sr2CaCu2O8+δ [10]) in
the optimal to underdoping region shows a gap structure,
while weak-coupling calculations predict a large accumula-
tion of low-lying states in the LDOS at the vortex core for all
dopings, δ [11]. Recent experiments find similar significant
pileup of the low-lying states but in the overdoped regime [7].
Several theoretical attempts have been made to understand
the low-doping anomalous behaviors [12–15], including the
generation of subdominant competing orders at the vortex
core, such as antiferromagnetic [16–18], s-wave pairing [19],
d-density wave [20,21], and pair-density wave orders [22],
augmented to weak-coupling descriptions. However, no con-
sensus has yet been achieved to comprehend the anomaly
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[7,23]. The role of strong correlations on the vortex inhomo-
geneities, however, has largely evaded the field of research;
see, however, [24–26]. After all, these strong electronic re-
pulsions turn the parent undoped (δ = 0) compound to an
antiferromagnetic Mott insulator [27].

Taking the route of direct inclusion of strong correla-
tions by removing any double occupancy within a fully
self-consistent microscopic calculation, our main results in
this Letter are as follows: (i) The underdoped d-wave vortex
state induces charge accumulation toward local half filling
at the vortex core, and thereby promotes the emergence of
“Mottness.” (ii) There is a changeover of the nature of the vor-
tex core from beingMott insulating to metallic with increasing
doping, which explains the tunneling spectroscopic measure-
ments of LDOS. (iii) The size of vortices show intriguing
nonmonotonic behavior. Such a nonmonotonic behavior has
other fascinating implications. For example, our result of su-
perfluid density in the presence of magnetic field indicates that
the upper critical field Hc2 shows a dome-shaped evolution
with δ, in agreement with experimental findings.

Model and methods. Strongly correlated materials can be
described minimally by the Hubbard model [28] with U �
t . In this limit the low-energy physics is described by a t-J
model [29]:

Ht−J = −t
∑
〈i j〉σ

P
(
eiφi j ĉ†iσ ĉ jσ + H.c.

)
P −

∑
i

μn̂i

+ J
∑
〈i j〉

P
(
Si · Sj − n̂in̂ j

4

)
P . (1)

Here ĉ†iσ (ĉiσ ) is the creation (annihilation) operator of an
electron with spin σ at lattice site i in a two-dimensional
square lattice; Si and n̂i are the spin and electron density
operators, respectively; 〈i j〉 denotes nearest-neighbor bonds;
t is the hopping amplitude for an electron to its nearest neigh-
bors; μ is the chemical potential fixing the average electron
density ρ; and J = 4t2/U is the superexchange interaction
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withU being the on-site Hubbard repulsion strength. Here, P
is the projection operator which prohibits double occupancies
on each lattice site due to the strong on-site repulsive U .
The orbital magnetic field is incorporated through the Peierls
factor: φi j = π/φ0

∫ j
i A · dl, where φ0 = hc/2e is the super-

conducting (SC) flux quantum. We consider a uniform orbital
field H = Hẑ and choose to work with the Landau gauge,
A = Hxŷ.

The effect of the projection operator is implemented by
the Gutzwiller approximation (GA) [30], where restriction of
double occupancy is removed at the expense of renormalizing
the hopping and exchange parameters: ti j → gti jt , Ji j → gJi jJ;
here the g′s are the corresponding Gutzwiller renormalization
factors (GRFs) [30,31]. The GRFs, which depend on local
densities ni, are provided in the Supplemental Material (SM)
[32]. Physically, the removal of double occupancy prohibits
certain hopping processes across the bond 〈i j〉, and hence
the average kinetic energy must reduce on that bond from a
situation where double occupancies are allowed. This is incor-
porated by the hopping GRFs gti j � 1. Similarly, the overall
higher probability of sites being singly occupied enhances
the exchange coupling through gJi j . The GA formalism has
been verified [37,38] to agree well with variational Monte
Carlo calculations [39] (where the projections are exact) for
homogeneous systems.We note that we refer to the strong cor-
relations equivalently with the removal of double occupancy
in this work.

We take advantage of the perfect periodicity of our square
vortex lattice1 by solving the eigenvalue problem using a fully
self-consistent Bogoliubov–de Gennes (BdG) method on a
unit cell typically of size N = 24 × 48 and then extending
the wave function on a system made of typically 16 × 8 unit
cells [11,17]. We present all energies in units of the hopping
amplitude t and set the temperature T = 0 for our calcu-
lations. We use J = 0.33—a typical value used for cuprate
superconductors [40]. We consider several doping (δ =
1 − ρ) values ranging from δ = 0.06 (underdoped) to δ =
0.25 (overdoped). To emphasize our key findings, we com-
pared our results from Gutzwiller inhomogeneous mean-field
theory (GIMT) with results from standard inhomogeneous
mean-field theory (IMT), where the effects of projectionP are
ignored by taking the Gutzwiller factors to be unity, i.e., with
double occupancy being allowed. In IMT, we tune J values
for each doping in such a way that both IMT and GIMT yield
the same d-wave gap when the magnetic field is zero [41].
The details of GIMT and IMT calculations are included in the
SM [32].

d-wave SC order.We begin describing our results by elabo-
rating on the dSC order parameter calculated within the GIMT
framework: 〈ĉiσ ĉ jσ 〉ψ ≈ gti j
i j [42,43]. Here 〈. . .〉ψ denotes

1A triangular vortex lattice is energetically favorable within a con-
tinuum Ginzburg-Landau theory, which ignores underlying lattice
symmetries. However, it is numerically challenging to study the
triangular vortex lattice with an underlying square lattice of finite
size. Also, the connection between the structure of the vortex lattice
and the crystal lattice symmetry is observed experimentally in con-
ventional s-wave superconductors [58].

FIG. 1. SC order parameter profiles. d-wave SC |
OP
d (ri )| pro-

files around a vortex core on a magnetic cell of size 24 × 24 at
different doping (δ) values. The fall of 
OP

d (ri ) at the vortex center
has the conventional conical form at δ = 0.25, 0.2, and takes up a
form of a “flat-bottom bowl” at δ = 0.06.

the expectation value in the truncated Hilbert space with
double occupancies removed. The spatial profile of the dSC
order parameter, 
OP

d (ri ) = J
4 |(gti,i+x̂
i,i+x̂ + gti,i−x̂
i,i−x̂ −

eibxgti,i+ŷ
i,i+ŷ − e−ibxgti,i−ŷ
i,i−ŷ )| (here b ≡ H/φ0) is shown
in Fig. 1. Different panels of Fig. 1 show
OP

d (ri ) for represen-
tative δ. Away from a vortex core, i.e., near the boundary of the
magnetic unit cell containing a single SC flux quantum, 
OP

d
attains the homogeneous Bardeen-Cooper-Schrieffer (BCS)
value while it falls at the vortex core. This conical-shaped
fall at the core for overdoped [Fig. 1(a)] to optimally doped
[Figs. 1(b) and 1(c)] systems follows the expected tanh(r/ξ )
behavior, where ξ is the SC coherence length [5]. In contrast,
the fall of 
OP

d (ri ) shows a strikingly different pattern at un-
derdoping [Fig. 1(d)]: The region of the depletion of 
OP

d (ri )
is much wider—near the core center, the vortex resembles
a “flat-bottom bowl.” The weak-coupling IMT calculations
preserve the conical-shaped vortex for all δ, and shrink mono-
tonically toward underdoping; see the SM [32].

Local charge density at a vortex core. In order to develop
a deeper insight into the above results we next study the local
charge density near the vortex core location rv

2 for different
δ. In the optimally doped region (δ = 0.2), the spatial density
profile features a weak dip around rv [Fig. 2(a)], consistent
with the weak-coupling theory. Upon lowering δ, the nrv

rises
rapidly to near unity by δ = 0.06 [Fig. 2(c)]. This enhance-
ment of nrv

characterizes the emergence of “Mottness” at the
vortex core region for an average doping not so close to unity.
Thus, for δ � 0.06 the vortex core becomes insulating and
gti j ≈ 0 quenching the kinetic energy at the core. The effective
picture of the underlying normal state in the core becomes that
of an undoped patch of an (antiferromagnetic) Mott insulator,

2While rv represents the center of a vortex, for a better resolution of
different local observables, e.g., LDOS at the vortex core, we gather
statistics not just at the vortex center but on a 2 × 2 lattice site around
the vortex center. Thus rv represents the location of the “vortex core
region”.
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FIG. 2. Electronic charge density distribution. Local density ni
maps around a vortex core for different δ. At the vortex core,
at δ = 0.2 [panel (a)], ni features a dip, and at δ = 0.1, 0.06
[panels (b) and (c)], the electronic charges accumulate to form a hill
(with core density approaching unity). Panel (d) shows the profile of
nrv − ρ vs δ. The nrv values are less than ρ for δ > 0.18 and greater
than ρ for δ < 0.18. At δ = 0.06, nrv approaches unity leading to
formation of a Mott-insulating core.

described by a local Heisenberg model. This is quite unlike
the Abrikosov vortex with a metallic core [5]. We note that
the vortex core here is not simply serving as a window to
the underlying normal state in the sense that the underlying
normal state at δ = 0.06 without the vortex is not yet a Mott
insulator. Instead, the Mott vortex core here is a result of
strong correlations and a by-product of charge accumulation
due to it. However we should also emphasize that this limit
of the vortex core is realized only in the proximity of the
undopedMott insulator. The reorganization of the local charge
density at the vortex core as a function of doping is shown in
Fig. 2(d). We find the excess local charge density at the vortex
core changes sign with δ near optimal doping.

The nonlinear effects of GRFs in the effective chemical
potential μi, obtained while minimizing the total ground state
energy of the system, play a key role in driving vortex cores
toward Mottness; see the SM for additional details [32]. Such
effects not only drive the vortex core toward Mottness but also
help the nearby sites of the vortex core to attain local half fill-
ing forming a near plateau in ni [Fig. 2(c)]. The occurrence of
a plateau in ni in the core region is ultimately connected to the
“flat-bottom bowl” structure of 
OP

d . The charge fluctuations
freeze on these sites, as ti j ≈ 0, depleting dSC order over an
extended region.

We emphasize that the removal of double occupancy is
crucial for the aforementioned charge accumulation at the
core and subsequent effects. Without the removal of double
occupancy, we verified that the weak dip in ni at the vortex
core, a feature of overdoping, continues until the lowest dop-
ing; see the SM [32].

LDOS at the vortex core. The emergence of Mottness has
important implications for the LDOS at the vortex core as
we discuss below. In an s-wave superconductor, Andreev-like
zero-energy bound states [44] were predicted theoretically

FIG. 3. Local density of states. LDOS at the vortex core (red
traces) and away from the core (blue traces) for δ = 0.2 (a), δ =
0.125 (b), δ = 0.1 (c), and δ = 0.06 (d). For δ = 0.2, the LDOS
features a midgap peak which gradually reduces with decreasing δ.
For δ = 0.06, a hard gap opens with sharp peaks at ω ≈ ±Jeff/2. In
panel (d), the vortex core LDOS is scaled up by a factor of 4, for
visual clarity.

to appear in the vortex cores and have also been observed
experimentally in tunneling measurements [45]. For a dSC,
similar accumulation of the low-energy core states (LECS) is
also predicted within the IMT calculation [11], even though
true bound states are not found due to the collapse of the
d-wave gap along the nodal directions. Such LECS are rem-
iniscent of the metallic nature of the vortex core. However,
the differential tunneling conductance map in cuprates shows
no signatures of LECS in underdoped to optimally doped
samples, beyond some subgap features [9,10]. In contrast,
recent experiments in overdoped samples showed prominent
LECS at the vortex core [7].

To uncover this mystery, we show in Fig. 3 the LDOS
with varying doping δ in GIMT. Within GIMT, the LDOS
is calculated using [41,46]: N (ri, ω) = N−1

e

∑
k,n g

t
ii[|ukn(ri )|2

δ(ω − Ek,n) + |vk
n (ri )|2δ(ω + Ek,n)], where {ukn(ri ), vk

n (ri )}
are the local Bogoliubov wave functions, Ek,n are correspond-
ing energy eigenvalues (see the SM [32]), and Ne is the total
number of eigenstates. As shown Fig. 3(a) the LDOS near
the vortex cores is found to feature a peak near zero energy
for optimal doping δ = 0.2. We find a similar peak at ω ≈ 0
in the LDOS near the vortex core for doping δ > 0.2. Thus,
LECS are present in the overdoped to optimally doped region,
which also agrees with the weak-coupling predictions [11].
However, the vortex core LDOS at δ = 0.125 in Fig. 3(b)
shows a depletion in zero-energy states and subgap features.
With decreasing doping the low-energy states get further sup-
pressed and no LECS can be seen in Fig. 3(c). Upon further
lowering doping to δ = 0.06, the vortex core LDOS exhibits
a U-shaped (hard) gap, as depicted in Fig. 3(d). This gap
can be explained by the change in the nature of the vortex
core with core density approaching unity for δ = 0.06 as
seen in Fig. 2(c). The Mott cluster of sites at the vortex
core, being described by an effective Heisenberg model as
discussed already, features lowest-lying excited states beyond
a spin gap ≈ Jeff [43,47]. The tantalizing similarity of our
finding of LDOS with experiments is truly intriguing. In IMT
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FIG. 4. Vortex core size and critical magnetic field from su-
perfluid density. Panel (a) depicts the variation of the vortex core
length scale ξc as a function of doping, from IMT (blue trace) and
GIMT (red trace) calculations. In IMT, ξc shrinks monotonically with
decreasing doping. In GIMT, ξc shows a nonmonotonic behavior.
Values of ξc are in the unit of the lattice spacing. Panel (b) shows
the variations of superfluid density D0

s as a function of magnetic field
H at different doping values. The threshold value for estimating the
critical magnetic field Hc2 is set at D0

s /π = 0.1, as marked by the
black horizontal line. The inset in panel (b) shows the behavior of
the obtained Hc2 with respect to δ, featuring a domelike profile. The
H values are represented in the unit of φ0.

calculations, prominent LECS are always present at the vortex
core for all δ; see the SM [32].

Nonmonotonicity in the core size. The unfolding of
Mottness causes an intriguing nonmonotonic variation of the
core size with δ, as we examine below.

For definiteness, we define the vortex length scale ξc as
the distance from the vortex center where the order param-
eter 
OP

d (i) recovers 80% of its maximum value. The red
trace in Fig. 4(a), representing ξc(δ), captures the two trends
above and below the optimal doping δ ≈ 0.2. For δ > 0.2,
ξc shrinks as the doping value is decreased. This is consis-
tent with the BCS expectation, where ξc ∼ v f /πEgap, with
v f and Egap being the Fermi velocity and the energy gap,
respectively. Since Egap increases with decreasing δ within
a d-wave BCS description, the vortex core shrinks. In the
region below δ ≈ 0.2, ξc ceases to follow the v f /πEgap trend
and starts to increase continuously as doping is lowered to-
ward δ → 0. As discussed earlier, in the strong underdoped
limit the congregation of Mott sites makes the variation
of 
OP

d near the vortex core flatter. Our findings indicate
that the enhancement of ξc in the underdoped regime is
intimately connected with the formation of a Mott clus-
ter. It is indeed fascinating that the nonmonotonicity in the
vortex state tracks the non-BCS behavior [27]. A similar
nonmonotonic doping dependence has been theoretically dis-

cussed also for the SC coherence length in strongly correlated
superconductors [39].

To further highlight the prominent dependence of the vor-
tex core size on strong correlations, we also include the trace
of ξc from IMT calculations in Fig. 4(a), which shows only a
monotonic increase with δ in the entire range.

Superfluid stiffness and critical magnetic field. Having en-
countered the nonmonotonic dependence of ξc with δ, we next
turn our attention to superfluid stiffness Ds which gives rise
to the Meissner effect [5]. Here we focus on the δ depen-
dence of Hc2 within the GIMT framework. In what follows,
we calculate Ds using the Kubo formalism [48]: Ds/π =
〈−kx〉 − �xx(qx = 0, qy → 0, ωn = 0), where 〈−kx〉 is the av-
erage kinetic energy along the x direction and �xx(q, ω) is
the transverse current-current correlation function. In order to
obtain the Hc2(δ), in Fig. 4(b) we plot Ds as a function of
H , at different values of δ. Because the BdG technique does
not include quantum phase fluctuations of SC order, Ds is not
driven to zero by the fluctuations in the dSC pairing amplitude
alone (which are fully included in BdG method). However,
because the BdG calculation results in a significant reduc-
tion of Ds to a low value, it is expected that quantum phase
fluctuations, riding on top of the fluctuations in the pairing
amplitude, would guide Ds to zero. We thus consider a small
threshold value of Ds/π = 0.1 to mark off Hc2. Even though
such extraction of Hc2 will not be an accurate estimate of the
upper critical fields, we believe it to represent the qualitative
doping dependence of the true Hc2.

The behavior of the extracted critical field Hc2 in the inset
of Fig. 4(b) features a dome-shaped profile with its maximum
residing at δ ≈ 0.2 (optimal doping). Similar nonmonotonic
behavior inHc2 versus δ has been recently observed in cuprate
superconductors [49]. Interestingly, this finding gels well with
the size of the vortex core, because in Ginzburg-Landau the-
ories, Hc2 = φ0/2πξ 2, where the coherence length ξ is the
characteristic length scale of the vortex core. Thus a non-
monotonicity in the core size, as seen in Fig. 4(a), implies
a nonmonotonicity in Hc2 as well. Interestingly, in cuprates
the maximum of Hc2 occurs near the optimal doping [50,51],
similar to our findings.

Conclusion. We illustrated how the nature of the vortex
core changes from metallic type in the overdoped regime
to a Mott-insulating one upon approaching undoping of a
strongly correlated dSC. This changeover is accompanied by
accumulation of the electronic charge at vortex core toward
half filling, which in turn facilitate the formation of a Mott-
insulating core. It will be interesting to track the charge of
vortices using cavity electromechanics measurements [52].
The change of the nature of vortex explains the anomaly in
the LDOS with dopings. The shape of the vortices changes
as well, leading to a nonmonotonic evolution of the vortex
core size, which in turn explains the experimental signa-
tures of Hc2. These features stem from the non-BCS features
due to the proximity to a Mott insulator. A high value of
Hc2 near optimal doping is also sometimes associated to the
presence of a quantum critical point in the literature [53].
Our results do not depend on the presence of any quantum
critical point near optimal doping. However, it will be an
interesting future direction to connect our findings to a pos-
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sible quantum critical point. Possible presence of competing
orders can fine-tune the scenario by bringing in additional
length scales. It should also be noted that our real-space calcu-
lations naturally produce competing superconducting orders
like extended s-wave order. However, the amplitude of the
extended s-wave order is extremely small and thus unlikely
to have a significant effect on the LDOS. Our findings can
have important implications on properties of other materials
like Fe-based superconductors and twisted bilayer graphene,
where strong correlation physics is believed to play a crucial
role [54–57].

Acknowledgment. We thank M. Randeria for valuable
comments. We acknowledge support from the Scheme of

Promotion of Academic and Research collaboration (Grant
No. 460). A.D. acknowledges support at Instituto de Ciencia
de Materiales de Madrid, CSIC (under Grant No. PGC2018-
097018-B-I00). The work of K.Y. was supported by the
National Science Foundation (Grant No. DMR-1932796).
The work of H.J.C. was supported by NSF-CAREER Grant
No. DMR-2046570. The works of K.Y and H.J.C were per-
formed at the National High Magnetic Field Laboratory,
which is supported by National Science Foundation Coopera-
tive Agreement No. DMR-1644779, and the State of Florida.
The computations were facilitated by Dirac cluster at IISER
Kolkata and Research Computing Cluster (RCC) at Florida
State University.

[1] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys.
6, 1181 (1973).

[2] J. M. Kosterlitz, Rev. Mod. Phys. 89, 040501 (2017).
[3] A. Abrikosov, J. Phys. Chem. Solids 2, 199 (1957).
[4] N. Kopnin, Vortices in Type-II Superconductors: Structure and

Dynamics (Oxford University Press, Oxford, 2001).
[5] M. Tinkham, Introduction to Superconductivity, Dover Books

on Physics Series (Dover Publications, New York, 2004).
[6] J.-X. Yin, Z. Wu, J.-H. Wang, Z.-Y. Ye, J. Gong, X.-Y. Hou,

L. Shan, A. Li, X.-J. Liang, X.-X. Wu, J. Li, C.-S. Ting, Z.-Q.
Wang, J.-P. Hu, P.-H. Hor, H. Ding, and S. H. Pan, Nat. Phys.
11, 543 (2015).
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