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DISCONTINUOUS GALERKIN APPROXIMATIONS TO ELLIPTIC AND
PARABOLIC PROBLEMS WITH A DIRAC LINE SOURCE

Rami Masri, Boqian Shen and Beatrice Riviere⇤

Abstract. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving
elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we
prove convergence of the method by deriving a priori error estimates in the L2 norm and in weighted
energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any
approximation order. Further, almost optimal local error estimates in the L2 norm are obtained for
the case of piecewise linear approximations whereas suboptimal error bounds in the L2 norm are
shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of
backward Euler fully discrete scheme is established by proving error estimates in L2 in time and in
space. Numerical results for the elliptic problem are added to support the theoretical results.
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1. Introduction

In this paper, we analyze interior penalty discontinuous Galerkin (dG) approximations to elliptic and parabolic
problems with a Dirac measure concentrated on a line. Consider a convex domain ⌦ ⇢ R3 containing a one-
dimensional curve ⇤ ⇢ R which is strictly included in ⌦. The elliptic model problem reads

��u = f�⇤, in ⌦, (1.1)
u = 0, on @⌦. (1.2)

where f 2 L
2(⇤) and f�⇤ is a Dirac measure concentrated on ⇤ defined as follows.

hf�⇤, vi =
Z

⇤
fv ds, 8v 2 C(⌦). (1.3)

For the parabolic problem, let T be the final time, let u
0 be in L

2(⌦) and assume that f belongs to
L

2(0, T ;L2(⇤)). We consider the following problem.

@tu��u = f�⇤, in ⌦⇥ (0, T ], (1.4)
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u = 0, on @⌦⇥ (0, T ], (1.5)
u = u

0
, in {0}⇥ ⌦. (1.6)

The main contributions of this work are as follows. For the elliptic problem, we show global convergence in the
L

2 norm and in weighted energy norms. Further, in regions excluding the line ⇤, we derive almost optimal L
2

error estimates for linear polynomials and suboptimal error bounds of order almost k for dG approximations of
degree k � 2. In addition, almost optimal error rates are established in local energy norms for approximations
of any polynomial degree. For the parabolic problem, we show global convergence in the L

2(0, T ;L2(⌦)) norm
for both the semi-discrete approximation and for the backward Euler fully discrete scheme.

Partial di↵erential equations with Dirac right-hand sides can model organ perfusion where blood vessels
are considered as one dimensional fractures embedded in the tissue [13]. In this case, f can be a function of
the blood pressure in the vessel leading to a coupled 1D–3D problem for the pressures in the tissue and in
the vessels [12, 13]. Medical applications of such formulations include modeling drug delivery to tissues with
the help of implantable devices [11] and drug delivery to tumors where di↵erent treatment options are compared
[6]. In addition, Dirac measures concentrated on lines arise in optimal control problems [24]. Thanks to favorable
properties of dG methods, including local mass conservation and adaptability to complex domains [33], these
methods are well suited to model physical phenomena such as organ perfusion. In this paper we study dG
methods applied to (1.1), (1.2) and to (1.4)–(1.6).

The analysis of finite element approximations to model problems (1.1), (1.2) and (1.4)–(1.6) is non–standard
since the true solution is not smooth enough in space, namely it does not belong to H

1(⌦) and it exhibits
a logarithmic singularity near the line ⇤ [2, 12, 27]. Nevertheless, continuous Galerkin (cG) approximations
have been extensively studied; we refer to the work by Scott [34] and Casas [5] where global error bounds
are established. More recently and in the context of optimal control problems, Gong et al. derived improved
global L

2 error bounds [24]. Such bounds are polluted by the singularity of the true solution where the rate of
convergence in the L

2 norm for any polynomial degree is at most O(h) where h is the mesh-size. For continuous
Galerkin approximations to (1.4)–(1.6), global error estimates for semi-discrete and fully-discrete formulations
are derived in [22,23].

In addition, convergence of the cG approximations to the elliptic model problem (1.1), (1.2) has been investi-
gated in di↵erent non-classical norms. For example, local L

2 optimal error estimates (up to a log factor for linear
polynomials) are derived by Köppl et al. [26, 27], and local energy error estimates are obtained by Bertoluzza
et al. [3]. Such improved estimates are possible since the solution is smooth in regions excluding the line ⇤ [2]. In
addition, D’Angelo obtained error estimates in weighted norms and showed that with graded meshes the finite
element solution converges optimally in these norms [12]. We also mention the recent splitting technique to
numerically approximate the model problem (1.1), (1.2) introduced by Gjerde et al. where the solution is split
into an explicit singular part and an implicit smooth part [21]. A finite element discretization is then formulated
for the smooth part and optimal error rates are recovered [21].

To the best of our knowledge, discontinuous Galerkin approximations to (1.1), (1.2) and to (1.4)–(1.6) are
missing from the literature. However, there are papers which formulate and study dG methods for elliptic
problems with Dirac sources concentrated at a point. To this end, we mention the work by Houston and Wihler
where global a priori and a posteriori error bounds are derived [25], the work by Choi and Lee for local L

2

error estimates [8], and the recent paper by Leng and Chen where a priori and a posteriori error estimates for
hybridizable dG are obtained [28]. The analysis of dG methods for elliptic problems with Dirac measures is
particularly challenging since consistency of the numerical method cannot be assumed since the traces of the
solution and its gradient are not well defined.

The rest of this paper is organized as follows. Weak formulations in usual and in weighted Sobolev spaces are
presented and shown to be equivalent in Section 2. Then, Section 3 defines the cG and dG discrete solutions to
model problem (1.1), (1.2). We show global convergence in the L

2 norm in Section 4 and in weighted dG norms
in Section 5. The local convergence of the solution is analyzed in Section 6. We devote Section 7 to the analysis
of dG formulations for (1.4)–(1.6). Numerical results for the elliptic problem are presented in Section 8.
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2. Weak formulation

Fix p0 2 [1, 3/2) and q0 be such that 1/q0 + 1/p0 = 1. Let W
1,p0(⌦) denote the usual Sobolev space and

recall that
W

1,p0
0 (⌦) =

�
v 2 W

1,p0(⌦), v = 0 on @⌦
 
.

The weak formulation for problem (1.1), (1.2) is [5]: Find u 2 W
1,p0
0 (⌦) such that:

Z

⌦
ru ·rv =

Z

⇤
fv, 8v 2 W

1,q0
0 (⌦). (2.1)

This weak formulation is well posed and a unique solution u 2 W
1,p0
0 (⌦) for p0 2 [1, 3/2) exists [5]. Next, in

a similar way to [12], we present another weak formulation of problem (1.1), (1.2) in weighted Sobolev spaces.
Define the distance function to ⇤:

d(x,⇤) = dist(x,⇤) = min
y2⇤

kx� yk, 8x 2 ⌦. (2.2)

We first remark that d
↵ is an A2 weight for |↵| < 2 (see [17], Lem. 3.3) where A2 is the Muckenhoupt class of

weights satisfying:

A2 =

(
w 2 L

1
loc(R3), sup

B(x,r)

 
1

|B(x, r)|

Z

B(x,r)
w

! 
1

|B(x, r)|

Z

B(x,r)
w
�1

!
< 1

)
,

where the supremum is taken over all balls B(x, r) centered at x and of radius r. This implies that d
↵ belongs

to L
2(⌦) if |↵| < 1. For ↵ 2 (�1, 1), define the weighted L

2 norm as follows.

kukL2
↵(⌦) =

✓Z

⌦
|u|

2
d
2↵

◆ 1
2

. (2.3)

The L
2
↵
(⌦) space and the weighted inner product are defined as:

L
2
↵
(⌦) =

�
v : kvkL2

↵(⌦) < 1
 
, (u, v)↵ =

Z

⌦
uvd

2↵
, 8u, v 2 L

2
↵
(⌦).

Similarly, we introduce the weighted Sobolev spaces as:

H
m

↵
(⌦) =

�
u : D

�
u 2 L

2
↵
(⌦), |�|  m

 
, H̊

m

↵
(⌦) = {u 2 H

m

↵
(⌦), u|@⌦ = 0}.

where � is a multi-index and D
� is the corresponding weak derivative. The weighted Sobolev semi-norms and

norms are denoted by:

|u|
2
Hm

↵ (⌦) =
X

|�|=m

��D�
u
��2

L2
↵(⌦)

, kuk
2
Hm

↵ (⌦) =
mX

k=0

|u|
2
Hm

↵ (⌦).

Lemma 1. Let ↵ be such that �2/p0 +1 < ↵ < 2/p0� 1. Then, the weak formulation (2.1) is equivalent to the
following weak formulation: find u↵ 2 H̊

1
↵
(⌦) such that

Z

⌦
ru↵ ·rv =

Z

⇤
fv, 8v 2 H̊

1
�↵

(⌦). (2.4)
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Proof. Let u↵ be a solution of (2.4). The existence and uniqueness of u↵ is established in [12], see also [16].
Observe that the condition on ↵ implies that (↵p0)/(2� p0) = (↵q0)/(q0� 2) 2 (�1, 1). Since d

�
2 L

1
loc(R3) for

|�| < 2, we use Hölder’s inequality and obtain

Z

⌦
d
�2↵

v
2


✓Z

⌦
d
�2↵

q0
q0�2

◆(q0�2)/q0

kvk
2/q0
Lq0 (⌦) < 1, 8v 2 L

q0(⌦). (2.5)

This implies that W
1,q0
0 (⌦) ⇢ H̊

1
�↵

(⌦). Hence u↵ satisfies (2.1) for all v 2 W
1,q0
0 (⌦). Similarly, for v 2 L

2
↵
(⌦),

we have

Z

⌦
v

p0 =
Z

⌦
v

p0d
p0↵

d
�p0↵



✓Z

⌦
v
2
d
2↵

◆p0/2✓Z

⌦
d
�2↵

p0
2�p0

◆(2�p0)/2

< 1, 8v 2 L
2
↵
(⌦).

This implies that H̊
1
↵
(⌦) ⇢ W

1,p0
0 (⌦). Thus, u↵ solves (2.1). Since the solution to (2.1) is unique (see [24],

Thm. 2.1 case (ii)), we conclude that u↵ = u. ⇤

3. Numerical approximations

Let Eh denote a partition of ⌦, made of simplices:
[

E2Eh

Ē = ⌦̄. (3.1)

We assume that the line ⇤ crosses all element boundaries transversally. Namely, for all E 2 Eh, the one-
dimensional Lebesgue measure of ⇤ \ @E is zero. The diameter of a given element E is denoted by hE and the
mesh size is denoted by h = maxE2Eh hE . We assume that Eh is regular in the sense that there exists a constant
⇢ > 0 such that

hE

⇢E

 ⇢, 8E 2 Eh, (3.2)

where ⇢E is the maximum diameter of a ball inscribed in E. In addition, we assume that Eh is quasi-uniform:
there is a constant � > 0 independent of h such that

h  �hE , 8E 2 Eh. (3.3)

The broken Sobolev space is denoted by H
m(Eh) for m � 1, and the broken gradient is denoted by rh. In the

remaining of the paper, k � 1 is a fixed positive integer and C is a generic constant independent of h.

3.1. Finite element approximation

Let W
k

h
(Eh) be the finite element space defined as follows.

W
k

h
(Eh) =

�
wh 2 H

1
0 (⌦) : wh|E 2 Pk(E), 8E 2 Eh

 
. (3.4)

Here, Pk(E) denotes the space of polynomials of degree at most k. Let u
CG
h

2 W
k

h
(Eh) be the finite element

approximation to u satisfying
Z

⌦
ru

CG
h

·rvh =
Z

⇤
fvh, 8vh 2 W

k

h
(Eh). (3.5)
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3.2. Discontinuous Galerkin approximation

We now introduce the interior penalty discontinuous Galerkin discrete solution [33]. We define the broken
polynomial space as follows.

V
k

h
(Eh) = {vh 2 L

2(⌦) : vh|E 2 Pk(E),8E 2 Eh}. (3.6)

We also denote by �h the set of all interior faces in Eh. For each interior face e, we associate a unit normal
vector ne and we denote by E

1
e

and E
2
e

the two elements that share e such that the vector ne points from E
1
e

to E
2
e
. We denote the average and the jump of a function vh 2 V

k

h
(Eh) by {vh} and [vh] respectively.

{vh} =
1
2
�
vh|E1

e
+ vh|E2

e

�
, [vh] = vh|E1

e
� vh|E2

e
, 8e 2 �h. (3.7)

If e belongs to the boundary of the domain, e = @⌦\@E
1
e
, then we define the average and the jump as follows.

[v] = {v} = v|E1
e
. (3.8)

Let u
DG
h

2 V
k

h
(Eh) be the discontinuous Galerkin solution satisfying:

a✏(uDG
h

, vh) =
Z

⇤
fvh, 8vh 2 V

k

h
(Eh), (3.9)

where a✏(·, ·) : V
k

h
(Eh)⇥ V

k

h
(Eh) ! R is given by:

a✏(u, v) =
X

E2Eh

Z

E

ru ·rv �

X

e2�h[@⌦

Z

e

{ru} · ne[v] + ✏

X

e2�h[@⌦

Z

e

{rv} · ne[u] +
X

e2�h[@⌦

Z

e

�

h�
[u][v]. (3.10)

In the above, ✏ 2 {�1, 0, 1}, � is a user specified parameter and � � 1 is a parameter to be specified in the
subsequent sections. We define the following energy semi-norm. For B ✓ ⌦ or B = ⌦ and vh 2 V

k

h
(Eh),

kvhk
2
DG(B) =

X

E2Eh

krvhk
2
L2(E\B) +

X

e2�h[@⌦

�h
�1
k[vh]k2

L2(e\B). (3.11)

For simplicity, we write k ·k2DG = k ·k
2
DG(⌦)

. We also note that k ·kDG defines a norm and the following Poincare
inequality holds [15].

kvhkLp(⌦)  CkvhkDG, 81  p  6, 8vh 2 V
k

h
(Eh). (3.12)

In the analysis, we will also use the following semi-norm. For v 2 H
2(Eh) and B ✓ ⌦ or B = ⌦,

|||v|||
2
DG(B) = kvk

2
DG(B) +

X

e2�h[@⌦

hk{rv}k
2
L2(e\B). (3.13)

Similarly, denote |||·|||
2
DG = |||·|||

2
DG(⌦). We then have the following continuity properties of the form a✏ [7, 33].

a✏(v, w)  C|||v|||DG|||w|||DG, a✏(vh, wh)  CkvhkDGkwhkDG, 8v, w 2 H
2(Eh), 8vh, wh 2 V

k

h
(Eh). (3.14)

In addition, the following coercivity property

a✏(wh, wh) �
1
2
kwhk

2
DG, 8wh 2 V

k

h
(Eh), (3.15)

is valid for any value � � 1 if ✏ = +1 and for � large enough if ✏ = �1, 0. We recall the following important
inverse inequalities, see Section 4.5 in [4].

kvhkLq(⌦)  Ch
3
q�

3
p kvhkLp(⌦), 8 1  p  q  1, 8 vh 2 V

k

h
(Eh). (3.16)
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For the trace estimates, we will make use of the following

kvkL2(e)  Ch
�1/2

�
kvkL2(E) + hkrvkL2(E)

�
, 8e ⇢ @E, 8E 2 Eh, 8v 2 H

1(Eh). (3.17)

For discrete functions, the above estimate reads

kvhkL2(e)  Ch
�1/2

kvhkL2(E), 8e ⇢ @E, 8E 2 Eh, 8vh 2 V
k

h
(Eh). (3.18)

Further, we recall that for any p 2 [1,1],

krhvhkLp(⌦)  Ch
�1
kvhkLp(⌦), 8vh 2 V

k

h
(Eh). (3.19)

We end this section by recalling Lemma 4.1 proved by Chen and Chen [7]. Consider any two sets D, D̃ ⇢ ⌦
such that the distance between D and (@D̃\@D) is strictly positive. Then, for h small enough, we have

������U � u
DG
h

������
DG(D)

 C

⇣
h

k
kUk

Hk+1( eD) +
��U � u

DG
h

��
L2( eD)

⌘
. (3.20)

4. Global error estimate in the L2 norm

The goal of this section is to show a global L
2 estimate for the error u�u

DG
h

. We first recall important global
L

2 estimates for the finite element discretization (3.5). For k = 1, Casas obtained the following estimate [5],
��u� u

CG
h

��
L2(⌦)

 Ch
1/2
kfkL2(⇤). (4.1)

If the line ⇤ is a C
2 curve that does not intersect the boundary @⌦, the improved estimate

��u� u
CG
h

��
L2(⌦)

 C(✓)h1�✓
kfkL2(⇤), 0 < ✓ <

1
2
, (4.2)

was proved by Gong et al. for k = 1 in [24]. Similar arguments yield the same error bounds for k � 2. The

parameter ✓ arises from the fact that u 2 W
1,

6
2✓+3

0 (⌦) when 0 < ✓ < 1/2. We follow the ideas of Scott [34] and
Houston and Wihler [25] presented for a problem with a Dirac source concentrated at a point, and we construct
an intermediate problem with an L

2 source term. Let T⇤ ⇢ Eh be the set of elements that intersect the line ⇤,

T⇤ = {E 2 Eh, E \ ⇤ 6= ;}.

Define fh 2 V
k

h
(Eh) as

8E 2 Eh, fh|E =

(
fh,E , if E 2 T⇤,

0, otherwise,
(4.3)

where fh,E 2 Pk(E) is defined as follows. For E 2 T⇤,
Z

E

fh,Evh =
Z

E\⇤
fvh, 8vh 2 Pk(E). (4.4)

Clearly, the function fh,E is well defined. Further, consider the following intermediate problem: find U 2 H
1
0 (⌦)

such that

��U = fh, in ⌦, (4.5)
U = 0, on @⌦. (4.6)

Since fh belongs to L
2(⌦), Lax-Milgram’s theorem yields existence and uniqueness of U . In addition, since ⌦ is

convex, the function U belongs to H
2(⌦). We proceed by obtaining a bound on fh in the following lemma.
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Lemma 2. The following estimate holds

kfhkL2(⌦)  Ch
�3/2

kfkL2(⇤). (4.7)

In addition, if ⇤ is a C
2 curve and the mesh satisfies |⇤ \ E|  Ch for all E 2 Eh, we have

kfhkL2(⌦)  Ch
�1
kfkL2(⇤). (4.8)

Proof. With the definition of fh given in (4.4), we have

kfhk
2
L2(⌦) =

Z

⌦
f

2
h

=
X

E2Eh

Z

E

(fh|E)2 =
X

E2T⇤

Z

E\⇤
fh,Ef.

Using Hölder’s inequality, we obtain
Z

E\⇤
fh,Ef  kfh,EkL1(E)kfkL1(E\⇤).

Hence, with (3.16) (q = 1, p = 2), and (3.3), we obtain

kfhk
2
L2(⌦) 

X

E2T⇤

kfh,EkL1(E)kfkL1(E\⇤)  Ch
�3/2

X

E2T⇤

kfh,EkL2(E)kfkL1(E\⇤)

 Ch
�3/2

X

E2T⇤

kfh,EkL2(E)|⇤ \ E|
1/2
kfkL2(E\⇤).

If |⇤ \ E|  Ch, we apply Hölder’s inequality for sums and obtain (4.8). Otherwise, we have (4.7). ⇤

The following a priori error bounds hold.

Lemma 3. There exists a constant C independent of h such that
��U � u

CG
h

��
L2(⌦)

+ h
��r
�
U � u

CG
h

���
L2(⌦)

 Ch
2
kUkH2(⌦), (4.9)

������U � u
DG
h

������
DG

 ChkUkH2(⌦). (4.10)

If in addition, � = 1 and � is large enough if ✏ = �1, or � > 3 and � is large enough for ✏ = 0 or ✏ = 1, there
exists a constant C independent of h such that

��U � u
DG
h

��
L2(⌦)

 Ch
2
kUkH2(⌦). (4.11)

Proof. We have for any vh 2 V
k

h
(Eh),

Z

⌦
fhvh =

X

E2Eh

Z

E

fh|E vh =
X

E2T⇤

Z

E\⇤
fvh =

Z

⇤
fvh.

Thus, since W
k

h
(Eh) is a subset of V

k

h
(Eh), the discrete functions u

CG
h

and u
DG
h

can be viewed as finite element
and discontinuous Galerkin approximations to the intermediate problem (4.5). Since fh 2 L

2(⌦), standard
approximation and error bounds hold. In particular (4.9) and (4.10) hold. For a proof of (4.11), we refer to
Theorem 2.13 in [33]. ⇤

We are now ready to present and prove the main result of this section.
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Theorem 1. Assume the penalty parameter � is chosen so that (3.15) holds. In addition, if ✏ = {0, 1}, select
� > 3, and if ✏ = �1, choose � = 1. Then, there exists a constant C independent of h such that

��u� u
DG
h

��
L2(⌦)

 Ch
1/2
kfkL2(⇤). (4.12)

In addition, if ⇤ is a C
2 curve and |⇤ \ E|  Ch for all E 2 Eh, we have the following improved estimate.

��u� u
DG
h

��
L2(⌦)

 C(✓)h1�✓
kfkL2(⇤), 0 < ✓ < 1/2. (4.13)

Proof. We use triangle inequality to obtain:
��u� u

DG
h

��
L2(⌦)


��u� u

CG
h

��
L2(⌦)

+
��uCG

h
� U

��
L2(⌦)

+
��U � u

DG
h

��
L2(⌦)

. (4.14)

We have for any vh 2 V
k

h
(Eh),
Z

⌦
fhvh =

X

E2Eh

Z

E

fh|E vh =
X

E2T⇤

Z

E\⇤
fvh =

Z

⇤
fvh.

Since the domain ⌦ is convex, we have the following elliptic regularity result:

kUkH2(⌦)  CkfhkL2(⌦). (4.15)

Using the bounds (4.9) and (4.11) in (4.14) yields:
��u� u

DG
h

��
L2(⌦)


��u� u

CG
h

��
L2(⌦)

+ Ch
2
kfhkL2(⌦). (4.16)

Bounds (4.1) and (4.7) give (4.12). Under the additional assumptions, bounds (4.2) and (4.8) yield (4.13). ⇤

Hereinafter, we will make the following assumption.

Assumption 1. We only consider the symmetric dG discretization (✏ = �1) and we set � = 1. We also assume
that ⇤ is a C

2 curve, f 2 L
2(⇤), and that |E \ ⇤|  Ch, 8E 2 Eh.

For simplicity, we denote by a = a�1. Under Assumption 1, with (4.15) and (4.8), there is a constant C

independent of h such that:
hkUkH2(⌦)  CkfkL2(⇤). (4.17)

5. Weighted energy estimate

We first show that the dG solution is stable in the weighted energy norm defined by:

kvk
2
DG,↵

=
X

E2Eh

krvk
2
L2

↵(E) +
X

e2�h[@⌦

�

h
kd

↵[v]k2
L2(e), v 2 H

1(Eh), ↵ 2 (0, 1). (5.1)

Lemma 4 (Stability). Let Assumption 1 hold. For ↵ 2 (0, 1), there exists a constant C↵ independent of h but
dependent on maxx2⌦ d

2↵(x) such that the dG solution, u
DG
h

, satisfies:

ku
DG
h
kDG,↵  C↵

�
kfkL2(⇤) + |u|H1

↵(⌦)

�
. (5.2)
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Proof. Recall the intermediate problem (4.5). Since U 2 H
2(⌦)\H

1
0 (⌦), we immediately have with (4.10) and

(4.17)
X

e2�h[@⌦

�

h

��d2↵
⇥
u

DG
h

⇤��2

L2(e)

��d2↵

��2

L1(⌦)

X

e2�h[@⌦

�

h

��⇥uDG
h

� U
⇤��2

L2(e)
 C

��d2↵
��2

L1(⌦)
kfk

2
L2(⇤). (5.3)

We use the triangle inequality, (4.9) and (4.17):

krUkL2
↵(⌦) 

��d2↵
��

L1(⌦)

��r
�
U � u

CG
h

���
L2(⌦)

+
��ru

CG
h

��
L2

↵(⌦)
 C↵kfkL2(⇤) +

��ru
CG
h

��
L2

↵(⌦)
. (5.4)

From Theorem 3.5 in [16] and Lemma 1, we have
��ru

CG
h

��
L2

↵(⌦)
 CkrukL2

↵(⌦), ↵ 2 (0, 1). (5.5)

This implies
krUkL2

↵(⌦)  C↵kfkL2(⇤) + C|u|H1
↵(⌦).

By the triangle inequality, equations (4.10), (4.17) and the above bound, we obtain
X

E2Eh

��ru
DG
h

��2

L2
↵(E)

 2
X

E2Eh

��r
�
u

DG
h

� U
���2

L2
↵(E)

+ 2
X

E2Eh

krUk
2
L2

↵(E)

 C↵

��uDG
h

� U
��2

DG
+ 2krUk

2
L2

↵(⌦)  C↵

�
kfkL2(⇤) + |u|H1

↵(⌦)

�2
. (5.6)

We conclude the result by combining (5.3) and (5.6). ⇤

We have an a priori bound for U in the H
2
↵

norm, which can be seen as a generalization of (4.17). We denote
by d̄E = maxx2E d(x,⇤) for E 2 Eh.

Lemma 5. Let Assumption 1 hold. For ↵ 2 (�1, 1), there exists a constant C depending on ↵ but independent
of h such that

kUkH2
↵(⌦)  Ch

↵�1
kfkL2(⇤), ↵ 2 (�1, 1). (5.7)

Proof. Since d
2↵
2 A2, it follows from Theorem 3.1 in [32] that

kUkH2
↵(⌦)  CkfhkL2

↵(⌦). (5.8)

Thus, to show (5.7), we find a bound on kfhkL2
↵(⌦). Thanks to the shape-regularity of the mesh, for E 2 T⇤,

chE  d̄E  ChE (see [12], Lem. 3.1). Hence, using (5.10), (4.8) and (3.3), yield

kfhk
2
L2

↵(⌦) =
X

E2T⇤

kd
↵
fhk

2
L2(E) 

X

E2T⇤

d̄
2↵

E
kfh,Ek

2
L2(E)  Ch

2↵
X

E2T⇤

kfh,Ek
2
L2(E)  Ch

2↵�2
kfk

2
L2(⇤). (5.9)

Substituting (5.9) in (5.8) yields (5.7). ⇤

The following equivalence of norms holds (see proof of Lem. 3.2 in [12]). There exist positive constants �1, �2

independent of h such that for �1 < ↵ < 1, E 2 Eh, and vh 2 Pk(E),

�1kd
↵
vhkL2(E)  d̄

↵

E
kvhkL2(E)  �2kd

↵
vhkL2(E). (5.10)

In this section, we will make use of the following assumption (see [14], Thm. 3.4).

Assumption 2. The distance function satisfies the following bounds

krdkL1(⌦)  1, kr
2
d
2
kL1(⌦)  C. (5.11)



594 R. MASRI ET AL.

Using the fact the rd
↵ = ↵d

↵�1
rd, we then have that d

↵
2 H

1(⌦) if 0 < ↵ < 1. Note that with (5.11) and
the chain rule, we have for E 2 Eh, and v 2 L

1(E),

2kvr(d↵)k
L2(E)  ↵

��d↵�1
v
��

L2(E)
, 1/2 < ↵, (5.12)

��vr2
�
d
2↵
���

L2(E)
 C

��d2↵�2
v
��

L2(E)
, 1/2 < ↵ < 3/2. (5.13)

In addition, since d
2↵
2 A2 for ↵ 2 (�1, 1), we use the interpolant ⇧h : H̊

2
↵
(⌦) ! W

1
h
(Eh) introduced in [31].

This interpolant is independent of ↵ and satisfies the following approximation properties (see [31], Thm. 5.2).
For any ↵ 2 (�1, 1) and for any w in H̊

2
↵
(⌦), there is a constant C independent of h such that

kw �⇧hwk
Hm

↵ (E)  Ch
2�m

|w|H2
↵(�E), 0  m  2, 8E 2 Eh, (5.14)

where �E is a macro element containing E. We also recall the definition of Kondratiev-type weighted Sobolev
spaces, V

m

↵
(⌦), for any ↵ > 0 and m 2 N:

V
m

↵
(⌦) =

n
u 2 L

2
↵�m

(⌦) : 80  |�|  m, d
|�|+↵�m

D
�
u 2 L

2(⌦)
o

,

equipped with the norm

kuk
2
V m

↵ (⌦) =
mX

s=0

|u|
2
H

s
↵�m+s(⌦), m � 1. (5.15)

Ariche et al. proved that the solution u to (1.1), (1.2) belongs to V
2
1+↵

(⌦) for ↵ 2 (0, 1) under certain conditions
on ⌦ and ⇤, see Theorem 1.1 in [2]. The main result of this section reads as follows.

Theorem 2. Fix ↵ 2 (1/2, 1) and let � 2 (0,↵) and k = 1. Let Assumptions 1 and 2 hold and assume that
u 2 V

2
1+�

(⌦). For all 1 < s <
1

1�↵
, there exist constants C and C⇤ depending on ↵, s and � but independent of

h such that if � > C⇤,

��rh

�
u� u

DG
h

���
L2

↵(⌦)
+

 
X

e2�h[@⌦

�

h

��d↵
⇥
u

DG
h

⇤��2

L2(e)

!1/2

 C

⇣
h

↵�� + h
1� 3

2 s(1�↵)
⌘
. (5.16)

Proof. Let u
CG
h

2 W
1
h
(Eh) solve (3.5) for k = 1. We apply the triangle inequality.

��rh

�
u� u

DG
h

���
L2

↵(⌦)
+

 
X

e2�h[@⌦

�

h

��d↵
⇥
u

DG
h

⇤��2

L2(e)

!1/2


��r
�
u� u

CG
h

���
L2

↵(⌦)
+
��U � u

DG
h

��
DG,↵

+
��r
�
u

CG
h

� U
���

L2
↵(⌦)

. (5.17)

Considering Lemma 1, the first term is bounded in Corollary 3.8 in [12]
��r
�
u� u

CG
h

���
L2

↵(⌦)
 Ch

↵��
|u|V 2

1+�(⌦). (5.18)

Bound (5.18) can also be derived from Theorem 3.5 in [16] and Theorem 3.6 in [12]. It remains to bound
kU � u

DG
h
kDG,↵ and kr(uCG

h
� U)kL2

↵(⌦), which is the object of Lemmas 6 and 7 respectively. ⇤

Lemma 6. Let Assumptions 1 and 2 hold. Let k = 1. For ↵ 2 ( 1
2 , 1), there exists constants C, C⇤ depending

on s and ↵ but independent of h such that if � > C⇤,

��U � u
DG
h

��
DG,↵

 C

⇣
h

↵ + h
1� 3

2 s(1�↵)
⌘
, 81 < s <

1
1� ↵

· (5.19)
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Proof. Let �h = ⇧hU � u
DG
h

. With triangle inequality and the bounds (5.14), (4.10), (4.11), (4.17), we have

k�hkL2(⌦) + hk�hkDG  Ch
2
kUkH2(⌦)  ChkfkL2(⇤). (5.20)

With several manipulations, as is done in [37], we have formally

k�hk
2
DG,↵

= a
�
�h, d

2↵
�h

�
� 2

X

E2Eh

Z

E

(d↵
r�h · (�hr(d↵)))

+ 2
X

e2�h[@⌦

Z

e

{r(d↵
�h)} · ne[d↵

�h] =
3X

i=1

Ti. (5.21)

We now explain why each term Ti above is well defined. From (5.12), (5.13), the term T1 is well defined since
d
2↵
�h 2 H

2(Eh). Property (5.12) and Cauchy–Schwarz’s inequality guarantee that T2 is well defined. For T3,
we write

{r(d↵
�h)} · ne[d↵

�h] = {d
↵
r(d↵

�h)} · ne[�h].

Observe that since �h is a polynomial, the function d
↵
r(d↵

�h) belongs to H
1(Eh)3. Indeed we have

d
↵
r(d↵

�h) = ↵d
2↵�1

�hrd + d
2↵
r�h,

and with (5.13), each term belongs to H
1(E) for each mesh element E. This implies that k{d↵(rd

↵
�h)}kL2(e) is

bounded and the term T3 is well defined. To handle the first term, we use the following Galerkin orthogonality

a
�
U � u

DG
h

, vh

�
= 0, 8vh 2 V

k

h
(Eh). (5.22)

Let ⌘ = ⇧hU � U and ⇠ = U � u
DG
h

so that �h = ⌘ + ⇠. Since [d↵
⌘] = 0 a.e. on e 2 �h [ @⌦, we have

T1 = a
�
⌘, d

2↵
�h

�
+ a
�
⇠, d

2↵
�h � wh

�

=
X

E2Eh

Z

E

r⌘ ·r
�
d
2↵
�h

�
�

X

e2�h[@⌦

Z

e

{d
↵
r⌘} · ne[d↵

�h] + a
�
⇠, d

2↵
�h � wh

�

=
3X

i=1

T1,i,

where wh 2 V
1
h

(Eh) is a piecewise Lagrange interpolant of d
2↵
�h such that

������d2↵
�h � wh

������
DG

 Ch|d
2↵
�h|H2(Eh). (5.23)

We begin by bounding T1,3. With (3.14), (4.10), (5.23), we have

T1,3 = a
�
⇠, d

2↵
�h � wh

�
 C|||⇠|||DG

������d2↵
�h � wh

������
DG

 Ch
2
kUkH2(⌦)

��d2↵
�h

��
H2(Eh)

. (5.24)

Using (5.11) and (5.13), we obtain
��d2↵

�h

��
H2(Eh)

 C
��d2↵�2

�h

��
L2(⌦)

+ C
��d2↵�1

rh�h

��
L2(⌦)

.

Since d
�
2 L

2(⌦) for |�| < 1, we have d
2(↵�1)

2 L
1

s(1�↵) (⌦) for 1 < s <
1

2(1�↵) . Note that 1
s(1�↵) > 2. Further,

since �h 2 V
1
h

(Eh) and by using and Hölder’s inequality, we have
��d2↵

�h

��
H2(Eh)

 C
��d2↵�2

��
L

1
s(1�↵) (⌦)

k�hk
L

2
1�2s(1�↵) (⌦)

+
��d↵�1

��
L

2
s(1�↵) (⌦)

kd
↵
rh�hk

L

2
1�s(1�↵) (⌦)
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 Ck�hk
L

2
1�2s(1�↵) (⌦)

+ kd
↵
rh�hk

L

2
1�s(1�↵) (⌦)

. (5.25)

By inverse estimate (3.16)(q = 2/(1� 2s(1� ↵)), p = 2) and (5.20), we have

k�hk
L

2
1�2s(1�↵) (⌦)

 Ch
�3s(1�↵)

k�hkL2(⌦)  Ch
�3s(1�↵)+1

kfkL2(⇤). (5.26)

For the second term, we first derive an inverse inequality for any vh 2 V
k

h
(Eh) and q � 2. With the local version

of the inverse inequality (3.16), (5.10) and Jensen’s inequality, we have

kd
↵
vhkLq(⌦) 

 
X

E2Eh

d̄
↵q

E
kvhk

q

Lq(E)

!1/q

 Ch
3
q�

3
2

 
X

E2Eh

d̄
↵q

E
kvhk

q

L2(E)

!1/q

 Ch
3
q�

3
2

 
X

E2Eh

kvhk
q

L2
↵(E)

!1/q

 Ch
3
q�

3
2 kvhkL2

↵(⌦). (5.27)

Hence, with (5.27), the second term in (5.25) is bounded as

kd
↵
rh�hk

L

2
1�s(1�↵) (⌦)

 Ch
� 3

2 s(1�↵)
krh�hkL2

↵(⌦). (5.28)

Thus, with (5.26) and (5.28), (5.25) reads

��d2↵
�h

��
H2(Eh)

 C

⇣
h
�3s(1�↵)+1 + h

� 3
2 s(1�↵)

krh�hkL2
↵(⌦)

⌘
. (5.29)

Thus, with (4.17) and (5.29), (5.24) reads

T1,3  C

⇣
h

2�3s(1�↵) + h
1� 3

2 s(1�↵)
krh�hkL2

↵(⌦)

⌘
. (5.30)

We now turn to T1,1 and T1,2. We write

T1,1 =
X

E2Eh

Z

E

r⌘ · d
2↵
r�h +

Z

E

r⌘ · 2↵d
2↵�1

rd�h  kr⌘kL2
↵(⌦)krh�hkL2

↵(⌦) + Ckr⌘kL
2
2↵�1(⌦)k�hkL2(⌦).

With (5.14), (5.7), (4.11) and (4.17), we obtain

|T1,1|  Ch|U |H2
↵(⌦)krh�hkL2

↵(⌦) + Ch
2
|U |H2

2↵�1(⌦)  Ch
↵
krh�hkL2

↵(⌦) + Ch
2↵

. (5.31)

To handle T1,2, consider a mesh element E and let e 2 @E. Since d
↵
⌘ belongs to H

1
↵
(⌦), trace estimate (3.17)

yields

kd
↵
r⌘k

L2(e)  Ch
�1/2

kd
↵
r⌘k

L2(E) + Ch
1/2
�
kd

↵
r

2
⌘kL2(E) + kd

↵�1
r⌘kL2(E)

�
.

Thus, with Cauchy–Schwarz’s inequality, (5.14) and (5.7), we obtain

|T1,2|  C

⇣
kr⌘kL2

↵(⌦) + h(kUkH2
↵(⌦) + hkUkH

2
↵�1(⌦))

⌘
k�hkDG,↵  Ch

↵
k�hkDG,↵. (5.32)

For T2, we apply Cauchy–Schwarz’s inequality and (5.11),

|T2|  krh�hkL2
↵(⌦)kd

↵�1
�hkL2(⌦) (5.33)
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with (5.14), Holder’s inequality, the observation that d
↵�1

2 L
2

s(1�↵) (⌦) , (5.20), and (3.16), we obtain

|T2|  krh�hkL2
↵(⌦)

��d↵�1
��

L

2
s(1�↵) (⌦)

k�hk
L

2
1�s(1�↵) (⌦)

 Ckrh�hkL2
↵(⌦)h

� 3
2 s(1�↵)

k�hkL2(⌦)  Ch
� 3

2 s(1�↵)+1
krh�hkL2

↵(⌦). (5.34)

Hence, with (5.30), (5.31), (5.32), (5.34), and Young’s inequality, we obtain

|T1| + |T2| 
1
8
k�hk

2
DG,↵

+ C

⇣
h

2�3s(1�↵) + h
2↵

⌘
. (5.35)

It remains to handle T3. Fix a face e 2 �h, shared by two elements, e = @E
1
e
\ @E

2
e
. We write

Z

e

(r(d↵
�h))|E1

e
· ne[d↵

�h] =
Z

e

d
↵
r�h|E1

e
· ne[d↵

�h] +
Z

e

�
↵d

↵�1
rd · ne

�
�h|E1

e
[d↵

�h]

= Ae,1 + Ae,2.

For Ae,1, recall the definition of d̄E1
e
. With (3.18) and (5.10), we have

Ae,1  Cd̄
↵

E1
e
kr�hkL2(E1

e)h
�1/2

k[d↵
�h]kL2(e)  C�2kr�hkL2

↵(E1
e)h

�1/2
k[d↵

�h]kL2(e). (5.36)

Hence, with Young’s inequality, we obtain for a positive constant C0

X

e2�h[@⌦

Ae,1 
1
16
krh�hk

2
L2

↵(⌦) + C0

X

e2�h[@⌦

h
�1
k[d↵

�h]k2
L2(e). (5.37)

For the term Ae,2, we have with (5.11)

Ae,2  ↵kd
2↵�1

rd · ne �h|E1
e
kL2(e)k[�h]kL2(e)  Ckd

2↵�1
�h|E1

e
kL2(e)k[�h]kL2(e).

With the trace inequality (3.17), Hölder’s inequality and (5.11), we have
��d2↵�1

�h|E1
e

��
L2(e)

 Ch
�1/2

��d2↵�1
�h

��
L2(E1

e)
+ Ch

1/2
��r(d2↵�1)�h

��
L2(E1

e)
+ Ch

1/2
��d2↵�1

r�h

��
L2(E1

e)

 Ch
�1/2

��d2↵�1
��

L1(⌦)
k�hkL2(E1

e) + Ch
1/2
��d2↵�2

��
L

1
s(1�↵) (E1

e)
k�hk

L

2
1�2s(1�↵) (E1

e)

+ Ch
1/2
��d↵�1

��
L

2
s(1�↵) (E1

e)
kd

↵
rh�hk

L

2
1�s(1�↵) (E1

e)
.

With similar arguments as the derivation of bound (5.29), with (5.20), (5.26), (5.28), and Hölder’s inequality,
we obtain

X

e2�h[@⌦

Ae,2  C

⇣
h
�3s(1�↵)+2 + h

� 3
2 s(1�↵)+1

krh�hkL2
↵(⌦)

⌘ X

e2�h[@⌦

h
�1
k[�h]k2

L2(e)

!1/2

.

With Young’s inequality and the bound (5.20), this leads to
X

e2�h[@⌦

Ae,2 
1
16
krh�hk

2
L2

↵(⌦) + Ch
�3s(1�↵)+2

. (5.38)

Therefore we can bound T3 with (5.37) and (5.38).

|T3| 
1
4
krh�hk

2
L2

↵(⌦) + C0

X

e2�h[@⌦

h
�1
k[d↵

�h]k2
L2(e) + Ch

�3s(1�↵)+2
. (5.39)

We substitute (5.35), (5.39) in (5.21). With the assumption that � > 4C0, we obtain the result with an
application of triangle’s inequality and the bound kU �⇧hUkDG,↵  Ch

↵. ⇤
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Lemma 7. Let Assumptions 1 and 2 hold and let k = 1. For ↵ 2 (1/2, 1), there exists a constant C depending
on s and ↵ but independent of h such that

��r
�
U � u

CG
h

���
L2

↵(⌦)
 C

⇣
h

↵ + h
1� 3

2 s(1�↵)
⌘
, 81 < s <

1
1� ↵

· (5.40)

Proof. Let ⇣h = ⇧hU � u
CG
h

. We have

X

E2Eh

Z

E

d
2↵
r⇣h ·r⇣h =

X

E2Eh

Z

E

r⇣h ·r
�
d
2↵
⇣h

�
� 2

X

E2Eh

Z

E

d
↵
⇣hr⇣h ·r(d↵) = X1 + X2.

Let wh be the continuous Lagrange interpolant of d
2↵
⇣h. We have

��r(d2↵
⇣h � wh)

��
L2(⌦)

 Ch|d
2↵
⇣h|H2(Eh). (5.41)

Using the Galerkin orthogonality of the finite element method, we write

X1 =
X

E2Eh

Z

E

r
�
U � u

CG
h

�
·r
�
d
2↵
⇣h � wh

�
�

X

E2Eh

Z

E

r(U �⇧hU) ·r
�
d
2↵
⇣h

�
.

The terms in the right-hand side are bounded using similar arguments as in (5.25)–(5.31). We obtain

X1 
1
4
krh⇣hk

2
L2

↵(⌦) + C

⇣
h

2�3s(1�↵) + h
2↵

⌘
.

For X2, similar arguments to the bound (5.34) for the term T2 hold:

X2  Ch
1� 3

2 s(1�↵)
krh⇣hkL2

↵(⌦).

We skip some details for brevity. The result is concluded by using triangle inequality. ⇤

6. Local L2 and energy error estimates

We show that the dG solution converges with an almost optimal rate in regions excluding the line ⇤ for k = 1
in Section 6.1. For k � 2, we show that the dG solution converges with a rate of k in Section 6.2. In this section,
we make the following assumption on the weak solution u to (2.1).

Assumption 3. For any neighborhood N of ⇤, namely ⇤ ⇢ N ⇢ N ⇢ ⌦, the weak solution u belongs to
H

2(⌦ \ N).

This assumption is justified in the following two cases. If f 2 H
2(⇤), then u 2 H

2(⌦\N). This result was
established using a splitting technique by Gjerde et al. [20]. Further, Ariche et al. show that if f 2 L

2(⇤) and
⇤ is of class C4, then u belongs to a Kondratiev’s type space [2]. This implies that u 2 H

2(⌦\N), see also [12].
We first establish a local a priori bound on the solution of the intermediate problem (4.5).

Lemma 8. Assume 1 and 3 hold. Let N0 and N1 be nested neighborhoods of ⇤ satisfying

⇤ ⇢ N0 ⇢ N0 ⇢ N1 ⇢ ⌦.

There exist h0 > 0 and a constant C independent of h such that for all h  h0

kUk
H2(⌦\N1)

 C

⇣
kfk

L2(⇤) + kuk
H2(⌦\N0)

⌘
. (6.1)
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Proof. There exists a neighborhood N1/2 of ⇤ such that

N0 ⇢ N1/2 ⇢ N1/2 ⇢ N1 ⇢ N1 ⇢ ⌦.

Define a mollifier function � 2 C
1(⌦) which is equal to 1 in ⌦\N1 and to 0 in N1/2. Recall that by definition

of U (4.5) and fh (4.4), there exists h0 > 0 such that for h  h0, we have

��U = 0, in ⌦\N0.

In addition, set g as follows.
g = �(U�), in ⌦. (6.2)

Clearly, g 2 L
2(⌦) and

g = ��U + 2rU ·r�+ U�� =

8
><

>:

0, in N1/2,

2rU ·r�+ U��, in N1 \ N1/2,

0, in ⌦ \ N1.

(6.3)

Hence, with Cauchy–Schwarz’s inequality, we obtain

kgk
L2(⌦)  CkUk

H1(N1\N1/2)

⇣
kr�k

L2(N1\N1/2)
+ k��k

L2(N1\N1/2)

⌘
 CkUk

H1(N1\N1/2)
. (6.4)

In the above, the constant C depends on the choice of the cut-o↵ function � but it is independent of h for all
h  h0. We remark that U� vanishes on the boundary @⌦. By convexity of the domain and the above bound,
we have

kU�k
H2(⌦)  Ckgk

L2(⌦)  CkUk
H1(N1\N1/2)

. (6.5)

By the definition of �, the above bound, and the triangle inequality (with u
CG
h

2 W
1
h
(Eh) satisfying (3.5) for

k = 1), we obtain

kUk
H2(⌦\N1)

= kU�kH2(⌦\N1)  kU�k
H2(⌦)  CkUk

H1(N1\N1/2)

 C

⇣��U � u
CG
h

��
H1(N1\N1/2)

+
��u� u

CG
h

��
H1(N1\N1/2)

+ kuk
H1(N1\N1/2)

⌘
. (6.6)

A standard finite element bound (4.9), the convexity of the domain and (4.8) yield
��U � u

CG
h

��
H1(⌦)

 ChkUk
H2(⌦)  ChkfhkL2(⌦)  Ckfk

L2(⇤). (6.7)

To bound the second term in (6.6), we use Theorem 9.1 in [36].

��u� u
CG
h

��
H1(N1\N1/2)


��u� u

CG
h

��
H1(⌦\N1/2)

 C

⇣
hkuk

H2(⌦\N0)
+
��u� u

CG
h

��
L2(⌦)

⌘
. (6.8)

Using the global bound (4.2) for ✓ = 1
2 , we obtain for

��u� u
CG
h

��
H1(N1\N1/2)

 C

⇣
hkuk

H2(⌦\N0)
+ h

1
2 kfkL2(⇤)

⌘
. (6.9)

Substituting (6.7) and (6.9) in (6.6) yields the result. ⇤
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6.1. Local L2 bound for k = 1

Let N be a neighborhood of ⇤ such that N ⇢ ⌦. There exist sets N0, N1, N2, N3 such that

⇤ ⇢ N0 ( N1 ⇢ N1 ( N2 ⇢ N2 ( N3 ( N ( ⌦.

It is important to note that the choice of the above sets is fixed and does not depend on the mesh. The main
result of this section is the following local L

2 estimate.

Theorem 3. Let k = 1 and let Assumptions 1–3 hold. There exist h0 � 0 and a constant C(✓) independent of
h such that for 0 < ✓ <

1
2 and all h  h0

��u� u
DG
h

��
L2(⌦\N)

 C(✓) h
2�✓ + Ch

2
| ln(h)|. (6.10)

The proof of this estimate also relies on establishing local bounds for the continuous and discontinuous
discretizations of the intermediate problem (4.5). As before, this will be established in several Lemmas.

Lemma 9. Let Assumptions 1–3 hold. There exist h0 > 0 and a constant C(✓) independent of h such that for
all h  h0 ��U � u

DG
h

��
L2(⌦\N)

 C(✓) h
2�✓

, 80 < ✓ <
1
2
· (6.11)

Proof. Define the characteristic function associated to ⌦ \ N :

�⌦\N (x) =

(
1, x 2 ⌦\N,

0, x 2 N.

For readability, in this proof, we drop the dependence on ✓ in the constant “C(✓)” and use C instead. Set
⇠ = U � u

DG
h

and consider the auxiliary problem:

��w = ⇠�⌦\N , in ⌦, (6.12)
w = 0, on @⌦. (6.13)

Clearly, since ⇠�⌦\N belongs to L
2(⌦), the function w belongs to H

2(⌦) \H
1
0 (⌦). Multiplying (6.12) by ⇠ and

integrating over ⌦, we obtain

k⇠k
2
L2(⌦\N) =

X

E2Eh

Z

E

r⇠ ·rw �

X

e2�h[@⌦

Z

e

{rw} · ne[⇠] = a(⇠, w). (6.14)

Let Shw 2 W
1
h
(Eh) be the Scott–Zhang interpolant of w. With the consistency property (5.22), we have

k⇠k
2
L2(⌦\N) = a(⇠, w � Shw)

=
X

E2Eh

Z

E

r⇠ ·r(w � Shw)�
X

e2�h[@⌦

Z

e

{r(w � Shw)} · ne[⇠]

= ⇥1 + ⇥2. (6.15)

We proceed by providing bounds for ⇥1 and ⇥2. We follow [8, 26], split ⇥1 into two terms, and use Holder’s
inequality,

⇥1 =
X

E2Eh

Z

E\N2

r⇠ ·r(w � Shw) +
X

E2Eh

Z

E\(⌦\N2)
r⇠ ·r(w � Shw)
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 kr(w � Shw)k
L1(N2)

X

E2Eh

kr⇠k
L1(E\N2)

+ krh⇠kL2(⌦\N2)
kr(w � Shw)k

L2(⌦\N2)

= ⇥1
1 + ⇥2

1. (6.16)

Fix ✓ 2 (0, 1/2), define ↵ = 1� ✓
2, which implies that 3/4 < ↵ < 1. Take s = 2/(3✓) in Lemma 6. We have

k⇠kDG,↵
 Ch

1�✓
. (6.17)

Hence, with Cauchy–Schwarz’s inequality and the fact that d
�↵

2 L
2(⌦), (recall d is the distance function

defined in (2.2)), we obtain
X

E2Eh

kr⇠k
L1(E\N2)



X

E2Eh

��d�↵
��

L2(E\N2)
kr⇠k

L2
↵(E\N2)

 Ckrh⇠kL2
↵(⌦)  Ch

1�✓
. (6.18)

In addition, observe that since ��w = 0 in N3, Theorem 8.10 in [19] and elliptic regularity due to the convexity
of the domain yield

kwk
W 4,2(N3)

 Ckwk
H2(⌦)  Ck⇠k

L2(⌦\N). (6.19)

Hence, by a Sobolev embedding result and approximation properties there is h1 > 0 such that for all h  h1

kr(w � Shw)k
L1(N2)

 Ch|w|W 2,1(N3)  Chkwk
W 4,2(N3)

 Chk⇠k
L2(⌦\N). (6.20)

With (6.18) and (6.20), we obtain
|⇥1

1|  Ch
2�✓

k⇠k
L2(⌦\N). (6.21)

For ⇥2
1, we apply Lemma 4.1 by Chen and Chen [7] (see (3.20) with D = ⌦\N1 and eD = ⌦\N2). There exists

h2 � 0 such that for all h  h2

krh⇠kL2(⌦\N2)
 ChkUk

H2(⌦\N1)
+ Ck⇠k

L2(⌦\N1)
.

With Lemma 8, (4.11), and (4.17), we have

krh⇠kL2(⌦\N2)
 Ch

⇣
kfk

L2(⇤) + kuk
H2(⌦\N0)

⌘
+ Ch

2
kUk

H2(⌦)  Ch

⇣
kfk

L2(⇤) + kuk
H2(⌦\N0)

⌘
.

With approximation properties and an elliptic bound, we have

kr(w � Shw)k
L2(⌦\N)  Chkwk

H2(⌦)  Chk⇠k
L2(⌦\N).

So we combine the bounds above: ��⇥2
1

��  Ch
2
k⇠k

L2(⌦\N). (6.22)

Similarly, we split and bound ⇥2. For any domain O, let �h(O) denote the set of all faces e such that e\O 6= ;

and let �c

h
(O) be the complementary set of faces, namely �c

h
(O) = (�h [ {e : e ⇢ @⌦}) \ �h(O). There exists

h3 > 0 such that for all h  h3:

|⇥2|  kr(w � Shw)k
L1(N2)

X

e2�h(N1)

k[⇠]k
L1(e) +

X

e2�c
h(N1)

k{r(w � Shw)} · nekL2(e)k[⇠]kL2(e) = ⇥1
2 + ⇥2

2.

Using (6.20), we have
⇥1

2  Chk⇠k
L2(⌦\N)

X

e2�h(N1)

k[⇠]k
L1(e).
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To handle the second factor in the left-hand side of the inequality above, we introduce a tubular domain Bh

containing ⇤. That is, Bh is the set of elements E such that for any x 2 E, the distance d(x,⇤)  2h. This
implies that the number of elements in Bh is bounded above by Ch

�1 for some constant C independent of h.

X

e2�h(N1\Bh)

k[⇠]k
L1(e)  C

0

@
X

e2�h(Bh)

hk1k2
L2(e)

1

A
1/2

k⇠kDG  Chk⇠kDG.

Any face e 2 �h(N1 \Bh) belongs to two elements, say E
1
e

and E
2
e
. Since d

�↵�1
|Ei

e
 h

�↵�1, the function d
�↵

belongs to H
1(Ei

e
), for i = 1, 2. With the trace inequality (3.17) and with (5.11)

X

e2�h(N1\Bh)

k[⇠]k
L1(e)  C

0

@
X

e2�h(N1\Bh)

h
��d�↵

��2

L2(e)

1

A
1/2

k⇠kDG,↵

 C

0

@
X

e2�h(N1\Bh)

⇣��d�↵
��2

L2(E1
e[E2

e)
+ h

2
��d�↵�1

��2

L2(E1
e[E2

e)

⌘
1

A
1/2

k⇠kDG,↵

 C

0

@
X

e2�h(N1\Bh)

��d�↵
��2

L2(E1
e[E2

e)

1

A
1/2

k⇠kDG,↵

 C
��d�↵

��
L2(⌦)

k⇠kDG,↵
.

Hence, we use (6.17), (6.20) and the fact k⇠kDG  ChkUk
H2(⌦)  C. We have

|⇥1
2|  Ch

2�✓
k⇠k

L2(⌦\N). (6.23)

To handle ⇥2
2, we use (3.17), approximation properties, Lemma 4.1 in [7] (see (3.20) with D = ⌦ \ N2 and

eD = ⌦ \ N), and (6.1). We have

|⇥2
2|  C

0

@
X

e2�c
h(N1)

kr(w � Shw)k2
L2(E1

e[E2
e) + h

2
��r2

w
��2

L2(E1
e[E2

e)

1

A
1/2

k⇠kDG(⌦\N2)

 Ch|w|H2(⌦)

⇣
h|U |H2(⌦\N) + k⇠k

L2(⌦\N)

⌘
. (6.24)

With (4.11)and (4.17), we have
k⇠k

L2(⌦\N)  Chkfk
L2(⇤).

Thus, with (6.19), we obtain
|⇥2

2|  Ch
2
k⇠k

L2(⌦\N). (6.25)

Combining bounds (6.21)–(6.23), (6.25) with (6.15) yields the result. ⇤

The next step is to bound the local L
2 norm of the error U � u

CG
h

.

Lemma 10. Let Assumptions 1–3 hold. There exist h0 > 0 and a constant C(✓) independent of h such that for
all h  h0 ��U � u

CG
h

��
L2(⌦\N)

 C(✓)h
2�✓

, 80 < ✓ <
1
2
· (6.26)
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Proof. Because the proof follows that of Lemma 9, it is sketched only and details are omitted. Similarly, in this
proof, we drop the dependence on ✓ and use C instead. The starting point is the following dual problem

��z =
�
U � u

CG
h

�
�⌦\N , in ⌦, (6.27)

z = 0, on @⌦, (6.28)

where �⌦\N is the characteristic function associated to ⌦ \ N . Let Shz denote the Scott–Zhang interpolant of
z. We multiply (6.27) by

�
U � u

CG
h

�
and integrate by parts.

��U � u
CG
h

��2

L2(⌦\N)
=
Z
rz ·r

�
U � u

CG
h

�
=
Z
r(z � Shz) ·r

�
U � u

CG
h

�

 Ckr(z � Shz)k
L1(N1)

��r
�
U � u

CG
h

���
L1(N1)

+ kr(z � Shz)k
L2(⌦\N1)

��r
�
U � u

CG
h

���
L2(⌦\N1)

. (6.29)

The first term is handled like ⇥1
1. Let ↵ = 1�✓2 and use Lemma 7 with s = 2/(3✓) to obtain for h small enough:

kr(z � Shz)k
L1(N1)

��r
�
U � u

CG
h

���
L1(N1)

 Ch|z|W 2,1(N2)

��r
�
U � u

CG
h

���
L2

↵(⌦)

 Ch
2�✓
��U � u

CG
h

��
L2(⌦\N)

. (6.30)

For the second term, we use Theorem 9.1 in [36], (6.1), (4.9), (4.15) and (4.8).
��r
�
U � u

CG
h

���
L2(⌦\N1)

 C

⇣
hkUk

H2(⌦\N0)
+
��U � u

CG
h

��
L2(⌦)

⌘
 Ch.

Therefore, with approximation properties and convexity of the domain, we have

kz � Shzk
L2(⌦\N1)

��r
�
U � u

CG
h

���
L2(⌦\N1)

 Ch
2
kzk

H2(⌦)  Ch
2
��U � u

CG
h

��
L2(⌦\N)

. (6.31)

Bound (6.26) immediately follows from (6.29) to (6.31). ⇤

Proof of Theorem 3. The result follows by the triangle inequality:
��u� u

DG
h

��
L2(⌦\N)


��u� u

CG
h

��
L2(⌦\N)

+
��uCG

h
� U

��
L2(⌦\N)

+
��U � u

DG
h

��
L2(⌦\N)

. (6.32)

The first term is bounded in [27]: ��u� u
CG
h

��
L2(⌦\N)

 Ch
2
| lnh|.

The result then follows by using Lemmas 9 and 10. ⇤

6.2. Local L2 bounds for k � 2

In this section, we use duality arguments to obtain a local L
2 estimate for k � 2. The main di↵erence from

the previous section is that these results hold on a convex sub-domain B with B ⇢ ⌦ that does not contain the
line ⇤. This is in contrast to the set N in Theorem 3 which is a neighborhood of the line ⇤. We use negative
norms, recalled here. The domain B is assumed to have su�ciently smooth boundary, for instance B can be
chosen as a sphere. For any integer m � 0 and for v 2 L

2(⌦),

kvk
H�m(B) = sup

�2H
m
0 (B)

��R
B

v�
��

k�k
Hm(B)

, B ✓ ⌦. (6.33)

The main result of this section is given in Theorem 4. To begin this analysis, we first establish general local
results for the dG approximation. Such results are shown with techniques adapted from Nitsche and Schatz
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[30]. In addition, for any convex domain B ✓ ⌦ with su�ciently smooth boundary, we introduce the operator
QB : L

2(B) ! H
2(⌦) \H

1
0 (⌦) with QB(�) = v such that v solves

��v = � in B (6.34)
v = 0, on @B. (6.35)

The following elliptic regularity result holds [18]. For any integer m � 0,

kQB(�)k
Hm+2(B)  Ck�k

Hm(B). (6.36)

Lemma 11. Let Assumption 1 hold. Let B,B1 be open convex sets satisfying B ⇢ B ⇢ B1 ⇢ B1 ⇢ ⌦. Assume
@B, @B1 and @⌦ are su�ciently smooth so that (6.36) holds in the respective domains. There exists h0 > 0
such that for any integer m � 0 and all 0 < h  h0

��U � u
DG
h

��
H�m(B)

 C

⇣
h

min(k,m+1)
������U � u

DG
h

������
DG(B1)

+
��U � u

DG
h

��
H�m�1(B1)

⌘
. (6.37)

In addition, we have

��U � u
DG
h

��
L2(B)

 C

⇣
h
������U � u

DG
h

������
DG(B1)

+
��U � u

DG
h

��
H�m(B1)

⌘
. (6.38)

The constant C is independent of h.

Proof. Fix an integer m � 0 and denote ⇠ = U � u
DG
h

. Let ! 2 C
1
0 (⌦) with ! = 1 in B and ! = 0 in ⌦\B0

where B̄ ⇢ B0 ⇢ B̄0 ⇢ B1. Note that supp(!) ⇢ B0. We have

k⇠k
H�m(B) = k!⇠k

H�m(B)  k!⇠k
H�m(⌦) = sup

�2H
m
0 (⌦)

��R
⌦ !⇠�

��
k�k

Hm(⌦)

· (6.39)

Fix � 2 H
m

0 (⌦) and define v = Q⌦(�). We multiply (6.34) with !⇠ and integrate by parts. Since v 2 H
2(⌦),

we have
Z

⌦
!⇠� =

X

E2Eh

Z

E

rv ·r(!⇠)�
X

e2�h[@⌦

Z

e

{rv} · ne![⇠] = a(!⇠, v). (6.40)

In view of (6.40) and (6.36), (6.39) yields

k⇠k
H�m(B)  C sup

v2Hm+2(⌦)

|a(!⇠, v)|
kvk

Hm+2(⌦)

· (6.41)

Observe that

a(!⇠, v) =
X

E2Eh

Z

E

⇠r! ·rv +
X

E2Eh

Z

E

r⇠ · (r(!v)� vr!)�
X

e2�h[@⌦

Z

e

{r(!v)� vr!} · ne[⇠].

In addition, with integration by parts and the fact that vr! is continuous, we have

�

X

E2Eh

Z

E

r⇠ · (vr!) =
X

E2Eh

Z

E

⇠r · (vr!)�
X

e2�h[@⌦

Z

e

{vr!} · ne[⇠]. (6.42)
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Hence, we obtain
a(!⇠, v) = a(⇠,!v) + I(⇠,!v), (6.43)

with
I(⇠,!v) =

X

E2Eh

Z

E

⇠(r! ·rv +r · (vr!)).

For E 2 Eh with E \B1 6= ;, let yh,E 2 Pk(E) be the Lagrange interpolant of !v satisfying

k!v � yh,EkHd(E)  Ch
min(k+1,m+2)�d

k!vk
Hm+2(E), 0  d  2. (6.44)

Then, define �h 2 V
k

h
(Eh) as �h|E = yh,E if !v|E 6= 0 a.e in E. Otherwise, �h|E = 0. By construction, for

h small enough, all the terms involving elements and edges that do not intersect B1 vanish. Using (5.22) and
continuity properties, we have

a(⇠,!v) = a(⇠,!v � �h)  C|||⇠|||DG(B1)
|||!v � �h|||DG(B1)

(6.45)

From trace estimates and (6.44), we have

|||!v � �h|||DG(B1)
 Ch

min(k,m+1)
k!vk

Hm+2(B1)
 Ch

min(k,m+1)
kvk

Hm+2(B1)
. (6.46)

Therefore, (6.45) becomes
a(⇠,!v)  Ch

min(k,m+1)
|||⇠|||DG(B1)

kvk
Hm+2(B1)

. (6.47)

For the second term in (6.43), since ! 2 C
1(⌦) with supp(!) ⇢ B0,

I(⇠,!v)  Ck⇠k
H�m�1(B1)

kvk
Hm+2(B1)

. (6.48)

With (6.47) and (6.48), (6.41) yields (6.37). To show (6.38), define a finite sequence of nested convex sets
D0 = B ⇢ D1 ⇢ · · · ⇢ Dm�1 = B1 such that D̄i ⇢ Di+1. Applying (6.37) with s = 0 for the sets D0 ⇢ D1

yields:
k⇠k

L2(B)  Ch|||⇠|||DG(D1)
+ k⇠k

H�1(D1)
. (6.49)

Iteratively applying bound (6.37) to the last term in the above inequality yields (6.38). ⇤

Theorem 4. Assume 1. Fix ✓ 2 (0,
1
2 ), k � 1, and two convex sets B and B̃ with B ⇢ B̃ ⇢ B̃ ⇢ ⌦ with

⇤ ⇢ ⌦ \ B̃. Assume that u 2 H
k(B̃) and that @B, @B̃, and @⌦ are su�ciently smooth. There exist h0 > 0 and

a constant C(✓) independent of h such that:
��u� u

DG
h

��
L2(B)

 C(✓) h
k�✓

. (6.50)

Remark 1. We remark that this result is not optimal. However, for k � 2, it is an improvement to the order
of convergence provided in Theorem 1. In addition, it allows us to show almost optimal estimates for the local
energy norm, see Section 6.3,

Proof. First, we apply the triangle inequality to obtain
��u� u

DG
h

��
L2(B)


��u� u

CG
h

��
L2(B)

+
��uCG

h
� U

��
L2(B)

+
��U � u

DG
h

��
L2(B)

. (6.51)

The remainder of the proof will consist of bounding each of the above terms. We divide this task into several steps.
We select convex sets B0, B1, . . . , Bk with smooth boundaries such that B̄ ⇢ B0, B̄i ⇢ Bi+1 for i = 0, . . . , k� 1,
and Bk ⇢ B̃. For simplicity, in this proof, we drop the dependence on ✓ and use C instead.
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Step 1. Bounding
��u� u

CG
h

��
L2(B)

: Since W
k

h
(Eh) ⇢ W

1,q

0 (⌦), we have the following Galerkin orthogonality
property. Z

⌦
r
�
u� u

CG
h

�
·rvh = 0, 8vh 2 W

k

h
(Eh). (6.52)

Thus, we apply Theorem 5.1 in [30]. There exists h1 � 0 such that for all h  h1, we have

��u� u
CG
h

��
L2(B)

 C

⇣
h

k
kuk

Hk(B0)
+
��u� u

CG
h

��
H�k(⌦)

⌘
. (6.53)

To estimate the second term, fix � 2 H
k

0 (⌦). Observe that with a Sobolev embedding result and (6.36), we
have

kQ⌦(�)k
W k+1,4(⌦)  CkQ⌦(�)k

Hk+2(⌦)  Ck�k
Hk(⌦).

We denote by vh the Scott–Zhang interpolant of Q⌦(�); we have

kr(Q⌦(�)� vh)k
L4(⌦)  Ch

k
kQ⌦(�)k

W k+1,4(⌦)  Ch
k
k�k

Hk(⌦).

We multiply (6.34) by u� u
CG
h

and integrate by parts. By (6.52), we have
Z

⌦

�
u� u

CG
h

�
� =

Z

⌦
r(Q⌦(�)� vh) ·r

�
u� u

CG
h

�
 kr(Q⌦(�)� vh)k

L4(⌦)

��r
�
u� u

CG
h

���
L4/3(⌦)

 Ch
k
k�k

Hk(⌦)

��r
�
u� u

CG
h

���
L4/3(⌦)

. (6.54)

Let Shu be the Scott–Zhang interpolant of u. With the stability of the interpolant (3.19), and (4.2), we have
��r
�
u� u

CG
h

���
L4/3(⌦)

 kr(u� Shu)k
L4/3(⌦) +

��r(Shu� u
CG
h

)
��

L4/3(⌦)

 C|u|W 1,4/3(⌦) + h
�1
��Shu� u

CG
h

��
L4/3(⌦)

 C|u|W 1,4/3(⌦) + Ch
�✓
kfk

L2(⇤). (6.55)

With (6.55) and (6.54), we have ��u� u
CG
h

��
H�k(⌦)

 Ch
k�✓

. (6.56)

From (6.56) and (6.53), we have ��u� u
CG
h

��
L2(B)

 Ch
k�✓

. (6.57)

Step 2. Bounding
��U � u

CG
h

��
L2(B)

: Let N be a neighborhood of ⇤ such that Bk ⇢ ⌦\N . There exists h2 > 0
such that for all h  h2 , ��U = 0 in ⌦\N . Theorem 8.10 in [19] and Lemma 8 yield:

kUk
Hk+1(Bk)  CkUk

H1(⌦\N)  C. (6.58)

An application of Theorem 5.1 in [30] yields, for h small enough, say h  h2, for some h2 � 0:
��U � u

CG
h

��
L2(B)

 Ch
k
kUk

Hk(B0)
+ C

��U � u
CG
h

��
H�k(⌦)

. (6.59)

We perform a similar duality argument as above. For any � 2 H
k

0 (⌦), we denote z = Q⌦� and Shz the
Scott–Zhang interpolant of z,

Z

⌦

�
U � u

CG
h

�
� =

Z

⌦
r(z � Shz) ·r

�
U � u

CG
h

�
 Ch

k
kzk

Hk+1(⌦)

��r
�
U � u

CG
h

���

 Ch
k
k�k

Hk(⌦)

��r
�
U � u

CG
h

���. (6.60)
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The last inequality holds by (6.36). Noting that (6.7) holds for the finite element solution u
CG
h

of any degree
k, we have from (6.60) ��U � u

CG
h

��
H�k(⌦)

 Ch
k
.

The above bound with (6.59) implies that
��U � u

CG
h

��
L2(B)

 Ch
k
. (6.61)

Step 3. Bounding
��U � u

DG
h

��
L2(B)

: We denote ⇠ = U � u
DG
h

and we iteratively use (3.20) and (6.38) for the
nested sets B ⇢ B0 ⇢ . . . ⇢ Bk. We obtain

k⇠k
L2(B)  C

⇣
h

k+1
kUk

Hk+1(Bk) + h
k
k⇠k

L2(⌦)

⌘
+ Ck⇠k

H�k(⌦). (6.62)

To estimate k⇠k
H�k(⌦), we also use a duality argument. Let � 2 H

k

0 (⌦) be given and let v = Q⌦�. We
multiply (6.34) by v, integrate by parts, use (5.22), the symmetry of a(·, ·), and (4.10).

Z

⌦
�⇠ = a(v, ⇠) = a(v � Shv, ⇠)  C|||v � Shv|||DG|||⇠|||DG  Ch

k
kvk

Hk+1(⌦)  Ch
k
k�k

Hk(⌦). (6.63)

This implies that
k⇠k

H�k(⌦)  Ch
k
.

With the global estimate (4.11), the bound (6.58), and the above bound, we finally have that

k⇠k
L2(B)  Ch

k
. (6.64)

This concludes the proof. ⇤

6.3. Local energy estimate

With the local L
2 results of the previous sections, we show a local energy estimate. The second bound (6.65)

is a stronger result in the sense that it is valid up to the boundary of ⌦ whereas (6.66) is valid for a domain
that does not intersect with the boundary.

Theorem 5. Let Assumptions 1–3 hold and fix ✓ 2 (0,
1
2 ). There exist h0 > 0 and a constant C(✓) independent

of h such that for all h  h0 and for any neighborhood N ⇢ ⌦ with ⇤ ⇢ N :
��u� u

DG
h

��
DG(⌦\N)

 C(✓) h
1�✓

, k = 1. (6.65)

In addition, let B and B̃ be given as in Theorem 4. Under the same assumptions as in Theorem 4, the following
estimate holds. ��u� u

DG
h

��
DG(B)

 C(✓) h
k�✓

, k � 1. (6.66)

Proof. We show (6.66). By the triangle inequality, we have
��u� u

DG
h

��
DG(B)


��u� u

CG
h

��
DG(B)

+
��uCG

h
� U

��
DG(B)

+
��U � u

DG
h

��
DG(B)

. (6.67)

We proceed by providing bounds on each of the terms above. Let B0 be a convex set with smooth boundary
such that B ⇢ B ⇢ B0 ⇢ B0 ⇢ B̃. Theorem 9.1 in [36] applied to problems (1.1) and (4.5) results in the
following two bounds. There exists h0 > 0 such that for all h  h0,

��u� u
CG
h

��
DG(B)

=
��r(u� u

CG
h

)
��

L2(B)
 C

⇣
h

k
kuk

Hk+1(B0)
+
��u� u

CG
h

��
L2(B0)

⌘
, (6.68)
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��U � u
CG
h

��
DG(B)

=
��r(U � u

CG
h

)
��

L2(B)
 C

⇣
h

k
kUk

Hk+1(B0)
+
��U � u

CG
h

��
L2(B0)

⌘
. (6.69)

We apply Lemma 4.1 by Chen and Chen [7]: (3.20) with D = B and eD = B0. We obtain:

��U � u
DG
h

��
DG(B)

 C

⇣
h

k
kUk

Hk+1(B0)
+
��U � u

DG
h

��
L2(B0)

⌘
. (6.70)

Employing bounds (6.68)–(6.70) in (6.67), we obtain

��u� u
DG
h

��
DG(B)

 Ch
k

⇣
kuk

Hk+1(B0)
+ kUk

Hk+1(B0)

⌘

+ C

⇣��u� u
CG
h

��
L2(B0)

+
��U � u

CG
h

��
L2(B0)

+
��U � u

DG
h

��
L2(B0)

⌘
. (6.71)

Using (6.57), (6.61) and (6.64) in (6.71) yields,

��u� u
DG
h

��
DG(B)

 Ch
k

⇣
kuk

Hk+1(B0)
+ kUk

Hk+1(B0)

⌘
+ C(✓)hk�✓

. (6.72)

We conclude that (6.66) holds by using bound (6.58) in the above estimate. The proof of bound (6.65) follows
the same lines: we apply (6.70) with B = ⌦ \ N and B0 = ⌦ \ eN where N ⇢ eN . ⇤

7. The parabolic problem

In this section, we consider the time dependent problem (1.4)–(1.6) with a Dirac line source. The domain ⌦
is assumed to be convex, the curve ⇤ is a C

2 curve such that |E\⇤|  Ch for any E 2 Eh. A very weak solution
u to (1.4)–(1.6) can be defined via the method of transposition, see [22, 23]. To this end, for a given function
g 2 L

2(0, T ;L2(⌦)), define the backward in time parabolic problem:

�@t �� = g, in ⌦⇥ (0, T ], (7.1)
 = 0, on @⌦⇥ (0, T ], (7.2)

 (T ) = 0, in {T}⇥ ⌦. (7.3)

The solution  belongs to L
2(0, T ;H2(⌦)) and the following bounds hold (see Thm. 5, in Sect. 7.1.3 and Thm.

4 in Sect. 5.9.2 in [18])

k k
L1(0,T ;H1(⌦))  C

⇣
k k

L2(0,T ;H2(⌦)) + k@t kL2(0,T ;L2(⌦))

⌘
 Ckgk

L2(0,T ;L2(⌦)). (7.4)

If for all g 2 L
2(0, T ;L2(⌦)), u satisfies

Z
T

0

Z

⌦
ug =

Z
T

0

Z

⇤
f +

Z

⌦
u

0
 (0), (7.5)

where  2 L
2(0, T ;H2(⌦)) solves (7.1)–(7.3), then u is referred to as a very weak solution to (1.4)–(1.6). From

a Sobolev inequality and (7.4), we have
�����

Z
T

0

Z

⌦
ug

�����  kfk
L2(0,T ;L2(⇤))k kL2(0,T ;L1(⌦)) +

��u0
��

L2(⌦)
k k

L1(0,T ;L2(⌦))

 C

⇣
kfk

L2(0,T ;L2(⇤))k kL2(0,T ;H2(⌦)) +
��u0
��

L2(⌦)
k k

L1(0,T ;L2(⌦))

⌘

 C

⇣
kfk

L2(0,T ;L2(⇤)) +
��u0
��

L2(⌦)

⌘
kgk

L2(0,T ;L2(⌦)).
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Hence, the right hand side of (7.5) defines a bounded linear functional on L
2(0, T ;L2(⌦)). Thus, with the Lax-

Milgram Theorem, a unique solution u exists in the sense of (7.5). In addition, if u
0
2 H

1(⌦), then the very
weak solution u belongs to L

2(0, T ;W 1,q(⌦)) \H
1(0, T ;W�1,q(⌦)) for q 2 (1, 2) and satisfies [23]

Z
T

0
h@tu, vi+

Z
T

0
(ru,rv)⌦ =

Z
T

0

Z

⇤
fv, 8v 2 L

2
⇣
0, T ;W 1,q

0

0 (⌦)
⌘
. (7.6)

We denote by (·, ·)⌦ the L
2 inner product over ⌦. In the above, q

0 is the conjugate pair of q, W
�1,q(⌦) is the dual

space of W
1,q

0

0 (⌦), and h·, ·i denotes the duality pairing between L
2(0, T ;W 1,q

0

0 (⌦)) and L
2(0, T ;W�1,q(⌦)). We

also define the following norm:

kvk
2
L2(0,T ;DG) =

Z
T

0
kvk

2
DG, 8v 2 L

2
�
0, T ;H2(Eh)

�
. (7.7)

7.1. Semi-discrete formulation

We introduce the continuous in time dG approximation u
DG
h

(t) which belongs to V
k

h
(Eh) for all t > 0 and

satisfies:
Z

⌦

@

@t
u

DG
h

(t)v + a
�
u

DG
h

(t), v
�

=
Z

⇤
f(t)v, 8t > 0, 8v 2 V

k

h
(Eh), (7.8)

Z

⌦
u

DG
h

(0)v =
Z

⌦
u

0
v, 8v 2 V

k

h
(Eh). (7.9)

We recall that a is the symmetric bilinear form (✏ = �1 in (3.10) and � = 1). We also introduce the dG
approximation  h(t) 2 V

k

h
(Eh) to  (t) the solution of (7.1)–(7.3).

�

Z

⌦

@

@t
 h(t) v + a( h(t), v) =

Z

⌦
g(t)v, 80  t < T, 8v 2 V

k

h
(Eh), (7.10)

 h(T ) = 0. (7.11)

The main goal of this section is to establish a global estimate in L
2(0, T ;L2(⌦)) for the error u

DG
h

� u, see
Theorem 6. We first establish estimates for the error  h(t) �  (t). Such estimates that depend on the time
derivative of  are standard [33]. Here, we follow the arguments in [9] and derive error bounds with constants
that depend only on  and not on @t .

Lemma 12. Let Assumption 1 hold. There exists a constant C independent of h such that

k (0)�  h(0)k
L2(⌦) + k �  hkL2(0,T ;DG)  Ch

⇣
k k

L1(0,T ;H1(⌦)) + k k
L2(0,T ;H2(⌦))

⌘
. (7.12)

Proof. The proof applies the arguments in [9] to a dG discretization of the backward problem. Define Rh (t) 2
V

k

h
(Eh) as the elliptic projection of  (t)

a(Rh (t)�  (t), v) = 0, 8v 2 V
k

h
(Eh), 8t 2 (0, T ]. (7.13)

From the consistency property of the dG discretization (7.13) and (7.10), we have the following relation.

�(@t (t)� @t h(t), v)⌦ + a(Rh (t)�  h(t), v) = 0, 8v 2 V
k

h
(Eh). (7.14)

Let Ph (t) be the L
2 projection of  (t) onto V

k

h
(Eh). Thus, with the above, we can write

�
1
2

d
dt
k �  hk

2
L2(⌦) + a(Rh h(t)�  h(t), Rh (t)�  h(t))
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= �(@t (t)� @t h(t), (t)� Ph (t))⌦ + a(Rh (t)�  h(t), Rh (t)� Ph (t)). (7.15)

Using the definition of the L
2 projection repeatedly yields:

(@t (t)� @t h(t), (t)� Ph (t))⌦ = (@t (t), (t)� Ph (t))⌦

= (@t (t)� @tPh (t), (t)� Ph (t))⌦ =
1
2

d
dt
k (t)� Ph (t)k2

L2(⌦).

With the coercivity and continuity properties (3.15), (3.14), and the above relation, equation (7.15) becomes:

�
1
2

d
dt
k �  hk

2
L2(⌦) +

1
2
kRh (t)�  h(t)k2DG  �

1
2

d
dt
k (t)� Ph (t)k2

L2(⌦)

+ CkRh (t)�  h(t)kDGkRh (t)� Ph (t)kDG.

Since Rh (t) is the elliptic projection of  , we have kRh (t)�  (t)kDG  Chk (t)k
H2(⌦) [33]. In addition,

with the trace estimate (3.17) and approximation properties of the L
2 projection, we have k (t)� Ph (t)kDG 

Chk (t)k
H2(⌦). Hence, an application of triangle and Young’s inequalities, integration from 0 to T , and recalling

that  (T ) =  h(T ) = 0 yield:

k (0)�  h(0)k2
L2(⌦) +

1
2

Z
T

0
kRh (t)�  h(t)k2DG  k (0)� Ph (0)k2

L2(0,T ;L2(⌦))

+ C

Z
T

0
kRh (t)� Ph (t)k2DG  Ch

2
k (0)k2

H1(⌦) + Ch
2
k k

2
L2(0,T ;H2(⌦)). (7.16)

The last inequality follows from the approximation properties and triangle inequality. The final result follows
with a triangle inequality. ⇤

Lemma 13. Let Assumption 1 hold. Assume that  belongs to L
2(0, T ;Hs(⌦)) for s > 3/2. Then, there exists

a constant C > 0 independent of h such that

k �  hkL2(0,T ;L2(⌦))  Ch
min(k+1,s)

k k
L2(0,T ;Hs(⌦)).

Proof. The proof extends the arguments of Theorem 2.5 in [35] given for the continuous Galerkin discretization
and adapts it to the backward parabolic problem. We define two linear operators Q : L

2(⌦) ! H
1
0 (⌦) \H

2(⌦)
and Qh : L

2(⌦) ! V
k

h
(Eh) as follows. For � 2 L

2(⌦),

Q� = z, with��z = � in ⌦ and z|@⌦ = 0,

Qh� = zh, with a(zh, v) = (�, v)⌦, 8v 2 V
k

h
(Eh).

It is clear that
Q(�w) = �w, 8w 2 H

2(⌦). (7.17)

The operator Qh is selfadjoint since a is symmetric. Indeed, for any z, w 2 L
2(⌦),

(Qhz, w)⌦ = a(Qhw, Qhz) = a(Qhz, Qhw) = (z, Qhw)⌦. (7.18)

We also define the discrete Laplacian operator �h : V
k

h
(Eh) ! V

k

h
(Eh) satisfying

(�hwh, v)⌦ = �a(wh, v), 8v 2 V
k

h
(Eh).

Since a is coercive, we also have that Qh(�hwh) = �wh. With the discrete Laplacian, we can write (7.10) as

�@t h(t)��h h(t) = Phg(t).
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Applying the operator Qh to the above equality, we obtain

�Qh@t h(t) +  h(t) = QhPhg(t) = Qhg(t).

On the continuous level, we also have

�Q
@

@t
 (t) +  (t) = Qg(t).

Define eh =  h �  and ⇢h = � �Qh(� ), then

� Qh@teh + eh = Qhg + (Qh � Q)@t � Qg = (Q � Qh)(�@t � g) = (Q � Qh)(� ) = ⇢h. (7.19)

The last equality is obtained with (7.17). This implies

(�Qh@teh, eh)⌦ +
1
2
kehk

2
L2(⌦) 

1
2
k⇢hk

2
L2(⌦).

Since Qh is self-adjoint and Qh commutes with the derivative in time operator, we obtain

�
@

@t
(eh, Qheh)⌦ + kehk

2
L2(⌦)  k⇢hk

2
L2(⌦). (7.20)

We integrate from t = 0 to t = T and observe that by coercivity we have

(eh, Qheh)⌦ = a(Qheh, Qheh) �
1
2
kQhehk

2
DG.

Hence, since eh(T ) = 0,
1
2
kQheh(0)k2DG +

Z
T

0
kehk

2
L2(⌦) 

Z
T

0
k⇢hk

2
L2(⌦). (7.21)

In addition, note that by consistency of the dG discretization

a(Qh(�� ), v) = (�� , v) = a( , v), 8v 2 V
k

h
(Eh).

Thus, we have, if  belongs to L
2(0, T ;Hs(⌦))

k⇢hkL2(⌦) = k + Qh(� )k
L2(⌦)  Ch

min(k+1,s)
k k

L2(0,T ;Hs(⌦)).

We can then conclude with (7.21). ⇤

With Lemmas 12 and 13, we show the main result of this section.

Theorem 6. Let u be the very weak solution to (1.4)–(1.6) and let u
DG
h

satisfies (7.8) and (7.9). Assume 1
holds. There exists a constant C independent of h such that for any ✓ 2 (0,

1
2 ),

��uDG
h

� u
��

L2(0,T ;L2(⌦))
 C(✓)h1�✓

⇣
kfk

L2(0,T ;L2(⇤)) +
��u0
��

L2(⌦)

⌘
. (7.22)

Proof. The proof is based on a duality argument and follows similar techniques as the proof of Theorem 3.4 in
[22]. Define �(t) = u

DG
h

(t)� u(t). Fix g 2 L
2(0, T ;L2(⌦)) and let  solve (7.1)–(7.3). With (7.5), consistency of

the dG discretization for (7.1)–(7.3), and the definition of u
DG
h

(0) (see (7.9)), we have

Z
T

0
(�, g)⌦ =

Z
T

0

�
u

DG
h

,�@t �� 
�
⌦
�

Z
T

0

Z

⇤
f �

�
u

0
, (0)

�
⌦
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=
Z

T

0
�
�
@t , u

DG
h

�
⌦

+
Z

T

0
a
�
 , u

DG
h

�
�

Z
T

0

Z

⇤
f �

�
u

0
, (0)

�
⌦

=
Z

T

0

�
�@t h, u

DG
h

�
⌦

+
Z

T

0
a
�
 h, u

DG
h

�
�

Z
T

0

Z

⇤
f �

�
u

0
, (0)

�
⌦

=
�
 h(0), uDG

h
(0)
�
⌦

+
Z

T

0

�
@tu

DG
h

, h

�
⌦

+
Z

T

0
a
�
 h, u

DG
h

�
�

Z
T

0

Z

⇤
f �

�
u

0
, (0)

�
⌦

=
�
u

0
, h(0)�  (0)

�
⌦

+
Z

T

0

Z

⇤
f( h �  ) = R1 + R2.

For R1, we use Cauchy–Schwarz’s inequality, Lemma 12 and (7.4):

|R1| 
��u0
��

L2(⌦)
k h(0)�  (0)k

L2(⌦)  Ch
��u0
��

L2(⌦)
kgk

L2(0,T ;L2(⌦)). (7.23)

For the term R2, we use the following trace inequality valid for any 2 < q < 3 and q  r < q/(3 � q) (see [1],
Thm. 4.12 and [29], Prop. 2.3).

kvk
Lr(⇤)  C(q)kvk

W 1,q(⌦), 8v 2 W
1,q(⌦). (7.24)

We denote by Lh the Lagrange interpolant of  in W
k

h
(Eh). From Theorem 3.1.6 in [10], we have

k � Lh kW 1,q(E)  C(q)h
3
q�

1
2 | |H2(E), 8E 2 Eh. (7.25)

From the above bound and Jensen’s inequality, we obtain

k � Lh kW 1,q(⌦) =

 
X

E2Eh

k � Lh k
q

W 1,q(E)

!1/q

 h
3
q�

1
2

 
X

E2Eh

| |
q

H2(E)

!1/q

 h
3
q�

1
2 | |H2(⌦). (7.26)

Let r and q satisfy the conditions in (7.24) and let r
0 be the conjugate exponent of r (1/r + 1/r

0 = 1). Note
that Lh 2 W

1,q(⌦). Hence, with (7.24) and (7.26), we obtain

k � Lh kLr(⇤)  C(q)k � Lh kW 1,q(⌦)  C(q)h
3
q�

1
2 | |H2(⌦). (7.27)

With Cauchy–Schwarz’s inequality (3.16), and (7.27), we have
Z

⇤
f( h �  ) =

X

E2T⇤

Z

E\⇤
f( h � Lh h) +

Z

⇤
f(Lh h �  )



X

E2T⇤

kfk
L1(E\⇤)k h � Lh hkL1(E) + kfk

Lr0 (⇤)kLh h �  k
Lr(⇤)

 C

X

E2T⇤

|E \ ⇤|1/2
kfk

L2(E\⇤)h
�3/2

k h � Lh hkL2(E) + C(q)h
3
q�

1
2 kfk

Lr0 (⇤)| |H2(⌦)

 Ch
�1
kfk

L2(⇤)k h � Lh kL2(⌦) + C(q)h
3
q�

1
2 kfk

L2(⇤)| |H2(⌦). (7.28)

The last inequality holds since r
0

< 2. From Lemma 13, approximation properties, and (7.4), it then follows
that

|R2|  Ch
�1
kfk

L2(0,T ;L2(⇤))k h � Lh kL2(0,T ;L2(⌦)) + C(q)h
3
q�

1
2 kfk

L2(0,T ;L2(⇤))| |L2(0,T ;H2(⌦))

 Chkfk
L2(0,T ;L2(⇤))k kL2(0,T ;H2(⌦)) + C(q)h

3
q�

1
2 kfk

L2(0,T ;L2(⇤))| |L2(0,T ;H2(⌦))
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 Chkfk
L2(0,T ;L2(⇤))kgkL2(0,T ;L2(⌦)) + C(q)h

3
q�

1
2 kfk

L2(0,T ;L2(⇤))kgkL2(0,T ;L2(⌦)).

For any ✓ 2 (0, 1/2), choose q = 6/(3� 2✓). The bound for R2 becomes

|R2|  C(✓)h1�✓
kfk

L2(0,T ;L2(⇤))kgkL2(0,T ;L2(⌦)). (7.29)

We remark that

k�k
L2(0,T ;L2(⌦)) = sup

g 2 L
2(0, T ;L2(⌦))
g 6= 0

���
R

T

0 (�, g)⌦
���

kgk
L2(0,T ;L2(⌦))

·

Therefore, with (7.23) and (7.29), we can conclude. ⇤

7.2. Fully discrete formulation

In this section, we consider a backward Euler discretization of problem (1.4)–(1.6). To simplify notation,
we drop the subscript DG on the discrete solution, namely u

n

h
= u

DG,n

h
. Let ⌧ > 0 denote the time step size

and consider a uniform partition of the time interval (0, T ] into NT subintervals. We define a sequence of dG
approximations (un

h
)0nNT 2 V

k

h
(Eh) such that for all n = 1, . . . , NT

�
u

n

h
� u

n�1
h

, v
�
⌦

+ ⌧a(un

h
, v) = ⌧

Z

⇤
f(tn)v, 8v 2 V

k

h
(Eh), (7.30)

with u
0
h

= u
DG
h

(0) defined by (7.9). The existence and uniqueness of (un

h
)0nNT follows from a standard proof

by contradiction where the coercivity of a (3.15) is used. From the fully discrete solutions, we construct a
piecewise constant in time solution, denoted by uh,⌧ , as follows:

uh,⌧ (t,x) = u
n

h
(x), t

n�1
< t  t

n
, n � 1, uh,⌧ (0,x) = u

0
h
(x), 8x 2 ⌦.

The main result of this section is the following convergence theorem. For convenience, we define

kfk
`2(0,T ;L2(⇤)) =

 
⌧

NTX

n=1

kf(tn)k2
L2(⇤)

!1/2

.

Theorem 7. Assume that 1 holds, @tf 2 L
2(0, T ;L1(⇤)), and let ✓ be in (0,

1
2 ). There exists a constant C(✓)

independent of h and ⌧ , but depending on ✓, such that

ku� uh,⌧kL2(0,T ;L2(⌦))  C(✓) (⌧h�1 + h)
⇣
kfk

`2(0,T ;L2(⇤)) + k@tfkL2(0,T ;L1(⇤)) +
��u0
��

L2(⌦)

⌘

+ C(✓) h
1�✓

kfk
L2(0,T ;L2(⇤)). (7.31)

As a consequence, if ⌧  h
2�✓, we have

ku� uh,⌧kL2(0,T ;L2(⌦))  C(✓)h
1�✓

⇣
kfk

L2(0,T ;L2(⇤)) + k@tfkL2(0,T ;L1(⇤)) + kfk
`2(0,T ;L2(⇤)) +

��u0
��

L2(⌦)

⌘
.

(7.32)

The proof of the theorem requires an intermediate bound on the discrete solutions, that is stated in the
following lemma.

Lemma 14. Assume that 1 holds. There exists a constant C independent of ⌧ and h such that the following
estimate holds. For 1  m  NT ,

mX

n=1

��un

h
� u

n�1
h

��2

L2(⌦)
+ ⌧

mX

n=1

��un

h
� u

n�1
h

��2

DG
+ ⌧ku

m

h
k
2
DG  C⌧h

�2
⇣��u0

��2

L2(⌦)
+ kfk

2
`2(0,T ;L2(⇤))

⌘
. (7.33)
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Proof. Let v = u
n

h
� u

n�1
h

in (7.30). Using the symmetry of a, we obtain

��un

h
� u

n�1
h

��2

L2(⌦)
+
⌧

2
�
a(un

h
, u

n

h
)� a

�
u

n�1
h

, u
n�1
h

�
+ a
�
u

n

h
� u

n�1
h

, u
n

h
� u

n�1
h

��
= ⌧

Z

⇤
f(tn)

�
u

n

h
� u

n�1
h

�
.

We observe that by Hölder’s inequality and (3.16),
Z

⇤
f(tn)(un

h
� u

n�1
h

) 
X

E2T⇤

|E \ ⇤|1/2
kf(tn)k

L2(E)

��un

h
� u

n�1
h

��
L1(E)

 C

X

E2T⇤

h
�1
kf(tn)k

L2(E\⇤)

��un

h
� u

n�1
h

��
L2(E)

.

With the coercivity (3.15) and the above bound, we obtain

��un

h
� u

n�1
h

��2

L2(⌦)
+
⌧

2
a(un

h
, u

n

h
)�

⌧

2
a
�
u

n�1
h

, u
n�1
h

�
+
⌧

4
��un

h
� u

n�1
h

��2

DG

 C⌧
2
h
�2
kf(tn)k2

L2(⇤) +
1
2
��un

h
� u

n�1
h

��2

L2(⌦)
.

We sum the resulting inequality from n = 1 to n = m and use the coercivity (3.15)

1
2

mX

n=1

��un

h
� u

n�1
h

��2

L2(⌦)
+
⌧

4
ku

m

h
k
2
DG +

⌧

4

mX

n=1

��un

h
� u

n�1
h

��2

DG

⌧

2
a(u0

h
, u

0
h
) + C⌧

2
h
�2

mX

n=1

kf(tn)k2
L2(⇤).

With the continuity of a (3.14), an inverse inequality and the stability of the L
2 projection, we have

a(u0
h
, u

0
h
)  C

��u0
h

��2

DG
 Ch

�2
��u0

h

��2

L2(⌦)
 Ch

�2
��u0
��2

L2(⌦)
. (7.34)

With the above bound, we conclude the proof. ⇤

Proof of Theorem 7. The proof uses some techniques from the proof of Theorem 3.4 in [23]. We first fix g 2

L
2(0, T ;L2(⌦)) and consider  the solution of (7.1)–(7.3). From (7.5), we have

Z
T

0
(uh,⌧ � u, g)⌦ =

NTX

n=1

Z
t
n

tn�1
(un

h
, g)⌦ � (u0

, (0))⌦ �
Z

T

0

Z

⇤
f . (7.35)

We rewrite the first term in the right-hand side as
Z

t
n

tn�1
(un

h
, g)⌦ =

Z
t
n

tn�1
(un

h
,�@t �� )⌦ = �

�
u

n

h
, (tn)�  (tn�1)

�
⌦

+
Z

t
n

tn�1
a(un

h
, )

=
�
u

n

h
� u

n�1
h

, (tn�1)
�
⌦
�
�
(un

h
, (tn))⌦ �

�
u

n�1
h

, 
�
t
n�1
��

⌦

�
+
Z

t
n

tn�1
a(un

h
, ).

Since  (T ) = 0, (7.35) reads

Z
T

0
(uh,⌧ � u, g)⌦ =

NTX

n=1

�
u

n

h
� u

n�1
h

, 
�
t
n�1
��

⌦
+

NTX

n=1

Z
t
n

tn�1
a(un

h
, )

�
�
u

0
� u

0
h
, (0)

�
⌦
�

Z
T

0

Z

⇤
f . (7.36)
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For each t 2 (tn�1
, t

n], choose v = Rh (t) in (7.30) (recall that Rh is defined by (7.13)). Integrate the resulting
equation from t

n�1 to t
n, sum from n = 1 to n = NT , and divide by ⌧ . We obtain

NTX

n=1

Z
t
n

tn�1
a(un

h
, Rh (t)) = �

1
⌧

NTX

n=1

Z
t
n

tn�1
(un

h
� u

n�1
h

, Rh (t))⌦ +
NTX

n=1

Z
t
n

tn�1

Z

⇤
f(tn) Rh (t). (7.37)

With the definition of (7.13), (7.36) becomes

Z
T

0
(uh,⌧ � u, g)⌦ =

1
⌧

NTX

n=1

Z
t
n

tn�1

�
u

n

h
� u

n�1
h

, 
�
t
n�1
�
�Rh (t)

�
⌦

�
�
u

0
� u

0
h
, (0)

�
⌦

+
NTX

n=1

Z
t
n

tn�1

Z

⇤
(f(tn)Rh (t)� f(t) (t)) = E1 + E2 + E3. (7.38)

For E1, we introduce  (t) and write

�
u

n

h
� u

n�1
h

, 
�
t
n�1
�
�Rh (t)

�
⌦

= �

✓
u

n

h
� u

n�1
h

, (t)�Rh (t) +
Z

t

tn�1
@t 

◆

⌦

.

Therefore, using error bounds of the elliptic projection, we obtain

|E1|  C⌧
�1

h
2

NTX

n=1

Z
t
n

tn�1

��un

h
� u

n�1
h

��
L2(⌦)

k (t)k
H2(⌦)

+ ⌧
�1

NTX

n=1

Z
t
n

tn�1

��un

h
� u

n�1
h

��
L2(⌦)

�
t� t

n�1
�1/2

k@t kL2(tn�1,t;L2(⌦))

 C⌧
� 1

2 h
2

NTX

n=1

��un

h
� u

n�1
h

��
L2(⌦)

k k
L2(tn�1,tn;H2(⌦)) + C⌧

1
2

NTX

n=1

��un

h
� u

n�1
h

��
L2(⌦)

k@t kL2(tn�1,tn;L2(⌦))

 C

 
NTX

n=1

��un

h
� u

n�1
h

��2

L2(⌦)

!1/2⇣
⌧
�1/2

h
2
k k

L2(0,T ;H2(⌦)) + ⌧
1/2
k@t kL2(0,T ;L2(⌦))

⌘
. (7.39)

With Lemma 14 and (7.4), (7.39) reads

|E1|  C(⌧h�1 + h)kgk
L2(0,T ;L2(⌦))

⇣
kfk

`2(0,T ;L2(⇤)) +
��u0
��

L2(⌦)

⌘
. (7.40)

The term E2 is easily handled since u
0
h

is the L
2 projection of u

0. We use approximation properties of the
Lagrange operator Lh and (7.4)

E2 = (u0
h
� u

0
, (0)� Lh (0))⌦  Ch

��u0
��

L2(⌦)
k (0)k

H1(⌦)  Ch
��u0
��

L2(⌦)
kgk

L2(0,T ;L2(⌦)). (7.41)

For the term E3, we write
Z

⇤
(f(tn)Rh (t)� f(t) (t)) =

X

E2T⇤

Z

E\⇤
(f(tn)� f(t))Rh (t) +

X

E2T⇤

Z

E\⇤
f(t)(Rh (t)�  (t)) = W1 + W2.

For W1, we Hölder’s inequality, (3.16) (q = 1, p = 6) and (3.12). We obtain

|W1|  kf(tn)� f(t)k
L1(⇤)kRh (t)k

L1(⌦)  Ch
� 1

2 kf(tn)� f(t)k
L1(⇤)kRh (t)k

L6(⌦)
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 Ch
� 1

2 kf(tn)� f(t)k
L1(⇤)kRh (t)kDG.

Since Rh is the elliptic projection of  , we note that kRh kDG  Ck k
H2(⌦) and we obtain

|W1|  C(tn � t)1/2
h
� 1

2 k@tfkL2(t,tn;L1(⇤))k (t)k
H2(⌦). (7.42)

For W2, we apply a similar argument as for the derivation of (7.28) (by introducing the Lagrange interpolant
Lh ) and obtain for any 2 < q < 3

W2  Ch
�1
kf(t)k

L2(⇤)kRh (t)� Lh (t)k
L2(⌦) + C(q)h

3
q�

1
2 kf(t)k

L2(⇤)| (t)|H2(⌦). (7.43)

Hence, with approximation properties, choosing q = 6/(3 � 2✓) for 0 < ✓ < 1/2, and (7.4), the bound on E3

reads

|E3|  C⌧h
� 1

2 k@tfkL2(0,T ;L1(⇤))k kL2(0,T ;H2(⌦)) + Ch
�1
kfk

L2(0,T ;L2(⇤))kRh � Lh kL2(0,T ;L2(⌦))

+ C(✓)h1�✓
kfk

L2(0,T ;L2(⇤))k kL2(0,T ;H2(⌦))

 (C⌧h�
1
2 k@tfkL2(0,T ;L1(⇤)) + C(✓)h1�✓

kfk
L2(0,T ;L2(⇤)))kgkL2(0,T ;L2(⌦)). (7.44)

Therefore, with (7.38) and the bounds (7.40), (7.41) and (7.44), we conclude that for any non-zero g 2

L
2(0, T ;L2(⌦))

R
T

0 (uh,⌧ � u, g)⌦
kgk

L2(0,T ;L2(⌦))

 C(⌧h�1 + h)
⇣
kfk

`2(0,T ;L2(⇤)) +
��u0
��

L2(⌦)

⌘

+ C⌧h
�1
k@tfkL2(0,T ;L1(⇤)) + C(✓)h1�✓

kfk
L2(0,T ;L2(⇤)). (7.45)

We conclude by taking supremum over all g. ⇤

8. Numerical results for elliptic problem

We employ the method of manufactured solutions to test the convergence rates of the scheme (3.9). The
domain is (0, 1)⇥ (0, 1)⇥ (0, 0.25) and the line ⇤ is the vertical line passing through the point (2/3, 1/3, 0). The
function f is chosen to be the constant function equal to 1. The exact solution is defined by

u(x, y, z) = �
1
2⇡

ln

0

@
 ✓

x�
2
3

◆2

+
✓

y �
1
3

◆2
!1/2

1

A. (8.1)

We compute the numerical errors on a series of uniformly refined meshes made of tetrahedra. We vary the mesh
size and the polynomial degree. The parameters in the definition of the bilinear form are chosen: ✏ = �1,� = 1.
For k = 1, we choose � = 5 and for k = 2, the penalty value is � = 12. Figure 1 shows the dG solution for k = 1;
the size of the mesh is h = 1/16 and the domain has been sliced for visualization. Table 1 displays the L

2 errors
and convergence rates for the numerical solution with k = 1 and k = 2. When errors are computed over the
whole domain ⌦, they converge with a rate equal to one, which is consistent with our bound (4.13). Next, we
verify the accuracy of the solution away from the line singularity by computing the L

2 error in two subdomains
B = (0.25, 0.5) ⇥ (0.5, 0.75) ⇥ (0, 0.25) and B0 = (0.0, 0.25) ⇥ (0.75, 0.1) ⇥ (0, 0.25). Table 1 shows the errors
in the L

2 norm over B and over B0 as the mesh is uniformly refined. Errors converge with a rate equal to 2,
which is optimal for piecewise linear approximations and suboptimal for piecewise quadratic approximation.
The numerical rates are consistent with (6.10) for k = 1 and (6.50) for k = 2. We also remark that the errors
in B and in B0 are several order of magnitude smaller than the errors in ⌦.
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Figure 1. View on sliced domain of the dG approximation obtained on mesh of size h = 1/16.

Table 1. Numerical errors and convergence rates for the numerical solution over the whole
domain and the two subdomains.

��u� uDG

h

��
L2(⌦)

��u� uDG

h

��
L2(B)

��u� uDG

h

��
L2(B0)

k h Error Rate Error Rate Error Rate

1 1/4 6.99e�03 1.28e�04 2.54e�05
1/8 2.28e�03 1.31 3.00e�05 2.09 6.70e�06 1.92
1/16 1.33e�03 1.08 6.60e�06 2.18 1.84e�06 1.86
1/32 7.12e�04 0.90 1.63e�06 2.02 5.05e�07 1.87

2 1/4 1.14e�02 1.09e�04 4.37e�06
1/8 4.27e�03 1.42 1.98e�05 2.46 7.48e�07 2.55
1/16 1.56e�03 1.45 6.22e�06 1.67 1.11e�07 2.75
1/32 6.14e�04 1.35 1.50e�06 2.05 1.77e�08 2.65

Tables 2 and 3 display the L
2 norm of the weighted broken gradient of the error for the values ↵ = 0.51 and

↵ = 0.99 respectively and for k = 1 and k = 2. We observe that the convergence rates increase as we increase
the polynomial degree. We note that our results in Section 5 are valid only for k = 1. For the case ↵ = 0.51, the
numerical rates are better than the rates predicted by Theorem 2 whereas for the case ↵ = 0.99, the numerical
rates match the predicted theoretical rates.

To show the robustness of the scheme (3.9), we now consider a sinusoidal-like curve ⇤ made of segments.
The numerical parameters are the same as for the manufactured solution but here, we do not know the exact
solution. Figure 2 displays the DG solution on a mesh of size h = 1/10.

9. Conclusions

Convergence of the class of interior penalty discontinuous Galerkin methods applied to elliptic and parabolic
equations with Dirac line-source is proved by deriving error estimates in di↵erent norms. Almost optimal error
bounds are shown in regions away from the line singularity. The proofs of the error estimates are technical
and utilize dual problems and weighted Sobolev spaces. Stronger results are obtained for the case of piecewise
linear approximation since local error bounds are valid in regions that may reach the boundary of the domain.
In the general case of approximation of degree k � 2, local error bounds are subpoptimal and valid in regions
strictly included in the domain. Most of the paper is dedicated to the analysis of the elliptic problem and
convexity of the domain is assumed. For the parabolic problem, global error bounds in L

2 in time and in space
are shown. Future work would address relaxing the convexity assumption and obtaining local error bounds for
the time-dependent problem.
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Table 2. Numerical error and rates for the weighted energy norm with ↵ = 0.51.

��rh(u� uDG

h )
��

L2
↵(⌦)

k h Error Rate

1 1/4 6.79e�02
1/8 4.90e�02 0.47
1/16 3.48e�02 0.49
1/32 2.46e�02 0.50

2 1/4 7.43e�02
1/8 4.09e�02 0.86
1/16 2.19e�02 0.90
1/32 1.28e�02 0.77

Table 3. Numerical error and rates for the weighted energy norm with ↵ = 0.99.

��rh(u� uDG

h )
��

L2
↵(⌦)

k h Error Rate

1 1/4 2.78e�02
1/8 1.56e�02 0.83
1/16 8.53e�03 0.87
1/32 4.64e�03 0.88

2 1/4 2.67e�02
1/8 1.05e�02 1.34
1/16 4.09e�03 1.36
1/32 1.72e�03 1.25

Figure 2. Sliced view of the numerical solution for a piecewise linear curve ⇤.
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