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DISCONTINUOUS GALERKIN APPROXIMATIONS TO ELLIPTIC AND
PARABOLIC PROBLEMS WITH A DIRAC LINE SOURCE

RAMI MASRI, BOQIAN SHEN AND BEATRICE RIVIERE*

Abstract. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving
elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we
prove convergence of the method by deriving a priori error estimates in the L? norm and in weighted
energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any
approximation order. Further, almost optimal local error estimates in the L? norm are obtained for
the case of piecewise linear approximations whereas suboptimal error bounds in the L? norm are
shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of
backward Euler fully discrete scheme is established by proving error estimates in L? in time and in
space. Numerical results for the elliptic problem are added to support the theoretical results.
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1. INTRODUCTION

In this paper, we analyze interior penalty discontinuous Galerkin (dG) approximations to elliptic and parabolic
problems with a Dirac measure concentrated on a line. Consider a convex domain €2 C R?® containing a one-
dimensional curve A C R which is strictly included in Q. The elliptic model problem reads

—Au= fdp, inQ, (1.1)
u=0, on 0f). (1.2)

where f € L2(A) and fd, is a Dirac measure concentrated on A defined as follows.
(fon,v) = / fvds, Yve C(Q). (1.3)
A

For the parabolic problem, let T be the final time, let u® be in L?(2) and assume that f belongs to
L2(0,T; L*(A)). We consider the following problem.

Oy — Au= fo5, inQx (0,7, (1.4)
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u =0, on 00 x (0,77, (1.5)
u=u", in {0} x Q. (1.6)

The main contributions of this work are as follows. For the elliptic problem, we show global convergence in the
L? norm and in weighted energy norms. Further, in regions excluding the line A, we derive almost optimal L2
error estimates for linear polynomials and suboptimal error bounds of order almost &k for dG approximations of
degree k > 2. In addition, almost optimal error rates are established in local energy norms for approximations
of any polynomial degree. For the parabolic problem, we show global convergence in the L2(0,T; L%(£2)) norm
for both the semi-discrete approximation and for the backward Euler fully discrete scheme.

Partial differential equations with Dirac right-hand sides can model organ perfusion where blood vessels
are considered as one dimensional fractures embedded in the tissue [13]. In this case, f can be a function of
the blood pressure in the vessel leading to a coupled 1D-3D problem for the pressures in the tissue and in
the vessels [12,13]. Medical applications of such formulations include modeling drug delivery to tissues with
the help of implantable devices [11] and drug delivery to tumors where different treatment options are compared
[6]. In addition, Dirac measures concentrated on lines arise in optimal control problems [24]. Thanks to favorable
properties of dG methods, including local mass conservation and adaptability to complex domains [33], these
methods are well suited to model physical phenomena such as organ perfusion. In this paper we study dG
methods applied to (1.1), (1.2) and to (1.4)—(1.6).

The analysis of finite element approximations to model problems (1.1), (1.2) and (1.4)—(1.6) is non—standard
since the true solution is not smooth enough in space, namely it does not belong to H'(2) and it exhibits
a logarithmic singularity near the line A [2,12,27]. Nevertheless, continuous Galerkin (c¢G) approximations
have been extensively studied; we refer to the work by Scott [34] and Casas [5] where global error bounds
are established. More recently and in the context of optimal control problems, Gong et al. derived improved
global L? error bounds [24]. Such bounds are polluted by the singularity of the true solution where the rate of
convergence in the L? norm for any polynomial degree is at most O(h) where h is the mesh-size. For continuous
Galerkin approximations to (1.4)—(1.6), global error estimates for semi-discrete and fully-discrete formulations
are derived in [22,23].

In addition, convergence of the ¢G approximations to the elliptic model problem (1.1), (1.2) has been investi-
gated in different non-classical norms. For example, local L? optimal error estimates (up to a log factor for linear
polynomials) are derived by Koppl et al. [26,27], and local energy error estimates are obtained by Bertoluzza
et al. [3]. Such improved estimates are possible since the solution is smooth in regions excluding the line A [2]. In
addition, D’Angelo obtained error estimates in weighted norms and showed that with graded meshes the finite
element solution converges optimally in these norms [12]. We also mention the recent splitting technique to
numerically approximate the model problem (1.1), (1.2) introduced by Gjerde et al. where the solution is split
into an explicit singular part and an implicit smooth part [21]. A finite element discretization is then formulated
for the smooth part and optimal error rates are recovered [21].

To the best of our knowledge, discontinuous Galerkin approximations to (1.1), (1.2) and to (1.4)—(1.6) are
missing from the literature. However, there are papers which formulate and study dG methods for elliptic
problems with Dirac sources concentrated at a point. To this end, we mention the work by Houston and Wihler
where global a priori and a posteriori error bounds are derived [25], the work by Choi and Lee for local L?
error estimates [8], and the recent paper by Leng and Chen where a priori and a posteriori error estimates for
hybridizable dG are obtained [28]. The analysis of dG methods for elliptic problems with Dirac measures is
particularly challenging since consistency of the numerical method cannot be assumed since the traces of the
solution and its gradient are not well defined.

The rest of this paper is organized as follows. Weak formulations in usual and in weighted Sobolev spaces are
presented and shown to be equivalent in Section 2. Then, Section 3 defines the ¢G and dG discrete solutions to
model problem (1.1), (1.2). We show global convergence in the L? norm in Section 4 and in weighted dG norms
in Section 5. The local convergence of the solution is analyzed in Section 6. We devote Section 7 to the analysis
of dG formulations for (1.4)—(1.6). Numerical results for the elliptic problem are presented in Section 8.
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2. WEAK FORMULATION

Fix pg € [1,3/2) and qo be such that 1/qo + 1/po = 1. Let W1Po(Q) denote the usual Sobolev space and
recall that

W (@) = {v e Wi(Q), v=0 on 90},

The weak formulation for problem (1.1), (1.2) is [5): Find u € W, ?° () such that:
/ Vu - Vo = / fo, Yoe Wy%(Q). (2.1)
Q A

This weak formulation is well posed and a unique solution u € W, °(Q) for py € [1,3/2) exists [5]. Next, in
a similar way to [12], we present another weak formulation of problem (1.1), (1.2) in weighted Sobolev spaces.
Define the distance function to A:

d(x,A) = dist(x,A) = miR le—yl|l, VYeel (2.2)
yE

We first remark that d* is an Ay weight for |a| < 2 (see [17], Lem. 3.3) where As is the Muckenhoupt class of
weights satisfying:

1 1
Ay =< we L (R, sup 7/ w 7/ w | <oy,
: { el 8 \B@ o ) \TB @] Sy

where the supremum is taken over all balls B(x,r) centered at « and of radius r. This implies that d* belongs
to L*(Q) if |a| < 1. For a € (—1,1), define the weighted L? norm as follows.

1
2
lull 2 @y = ( /Q |u|2d2a) . (2.3)

The L?() space and the weighted inner product are defined as:
LZ(Q) = {v : H'U”Li(ﬂ) < oo}, (U, v) = / wod®®, Yu,v € Li(Q)
Q

Similarly, we introduce the weighted Sobolev spaces as:
HMQ) = {u: DPuec L2(Q),|8] <m}, HIQ) = {uec H(Q),ulsq = 0}.

where 3 is a multi-index and DP is the corresponding weak derivative. The weighted Sobolev semi-norms and
norms are denoted by:

m
\uﬁfgp(ﬂ) = Z HDB“H;(Q)’ ||“||?f;"'(9) = Z |“|%I;"(ﬂ)'
B]=m k=0

Lemma 1. Let o be such that —2/po+1 < a < 2/po — 1. Then, the weak formulation (2.1) is equivalent to the
following weak formulation: find u, € HL(Q) such that

/ Vg - Vo = / fu, YoeH' (). (2.4)
Q A
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Proof. Let u, be a solution of (2.4). The existence and uniqueness of u, is established in [12], see also [16].
Observe that the condition on a implies that (apo)/(2 —po) = (aqo)/(q0 —2) € (—1,1). Since d” € L{ (R3) for
|v] < 2, we use Holder’s inequality and obtain

9oy 10 (90—2)/q0 )
/ d=2? < </ d- a—) ||UHL{1?)°(Q) < oo, YveL®(Q). (2.5)
Q Q

This implies that W, % (Q) ¢ H' (). Hence u, satisfies (2.1) for all v € Wy (Q). Similarly, for v € L2(f),

we have
Po/2 0 (2—po)/2
/vpo = / vPedrotd T < (/ v2d2a> </ d_%“o) <oo, YueL2(Q).
Q Q Q Q

This implies that HL(€) c Wy °(Q). Thus, u, solves (2.1). Since the solution to (2.1) is unique (see [24],
Thm. 2.1 case (ii)), we conclude that u, = u. O

3. NUMERICAL APPROXIMATIONS

Let &, denote a partition of 2, made of simplices:

U E=0 (3.1)

Ee&y,

We assume that the line A crosses all element boundaries transversally. Namely, for all £ € &, the one-
dimensional Lebesgue measure of A N JF is zero. The diameter of a given element F is denoted by hg and the
mesh size is denoted by h = maxgeg, hr. We assume that &, is regular in the sense that there exists a constant
p > 0 such that

h
PE

where pp is the maximum diameter of a ball inscribed in E. In addition, we assume that &, is quasi-uniform:
there is a constant v > 0 independent of h such that

h<A~hg, VEE€&,. (3.3)

The broken Sobolev space is denoted by H™ (&) for m > 1, and the broken gradient is denoted by Vj,. In the
remaining of the paper, k > 1 is a fixed positive integer and C' is a generic constant independent of h.

3.1. Finite element approximation
Let W/ () be the finite element space defined as follows.

WEER) = {wn € H}(Q) : wp|p € PF(E), VE € &,}. (3.4)

Here, P*(E) denotes the space of polynomials of degree at most k. Let u$¢ € WF(E,) be the finite element
approximation to u satisfying

/VugG~Vvh=/fvh7 Yo, € WE(ER). (3.5)
Q A
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3.2. Discontinuous Galerkin approximation

We now introduce the interior penalty discontinuous Galerkin discrete solution [33]. We define the broken
polynomial space as follows.

ViF(ER) = {vn € L2(Q) : v |p € PX(E),VE € &,}. (3.6)

We also denote by I'y, the set of all interior faces in &,. For each interior face e, we associate a unit normal
vector m. and we denote by E! and E? the two elements that share e such that the vector n. points from E!
to E2. We denote the average and the jump of a function v, € V¥(€,) by {v,} and [v,] respectively.

1
{’Uh}z Q(Uh‘Eé +Uh|E§)7 [Uh]:’l)h|Eé _Uh|E§7 Ve € T'y. (3.7)
If e belongs to the boundary of the domain, e = 9QNJE}, then we define the average and the jump as follows.
] = {0} = vlm. (3.8)
Let uP¢ € V/F(€,) be the discontinuous Galerkin solution satisfying:
ae(uPC, vp) = / fon, Von € VE(ER), (3.9)
A

where ac(-,-) : VF(Er) x ViF(Er) — R is given by:

ae(u,v) = Z /EVU -Vou — Z {Vu} - nefv] + e Z {Vv} nfu] + Z %[u] [v]. (3.10)

Eegy, ecl',UON Y € e€cl,UIN Y € ecl,UON Y €

In the above, € € {—1,0,1}, o is a user specified parameter and § > 1 is a parameter to be specified in the
subsequent sections. We define the following energy semi-norm. For B C Q or B = Q and v, € V¥(Ey),

lonlBe(s) = Z IVonlZ2mnm) + Z oh™ N wnlllZ2 enmy- (3.11)
E€E €T, UdQ
For simplicity, we write |- |3 = ||- H2D a@)" We also note that || - ||pe defines a norm and the following Poincare

inequality holds [15].
lonllLe @) < Cllvnllpa, V1 <p <6, Vo, € ViF(En). (3.12)

In the analysis, we will also use the following semi-norm. For v € H?(&,) and B C Q or B = Q,

2
Iollbes = IvlbaE) + > B{VOZaens)- (3.13)
ecl'p,UoN
Similarly, denote |HH|2DG = |H~H|2DG(§). We then have the following continuity properties of the form a. [7,33].

ac(v,w) < Clvllpgllwlings  ae(vn,wn) < Cllonllpellwnllpg,  Yo,w € H2(E), Yo, wy, € Vi (Er).  (3.14)
In addition, the following coercivity property
1
ae(wp, wp) > §||wh||2DG7 Ywy € Vi (En), (3.15)

is valid for any value o > 1 if ¢ = 41 and for o large enough if ¢ = —1,0. We recall the following important
inverse inequalities, see Section 4.5 in [4].

[onllay < ChT77 [onlloi), V1<p<gq<oo, Yo, € VFE). (3.16)
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For the trace estimates, we will make use of the following
[vllz2e) < CR™Y2(|[v]l L2y + M| VOl 2(i)), Ve COE, VE €&, Yve HY(&). (3.17)
For discrete functions, the above estimate reads
onllr2(e) < Ch™Y2|jopllp2(my, Ve COE, VE €&, Yuy € ViF(&r). (3.18)
Further, we recall that for any p € [1, 0],

”thhHLP(Q) S Ch_lu’UhHLp(Q), V?)h € V}f(gh) (319)

We end this section by recalling Lemma 4.1 proved by Chen and Chen [7]. Consider any two sets D,DcQ
such that the distance between D and (0D\OD) is strictly positive. Then, for h small enough, we have

o - UEG‘HDG(D) = C<hk”U”H’c+1(ﬁ) +]|U - “EGHLZ(E))' (3.20)

4. GLOBAL ERROR ESTIMATE IN THE L? NORM

The goal of this section is to show a global L? estimate for the error u — uEG. We first recall important global
L? estimates for the finite element discretization (3.5). For k = 1, Casas obtained the following estimate [5],

HU—USGHL2(9) < Chl/Q”fHL?(A)' (4'1)
If the line A is a C? curve that does not intersect the boundary 052, the improved estimate

_ 1
|u— ugGHL2m) <COR O fllreny, 0<6< 3 (4.2)

was proved by Gong et al. for k = 1 in [24]. Similar arguments yield the same error bounds for k¥ > 2. The

1)L A
parameter 6 arises from the fact that u € W, **** (Q) when 0 < 6 < 1/2. We follow the ideas of Scott [34] and
Houston and Wihler [25] presented for a problem with a Dirac source concentrated at a point, and we construct
an intermediate problem with an L? source term. Let 7y C &, be the set of elements that intersect the line A,

TA:{E€<€h, EOA#Q}
Define f;, € V(&) as

fh E, if £e TA?
VE € &, = ’ 4.3
mo Jale {O, otherwise, (4.3)
where f, g € P¥(E) is defined as follows. For E € 74,
/ fo.Eon = / fon, Yo, € PF(E). (4.4)
E ENA

Clearly, the function fj, g is well defined. Further, consider the following intermediate problem: find U € Hg ()
such that

—AU = f, inQ, (4.5)
U=0, onof (4.6)

Since f;, belongs to L?(Q2), Lax-Milgram’s theorem yields existence and uniqueness of U. In addition, since Q is
convex, the function U belongs to H?(2). We proceed by obtaining a bound on f}, in the following lemma.
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Lemma 2. The following estimate holds

I fnllzzc@) < Ch7372|| fll2a)- (4.7)

In addition, if A is a C? curve and the mesh satisfies [N N E| < Ch for all E € &, we have

Ifnllzace) < CATHIfllz2(a)- (4.8)

Proof. With the definition of f, given in (4.4), we have

e = [ 5= 3 [(hlel =3 [ fust.

Eecé&y, EcT)

Using Holder’s inequality, we obtain
| st < Unelimeo I floseon
ENA
Hence, with (3.16) (¢ = oo, p = 2), and (3.3), we obtain

fnllZ20) < D Inellem o @asy < CR732 3" fnele@ o @na)

EeT) EeT)
< Ch2 3 " | fnell2 @) AV EM?| £l 2 znn)-
EeT)
If |A N E| < Ch, we apply Hélder’s inequality for sums and obtain (4.8). Otherwise, we have (4.7). O

The following a priori error bounds hold.
Lemma 3. There exists a constant C independent of h such that
U = up || o < COIU 1225 (4.10)

2oy

If in addition, 8 =1 and o is large enough if e = —1, or B > 3 and o is large enough for e =0 or e =1, there
exists a constant C' independent of h such that

U = uRC[| 20y < CH2IU 22 (4.11)

Proof. We have for any vy, € Vi¥(&p),

/thvhz Z /th|E’Uh: Z EmAfUh:/Afvh'

Ec&y, EcT)

Thus, since W (&) is a subset of V}¥(&,), the discrete functions u$¢ and u}® can be viewed as finite element
and discontinuous Galerkin approximations to the intermediate problem (4.5). Since f, € L%(f2), standard
approximation and error bounds hold. In particular (4.9) and (4.10) hold. For a proof of (4.11), we refer to
Theorem 2.13 in [33]. d

We are now ready to present and prove the main result of this section.
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Theorem 1. Assume the penalty parameter o is chosen so that (3.15) holds. In addition, if € = {0,1}, select
8>3, and if e = —1, choose B = 1. Then, there exists a constant C' independent of h such that

Hu - u]}?GHLz(Q) < Ch1/2||f||L2(A)- (4'12)
In addition, if A is a C? curve and |[AN E| < Ch for all E € &, we have the following improved estimate.
|u— uEGy|L2(Q) <COR O fllzzay, 0<O<1/2. (4.13)
Proof. We use triangle inequality to obtain:

o= 0y < = 05 gy + (55 ~ Ul 2y + 10 =Ry (414

(2

Since the domain €2 is convex, we have the following elliptic regularity result:

We have for any vy, € VF(E),

/thvhz > /th|EUh: >

Ecé&p EcT)

Ul z2(0) < Cllfullzz)- (4.15)
Using the bounds (4.9) and (4.11) in (4.14) yields:
[Ju— UEGHLQ(Q) <|lu- USGHLQ(Q) +CP?| fullz2()- (4.16)
Bounds (4.1) and (4.7) give (4.12). Under the additional assumptions, bounds (4.2) and (4.8) yield (4.13). O
Hereinafter, we will make the following assumption.

Assumption 1. We only consider the symmetric dG discretization (€ = —1) and we set 3 = 1. We also assume
that A is a C? curve, f € L*>(A), and that |[ENA| < Ch, VE € &.

For simplicity, we denote by a = a_;. Under Assumption 1, with (4.15) and (4.8), there is a constant C
independent of h such that:

MUl 2@ < Cllfllzza)- (4.17)

5. WEIGHTED ENERGY ESTIMATE

We first show that the dG solution is stable in the weighted energy norm defined by:

g (67
lollbea= > IVollEs@+ D Pl wllze, v e H (En), a€(0,1), (5.1)
E€E) e€l,Uo0

Lemma 4 (Stability). Let Assumption 1 hold. For « € (0,1), there exists a constant C,, independent of h but
dependent on maxgecq d**(x) such that the dG solution, uEG, satisfies:

ur S llpc,a < Calllfllz2ay + [ulm (o) (5.2)
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Proof. Recall the intermediate problem (4.5). Since U € H?(Q) N HE (), we immediately have with (4.10) and
(4.17)

T 2a 2 o o 2 a
Z ﬁ”d2 [“EG] ||L2(e) < ”d2 ||i°0(ﬂ) Z EH [UEG - U] HL?(e) = C||d2 ||ioc(sz)||f”%2(1\)' (5.3)
eel’',uUoN ecT'LUON

We use the triangle inequality, (4.9) and (4.17):

2 cG ca ca
VUl L2 (0) < Hd aHLoo(Q)HV(U —Un )HL?(Q) + HVuh HL@(Q) < Callfllz2eay + HVuh HLg(Q)' (54)
From Theorem 3.5 in [16] and Lemma 1, we have
HWSGHLg(Q) < CIVullzz (), a<(0,1). (5.5)
This implies
VU2 ) < Callfllzzay + Clul g )
By the triangle inequality, equations (4.10), (4.17) and the above bound, we obtain
DG |2 DG 2 2
Z Hvuh HLg(E) <2 Z Hv(“h - U)HLg(E) +2 Z ||VU||L§(E)
Ecé&y Ecé&p Ecé&p
2 2
< Cal[uR® = Ullpg + 21VUI32 ) < Calllflzaea) + lulme) " (5.6)
We conclude the result by combining (5.3) and (5.6). O

We have an a prior: bound for U in the H, 2 norm, which can be seen as a generalization of (4.17). We denote
by dg = maxgep d(x, A) for E € &,.

Lemma 5. Let Assumption 1 hold. For o € (—1,1), there exists a constant C' depending on a but independent
of h such that

Uz < Ch* I fll2ny, @€ (=1,1). (5.7)
Proof. Since d?* € A,, it follows from Theorem 3.1 in [32] that
Uz < Cllfnllrz @) (5.8)

Thus, to show (5.7), we find a bound on || f4 |2 (o). Thanks to the shape-regularity of the mesh, for ' € 74,
chyp < dg < Chg (see [12], Lem. 3.1). Hence, using (5.10), (4.8) and (3.3), yield

1 fnll72 ) = Z 14 full 22y < Z A | fn el 72y < CH* Z I fn,El720m) < CRP 2 720y (5:9)
EcT) EcT) EcT)

Substituting (5.9) in (5.8) yields (5.7). O

The following equivalence of norms holds (see proof of Lem. 3.2 in [12]). There exist positive constants 71, y2
independent of h such that for —1 < a < 1, E € &,, and v, € P¥(E),

mlld*vnll L2y < dillvnllcz(e) < velld®onllze(m)- (5.10)
In this section, we will make use of the following assumption (see [14], Thm. 3.4).
Assumption 2. The distance function satisfies the following bounds

IVd| L) <1, IV?d?||1e(0) < C. (5.11)
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Using the fact the Vd* = ad*~1Vd, we then have that d* € H'(Q2) if 0 < a < 1. Note that with (5.11) and
the chain rule, we have for E € &, and v € L>®(FE),

1/2 < a, (5.12)
1/2 < a < 3/2. (5.13)

2oV (d)|| g2 < f|d*
[vV? (d*)

UHL2(E)’

HL2(E) < CHdm*%Hm(E)’

In addition, since d2* € A, for o € (=1,1), we use the interpolant ITj, : H2(€2) — W} (&) introduced in [31].
This interpolant is independent of o and satisfies the following approximation properties (see [31], Thm. 5.2).
For any o € (—1,1) and for any w in H2(Q), there is a constant C independent of h such that

[w = Thw|l g gy < Ch* ™ wlnz(ay), 0<m <2, VEE &, (5.14)

where Ap is a macro element containing E. We also recall the definition of Kondratiev-type weighted Sobolev
spaces, V2 (€2), for any oo > 0 and m € N:

v ={ue i,

() : V0 < |B] < m, dBlFe—m DBy ¢ L2(Q)},

equipped with the norm

m

el ) = D lulis

a—m-+s
s=0

Ariche et al. proved that the solution u to (1.1), (1.2) belongs to V32 () for a € (0,1) under certain conditions
on  and A, see Theorem 1.1 in [2]. The main result of this section reads as follows.

Theorem 2. Fix o € (1/2,1) and let 6 € (0,«) and k = 1. Let Assumptions 1 and 2 hold and assume that
u € V12+6(Q), Foralll <s< ﬁ , there exist constants C' and C, depending on a, s and § but independent of
h such that if o0 > C\,

1/2
[V (u = up®) 22 @ T ( Z %Hda [y ] H2L2(e)> < C<ha75 + hli%s(lf&)) (5.16)
“ e€TLUIQ

Proof. Let u$“ € W}(&,) solve (3.5) for k = 1. We apply the triangle inequality.

1/2
T\l o 2
S TIAEY U o RS [

ecl'pLUoN
<1V (u = ui) HL@(Q) +|lU - uEGHDG,a + [V (up® - U) HLg(Q)' (5.17)

Considering Lemma 1, the first term is bounded in Corollary 3.8 in [12]

[V (u = uf) ||Lz<n) < Ch*lulyz,_(a)- (5.18)

Bound (5.18) can also be derived from Theorem 3.5 in [16] and Theorem 3.6 in [12]. It remains to bound
|U — uPC|pg.o and ||V (udC — U)llL2 (o), which is the object of Lemmas 6 and 7 respectively. O

Lemma 6. Let Assumptions 1 and 2 hold. Let k = 1. For o € (%, 1), there exists constants C, C, depending
on s and o but independent of h such that if o > C,,

U = wR |0 < C (A +RHO=0) w1 < s < ﬁ (5.19)
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Proof. Let x5, = II,U — uP%. With triangle inequality and the bounds (5.14), (4.10), (4.11), (4.17), we have

Ixnllz2() + Alixallpe < CR?[U|lm2(9) < Chllfllzaca). (5.20)
With several manipulations, as is done in [37], we have formally
e = alan ) =2 Y [ @9 (V@)

Ecé&y,
3

+2 0y /{V “Xn)} - meld®xa] = ZT (5.21)

ecl', U0 =1

We now explain why each term T; above is well defined. From (5.12), (5.13), the term 73 is well defined since
d**x;, € H?(E). Property (5.12) and Cauchy—Schwarz’s inequality guarantee that T is well defined. For T3,
we write

{V(d*xn)} - me[d®xn] = {d*V(d"xn)} - me[xn]-
Observe that since x;, is a polynomial, the function d*V(d%yy,) belongs to H*(&,)3. Indeed we have

doV (d*xp) = ad** 1\, Vd + d®*Vxy,

and with (5.13), each term belongs to H'(E) for each mesh element E. This implies that [[{d*(Vd®*xs)}| r2(e) is
bounded and the term T3 is well defined. To handle the first term, we use the following Galerkin orthogonality

a(U —up® o) =0, Yo, € VE(ER). (5.22)
Let n =,U — U and & = U — ulC so that x;, = n + £. Since [d*n] = 0 a.e. on e € ', U IS, we have
Ty = a(n, d**xn) + a(&, d**xn — wp)

= /Vn V(X)) - > /{davn} ned*xn] + a(&, d**xn — w)

Ec&y, €T, Ud
= ZTl,iv
i=1
where wy, € Vh1 (En) is a piecewise Lagrange interpolant of d®yy, such that
[|d**xn — wh || e < CRIA**Xnlm2(e,)- (5.23)
We begin by bounding T7 3. With (3.14), (4.10), (5.23), we have
Tis = a(&d**xn —wn) < CllEllpell|d**xn — whlllpe < CRANUN (o) |d* X o e, - (5.24)
Using (5.11) and (5.13), we obtain

[ Xt r2e,) < ClE** 0 20y + Ol Vixn]l 2 .

Since d¥ € L?() for |y| < 1, we have d?(*~1) ¢ L= Q) forl <s< 2(11_ 5- Note that -7——= > 2. Further,
since x;, € V;}(&r) and by using and Hélder’s inequality, we have
20 2c0—2 de— 1 fe"
‘d Xh!HZ(Sh CHd }LS(l ) ( )HXhHLlfzs%lfa) + H ||L Je= @ ( )”d thhHLm(Q)
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< Ol sy g + 10V (5.25)
By inverse estimate (3.16)(¢ = 2/(1 — 2s(1 — a)),p = 2) and (5.20), we have
HXh”Lm(Q) < ChiBS(lia)”Xh”L?(Q) < ChiSS(l*aHleHLz(A). (5.26)

For the second term, we first derive an inverse inequality for any v, € V,f (&r) and g > 2. With the local version
of the inverse inequality (3.16), (5.10) and Jensen’s inequality, we have

1/q 1/q
- 3 3 _
140l Loy < (Z d%q||vh||%q(1;)> < Cha> ( > d%q||vh|qL2(E)>

Ecé&p Ec&y,

1/q
<Chis ( > llonllgs (E)> < Ch 3|z o (5.27)

Eecgy,

Hence, with (5.27), the second term in (5.25) is bounded as

14900 iz ) < OB IV @0 (5.25)

Thus, with (5.26) and (5.28), (5.25) reads
|d2aXh|H2(gh) < C(h73s(17a)+1 T h’%s(ka)HVhXh”Lg(Q)) (5.29)

Thus, with (4.17) and (5.29), (5.24) reads
Ty < C(R2-30-0) 4y 7,0 o). (5.30)

We now turn to 77 1 and 77 5. We write

Tip= ). / V- d**Vxp, +/ Vi - 2ad** 7 Vd xn < [ Vall Lz @) IV axallzz @) + ClVallea, @ lxallz2@)-
Ee€&y, E E

With (5.14), (5.7), (4.11) and (4.17), we obtain
T1 1| < ChU|az @) IVaxallz @ + CR?|Ulz. (@) < Ch¥lIVaxallLz @) + Ch*®. (5.31)

To handle T7 o, consider a mesh element E and let e € JE. Since d*n belongs to H (1), trace estimate (3.17)
yields

14Vl 2oy < CHT 21Vl 2y + CRY2 (1Y 22y + (147 V|2 s))-
Thus, with Cauchy—Schwarz’s inequality, (5.14) and (5.7), we obtain
T 2| < C(HV’IHLg(Q) +h(1U | 2 () + h||U||H§71(Q))) Ixrlpa,a < Ch¥|xrlDa,a- (5.32)
For Ty, we apply Cauchy—Schwarz’s inequality and (5.11),

ITo| < IVaxallez @ ld* ™ xnll L2 (5.33)
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with (5.14), Holder’s inequality, the observation that d*~! € Lo () , (5.20), and (3.16), we obtain

ITa| < IVaxall 2 o |42

LR S
_35(1l—« 3s o
< ClIVixallpz )b 25079 x| 2y < Ch™25 09TV x| 22 (o) (5.34)

Hence, with (5.30), (5.31), (5.32), (5.34), and Young’s inequality, we obtain
1
T+ 172] < Zlhxnlibg o + O (27307 4 h2). (5.35)

It remains to handle T3. Fix a face e € [', shared by two elements, e = OE! N OE2. We write

[ @ ale nldl = [ @9l nldol + [ @ Vdn) e d )
= Ae,l + Ae,2~
For A. 1, recall the definition of JEé. With (3.18) and (5.10), we have
Acr < Cdpa[Vxallz2enh ™ 2 Id*xnlll 22 ) < CralVxnllzz (e h ™2 (11d xn] |2 e - (5.36)

Hence, with Young’s inequality, we obtain for a positive constant Cj

> Ael—16||thhHL2(Q +Co > WA Xl 72 (5.37)
ecl',UON eecl',UON

For the term A, 2, we have with (5.11)
Acs < al|d**7'Vd - ne xalpr |22 o) lxalllz2e) < CNA xule L2 lxalllL2e)-

With the trace inequality (3.17), Holder’s inequality and (5.11), we have
627 Xl 2] 2y < CHT2 (127 X gy + ORIV )]
< Ch™ 1/2Hd2a 1||LOO(Q ||XhHL2(E1) +C’h1/2Hd2a 2’

)+ OB

(£2) (BY)

Leas ) ( g)”XhHLm(Eé)

1d*V x|

ORI s L1t 51y

With similar arguments as the derivation of bound (5.29), with (5.20), (5.26), (5.28), and Holder’s inequality,
we obtain

1/2
—3s5(1—a —35(1—a - 2
Z Agp < C(h Bs(1me)t2 4 pmas( )+1||VhXh||Lg(Q)>< Z h 1||[Xh]||L2(e)> .

eel'pLuUoN ecl' LU0
With Young’s inequality and the bound (5.20), this leads to
1
Y. Acx < I Vaxallzy @) + ORI, (5.38)
ecl'LUON
Therefore we can bound T3 with (5.37) and (5.38).
1 — e’ —3s(l—a
T3] < JIVaxallZa) +Co Do WM Xl + ORI, (5:39)
ecl',UoN

We substitute (5.35), (5.39) in (5.21). With the assumption that o > 4Cj, we obtain the result with an
application of triangle’s inequality and the bound ||U — I, U||pg,o < Ch®. O
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Lemma 7. Let Assumptions 1 and 2 hold and let k = 1. For a € (1/2,1), there exists a constant C depending
on s and a but independent of h such that

V(U - O(h" a3 a>), Vli<s< % (5.40)

)HL2(Q) " a

Proof. Let ¢, = I U — u$S. We have
> [ Ve vo= 3 [ va-viea) -2 X [ eave - ve) =X+ x.
Ecé&y Ecé&y Eecé&y

Let wy, be the continuous Lagrange interpolant of d2*¢;,. We have

|V (d**¢h — < Ch|d®*Chl ey (5.41)

wh)| 20y

Using the Galerkin orthogonality of the finite element method, we write

Z/ U —ui€) - V(d**¢ — wp) — Z/VU ,U) - V(d>¢,).

Ecéy, Ecé&y,

The terms in the right-hand side are bounded using similar arguments as in (5.25)—(5.31). We obtain
X1 < F19aG 3 oy + C (R0 4 12%)
L= WV AShITLZ (@) )
For X5, similar arguments to the bound (5.34) for the term 7% hold:
—3s(l—a
Xy < Ch' 250 V4Gl 2 -
We skip some details for brevity. The result is concluded by using triangle inequality. O

6. LOCAL L? AND ENERGY ERROR ESTIMATES

We show that the dG solution converges with an almost optimal rate in regions excluding the line A for k£ =1
in Section 6.1. For k > 2, we show that the dG solution converges with a rate of k in Section 6.2. In this section,
we make the following assumption on the weak solution u to (2.1).

Assumption 3. For any neighborhood N of A, namely A C N C N C Q, the weak solution u belongs to
H2(Q\ N).

This assumption is justified in the following two cases. If f € H2(A), then u € H?(Q\N). This result was
established using a splitting technique by Gjerde et al. [20]. Further, Ariche et al. show that if f € L?(A) and

A is of class C%, then u belongs to a Kondratiev’s type space [2]. This implies that u € H?(Q\N), see also [12].
We first establish a local a priori bound on the solution of the intermediate problem (4.5).

Lemma 8. Assume 1 and 3 hold. Let Ny and Ny be nested neighborhoods of A satisfying
ACN()CV()C]\GCQ.

There exist hg > 0 and a constant C independent of h such that for all h < hg

10l 2y < € (11228 + Nl a2y )- (6.1)
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Proof. There exists a neighborhood N/, of A such that
Ny C Nyj C Nyjp CNy CNpCQ.

Define a mollifier function ¢ € C°°(Q) which is equal to 1 in Q\N; and to 0 in Ny /5. Recall that by definition
of U (4.5) and f5 (4.4), there exists hg > 0 such that for h < hg, we have

—AU = 0, in Q\NO

In addition, set g as follows.

g=AU¢), in Q. (6.2)
Clearly, g € L%(2) and
0, in N1/25
g=6AU +2VU -Vo+UAG = 2VU - Vo + UAp, in Ny \ N, (6.3)
0, n Q\N.

Hence, with Cauchy—Schwarz’s inequality, we obtain

lollz2@) < CIT i s ) (IV B o) + 1800 arm ) < ClUngnns - (64)
In the above, the constant C' depends on the choice of the cut-off function ¢ but it is independent of h for all

h < hg. We remark that U¢ vanishes on the boundary 90f). By convexity of the domain and the above bound,
we have

||U¢HH2(Q) < CHQHLZ(Q) < C||UHH1(N1\N1/2)' (6.5)

By the definition of ¢, the above bound, and the triangle inequality (with u{® € W}(&),) satisfying (3.5) for
k =1), we obtain

Ul 2y = 102\ < Ul g2y < ClUN gy v\, 2
ca ca
< O[04 i oy * 1= 05 i sy + Il (i, ) (6.6)
A standard finite element bound (4.9), the convexity of the domain and (4.8) yield
U =15 0y < CIU 2@y < Chlfnll pagay < CllFll2a)- (6.7)
To bound the second term in (6.6), we use Theorem 9.1 in [36].
cG cG cG
Ju — uj; ’|H1(N1\N1/2) < [Ju—uj ||H1(Q\N1/2) < O<h”u||H2(Q\No) +{Ju—uj HLz(Q)) (68)
Using the global bound (4.2) for 6 = J, we obtain for
1
HU’ - USGHHl(Nl\Nl/z) < C<h||u”H2(Q\N0) + hz Hf||L2(A)> (69)

Substituting (6.7) and (6.9) in (6.6) yields the result. O
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6.1. Local L? bound for k =1
Let N be a neighborhood of A such that N C €. There exist sets Ng, N1, No, N3 such that

ACNygCN CN, CN,CNy;CN3CNCQ.

It is important to note that the choice of the above sets is fixed and does not depend on the mesh. The main
result of this section is the following local L? estimate.

Theorem 3. Let k = 1 and let Assumptions 1-3 hold. There exist hg > 0 and a constant C(0) independent of
h such that for 0 < 0 < % and all h < hg

[|lu— uEGHLz(Q\N) < C(0) h*=% + Ch?|In(h)|. (6.10)

The proof of this estimate also relies on establishing local bounds for the continuous and discontinuous
discretizations of the intermediate problem (4.5). As before, this will be established in several Lemmas.

Lemma 9. Let Assumptions 1-3 hold. There exist hg > 0 and a constant C(6) independent of h such that for
all h < hg

1
U —u <CO)R*?, Yo<O< 3 (6.11)

DG
h ||L2(Q\N)

Proof. Define the characteristic function associated to 2\ N:

1, x€Q\N,
Xew(@) =90" L c

For readability, in this proof, we drop the dependence on 6 in the constant “C(6)
E=U — uEG and consider the auxiliary problem:

b

and use C instead. Set

—Aw = {xo\n, inQ, (6.12)
w=0 ondQ. (6.13)

Clearly, since {xqo\n belongs to L?(£2), the function w belongs to H2(Q2) N Ha (£2). Multiplying (6.12) by & and
integrating over (), we obtain

€12y = > [E veve— Y [{Vu} nld = a6 w). (6.14)

Eeégy, ecl',UoN v €

Let Spw € W}t(&p) be the Scott—Zhang interpolant of w. With the consistency property (5.22), we have

Hin?(Q\N) = a(§, w — Sphw)
=y / VE-V(w—Sw)— Y [{V(w— Spw)}-n[¢]
Eeg, VB eclUIN Y €
= 0 + Os. (615)

We proceed by providing bounds for ©; and ©2. We follow [8,26], split ©1 into two terms, and use Holder’s
inequality,

0= Y /E%vg.ww—shwwr

Z / V¢ - V(w— Spw)
Ec&p EN(Q\N2)

Ee&y,
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< [V(w - Shw)HLOO(NQ) Z ||Vf||L1(EmN2) + ||vh£||L2(Q\N2)||v(w - Shw)||L2(Q\N2)
Ecéy

=07 +O7. (6.16)
Fix 0 € (0,1/2), define a = 1 — 6%, which implies that 3/4 < a < 1. Take s = 2/(36) in Lemma 6. We have
I€llp .o < Ch. (6.17)

Hence, with Cauchy-Schwarz’s inequality and the fact that d=* € L?(Q), (recall d is the distance function
defined in (2.2)), we obtain

Do IVEl L sang < D0 14N o monn IVE 22 (ma) < CIVREN L2 (@) < OB (6.18)
Ee&y, Eeé&y

In addition, observe that since —Aw = 0 in N3, Theorem 8.10 in [19] and elliptic regularity due to the convexity
of the domain yield

wllwszng < Cllwllgzo) < ClIEN L2 0\ N (6.19)
Hence, by a Sobolev embedding result and approximation properties there is h; > 0 such that for all A < hy

IV (w = Spw) L (3,) < Chlwlw2.(n3) < Chlwllyyaz(ng) < CPIEN L2\ w)- (6.20)

With (6.18) and (6.20), we obtain
O] < Ch270||§||L2(Q\N)- (6.21)

For ©2, we apply Lemma 4.1 by Chen and Chen [7] (see (3.20) with D = Q\N; and D = Q\N,). There exists
ho > 0 such that for all A < hg

IVREll L2\ sy < CRIU | 2o vyy + ClIEN L2 ()

With Lemma 8, (4.11), and (4.17), we have

V€l 2o\ ny) < Ch<||f||L2(A) + ||UHH2(Q\NO)) + Ch?|U| g2y < Oh(||f||L2(A) + ||UHH2(Q\N0)>'
With approximation properties and an elliptic bound, we have
[V (w— Shw)||L2(Q\N) < Ch”me(Q) S ChH§HL2(Q\N)'
So we combine the bounds above:
‘9%‘ < Ch2||€||L2(Q\N)- (6.22)

Similarly, we split and bound ©5. For any domain O, let ', (O) denote the set of all faces e such that eN O #
and let I'¢ (O) be the complementary set of faces, namely I'¢ (O) = (I', U{e : e C 9Q}) \ I'1(O). There exists
hz > 0 such that for all h < hj:

1O2] < [V(w = Shw)l ey D Wellloi + Do IHV(w = Shw)} - nell oo €]l 2y = O3 + ©5.
ecl (N1) ecl'§ (N1)
Using (6.20), we have
0, < ChlI€l 2o\ ny Z €N L1 ey -

e€lp(N1)
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To handle the second factor in the left-hand side of the inequality above, we introduce a tubular domain By,
containing A. That is, By, is the set of elements E such that for any @ € F, the distance d(x,A) < 2h. This
implies that the number of elements in By, is bounded above by Ch~! for some constant C independent of h.

1/2

Sl <l S Al | I€lbe < Chllne.

e€l', (N1NBy) €€l (Bnr)

Any face e € T',(N7 \ By) belongs to two elements, say E! and E2. Since d~“~!
belongs to H(E?), for i = 1,2. With the trace inequality (3.17) and with (5.11)

Bi < h~=*~1, the function d=¢

1/2
a2
Yoo @<l X mld e | e
€€l (N1\Bp) €€l (N1\By)
1/2
—a||? 2 —a—1]|2
e WD S (L P Iy B I Y
EEFh(Nl\Bh)
1/2
a2
<C Z |d ||L2(E;UE3) 1€lpc, o
€€l (N1\Bn)
S C||d7a| LQ(Q)||£||DG,<1‘
Hence, we use (6.17), (6.20) and the fact [[{|pg < Ch||U]|g2(q) < C. We have
03] < Ch279”€“L2(Q\N)' (6.23)

To handle ©3, we use (3.17), approximation properties, Lemma 4.1 in [7] (see (3.20) with D = Q\ Ny and
D =Q\ N), and (6.1). We have

1/2
2
O =l > IV = Sn)liamums + IV 0l e | Elbe@ay
e€l's (N1)
< Chluwl sy (MU 2@ m) + 1€l o) )- (6.24)
With (4.11)and (4.17), we have
€1l L2y < CPISF Il L2 ay-
Thus, with (6.19), we obtain
03] < Ch2||§HL2(Q\N)- (6.25)
Combining bounds (6.21)—(6.23), (6.25) with (6.15) yields the result. O

The next step is to bound the local L? norm of the error U — uSG.
Lemma 10. Let Assumptions 1-3 hold. There exist hg > 0 and a constant C(6) independent of h such that for
all h < hg

U —ug | <CORP?, Yo<o< % (6.26)

L2(Q\N)
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Proof. Because the proof follows that of Lemma 9, it is sketched only and details are omitted. Similarly, in this
proof, we drop the dependence on 6 and use C' instead. The starting point is the following dual problem

—Az = ( —uf )XQ\N, in €, (6.27)
2z =0, on 0§, (6.28)

where o\ is the characteristic function associated to 2\ N. Let Sj,z denote the Scott-Zhang interpolant of
z. We multiply (6.27) by (U — ugG) and integrate by parts.

1V =45 gy = [ V2 V(O - /vZ—shz V(U - u)
+ V(2 — S}LZ)”LQ(Q\Nl)HV( —ud )||L2(Q\N1) (6.29)

The first term is handled like ©1. Let o = 1—6? and use Lemma 7 with s = 2/(36) to obtain for h small enough:

[V (z— Shz)”Loo(Nl)HV( “h HLl (N1) < Chlz|w=, °°(N2)||V( uh )HL2

< CR* U = uif®|| Loy (6.30)
For the second term, we use Theorem 9.1 in [36], (6.1), (4.9), (4.15) and (4.8).
ca ca
IV (U = u§%) | oy < C(h||UHH2(Q\NO) +||U = S |}L2(Q)) < Ch.
Therefore, with approximation properties and convexity of the domain, we have
Iz = Snzll 2@ V(U = 49| 2wy < ORIl 2y < O[T = 0S| 2o - (6.31)
Bound (6.26) immediately follows from (6.29) to (6.31). O
Proof of Theorem 3. The result follows by the triangle inequality:
D ole! ole! DG
Ju—u ||L2(Q\N) < [Ju—uj, ||L2(Q\N) + [ - UHL?(Q\N) +[|U — ||L2(Q\N)' (6.32)
The first term is bounded in [27]:
||u ||L2(Q\N) < Ch?|Inh).
The result then follows by using Lemmas 9 and 10. (I

6.2. Local L? bounds for k > 2

In this section, we use duality arguments to obtain a local L? estimate for k¥ > 2. The main difference from
the previous section is that these results hold on a convez sub-domain B with B C €2 that does not contain the
line A. This is in contrast to the set N in Theorem 3 which is a neighborhood of the line A. We use negative
norms, recalled here. The domain B is assumed to have sufficiently smooth boundary, for instance B can be
chosen as a sphere. For any integer m > 0 and for v € L?(),

v
[0l gg=mp) = sup M7 BCQ. (6.33)
Qe H"(B) ||¢HHm(B)

The main result of this section is given in Theorem 4. To begin this analysis, we first establish general local
results for the dG approximation. Such results are shown with techniques adapted from Nitsche and Schatz
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[30]. In addition, for any convex domain B C  with sufficiently smooth boundary, we introduce the operator
Qp: L*(B) — H?(Q) N H}(Q) with Qp(¢) = v such that v solves

—Av=¢ inB (6.34)
v=0, ondB. (6.35)

The following elliptic regularity result holds [18]. For any integer m > 0,

1Q5(O)s205) < CllEll o - (6.36)

Lemma 11. Let Assumption 1 hold. Let B, By be open convex sets satisfying B C B C By C By C Q. Assume
0B, 0By and 09 are sufficiently smooth so that (6.36) holds in the respective domains. There exists hg > 0
such that for any integer m >0 and all 0 < h < hg

U —uy

hGHH—m(B) < C(hmin(k,m+1)|||U b

G|||DG(BI) + ||U7U¥L)G||H—m—1(31)>- (637)

In addition, we have

[0~ Rl gy < RO ~ Ry + 10— R ) (6.9

The constant C' is independent of h.

Proof. Fix an integer m > 0 and denote £ = U — uP%. Let w € C5°(Q) with w = 1 in B and w = 0 in Q\By
where B C By C By C By. Note that supp(w ) C By. We have

€l = [0y ) < Nll oy = sup 1222501 (6.39)

PpeH" (2) H¢||Hm

Fix ¢ € H'(Q) and define v = Qq(¢). We multiply (6.34) with w¢ and integrate by parts. Since v € H?(Q),
we have

/ wep =Y / Vo VW) - 3 / (Vo) - newlé] = a(we, v). (6.40)

Ecé&y e€l’', U0

In view of (6.40) and (6.36), (6.39) yields

€l gomgsy <C  sup G (6.41)
veH™+2(Q) ||v||Hm+2(Q)

Observe that

a(wé,v) Z/gw Vo + Z/Vg ) —vVw) = Y /{v wv) — oVw} - mlé].

Ecé&y Ee€&y, eel’, Uo

In addition, with integration by parts and the fact that vVw is continuous, we have

_ Z/Vf (vVw) Z /fV (vVw) Z /{va} nel¢ (6.42)

Ecé&y, Eecé&y ecl',UON
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Hence, we obtain
a(wé,v) = a(§,wv) +Z(§,wv), (6.43)
with
I(&wv) = Y / E(Vw-Vu+ V- (vVw)).
E

Ee€&y,

For E € &, with EN By # 0, let y, € P*(E) be the Lagrange interpolant of wv satisfying
o0 = gl gagy < CRTOHMAD ]y, 0SS 2. (6.44)

Then, define x; € th(é'h) as Xn|lg = ynp if wv|p # 0 a.e in E. Otherwise, x,|g = 0. By construction, for
h small enough, all the terms involving elements and edges that do not intersect By vanish. Using (5.22) and
continuity properties, we have

a(§,wv) = a(§,wo = xn) < Cllllpacs,) llwv = xallpas,) (6.45)
From trace estimates and (6.44), we have
llow = Xnllpg(s,) < CR™ ™D wol jusas,) < CR™ ™D 0] s ). (6.46)

Therefore, (6.45) becomes _
a(&,wv) < Chmm(k’mH)|||f|||DG(Bl)||UHHm+2(Bl)~ (6.47)

For the second term in (6.43), since w € C°°(€2) with supp(w) C By,

Z(&wv) < CH&HH*"”*l(Bl)HU||HM+2(Bl)' (6.48)

With (6.47) and (6.48), (6.41) yields (6.37). To show (6.38), define a finite sequence of nested convex sets
Dy=BCDy C-C Dy_1 = By such that D; C D;y;. Applying (6.37) with s = 0 for the sets Dy C D,
yields:

1€l 223y < CRllENbG(pyy + I€ll -1 (D)) (6.49)

Tteratively applying bound (6.37) to the last term in the above inequality yields (6.38). O

Theorem 4. Assume 1. Fix 0 € (0,%),14: > 1, and two convezr sets B and B with B C B C B C Q with
A C Q\ B. Assume that u € H*(B) and that OB, dB, and 0Q are sufficiently smooth. There exist hg > 0 and
a constant C(0) independent of h such that:

|u— uEGy|L2(B) < C(h) n*0. (6.50)

Remark 1. We remark that this result is not optimal. However, for k£ > 2, it is an improvement to the order
of convergence provided in Theorem 1. In addition, it allows us to show almost optimal estimates for the local
energy norm, see Section 6.3,

Proof. First, we apply the triangle inequality to obtain
le = w2y < o= il ey + 5 = Ull oy + 10 = uR% ] 2y (6.51)

The remainder of the proof will consist of bounding each of the above terms. We divide this task into several steps.
We select convex sets By, By, ..., By with smooth boundaries such that B C By, B; C Bt fori=0,...,k—1,
and By C B. For simplicity, in this proof, we drop the dependence on 6 and use C instead.
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Step 1. Bounding Hu
property.

||L2(B) Since W} (&) C Wo’q(Q), we have the following Galerkin orthogonality

/ V(u—uf®) Vo, =0, Yo, € WEE). (6.52)
Q

Thus, we apply Theorem 5.1 in [30]. There exists h; > 0 such that for all h < hy, we have

la = gy < O (A ullzn oy + e = 0§ v (6.53)

To estimate the second term, fix ¢ € HE(Q). Observe that with a Sobolev embedding result and (6.36), we
have

||QQ(¢)||Wk+1,4(Q) < C||QQ(¢)HH’€+2(Q) < C”QbHHk(Q)

We denote by v, the Scott—Zhang interpolant of Qq(¢); we have
IV(Qa(6) = tm)ll ey < CHHIQ0(S) lyrsrioqey < CH¥ 6o

We multiply (6.34) by u — u$“ and integrate by parts. By (6.52), we have

/Q(U—Uh /V Qa(¢) —vn) - (“_Uh ) < IV(Qa(¢) - )HL‘*(Q)HV(U_USG)HLMS(Q)

< Chk||¢HHk(Q)HV( (6.54)

) s -

Let Spu be the Scott—Zhang interpolant of u. With the stability of the interpolant (3.19), and (4.2), we have

HV(U - uh )||L4/3 < |V(u— ShU)HL4/3(Q) + ||V(Shu - USG)HL4/3(Q)

< Clulyriassgy +h™ | Spu - USGHL4/3(Q) < Clulwrars ) + Chie”f”m(z\y (6.55)

With (6.55) and (6.54), we have

[ =i | o ) < CRE°. (6.56)

From (6.56) and (6.53), we have

Hu—uh HL2(B < Ch*Y, (6.57)

Step 2. Bounding ||U - G||L2(B) Let N be a neighborhood of A such that By C Q\N. There exists hy > 0
such that for all h < hy , —AU =0 in Q\N. Theorem 8.10 in [19] and Lemma 8 yield:

Ul e,y < ClUN gy < € (6.58)
An application of Theorem 5.1 in [30] yields, for h small enough, say h < hs, for some hg > 0:

HU—ugGHL2 <Chk\|U||H,C(BO—|—CHU uf; (6.59)

N

We perform a similar duality argument as above. For any ¢ € HE(Q), we denote 2 = Qq¢ and Spz the
Scott—Zhang interpolant of z,

/Q( fuh /szShz ( —uh )<C’hk||z||Hk+1(Q)||V( —USG)H

< CRMPl vy |V (U = i G |- (6.60)
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The last inequality holds by (6.36). Noting that (6.7) holds for the finite element solution uS“ of any degree
k, we have from (6.60)
lele] k
||U - Up ||H—k(Q) < Ch.

The above bound with (6.59) implies that

U —uy, < ChF. (6.61)

raesy

Step 3. Bounding HU - UEGHLz(B): We denote £ = U — uP¢ and we iteratively use (3.20) and (6.38) for the
nested sets B C By C ... C Bg. We obtain

€02y < € (M 10N zwss (g + BE 1€ L2y ) + CIE N0 (6.62)

To estimate ”€”H*’“(Q)’ we also use a duality argument. Let ¢ € HJ(Q) be given and let v = Qq¢. We
multiply (6.34) by v, integrate by parts, use (5.22), the symmetry of a(-,-), and (4.10).

/Q 66 = a(v,&) = a(w - Sy, < Cllv— Swllpalléllng < Ch ol < CHH Il gy (6:63)

This implies that
€]l 71y < CRE.

With the global estimate (4.11), the bound (6.58), and the above bound, we finally have that
€l p2m) < Ch*. (6.64)
This concludes the proof. (I

6.3. Local energy estimate

With the local L? results of the previous sections, we show a local energy estimate. The second bound (6.65)
is a stronger result in the sense that it is valid up to the boundary of Q whereas (6.66) is valid for a domain
that does not intersect with the boundary.

Theorem 5. Let Assumptions 1-3 hold and fiz 0 € (0,3). There exist hg > 0 and a constant C(6) independent
of h such that for all h < hg and for any neighborhood N C Q with A C N:

|u— UEGHDG(Q\N) <COR? k=1 (6.65)
In addition, let B and B be giwen as in Theorem 4. Under the same assumptions as in Theorem 4, the following

estimate holds.
lu =R ||pz < COR?, k=1 (6.66)

Proof. We show (6.66). By the triangle inequality, we have

DG CG CG DG
o=y HDG(B) < [Ju— up ||DG(B) + [lui - U”DG(B) +[|U = ug ||DG(B)' (6.67)
We proceed by providing bounds on each of the terms above. Let By be a convex set with smooth boundary
such that B C B C By C By C B. Theorem 9.1 in [36] applied to problems (1.1) and (4.5) results in the

following two bounds. There exists hg > 0 such that for all h < hy,

=05 iy = 90— 059 ) < (R sy + [ 0§ ). (668)
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U~ U’SGHDG(B) =V - USG)HLQ(B) < C(hk||UHHk+1(Bo) +]|U - USGHLQ(BO))' (6.69)
We apply Lemma 4.1 by Chen and Chen [7): (3.20) with D = B and D = By. We obtain:
10 = uR e < C (R I0 N mer ) + 10 = 0B 12y )- (6.70)
Employing bounds (6.68)—(6.70) in (6.67), we obtain
Ju = w7l pam < Chk(HUHHHl(Bo) + HU||Hk+1<Bo)>
+ C’(Hu - USGHLQ(BO) +]|U - U%GHLQ(BO) +|lU - UEG”H(Bo))' (6.71)
Using (6.57), (6.61) and (6.64) in (6.71) yields,

H“ - u]f?GHDG(B) S Chk(

[ull gy + 10 sy ) + COR. (6.72)

We conclude that (6.66) holds by using bound (6.58) in the above estimate. The proof of bound (6.65) follows
the same lines: we apply (6.70) with B = Q\ N and By = Q\ N where N C N. O

7. THE PARABOLIC PROBLEM

In this section, we consider the time dependent problem (1.4)—(1.6) with a Dirac line source. The domain
is assumed to be convex, the curve A is a C? curve such that [ENA| < Ch for any E € &,. A very weak solution
u to (1.4)—(1.6) can be defined via the method of transposition, see [22,23]. To this end, for a given function
g € L?(0,T; L?(2)), define the backward in time parabolic problem:

-0 — A =g, in Qx(0,7T], (7.1)
=0, ondQ x (0,7,
»(T) =0, in{T} x Q.

The solution 3 belongs to L?(0,T; H*(Q2)) and the following bounds hold (see Thm. 5, in Sect. 7.1.3 and Thm.
4 in Sect. 5.9.2 in [18])

191l oo 0,711 () < C(||1/JHL2(0,T;H2(Q)) + ||at¢||L2(o,T;L2(Q))) < Cligllp20,7;02(0))- (7.4)

If for all g € L?(0,T; L*(9)), u satisfies

/OT/QuQZ/OT/Awar/Qu%(O), (7.5)

where ¢ € L?(0,T; H%(S))) solves (7.1)—(7.3), then u is referred to as a very weak solution to (1.4)—(1.6). From
a Sobolev inequality and (7.4), we have

[

0
<20z aplll Lo iz )y + 11071 Loy ¥ L 0 7:2 )

< C<||f||L2(o,T;L2(A))\|1/)||L2(0,T;H2(Q)) + ||UOHL2(Q)Hw”L‘X’(QT;LQ(Q)))

< C<||f||L2(O,T;L2(A)) + H“OHL2(Q)) ||gHLQ(O,T;L’“(Q))‘
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Hence, the right hand side of (7.5) defines a bounded linear functional on L?(0,T; L?(€2)). Thus, with the Lax-
Milgram Theorem, a unique solution u exists in the sense of (7.5). In addition, if u® € H*(£), then the very
weak solution u belongs to L2(0,T; W14(Q)) N HL(0,T; W~14(Q)) for ¢ € (1,2) and satisfies [23]

/OT<8tu,v>+/OT(vu, VU)Q/OT/AJCU, VU€L2(07T; WoLq,(Q))- (7.6)

We denote by (-, -)q the L? inner product over Q. In the above, ¢’ is the conjugate pair of ¢, W=14(Q) is the dual
space of W;'? (Q), and (-, -) denotes the duality pairing between L2(0,T; W' (€2)) and L2(0, T; W~14(Q)). We
also define the following norm:

T
1ol 0,00 = / lolPy Vo € L2(0,T; HA(Ep)). (7.7)

7.1. Semi-discrete formulation

We introduce the continuous in time dG approximation u}%(¢) which belongs to V}*(&) for all ¢ > 0 and
satisfies:

/ %ugc(t)wa(ugc"(t),v) = / ftv, Vt>0, YveViFEn), (7.8)
Q A
/UEG(O)U = / ulv, Yo e ViE(&). (7.9)
Q Q
We recall that a is the symmetric bilinear form (¢ = —1 in (3.10) and S = 1). We also introduce the dG
approximation ¢y, (t) € V;¥(&s) to 1(t) the solution of (7.1)—(7.3).
0
- [ Gt aton@e) = [ goe, v<t<T, Vo viE), (7.10)
Q Q
¥ (T) = 0. (7.11)

The main goal of this section is to establish a global estimate in L%(0,T; L%(Q)) for the error uP® — u, see

Theorem 6. We first establish estimates for the error 1y (t) — (). Such estimates that depend on the time
derivative of 1 are standard [33]. Here, we follow the arguments in [9] and derive error bounds with constants
that depend only on % and not on 0;1).

Lemma 12. Let Assumption 1 hold. There exists a constant C independent of h such that

1(0) = ¥n ()l 2y + 1Y = ¥nll oo,ripy < CR (Il o201t + 18 20, mim2cc) ) (7.12)

Proof. The proof applies the arguments in [9] to a dG discretization of the backward problem. Define Ry (t) €
ViF(&1) as the elliptic projection of ¥(t)

a(Rp(t) —(t),v) =0, Vo € VFE(E,), vt € (0,T). (7.13)
From the consistency property of the dG discretization (7.13) and (7.10), we have the following relation.
—(Or(t) — Drn(t), V) + a(Ruth(t) — bn(),0) =0, Vo € VE(ER). (7.14)
Let P,t(t) be the L? projection of ¥(t) onto V;¥(E,). Thus, with the above, we can write

1d

_5&”1/] — 1/}h|‘i2(9) —+ a(R}ﬂ/Jh(t) — wh(t)a Rhw(t) - wh(t))
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= —(0(t) = Obn(t),¥(t) — Prib(t))a + a(Rptb(t) — Yn(t), Rpp(t) — Puib(t)).  (7.15)

Using the definition of the L? projection repeatedly yields:
(Or1p(t) = Oppn (1), ¥ (t) — Parp(t)) g = (9t (t),2h(t) — Prp(t)) g
1d
= (Or(t) = 0P (1), (1) = Puto(D) o = 5 7 10(8) = Puto (D720

With the coercivity and continuity properties (3.15), (3.14), and the above relation, equation (7.15) becomes:

1d
—5 1¢(t) = Prvo(®) 20

+ ClRay(8) = ¥n () pell Brip(t) = Prp(t)llpe-
Since Rpt)(t) is the elliptic projection of t, we have ||[Rytp(t) — ¥(t)llpg < Chl[Y(t)|l 2o [33]. In addition,
with the trace estimate (3.17) and approximation properties of the L? projection, we have |[1(t) — Po(t)|pg <

Chljp ()]l m2(0)- Hence, an application of triangle and Young’s inequalities, integration from 0 to 7', and recalling
that ¢¥(T) = ¢¥p(T) = 0 yield:

1d

1
T Ynl32gq + 31 Brtp(t) = Un(®)lphe <

1 T
19:(0) = n(0)[Z2 (@) + 5 /0 1R (t) = () [ < [14(0) = Put ()| 720,72 (a0

T
+C /0 IRh () = Pato(D)IHg < CRI[Y(O0) 1310y + CR* 011720 12 - (716)

The last inequality follows from the approximation properties and triangle inequality. The final result follows
with a triangle inequality. O

Lemma 13. Let Assumption 1 hold. Assume that 1) belongs to L?(0,T; H*(Q)) for s > 3/2. Then, there exists
a constant C' > 0 independent of h such that

1Y = Ynll 20,702 (0)) < CRpmintktte) 191 20,7 15 (02))-

Proof. The proof extends the arguments of Theorem 2.5 in [35] given for the continuous Galerkin discretization
and adapts it to the backward parabolic problem. We define two linear operators @ : L*(Q) — H}(Q) N H?(Q)
and @, : L2(Q) — V¥ (&) as follows. For ¢ € L?(),

Q¢ =z, with— Az =¢in and z|pn = 0,
Qnod = 21, with a(zp,v) = (¢,v)q, Yo € VF(E,).

It is clear that
Q(Aw) = —w, Yw e H*(Q). (7.17)

The operator @y, is selfadjoint since a is symmetric. Indeed, for any z,w € L?(Q),
(Qnz,w)a = a(Qrw, Qnz) = a(Qnz, Qrw) = (2, Qrw)q. (7.18)
We also define the discrete Laplacian operator Ay, : VIF(E,) — VF(E)) satisfying
(Apwp,v)q = —a(wp,v), Yo €& V;f(é'h).
Since a is coercive, we also have that Qpn(Apwy) = —wy,. With the discrete Laplacian, we can write (7.10) as

—0pn(t) — Aptn(t) = Prg(t).
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Applying the operator @} to the above equality, we obtain
—QnOrn(t) + n(t) = QrnPag(t) = Qng(t).
On the continuous level, we also have
QI u(t) + (1) = Qo).

Define e, = ¢y, — ¢ and pp, = —1p — Qr(Av)), then

— Qunoen +en = Qng + (Qn — Q)WY — Qg = (Q — Qn)(—0p —g) = (Q — Qn)(AY) = pn.

The last equality is obtained with (7.17). This implies

1 9 1 9
(—Qnoen, en)a + §||€h||L2(Q) < §||Ph||L2(Q)-

Since @y, is self-adjoint and @), commutes with the derivative in time operator, we obtain

0 2 2
_&(ehtheh)Q + Heh||L2(Q) < ||PhHL2(Q)-

We integrate from ¢ = 0 to t = T and observe that by coercivity we have

1
(en, Qnen)a = a(Qnen, Qnen) > iHQhehH%G'

Hence, since ep(T) =0,

1 2 r 2 T 2

§||Qh€h(0)||DG + : lenllz2iq) < : lonll72(0)-
In addition, note that by consistency of the dG discretization

a(Qn(=Av),v) = (-Ay,v) = a(y,v), Vv € Vi(En).
Thus, we have, if ¢ belongs to L?(0,T; H*(Q))
th||L2(Q) = [lv+ Qh(Al/J)HM(Q) < Chmin(k“’s)||7/}||L2(0,T;HS(Q))~

We can then conclude with (7.21).

With Lemmas 12 and 13, we show the main result of this section.

611

(7.19)

(7.20)

(7.21)

Theorem 6. Let u be the very weak solution to (1.4)—~(1.6) and let ulC satisfies (7.8) and (7.9). Assume 1

holds. There exists a constant C independent of h such that for any 6 € (0, %),

[Jui® — u||L2(0,T;L2(Q)) < C(e)hl_e(||f||L2(O,T;L2(A)) + ||“OHL2(Q)>'

(7.22)

Proof. The proof is based on a duality argument and follows similar techniques as the proof of Theorem 3.4 in
[22]. Define x(t) = uPC(t) — u(t). Fix g € L?(0,T; L?(Q2)) and let ¢ solve (7.1)~(7.3). With (7.5), consistency of

the dG discretization for (7.1)—(7.3), and the definition of uP“(0) (see (7.9)), we have

/oT(X,g)Q - /OT (up®, =0 — AY), — /OT /A fio = (u°,9(0)),
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=[ﬁ—(&wu?ﬂg+/JGWMﬁG%—/T/fw—(Wﬂﬂwk
—/()T(—E)t?/fh,Ul;?G)Q / (vn, ug, //ﬂ/} ¥(0)),

=WM®%F@E+A(&ﬁ9wh+/anﬁ%—ALAMFOﬁMWQ
= 000 v+ [ [ S =it R

For Ry, we use Cauchy—Schwarz’s inequality, Lemma 12 and (7.4):
\R1| < HUOHLz(Q)”U}h(O) - ¢(O)HL2(Q) < ChHUOHLz(Q)||9||L2(0,T;L2(Q))- (7-23)

For the term Ry, we use the following trace inequality valid for any 2 < ¢ < 3 and ¢ < r < ¢/(3 — q) (see [1],
Thm. 4.12 and [29], Prop. 2.3).

[

ey S C@Ivlwray, Yve wha(Q). (7.24)
We denote by Lj1 the Lagrange interpolant of 1 in W} (€,). From Theorem 3.1.6 in [10], we have

1 = Ll my < C@hs 2 [¢lm2s),  VE € En. (7.25)

From the above bound and Jensen’s inequality, we obtain

1/q 1/q
é 1 3_1
1% = Lntbllwragqy = (an—fzwml,q(m) < ha 2(2 |w|H2<E)> < ha 2 [Y|ga). (T.26)

Eecé&y Ecéy

Let r and ¢ satisfy the conditions in (7.24) and let ' be the conjugate exponent of r (1/r + 1/ = 1). Note
that Ly € WH9(Q). Hence, with (7.24) and (7.26), we obtain

1 = Lot o) < C@OIY — Ll gy < C@hs ™2 9] 2. (7.27)

With Cauchy—Schwarz’s inequality (3.16), and (7.27), we have

[rw-0= % [ swn- Lo /f (Lnton — )
A por B
<Y oy 1¥n = Latbnll oo iy + 1F 1| v ay 1m0 = %l o ay
EeTy
_ 3_1
<C D IEOA? £l 2 manyh” P llon = Lnvnll ooy + C@ha 2|l Lo ) 1] 120
EETA
— 3_1
< Ch | fll paeayllon — Ll 2y + C@R ™2 || fll 2y [ 12 ()- (7.28)

The last inequality holds since ' < 2. From Lemma 13, approximation properties, and (7.4), it then follows
that

_ 3_1
| Ra| < Ch™H | oo ripe (an 19n = Lntll p2o miz2qay) + C@ORT™ 2 1f oo rip2 an ¥l L2 0,72 ()
3_1
< Chllfll 20,2 an 1PN 2o, 2 0)) + C@Rs 21 fll 120 1 p2 0oy [Pl 220,72 (02))
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3_1
< Chl|fll 20,12 anl9l 20,7220 + C@h ™2 fll 2072240 190 220,712 02))-
For any 6 € (0,1/2), choose ¢ = 6/(3 — 26). The bound for R becomes

(Rl < COW 11 1o 000150 190 022000 (7.29)
We remark that r
’fo (x,g)g‘
XN 22 0,7;22(0)) = sup Tol e
g€ L2(0,T; L2(Q)) 192 0,1:02(0))
g7#0
Therefore, with (7.23) and (7.29), we can conclude. O

7.2. Fully discrete formulation

In this section, we consider a backward Euler discretization of problem (1.4)—(1.6). To simplify notation,
we drop the subscript DG on the discrete solution, namely uj = u];G’". Let 7 > 0 denote the time step size
and consider a uniform partition of the time interval (0,7 into Ny subintervals. We define a sequence of dG
approximations (u})o<n<ng € Vi¥(Er) such that for alln=1,..., Ny

(up — uzfl,w)ﬂ + ra(up,v) = T/ ft™v, Yo e ViFE), (7.30)
A

with u) = uP%(0) defined by (7.9). The existence and uniqueness of (u)p<n<n, follows from a standard proof
by contradiction where the coercivity of a (3.15) is used. From the fully discrete solutions, we construct a
piecewise constant in time solution, denoted by wuy, -, as follows:

up (L) =ul(x), t"P<t<t", n>1, up.(0,z)=ul(x), YxcQ.

The main result of this section is the following convergence theorem. For convenience, we define

1/2
1flle20,7:22(a)) = ( ZHf )1z A)) :

Theorem 7. Assume that 1 holds, 0,f € L*(0,T;L*(A)), and let 0 be in (0,3). There ezists a constant C(0)
independent of h and T, but depending on 0, such that
lu = un,rll 202y < CO) (Th™ + h)(”fHé?(O,T;L?(A)) +10efll 20,101 (a)) + HUOHLz(Q))
+CO) R O fll 201020y (7.31)

As a consequence, if T < h?>~?, we have

[ = unzll 20 7.120)) < CO )hl_e(”fHLZ(O,T;L?(A)) +10efll 201018y T 1 le20,7,220)) + HUOHLQ(Q))
(7.32)

The proof of the theorem requires an intermediate bound on the discrete solutions, that is stated in the
following lemma.

Lemma 14. Assume that 1 holds. There exists a constant C independent of T and h such that the following
estimate holds. For 1 < m < Nrp,

ZH“Z - UZ_1H2L?(Q) + TZHUZ - UZ_1||2DG + T”“;zn”QDG = CThiz(”“OH;(Q) + Hf”?Z’(O,T;LQ(A)))' (7.33)
n=1

n=1
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Proof. Let v =u} — uzfl in (7.30). Using the symmetry of a, we obtain
T _ _
|lup — up~ 1HL2 +§(a(uz,u2)—a(u2 L) +a(up —up T up —up ) —T/ft” up —uph).
We observe that by Holder’s inequality and (3.16),

/Af(t")(uZ —up ) < Y ENAM £ E) oy ||ur — U;LHIHLOO(E)

EETA

el D FICO1 PPN il e
E€T)

With the coercivity (3.15) and the above bound, we obtain

Huz — uZﬂHiz(Q) + %a(uz,uﬁ) — %a(uh U

< OPR ) 2o + 3l - uﬁ‘lHiz(m

We sum the resulting inequality from n = 1 to n = m and use the coercivity (3.15)
1 «— 2 T T — 2 T "
-1 2 -1 0,0 27 —2 2
5 D lluh =M o) + Gl o + 5 Dolluk — i lng < gatuh,up) + CTRTE Y I e a)-
n=1 n=1 n=1

With the continuity of a (3.14), an inverse inequality and the stability of the L? projection, we have

au,uf) < Cllud |2 < Ch=2 (|2 gy < CH2u (7.34)

0
220
With the above bound, we conclude the proof. (Il

Proof of Theorem 7. The proof uses some techniques from the proof of Theorem 3.4 in [23]. We first fix g €
L?(0,T; L?(Q)) and consider 9 the solution of (7.1)-(7.3). From (7.5), we have

/OT(uhT ,gQ—Z/ (up, 9)o — (u O,w(O))Q/OT/Afw. (7.35)

We rewrite the first term in the right-hand side as

([ W$wg=[ umr@w—AwQ=—w$www—wﬂ*»Q+/ a(uf, )

n—1 n—1 gn—1
= (00— (R e~ (0 )g) + [ ol

Since ¢¥(T) = 0, (7.35) reads

T
/ (s — 1, g),, =
0

Nt

> (up —up () +Z/ a(ul, ¥

n—1
n=1

(W — . (0)),, — / /A fo. (7.36)
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For each t € (t"~1,t"], choose v = Rp1(t) in (7.30) (recall that Ry is defined by (7.13)). Integrate the resulting
equation from t"~! to ", sum from n = 1 to n = Ny, and divide by 7. We obtain

< " 1 Nz ¢ Nt n
nz_:l/tnl a(up, Batp(t)) = —— ;/tnl(uﬁ —u N Rup())a + ;/tnl /Af(tn) R (t). (7.37)

With the definition of (7.13), (7.36) becomes

£

T 1 &
/o (Un,r —u,9)q = p Z - (upy —up= "0 (") = Rutp(t)),
n=1

Nt t™
— (u® =, (0) + > / /A (f(E")Rup(t) — F(O)Y(t)) = By + Ex + B3 (7.38)
n=17t""!
For E7, we introduce v (t) and write

(up —up~ (") — Ryip(t)), = — <uZ —u} L p(t) — Rup(t) + / 5}1/}) .
tn—l Q

Therefore, using error bounds of the elliptic projection, we obtain

Nt tm
B <02 Y [ k= 190
n=171""
Np o gm ) 1/2
+77! Z /tn_1 |uh —up~ ||L2(Q) (t—t"") 10l 2 4n—1 4. 12(00))
n=1

NT NT
< Crmin? ZHUZ - uz_lHLz(Q)||'(/)HL2(tn*1,t”;H2(Q)) +Cr2 ZHUZ —up! HL2(Q)Hat’(/)HLQ(t"*l,t";Lz(Q))
n=1

n=1

N 1/2
n—1||2 —
< C(ZHu}f —ul 1HL2(Q)> (T 1/2h2||¢||L2(0’T;H2(Q)) + 71/2||3t¢||L2(07T;L2(Q))). (7.39)
n=1
With Lemma 14 and (7.4), (7.39) reads

|Eq| < C(Tfr1 + h)||9||L2(o,T;L2(Q)) (||f||ez(o,T;L2(A)) + HUOHLz(Q)) (7.40)

The term FEj is easily handled since u! is the L? projection of u®. We use approximation properties of the
Lagrange operator Lj; and (7.4)

By = (uf) —u®,(0) — Ly (0))ar < B[] gen [0 11y < Chlu|| oo 90l 2oy (741)
(Q) (Q)

For the term Fs3, we write

J e - rove) = 3 [ ()= fonrae + 3 [ o0 - 00) = Wi+

EcTh EcT)

For Wy, we Holder’s inequality, (3.16) (¢ = co,p = 6) and (3.12). We obtain

WLl < 17 = @l ) 1BRY () | e ) < CRT2IFE) = £l a1 BRO (O] oo
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< CHHFE) = L0y | Rt

Since Rp) is the elliptic projection of ¢, we note that ||Ry¢||pg < C|[¢)] 2(q) and we obtain

W < O =0V 218 f Nl 2 gm0 (ap 1O 112 ) (7.42)

For Wy, we apply a similar argument as for the derivation of (7.28) (by introducing the Lagrange interpolant
Lpt) and obtain for any 2 < ¢ < 3

3_

Wa < ChY £ o a [ BE(E) = Lo (O] 2y + C@h 2SO 2y 100 1250 (7.43)

Hence, with approximation properties, choosing ¢ = 6/(3 — 20) for 0 < 6 < 1/2, and (7.4), the bound on FEj
reads
_1 _
| B3| < OTh™ 2100 fll 120,701 (ap 191 220,720y + CTH I I 22 0,7, m2 ) 1BRY = Ll 120,12 (52))
+ COP N Fl 2,122 an 19| L2072 02))
_1 _
< (CTh™2|10:f | 120,101 a)) + COR Nl 20,02 a9 220722 (62)) (7.44)

Therefore, with (7.38) and the bounds (7.40), (7.41) and (7.44), we conclude that for any non-zero g €
L2(0,T; L*())

fOT(uh,T —u,9)0

191l £20,7522(02))

<C(th™+ h)<||f||e2(o,T;L2(A)) + H“OHL2(Q))

+ TR0 f | 202 (ay) T COR Sl 120,22 - (7.45)

We conclude by taking supremum over all g. |

8. NUMERICAL RESULTS FOR ELLIPTIC PROBLEM

We employ the method of manufactured solutions to test the convergence rates of the scheme (3.9). The
domain is (0,1) x (0,1) x (0,0.25) and the line A is the vertical line passing through the point (2/3,1/3,0). The
function f is chosen to be the constant function equal to 1. The exact solution is defined by

w(@,y, 7) = —%m <<x— ;)2 + (y— ;)2> " . (8.1)

We compute the numerical errors on a series of uniformly refined meshes made of tetrahedra. We vary the mesh
size and the polynomial degree. The parameters in the definition of the bilinear form are chosen: e = —1, 8 = 1.
For k = 1, we choose 0 = 5 and for k = 2, the penalty value is 0 = 12. Figure 1 shows the dG solution for k = 1;
the size of the mesh is h = 1/16 and the domain has been sliced for visualization. Table 1 displays the L? errors
and convergence rates for the numerical solution with £ = 1 and k = 2. When errors are computed over the
whole domain 2, they converge with a rate equal to one, which is consistent with our bound (4.13). Next, we
verify the accuracy of the solution away from the line singularity by computing the L? error in two subdomains
B = (0.25,0.5) x (0.5,0.75) x (0,0.25) and By = (0.0,0.25) x (0.75,0.1) x (0,0.25). Table 1 shows the errors
in the L? norm over B and over By as the mesh is uniformly refined. Errors converge with a rate equal to 2,
which is optimal for piecewise linear approximations and suboptimal for piecewise quadratic approximation.
The numerical rates are consistent with (6.10) for £ = 1 and (6.50) for k = 2. We also remark that the errors
in B and in By are several order of magnitude smaller than the errors in €.
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FIGURE 1. View on sliced domain of the dG approximation obtained on mesh of size h = 1/16.

TABLE 1. Numerical errors and convergence rates for the numerical solution over the whole
domain and the two subdomains.

”“_UEGHL%Q) H“_“EGHL%B) HU_UEGHL2(BO)
k h Error Rate  Error Rate Error Rate
1 1/4 6.99e—03 1.28e—04 2.54e—05

1/8 2.28e—03 1.31 3.00e—05 2.09 6.70e—06 1.92

1/16 1.33e—03 1.08 6.60e—06 2.18 1.84e—06 1.86

1/32  7.12e—04 0.90 1.63e—06 2.02 5.05e—07 1.87
2 1/4 1.14e—02 1.09e—04 4.37e—06

1/8 4.27e—03 1.42 1.98e—05 2.46  7.48e—07 2.55

1/16 1.56e—03 1.45 6.22e—06 1.67 1.11e—07 2.75

1/32 6.14e—04 1.35 1.50e—06 2.05 1.77e—08 2.65

Tables 2 and 3 display the L? norm of the weighted broken gradient of the error for the values a = 0.51 and
a = 0.99 respectively and for k¥ = 1 and k& = 2. We observe that the convergence rates increase as we increase
the polynomial degree. We note that our results in Section 5 are valid only for £ = 1. For the case a = 0.51, the
numerical rates are better than the rates predicted by Theorem 2 whereas for the case a = 0.99, the numerical
rates match the predicted theoretical rates.

To show the robustness of the scheme (3.9), we now consider a sinusoidal-like curve A made of segments.
The numerical parameters are the same as for the manufactured solution but here, we do not know the exact
solution. Figure 2 displays the DG solution on a mesh of size h = 1/10.

9. CONCLUSIONS

Convergence of the class of interior penalty discontinuous Galerkin methods applied to elliptic and parabolic
equations with Dirac line-source is proved by deriving error estimates in different norms. Almost optimal error
bounds are shown in regions away from the line singularity. The proofs of the error estimates are technical
and utilize dual problems and weighted Sobolev spaces. Stronger results are obtained for the case of piecewise
linear approximation since local error bounds are valid in regions that may reach the boundary of the domain.
In the general case of approximation of degree k > 2, local error bounds are subpoptimal and valid in regions
strictly included in the domain. Most of the paper is dedicated to the analysis of the elliptic problem and
convexity of the domain is assumed. For the parabolic problem, global error bounds in L? in time and in space
are shown. Future work would address relaxing the convexity assumption and obtaining local error bounds for
the time-dependent problem.
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TABLE 2. Numerical error and rates for the weighted energy norm with a = 0.51.

th(“ - UEG)HL?X(Q)
k h Error Rate

1 1/4  6.79e—02
1/8  4.90e—02 0.47
1/16  3.48¢—02 0.49
1/32  2.46e—02 0.50
2 1/4  7.43¢—02
1/8  4.09e—02 0.86
1/16  2.19e—02  0.90
1/32  1.28¢—02 0.77

TABLE 3. Numerical error and rates for the weighted energy norm with = 0.99.

([ Vn(u— u]f?G)HL;,(Q)
k h Error Rate

1 1/4 27802
1/8  1.56e—02 0.83
1/16 8.53¢—03 0.87
1/32  4.64e—03 0.88
2 1/4  2.67e—02
1/8  1.05e—02 1.34
1/16  4.09e—03 1.36
1/32  1.72e—03 1.25

FI1GURE 2. Sliced view of the numerical solution for a piecewise linear curve A.
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