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We present a new method for analysing stochastic epidemic models under
minimal assumptions. The method, dubbed dynamic survival analysis
(DSA), is based on a simple yet powerful observation, namely that
population-level mean-field trajectories described by a system of partial differ-
ential equations may also approximate individual-level times of infection and
recovery. This idea gives rise to a certain non-Markovian agent-based model
and provides an agent-level likelihood function for a random sample of infec-
tion and/or recovery times. Extensive numerical analyses on both synthetic
and real epidemic data from foot-and-mouth disease in the UK (2001) and
COVID-19 in India (2020) show good accuracy and confirm the method’s ver-
satility in likelihood-based parameter estimation. The accompanying software
package gives prospective users a practical tool for modelling, analysing and
interpreting epidemic data with the help of the DSA approach.
1. Introduction
The standard approach to building a stochastic compartmental epidemicmodel is
to make use of a continuous-timeMarkov chain (CTMC) to keep track of the sizes
of the compartments over time (e.g. number of individuals with different
immunological statuses) using counting processes [1]. Following the random
time change representation of Poisson processes [2,3], the trajectory equations
for those counting processes arewritten in terms of independent, unit rate Poisson
processes. When the size of the population under consideration is large, those
counting processes, appropriately scaled, converge to deterministic, continuous
real-valued functions satisfying certain ordinary differential equations (ODEs)
by virtue of the functional law of large numbers (FLLN) for Poisson processes
[4,5]. This convergence provides a link between the stochastic and the determinis-
tic world and the limiting ODEs are often referred to as the mean-field equations
in the literature. Famous examples include the classical Kermack–McKendrick
equations for the susceptible–infected–recovered (SIR) epidemic model [6].

However, this astounding popularity of the standard Markov models or the
corresponding mean-field ODE models seems to belie their apparent lack of
faithfulness to the underlying biology of the disease. To quote van Kampen [7],
‘Non-Markov is the rule, Markov is the exception’.
Indeed, the population count-based Markov models assume exponentially
distributed inter-event times. As a consequence, the instantaneous rates of
infection and recovery are assumed constant regardless of key epidemiologi-
cally relevant covariates, such as the age of infection (see §2), time since
vaccination, etc. As shown in [8] (in particular, see table 1 and fig. 1), the esti-
mates obtained by assuming a Markovian model when the underlying model is
non-Markovian could be significantly biased. While there are more advanced
stochastic models that do incorporate those covariates (as we will also do in
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this paper), those models are often fit to data in an ad hoc
fashion; or are too computationally expensive to be useful
for practical purposes. Our aim in this work is to build a prin-
cipled and rigorous statistical approach to fitting those more
advanced stochastic models to data without compromising
on simplicity.

In this paper, we present a survival analytic approach,
dubbed dynamic survival analysis (DSA), that constructs
probability distributions of individual times of infection
and recovery from population-level (mean-field) trajectory
equations. In [9], a subset of the authors first employed this
idea in the context of the classical Kermack–McKendrick
Markovian (SIR) epidemics described by their mean-field
ODEs. Here, we extend the idea to the vastly more realistic
class of non-Markovian models that allow non-exponential
contact interval [8] and infectious periods. The theoretical
underpinning is laid down by an extension of the so-called
Sellke construction [1,10], which we describe in detail in §2.2.

There are several advantages of DSA. First, DSA does not
require knowledge of the size of the susceptible population,
which is almost always unknown in real epidemics and often
assumed to be the population of the entire city, state, or even
a country. In fact, DSA not only avoids this ad hoc adjustment,
but also provides a ready estimate of the effective population size,
tracking of which could provide further insights into an
ongoing epidemic. Second, DSA does not require the whole
epidemic trajectory and works with only a random sample of
infection and, if available, recovery times. Third, on the
strength of its survival analytic foundation, DSA is able to
handle censoring, truncation and aggregation of data (over
time and population) in a straightforward manner. We
illustrate some of these features of the DSA method below.

The rest of the paper is structured as follows. §2 describes
the stochastic model in terms of measure-valued processes
and the so-called Sellke construction, along with their large
population mean-field approximations. In §3, we describe
the DSA modelling approach in detail before conducting
extensive numerical analysis in §4. We apply the DSA
method to the epidemics of foot-and-mouth disease (FMD)
in the UK and COVID-19 in India. In §4, we also provide syn-
thetic data analysis so that DSA could be compared against
the true data-generating model. Finally, we conclude with a
short discussion in §5. For the sake of completeness,
additional mathematical derivations and numerical figures
are provided in appendices, where we also compare the per-
formances of Markovian and non-Markovian DSA on the
FMD dataset.
2. Stochastic model
Because we want to keep track of important epidemiological
covariates along with counts of individuals in different
compartments, our primary tool will be measure-valued
processes, which are naturally capable of carrying more infor-
mation than raw population counts. The measure-valued
representation will also allow us to turn an inherently non-
Markovian model into a Markov model, albeit on a more
abstract state space. While the age of infection (§2) is the most
natural choice for ‘age’, one may also use the notion of age to
account for other important covariates that describe time since
some specific event. For instance, the biological age, time since
vaccination are important for certain infectious diseases.
Therefore, we use the term ‘age’ in a broad sense and keep
track of the ages of individuals with different immunological
statuses (susceptible, infected, recovered/removed).

Suppose we have n susceptible and m infected individuals
initially. We assume that m depends on n in the sense that m/
n→ ρ as n→∞ for some ρ∈ (0, 1). Let us now define the
following stochastic processes:

XS
t :¼

XNSðtÞ

k¼1

dskðtÞ , XI
t :¼

XNIðtÞ

k¼1

dikðtÞ , XR
t :¼

XNRðtÞ

k¼1

drkðtÞ , ð2:1Þ

where NS(t), NI(t) and NR(t) are, respectively, the total num-
bers of susceptible, infected and recovered individuals in
the population at time t. The quantities sk(t), ik(t) and rk(t)
are the ages of the kth susceptible, infected and recovered
individuals (following some specific ordering convention).
The set-function δx is the Dirac measure, i.e. for a set A, the
function δx(A) takes value 1 if x∈A and 0 otherwise. The sto-
chastic processes XS

t , XI
t and XR

t keep track of the age
distribution of the population of individuals. For instance,
taking the ‘age’ for the infected individuals to represent the
age of infection, XI

tð½3:5, 7�Þ gives us the number of infected
individuals whose ages of infection lie in the set [3.5, 7].
Now, define the stochastic process

Xt :¼ ðXS
t , X

I
t , X

R
t Þ:

The process Xt is a Markov process. Although we do not
explicitly show the dependence of the stochastic process Xt

on the initial size of the susceptible population n, it is
worth keeping in mind.
2.1. Contact intervals and infectious periods
We adopt the pairwise model of [8] to describe the dynamics
of the epidemic process under the stochastic mass-action set-
up. There are two types of events: infection and natural recov-
ery. In order to describe the intensities (of the Markov process
Xt) corresponding to these two types of events, let us introduce
two functions: b :Rþ � Rþ ! Rþ and g :Rþ ! Rþ. The func-
tion β(u, v) describes the instantaneous intensity of an
infectious contact between a susceptible individual of age u
and an infectious individual of age v. That is, the probability
that a susceptible individual of age u will be infected by an
infectious individual of age v in the next δt time unit is n−

1β(u, v)δt under the stochastic law of mass-action, where δt is
assumed infinitesimally small. In the language of the pairwise
model [8] of infectious diseases, the function β characterizes
the probability law of the contact intervals. The function γ is
the hazard function that characterizes the probability law of
the infectious period. Note that neither of these two probability
laws needs to be exponential, even thoughXt itself is aMarkov
process (see [11] for a similar example in the context of a sto-
chastic chemical reaction network (CRN)). The infection and
natural recovery processes are assumed independent. We
also assume that recovered individuals can no longer infect
others or be infected.

The stochastic process Xt can be simulated by extending
the standard Doob–Gillespie’s stochastic simulation algor-
ithm (SSA) in a straightforward manner. An alternative
approach to simulating individual trajectories is the Sellke
construction, which also provides the theoretical underpin-
ning to the DSA approach. For the sake of simplicity, we
will assume in the following that the function β(u, v) depends
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only on the age v of the infected individual and not on the
age u of the susceptible individual, i.e. β(u, v) = β(v).
This will allow for a simpler and a more intuitive description
of the Sellke construction. The general case of β(u, v) is
considered in appendix A.
0 1 2 3 4
time
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th
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sh
ol

0 2 4
0
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infectious period distribution

Figure 1. Sellke construction. Here, we begin with a single infected individ-
ual. The arrows point to the times of infection. The orange horizontal lines
indicate the infectious period of each infected individual. The probability den-
sity function (PDF) of the infectious periods is shown in the inset (WEIBULL

with shape c = 1.9 and scale 1).
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2.2. Sellke construction
The classical Sellke construction [1] provides an alternative
individual-based description of the standard stochastic
mass-action (SIR) epidemic model. It can be shown that the
resultant epidemic process is equivalent to the original popu-
lation-level stochastic model in the sense that the counts of
individuals with different immunological statuses have the
same probability law under both constructions. However,
the crux of the Sellke construction is that it describes the epi-
demic process in terms of individual survival probabilities
(i.e. for an initially susceptible individual, the probability
of remaining susceptible until time t). This is useful for par-
ameter inference. The classical Sellke construction can be
adapted to the age-structured epidemic model of ours in a
straightforward fashion.

To each of the initial n susceptible individuals, we assign
a threshold, an exponentially distributed random variable
with mean one. Let Ui denote the threshold corresponding
to the ith susceptible individual. The random variables U1,
U2,…, Un are independent. Let U(1), U(2),…, U(n) be the cor-
responding order statistics, i.e. U(1)≤U(2)≤…≤U(n). Let us
now define the cumulative infection pressure

AðtÞ :¼
ðt
0

1
n

XNIðuÞ

k¼1

bðikðuÞÞdu ¼
ðt
0
hXI

u, n
�1bidu, ð2:2Þ

where, for a point measure n ¼ Pn
i¼1 dxi and a measurable

function f, the notation 〈n, f〉 denotes the integration of
the function f with respect to the measure ν, i.e.

hn, fi :¼
ð
f dn ¼

Xn
i¼1

f ðxiÞ:

The epidemic process proceeds as follows: The first infection
occurs when the cumulative infection pressure exceeds the
smallest individual threshold, i.e. when AðtÞ � Uð1Þ for the
first time; the second infection occurs when AðtÞ � Uð2Þ, and
so on. Note that infected individuals recover following an
infectious period that has a probability law characterized
by the hazard function γ. Therefore, it is possible that the
cumulative infection pressure becomes constant when
the last infected individual recovers and there are no
more infected individuals. Susceptible individuals whose
thresholds are never exceeded by the cumulative infection
pressure AðtÞ escape infection and never leave the susceptible
compartment. Figure 1 provides a pictorial description of the
Sellke construction.

Let us denote the time of infection of an initially suscep-
tible individual by TI. In essence, the Sellke construction
specifies an individual-level survival function: The prob-
ability that an initially susceptible individual i remains
susceptible until time t, conditional on the history (filtration)
Ht� of the epidemic process, is given by

P(TI . t j Ht�) ¼ P(Ui . At j Ht�) ¼ exp (�At)

¼ exp �
ðt
0
hXI

u, n
�1bidu

� �
, ð2:3Þ
where Ui � Exponential ð1Þ is the threshold of the individual
i. This survival probability will play a crucial role in devising
the DSA-likelihood function. It is worth pointing out that the
random variable TI is improper because some individuals
may escape infection with positive probability.

From the classical theory of stochastic epidemiology,
we know that appropriately scaled population counts in
CTMC-based epidemic models converge to solutions to
ODEs in the large population (mean-field) limit [1]. They
are a consequence of the FLLN-type approximation theorems
for Markov processes [4,5]. The intuition is that the stochastic
fluctuation, which is typically described in terms of a zero-
mean martingale after a Doob–Meyer decomposition of the
counting processes around the mean, vanishes in the limit.
A similar intuition holds true for measure-valued Markov
processes. Indeed, the scaled process n−1Xt converges to a
vector of deterministic measure-valued functions in the
limit of n→∞. Furthermore, when the limiting measure-
valued functions admit densities, it is possible to describe
them using partial differential equation (PDE) (e.g. see
[12,13] and appendices).
2.3. Mean-field limit
We are interested in the limit of the epidemic process as
n→∞ with m/n→ ρ, for some ρ∈ (0, 1). Therefore, in the
limit, the total scaled population size is (1 + ρ). We scale
the system this way because we wish to interpret the suscep-
tible curve as a survival function, which takes the value
of one at zero. We shall elaborate further on this point in §3
on DSA.

Under some technical assumptions on the intensities
and the initial population size (more precise statement in
appendix A), the scaled stochastic process n−1Xt converges
to a deterministic continuous function xt :¼ ðxSt , xIt , xRt Þ as
n→∞, where the components xSt , x

I
t and xRt are measure-

valued functions. The main technical tools required to estab-
lish the convergence are borrowed from existing probability
theory literature. In particular, similar techniques and deri-
vations can be found in [12–16]. A brief, intuitive sketch of
the proof of convergence of the scaled process n−1Xt to the
deterministic function xt is provided in appendix A for the
sake of completeness.
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The densities ySðt, †Þ, yIðt, †Þ and yRðt, †Þ of xSt , xIt and xRt
satisfy the system of PDE given in (A 5) in appendix A.
Because of our simplifying assumption β(u, v) = β(v), it
makes sense to integrate out the age component for the sus-
ceptible and the recovered individuals. Therefore, by defining

zSðtÞ :¼
ð1
0
ySðt, sÞds, and zRðtÞ :¼

ð1
0
yRðt, sÞds,

we can write the limiting system as follows:

d
dt

zSðtÞ ¼ �zSðtÞ
ð1
0
bðsÞyIðt, sÞds,

(@t þ @s)yIðt, sÞ ¼ �gðsÞyIðt, sÞ

and
d
dt

zRðtÞ ¼
ð1
0
gðsÞyIðt, sÞds,

9>>>>>>=
>>>>>>;

ð2:4Þ

with initial conditions zS(0) = 1, zR(0) = 0 and
yIð0, †Þ :Rþ ! Rþ such thatð1

0
yIð0, sÞds ¼ r,

and boundary condition

yIðt, 0Þ ¼ zSðtÞ
ð1
0
bðsÞyIðt, sÞds: ð2:5Þ

Using the method of characteristics on (2.4), we get

yIðt, sÞ ¼
yIð0, s�tÞSgðsÞ

Sgðs�tÞ , for s . t,

yIðt� s, 0ÞSgðsÞ, for t � s,

(

where Sg is the survival function of the probability distri-
bution characterized by the hazard function γ. That is,
SgðtÞ ¼ exp � Ð t

0 gðsÞds
� �

. Unfortunately, yI does not admit
an explicit solution. However, efficient numerical methods
exist. We describe the solution scheme that we adopted in
appendix B. The limiting proportion of recovered individuals
zR is also fully described by the limiting density yI of infected
individuals

zRðtÞ ¼
ðt
0

ð1
0
gðvÞyIðu, vÞdvdu ¼

ðt
0
hxIs, gids:

For different choices of the functions β and γ depending on
the particular infectious disease in question, one can solve
(2.4) numerically and fit to data. Typically, one would
assume a parametric representation of the functions β and
γ, and then attempt to infer those parameters based on
data. However, a common problem in epidemiological litera-
ture is that the choice of the likelihood function is often ad
hoc and strictly speaking, unjustifiable. To this end, the
DSA method [9,17–20] provides, in a principled way, a
likelihood function based on a random sample of transfer
times.1 In the next section, we describe the DSA method in
greater detail.
3. Dynamic survival analysis and parameter
inference

The DSA method combines dynamical systems theory and
survival analysis. For a given dynamical system, typically
described by ODEs or PDEs for population counts/pro-
portions, the DSA method provides an alternative
interpretation that characterizes probability laws of transfer
times [9,17,19,21]. Themathematical underpinning is provided
by a novel application of the Sellke construction.

Rewriting (2.4) and with the initial condition zS(0) = 1, we
immediately see

zSðtÞ ¼ exp �
ðt
0

ð1
0
bðvÞyIðu, vÞdvdu

� �

¼ exp �
ðt
0
hxIs, bids

� �
,

which is precisely the limit of the survival function
P(TI . t j Ht�) according to the Sellke construction in (2.3)
as n→∞. That is,

zSðtÞ ¼ lim
n!1P(TI . t j Ht�):

Note that the random variable TI in the Sellke construction
depends on n even though we do not show it explicitly to
keep the notations simple. Therefore, the function zS, the lim-
iting proportion of susceptible individuals, can be interpreted
as a survival function. However, the survival function zS is
improper because zS(∞) > 0. The quantity zS(∞) is precisely
the limiting proportion of susceptible individuals that forever
escape the infection. The survival function zS can be made
proper by conditioning on individuals who get infected [9].
Another important observation is that the ‘time to infection’
random variables associated with the initially susceptible
individuals become independent in the limit of n→∞.
This phenomenon is sometimes referred to as mean-field
independence [21,22].
3.1. Likelihood contribution of infection times
Let us denote by θ the set of parameters required to describe
the contact interval distribution in terms of β and the infec-
tious period in terms of γ. On account of the Sellke
construction, we can treat the function zS as an improper
survival function for the (improper) random variable TI,
the time to infection for an initially susceptible individual.
Therefore, we can define the conditional probability density
function (PDF)

fT,uðtÞ :¼ � 1
tT

d
dt

zSðtÞ ¼ zSðtÞhxIt , bi
tT

, ð3:1Þ

for the infection times, where τT : = 1− zS(T ). Also, set τ : = τ∞.
The PDF fT is proper by virtue of the conditioning.

Most epidemic and pandemic trajectories are only par-
tially observed. A crucial advantage of the DSA approach is
that it does not require the whole trajectory. Suppose we
have a random sample of infection times t1, t2,…, tK from
an epidemic trajectory observed partially until time T, for
some finite, positive number T. Then, following the mean-
field independence, the contribution of the infection times
to the DSA likelihood function is given by

‘I(u) :¼
YK
i¼1

fT,uðtiÞ: ð3:2Þ

The contribution ‘I can bemodified in a straightforward fashion
if the infection times are censored and/or truncated [19].
3.2. Likelihood contribution of recovery times
Now, let us describe the contribution of the recovery times
to the DSA likelihood. While the recovery times are often
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not observed, or only partially observed (with further
possibility of censoring or truncation), when available
they can be incorporated into the DSA likelihood function,
rendering it more informative. There are two possible scen-
arios. Let us consider the simpler case first: we have a
random sample s1, s2,…, sL of infectious periods. Then,
denoting the PDF of the probability law characterized by
the hazard function γ by rγ, the contribution of the random
sample of infectious periods to the DSA likelihood function
is given by

‘
ð1Þ
R (u) :¼

YL
i¼1

rgðsiÞ: ð3:3Þ

Now, let us consider the second case: we do not directly
observe individual infectious periods, but only observe
recovery times. Suppose u1, u2,…, uM is a random sample
of recovery times of M individuals whose infection times
are unknown. They are precisely a random sample of the
sum of two independent random variables: time to infection
and infectious period. Therefore, we can define the convolu-
tion-form PDF

gT,uðtÞ :¼ gðtÞÐ T
0 gðsÞds

, ð3:4Þ

conditional on the partially observed epidemic trajectory
until time T, where

gðtÞ :¼
ðt
0
fT,uðuÞrgðt� uÞdu: ð3:5Þ

Now, with the conditional PDF of the recovery times given in
(3.4), we can write down the contribution of the random
sample u1, u2,…, uM of recovery times as follows:

‘
ð2Þ
R (u) :¼

YM
i¼1

gT,uðuiÞ: ð3:6Þ

The conditional PDF gT,θ, in general, does not admit a closed-
form expression. However, it can be computed numerically.
3.3. The DSA likelihood
Suppose we have a random sample t1, t2,…, tK of infection
times, a random sample s1, s2,…, sL of infectious periods
and a random sample u1, u2,…, uM of recovery times.
Then, the DSA likelihood function is given by

‘(u) :¼ ‘I(u)� ‘
ð1Þ
R (u)� ‘

ð2Þ
R (u): ð3:7Þ

Note that it is not necessary to have data on recovery times.
The likelihood contribution ‘I(θ) is adequate for parameter
inference. See [17], where parameter inference was done for
the COVID-19 pandemic in the state of OH, USA, based
only on infection times. When information on recovery
times is unavailable, we simply set ‘ð1ÞR ¼ 1 and ‘

ð2Þ
R ¼ 1 by

adopting the convention
Q0

i¼1 si ¼ 1.
Often it is easier to work with the log-likelihood function.

Therefore, for the purpose of parameter inference, we also
define the DSA log-likelihood function

L(u) :¼ logð‘(u)Þ
¼ logð‘I(u)Þ þ logð‘ð1ÞR (u)Þ þ logð‘ð2ÞR (u)Þ: ð3:8Þ

The maximum-likelihood estimate (MLE) û of the parameter
θ is then numerically obtained by maximizing the log-
likelihood function LðuÞ. That is,
û :¼ argmax

u
L(u): ð3:9Þ

We present numerical results in §4. For Bayesian methods, we
need to introduce a prior for the parameter θ and then
implement a Markov Chain Monte Carlo (MCMC) algorithm
to approximate the posterior distribution of the parameter θ.
However, we do not pursue the Bayesian path in this paper.
3.4. Mean-field limits as Chapman–Kolmogorov
equations

An alternative way to view DSA is to interpret the limiting
trajectory equations as satisfying Chapman–Kolmogorov
equations (written in the differential form) for certain prob-
ability distributions. Let us pick a random individual
embedded in an infinitely large population (mean-field)
and follow in time. Let WðtÞ [ fS, Scg denote a time-
inhomogeneous CTMC that keeps track of whether an indi-
vidual is in the susceptible compartment (S) or not (Sc).
We specify the time-dependent instantaneous transition
rates of W(t) as follows:

QðtÞ :¼ qSSðtÞ qSScðtÞ
0 0

� �
¼ �hxIt , bi hxIt , bi

0 0

� �
, ð3:10Þ

where xt is the mean-field FLLN limit of the stochastic pro-
cess n−1Xt. Write pt :¼ ðpSt , pS

c

t Þ for pAt :¼ P(WðtÞ ¼ A), the
marginal distribution of the Markov process W. We of
course have pS

c

t ¼ 1� pSt . Then, following the previous
discussion, DSA, in essence, is tantamount to writing

pSt ¼ zSðtÞ
1þ r

, pS
c

t ¼ 1þ r� zSðtÞ
1þ r

:

It is straightforward to verify that pt satisfies

d
dt

pt ¼ ptQðtÞ, ð3:11Þ

which is the time-inhomogeneous Chapman–Kolmogorov
equation (in the differential form) for the marginal distri-
bution. It is in this viewpoint that we say the limiting
mean-field equations given in equation (A 5) satisfy the
Chapman–Kolmogorov equations for the probability distri-
bution pt. It is worth mentioning that the time derivative
(d/dt)pt gives us what is popularly known as the chemical
master equation (CME) in the physical sciences literature.
Note that our Chapman–Kolmogorov viewpoint is somewhat
different from the notion of a generalized master equation
(GME) [23,24] in that we are not attempting to describe the
original stochastic system in §2 with equation (3.11),
but rather constructing a Markov chain whose Chapman–
Kolmogorov equations are given by the mean-field limit of
the original stochastic process.

Viewing the limiting trajectory equations as satisfying
Chapman–Kolmogorov equations also reveals that, if we have
data only on individual infection times, the likelihood function
‘I in equation (3.2) is essentially a Markov likelihood function.
Here, we described the Chapman–Kolmogorov viewpoint on
the simplistic state space fS, Scg. In general, we could construct
a Markov process WðtÞ [ W :¼ fS, I, Rg � ½0, 1Þ that keeps
track of the immunological status alongwith the age of the indi-
vidual. Accordingly, DSA can be shown to be tantamount to
describing the transition kernel for W(t) in terms of the mean-
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field trajectory equations xt and their densities yS, yI, yR. Since
this viewpoint is only a side note and not the main aim of the
paper, we leave the discussion for a future work. We do, how-
ever, refer interested readers to [25], where the authors use a
stationary GME with memory terms and show that the effect
ofmolecularmemory is equivalent to the introduction of a feed-
back in the context of intracellular reaction processes. We also
remark that in certain examples, e.g. [26], the non-Markovian
formulation can be shown to be equivalent to a Markovian for-
mulation in that the steady state of the non-Markovian process
can be reduced to that of an equivalent Markov process.

3.5. Estimate of effective population size
In addition to giving a simple product-form likelihood func-
tion for θ, DSA also gives a ready estimate of the effective
population size. Given kT, the number of cases observed by
time T, the effective population size can be estimated by the
discount estimator

n̂T :¼ kT
1� zSðTÞ : ð3:12Þ

In similar vein, we can also estimate the final size of the epi-
demic as follows:

k̂1 ¼ tkT
1� zSðTÞ : ð3:13Þ

Refer to [9,17] for further discussions on this.
4. Numerical results
In this section, we demonstrate how the DSA method can
be used for inference of model parameters from infectious
disease outbreak data using the likelihood functions
described in §3. Typical outbreak data consist of popu-
lation-level aggregated counts (such as the daily number of
newly positive cases). Hence, we use this scenario as a bench-
mark for numerical validation. At the beginning, we will
analyse synthetic data and make several simplifying assump-
tions, which we will gradually remove in favour of more
realistic models when considering datasets from real epi-
demic outbreaks, such as the FMD epidemic in the UK and
the COVID-19 pandemic in India.

4.1. Synthetic data
We begin by carrying out DSA analysis on synthetic data. We
begin by keeping the premise deliberately simple: we assume
that the family of the infectious period is known in that the
functional form of the hazard function γ (or the PDF charac-
terized by γ) is known, but the parameters are to be inferred
along with the initial condition of the PDE (A 5) and a con-
stant infection rate, β. To this end, we begin by assuming
the infectious period is a GAMMA random variable. The ration-
ale behind this choice is the flexibility of the GAMMA

distribution and its historical importance in the infectious dis-
ease epidemiology, as a natural generalization of the
EXPONENTIAL distribution [27–31]. The proposed inference
scheme, of course, works for any other distribution, such as
the LOG-LOGISTIC or WEIBULL (see §4.2). All the code to repro-
duce the results in this section is available online,2 and a
brief description of the numerical scheme used to solve the
PDE can be found in appendix B.
4.1.1. Description of data
The Sellke construction is an excellent means to generate exact
simulations of an epidemic. We simulate an outbreak on a
population of N = 10 000 individuals. Epidemics are run until
no infected individuals are present in the population. Datasets
consist of the series of infection and recovery times taken from
the simulation, without noise nor delays.

We consider three different scenarios, characterized by
different availability of data:we eitherworkwith only recovery
times, with only infection times, or with both. We generate
1000 datasets from the same initial conditions, to characterize
the distribution of the estimates. Estimates are found by
means of a mix of global and local optimization routines.

The objective is to infer the initial proportion of infected
individuals ρ = 50/9950, the per-contact infection rate β =
0.25, and the parameters of the distribution of infectious
period, which is a GAMMA distribution with mean μ = 9 and
variance σ2 = 6. Results are shown in figures 2 and 3.

We find that inference based on only infection times using
the likelihood function ‘I(θ) in (3.2) results in wider distri-
butions for all inferred parameters, suggesting greater
uncertainty, than inference based on both. This is expected
because the likelihood function ‘(θ) in (3.7) is more informative
than the likelihood function ‘I(θ) in (3.2). In general, the true
parameters are always near the mode of the distributions of
the inferred parameters. It is worth noting that when the infec-
tion rate β is overestimated, the initial proportion of infected
individuals ρ is underestimated, and vice versa. This suggests
a potential statistical unidentifiability of the parameters. Out-
breaks starting with a higher number of infected individuals
but smaller transmission rate may be hard to distinguish
from those that start with a smaller number of infected individ-
uals but with higher transmission rate.

The mean and the standard deviation of the distribution
of the infectious period are reported in figure 3. We observe
that inference based only on infection times, in general, accu-
rately captures the mean of the distribution of the infectious
period but tends to overestimate the variance. The overall
quality of inference improves significantly when recovery
times are also available.

4.2. Foot-and-mouth disease
Let us now turn to real datasets. We consider the 2001 FMD
outbreak in the UK. The outbreak began at the end of Febru-
ary 2001 and ended in September 2001, affecting more than
2000 farms. Policy makers’ efforts to control the epidemic
resulted in the culling of millions of herds and flocks [32].
Because of the specific interventions taken to control the out-
break, we interpret the infectious period in the DSA model as
the time from when the disease hit a farm to the elimination
of infected herds, i.e. the time to removal. Since this quantity
is unlikely to be exponentially distributed, we fit a more flex-
ible GAMMA distribution to it. For the contact interval
distribution characterized by the hazard function β, we
assume a WEIBULL distribution, which is in line with other
methods present in the literature [33]. We note that both
these choices may be viewed as generalizing the usual
Markovian model based on two EXPONENTIAL distributions.

The dataset3 consists of daily incidence of infected pre-
mises by time of report, {ti, Ii}, with no information on
removal times (figure 4). For each day ti, we distribute the
number of new cases Ii uniformly in the interval (ti−1, ti).
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Furthermore, we consider only the first 80 days of data, to
exclude the noisy tail and potentially confounding effects of
strict measures. These simplifying assumptions allow us to
maximize the likelihood ‘I(θ) in (3.2). Since the original data
points are too noisy, we consider the 7-day moving average
of the counts, starting from day 6. This results in a smoother
dataset that is less noisy, although a bit delayed with respect
to the true one.

Maximum-likelihood estimates are obtained by means of
a mix of global and local optimization routines. The distri-
butions of inferred contact interval and infectious period
are shown in figure 5. The shapes of the inferred distributions
are in line with findings from other studies of same outbreak
[34]. Our model with WEIBULL contact interval distribution
and GAMMA infectious period does not consider the incu-
bation period explicitly. Once both infectious period and
contact interval distributions are known, we can find R0

using the formula R0 ¼
Ð1
0 SgðtÞbðtÞdt [35], where Sγ, we

recall, is the survival function of the infectious period distri-
bution. This gives a point-estimate of R0 = 2.55. Finally, the
effective population size inferred was n̂T ¼ 2284.
We compute confidence intervals using a bootstrap
method, which we describe now. We first solve the limiting
PDE (A 5) with theMLE estimates. From the solution, we com-
pute the distribution of infection times PDF (3.1). This
distribution is used to generate n = 500 synthetic datasets
with as many datapoints as the original one, consisting of
simulated dates of infections, onwhichwe repeat the inference.
Each new set of inferred parameters is then used to produce
both the estimate forR0 (shown in figure 11) and the (t, I(t)) inci-
dence curve that we can compare against the true data.

Finally, when computing confidence intervals, we com-
pensate for other sources of noise that cannot be explicitly
accounted for in our the model but are present in real-
world data, such as testing limits, day-of-the-week effects
and various sources of delays. This variance-adjustment is
done by inflating the confidence intervals by a factor deter-
mined by taking the square root of the variance between
the data points and the 7-day moving average. Results are
shown in figure 6. As can be verified, the trajectories do cap-
ture the epidemic trend quite well in that all the data points
lie within the variance-adjusted 95% confidence interval.
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4.3. Comparison with Markovian compartmental
models

We show the difference between a flexible non-Markovian
model and the standard Markovian compartmental SIR
model (with EXPONENTIAL contact intervals and EXPONENTIAL

infectious periods) by comparing their performance for the
FMD epidemic. Both models tend to perform better when
the data on the full course of the epidemic are considered
(not shown). Here, we present an analysis based on the
more realistic situation where only early data are available.
We are interested both in inference of the infectious period
and the contact interval distributions, and in forward predic-
tions. For the purpose of prediction, we include in our model
only observations from the first 20 days, corresponding to
roughly 300 cases, with a peak daily case count of 22 infected
premises. The first three days are excluded from the inference
because there were no cases reported on day 2 and day 3. It is
worth remembering that the animal culling policy was intro-
duced on 15 March 2001, which is after the last data point
considered, although a national movement ban was already
in place for the whole period. In both scenarios, we consider
the curves obtained from the MLE estimates projected to day
70 and compared with real case count and cumulative
infections. Results are shown in figures 7, and figure 13 in
appendix C.

The DSA model is better able to capture the dynamics of
the real epidemic, and gives substantially more reliable pre-
dictions, even when only a few observations are taken into
account. Another important aspect is the interpretability of
the results. The DSA model allows us to get a realistic idea
of how both the contact interval and the infectious period
distributions appear, whereas standard EXPONENTIAL–
EXPONENTIAL models do not provide much insight, beyond
looking at the rate of the underlying EXPONENTIAL distri-
butions. Another important result that the DSA model is
able to achieve is the estimation of the effective population
size. This can be interpreted as the number of farms that
were potentially involved in the dynamics, and it is therefore
an upper limit on the total number of farms that might
become infected. For this model, the median estimated
population size was n̂T ¼ 5739 (90% confidence interval
[1740− 32 224]; see also figure 14), in line with results from
the literature [34].
4.4. Third wave of COVID-19 in India
The analysis of FMD outbreak data makes use of only
infection times. As the synthetic data analysis suggests that
inference based only on infection times tends to be poorer
compared to when both infection times as well as recovery
times are available, we now analyse an epidemic where
both times are available.

In a global effort to document and control the ongoing
COVID-19 pandemic, many governments provided freely
available population-level datasets that we can use as case
studies for inference when both infection and recovery
times are known. Various countries adopted strong non-
pharmaceutical measures that drastically changed the local
dynamics of the epidemic, resulting in several distinct epi-
demic waves. At the same time, new SARS-CoV-2 variants
emerged with markedly different epidemiological character-
istics. To curtail the impact of such exogenous factors, we
consider only the third wave in India.4 Data consist of daily
incidence and prevalence of cases, recoveries and deaths,
meaning that we have data to inform both likelihoods in
(3.2) and (3.6). The observed period spans from 15 February
2021 to 31 June 2021 inclusive (figure 8). For this dataset,
we assume both the contact interval and the infectious
period to be GAMMA distributed.
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Similar to ourapproachon theFMDdata, daily cases aredis-
tributed uniformly across the day. Because the DSA method
requires only a random sample of infection and recovery
times, we work with a dataset generated by taking a random
sample (without replacement) of size 3000. We do not consider
exogenous factors such as under-reporting of cases as they are
beyond the scope of this paper. It is worth noting, however,
that these exogenous factors surelyhave an impact on the results
and can be accounted for by a more refined model.

The best-fitting inferred contact interval and infectious
period distributions are shown in figure 9. There are roughly
in line with estimates of viral load and recovery distributions,
respectively, from the literature [36]. The point estimate for the
reproduction rate is R0 = 1.69. Although R0 of the SARS-CoV-2
Delta variant is estimated to be in the range 3–8 [37], it is more
realistic to compare our estimate with Rt calculated from
observed cases in that period, as our model uses only that
source of information. The recovery distribution has a mean of
5.6 days and a variance of 26 days, so it is rather wide and
right-skewed. The contact interval distribution is more
peaked, with a slightly lowermean (around 4.5 days) and a var-
iance of roughly 10. It is important to notice that infection times
represent the collection of specimens from infected individuals,
and recovery times follow country-specific healthcare system
protocols, so theydonot necessarily coincidewith the true infec-
tious distributions. Furthermore, the infectious period starts
immediately after the incubation time has passed, while time
to recovery is usually calculated from the onset of symptoms.
Finally, the estimated effective population size is 31 million
people. This is likely an underestimate because of the underre-
porting of cases in India during the Delta wave.

Confidence intervals are computed in a similar way to the
FMD analysis, with two major differences: the 7-day moving
averages result in a curve that is too delayed with respect to
the actual one because of exponential growth/decline.
Although this effect may be accounted for by considering
exponential moving averages, we preferred not to modify
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the data that way. For a similar reason, computing the var-
iance-adjusted confidence intervals that take into account
all the noise that cannot be explained by the model is not
possible. Therefore, the confidence intervals, displayed in
figure 10, underestimate the true variability of the underlying
process, but seem to be generally in good agreement with the
data. Interestingly, repeating the inference on different sub-
sets of the original dataset does not produce significantly
different estimates for the two distributions of interest. This
suggests that the method is robust, not only because we
have many data points to inform the likelihood, but also
because we consider both the infection times and the recov-
ery/death times. The distribution of the estimates of the
reproduction number is shown in appendix C (figure 12).
5. Discussion
In this paper, we presented amethod called DSA to bothmodel
and infer parameters of non-Markovian epidemic models. A
crucial advantage of DSA is that it makes the entire toolkit of
survival analysis available for making inference on dynamical
systems. Therefore, DSA handles censored, truncated data in
a straightforward and principled way. For instance, see [20]
for an application of the DSAmethod adapted to a simpleMar-
kovian susceptible–exposed–infected–recovered (SEIR) model,
where a snapshot of COVID-19 positivity data gathered
through mass testing is used to analyse transmission in an
Ohio prison. The analysis helped uncover the grave COVID-
19 situation in correctional facilities in Ohio. Also, see [18]
where we used the DSA approach coupled with approximate
Bayesian computation (ABC) method to quantify the popu-
lation-level effect of the mass vaccination campaign against
COVID-19 in Israel. The analysis further helped quantify the
indirect effect of vaccination on the unvaccinated young popu-
lation in Israel. In [19], the DSAmethodwas used to analyse the
individual-level epidemic data from the Ebola pandemic in the
Democratic Republic of Congo, suggesting success of the ring
vaccination and contact tracing efforts evident from much
lower estimates of the effective population size than previous
analyses.

In this paper, we adopted the law of mass-action to model
the interactions among the individuals for the sake of simplicity.
Under the law of mass-action, an infected individual
can potentially infect any susceptible individual in the popu-
lation. This is in contrast with network-based models, where
infected individuals can only infect their neighbours (connec-
tions defined by the graph adjacency matrix) [17,37–39].
However, inferring the underlying network structure is a non-
trivial task and often infeasible. This is particularly true when
the underlying network exhibits complex substructures [41].
Therefore, the mass-action models are still routinely used
despite being unrealistic in many epidemics. Nevertheless, an
immediate future direction for us would be to develop the
DSA methodology for a non-Markovian network model.

The crux of the DSA methodology lies in the change in
perspective about dynamical systems—one that views them
as describing probability distributions of times of infection
and recovery, as opposed to describing (scaled) counts. As
such, the method is completely general and could be quickly
adapted to the particular setting of any infectious disease. We
hope the software package [42] will help translate the DSA
methodology into a useful practical tool in modern infectious
disease epidemiology.
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1We treat the infection time as a transfer time from the susceptible to
the infected compartment. Similarly, the recovery time is seen as a
transfer time from the infected to the recovered compartment.
2https://github.com/Zkeggia/DSA_refactor
3Data on daily incidence kindly provided by Prof. Michael Tildesley,
University of Warwick.
4Data available at https://api.covid19india.org/documentation/
csv/
Appendix A. Brief derivation of the mean-field
limit
We provide an intuitive derivation of the PDE limit discussed
in §2 for the scaled stochastic process n−1Xt. The proof
follows a standard line of argument via the tightness-unique-
ness route for Banach space-valued Markov processes.
Similar (and more elaborate) derivations can be found in
[12–16]. For the sake of completeness, we furnish a short
overview of the main arguments here.

Notational conventions: we denote the sets of natural num-
bers, non-negative integers, real numbers and non-negative
real numbers by N, N0, R and Rþ, respectively. The set of
Borel subsets of a set E will be denoted by BðEÞ. For a set E,
we use the notation D([0, ∞), E) (or D([0, T ], E)) to denote
the space of E-valued càdlàg functions defined on [0, ∞) (or
[0, T ], for some T > 0). The stochastic processes that we
consider in this paper will be elements of D([0, ∞), E) or
D([0, T ], E)) for some state space E and some time horizon
T > 0 unless otherwise specified. The set-function δx is
the Dirac measure, i.e. for a set A, the function δx(A) takes
value 1 if x∈A and 0 otherwise. For a vector of point measures
ν : = (ν1, ν2,…, νk), for some positive integer k, and ameasurable
function f, we use the notation〈〈μ, f〉〉 to denote

hhn, fii :¼
Xk
i¼1

hni, fi:

The indicator (or characteristic) function of a set A is denoted
by 1fAg, i.e. 1fAgðxÞ ¼ 1 if x∈A and 0 otherwise.

Following the above conventions, the processes XS
t , X

I
t and

XR
t are finite, point-measures on Rþ with atoms placed on the

individualages.Therefore,wehave the followingself-consistency
relations NSðtÞ ¼ hXS

t , 1i ¼ XS
t ðRþÞ, NIðtÞ ¼ hXI

t , 1i ¼ XI
tðRþÞ

andNRðtÞ ¼ hXR
t , 1i ¼ XR

t ðRþÞ, where 1 is the identity function.
The process Xt is a Markov process with paths in
Dð½0, T�, MPðRþÞ3Þ where T> 0 is a finite-time horizon and
MPðRþÞ is the space of finite, point measures on Rþ.

A.1. Trajectory equations
In order to write down the trajectory equations for the
components of Xt, we need to fix a partial order on the
ages so as to make statements such as ‘age of the ith individ-
ual’ unambiguous. Let us fix the ‘greater than or equal to’
relation on Rþ. Now, for i = 1, 2, 3,…, we define maps
si :MPðRþÞ ! Rþ, which gives us the age of the i-individual
(i.e. the ith atom of a finite, point measure). Therefore, siðXI

tÞ
is the age of the ith infected individual at time t. In order to
describe the interactions, we shall assume the stochastic law
of mass action. Now, assuming there are only susceptible
and infected individuals initially, we can write down the tra-
jectory equations for the measure-valued stochastic processes
XS

t , X
I
t and XR

t as follows:

XS
t ¼

XNSð0Þ

k¼1

dtþskðXS
0 Þ �

ðt
0

ð
N

ð1
0
dt�sþsiðXS

s�Þ1fi�NSðs�Þg

� 1fu�hXI
s� ,n�1bðsiðXS

s�Þ,†ÞigQ1ðds, di, duÞ,

XI
t ¼

XNIð0Þ

k¼1

dtþskðXI
0Þ þ

ðt
0

ð
N

ð1
0
dt�s1fi�NSðs�Þg

� 1fu�hXI
s� ,n�1bðsiðXS

s�Þ,†ÞigQ1ðds, di, duÞ

�
ðt
0

ð
N

ð1
0
dt�sþskðXI

s�Þ1fi�NIðs�Þg1fu�gðsiðXI
s�ÞÞg

�Q2ðds, di, duÞ

and XR
t ¼

ðt
0

ð
N

ð1
0
dt�s1fi�NIðs�Þg1fu�gðsiðXI

s�ÞÞgQ2ðds, di, duÞ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðA1Þ
where Q1 and Q2 are independent Poisson point measure
(PPM) with intensity measures ds × di × dθ with Lebesgue
measures ds, dθ on Rþ and a counting measure di on N.
The PPM Q1 keeps track of infectious contacts, while the
PPM Q2 book-keeps the natural recoveries of infected indi-
viduals. The intensity function β is scaled by a factor of n−1

following the stochastic law of mass action [1,2].

A.2. Assumptions
It is sufficient to assume that the global jump rates (in terms of the
instantaneous intensity functions β and γ) of the Markov process
Xt are bounded above by a positive, finite quantity and that the
initial population size does not explode in the sense that
E[n�1ðNSð0Þ þNIð0ÞÞ] , 1 in order to ensure the trajectory
equation (A 1) admits a unique path-wise solution ðXS

t , X
I
t , X

R
t Þ.

This follows from arguments similar to [13], theorem 2.5
(see also [11,12,15]). To see this, note that trajectories satisfy-
ing (A 1) can be simulated by means of a straightforward
adaptation of the Doob–Gillespie algorithm, which can be
summarized as follows. (i) Given an initial condition satisfying
the technical assumptions, compute the next event time
(either an infection or a recovery) by drawing an exponential
random variable with rate equal to the global jump rate (total
hazard) ðÐ hXI

t , n
�1bðu, †ÞiXS

t ðduÞ þ hXI
t , giÞ. (ii) Determine the

event type by drawing a categorical random variable with prob-
abilities equal to the ratios of the hazards of the individual
eventsandthe totalhazard.Apseudocode forsimulatingasimilar
age-structured birth–death transformation system is given in [11].

https://github.com/Zkeggia/DSA_refactor
https://github.com/Zkeggia/DSA_refactor
https://api.covid19india.org/documentation/csv/
https://api.covid19india.org/documentation/csv/
https://api.covid19india.org/documentation/csv/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220124

12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 Ju

ne
 2

02
3 
In addition to the assumption of the global jump rates (in
terms of the instantaneous intensity functions β and γ) of the
Markov process Xt being bounded above by a positive finite
quantity, we also assume that the intensity functions β and γ
are continuous. In order to study the FLLN approximation of
the scaled process n−1Xt, we further assume a finite second
moment condition on the initial population size. That is, we
assume supn E[n

�2ðNSð0Þ þNIð0ÞÞ2] , 1. Finally, we
assume the initial age distribution does not explode.

Note that the assumptions about the initial size of the
population are satisfied because n is chosen to be the size
of the initial susceptible population and m/n→ ρ∈ (0, 1), as
mentioned in §2. With the above technical assumptions, we
are now ready to study the moments of the stochastic process
Xt and associated martingale processes.

A.3. Moments and martingale properties
Note that the components XS

t , X
I
t and XR

t of Xt satisfy the sto-
chastic integral equations described in (A 1). Then, for a
sufficiently large class of test functions f : (a, s)→ fs(a), the
component measure-valued processes satisfy

hXS
t , fti ¼

XNSð0Þ

k¼1

ftðtþ skðXS
0ÞÞ �

ðt
0

ð
N

ð1
0
ftðt� sþ siðXS

s�ÞÞ

� 1fi�NSðs�Þg1fu�hXI
s� ,n�1bðsiðXS

s�Þ,†ÞigQ1ðds, di, duÞ,

hXI
t , fti ¼

XNIð0Þ

k¼1

ftðtþ siðXI
0ÞÞ þ

ðt
0

ð
N

ð1
0
ftðt� sÞ1fi�NSðs�Þg

� 1fu�hXI
s� ,n�1bðsiðXS

s�Þ,†ÞigQ1ðds, di, duÞ

�
ðt
0

ð
N

ð1
0
ftðt� sþ skðXI

s�ÞÞ

� 1fi�NI ðs�Þg1fu�gðsiðXI
s�ÞÞgQ2ðds, di, duÞ

and hXR
t , fti ¼

ðt
0

ð
N

ð1
0
ftðt� sÞ1fi�NIðs�Þg1fu�gðsiðXI

s�ÞÞg

�Q2ðds, di, duÞ,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðA2Þ

For different choices of the test function f, (A 2) can be used to
study various moments of the component measure-valued
processes XS

t , X
I
t and XR

t . Moreover, (A 2) allows us to
study certain martingale processes associated with the sto-
chastic process Xt. For susceptible, infected and recovered
compartments, define the stochastic processes

MS,f
t ¼ hXS

t , fti � hXS
0 , f0i

�
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ � fsðaÞhXI

s, bða, †Þi
� �

� XS
s ðdaÞds,

MI,f
t ¼ hXI

t , fti � hXI
0, f0i

�
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ þ fsð0ÞhXI

s, bða, †Þi
� �

� XS
s ðdaÞds

�
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ � fsðaÞgðaÞ

� �
XI

sðdaÞds

and MR,f
t ¼ hXR

t , fti � hXR
0 , f0i

�
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ þ fsð0ÞgðaÞ

� �
XI

sðdaÞds:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ðA 3Þ
Using the compensated PPM of the original PPM Q1 and Q2,
we can show that the stochastic processes MS,f

t , MI,f
t and MR,f

t

are, respectively, zero mean, square integrable, càdlàg martin-
gale processes with predictable quadratic variations of the
order n−1. Here, we have used the fact that

ftðaþ t� sÞ ¼ fsðaÞ

þ
ðt
s

@

@u
fuðaþ u� sÞ þ @

@a
fuðaþ u� sÞ

� �
du:

The trajectory equation for the scaled process n−1 Xt can be
written in a straightforward fashion by dividing both sides
of (A 1). We can then write down moment equations like
(A 2) for the scaled process n−1 Xt and also define the cor-
responding scaled martingale processes. Since the global
jump rates are assumed to be bounded above by a positive
finite quantity, the predictable quadratic variation processes
vanish in the limit of n→∞. Therefore, in the limit of
n→∞, we expect the scaled martingale processes to
vanish, which, in turn, implies that the scaled process n−1

Xt converges to a deterministic, continuous function
xt :¼ ðxSt , xIt , xRt Þ. However, such a convergence can only
be guaranteed along a subsequence. Moreover, we need
to ensure the sequence of the scaled processes n−1 Xt is
tight.

A.4. Tightness of the scaled process and uniqueness of
limit points

The two main instruments here are the Roelly criterion [43]
and the Aldous–Rebolledo criterion [44]. As done in [15] or
[13, Proposition 3.1], we can establish the required tightness
by verifying the Roelly criterion in the vague topology and
the Aldous–Rebolledo criterion for the sequence of the
scaled stochastic processes n−1 Xt. The limit points
xt :¼ ðxSt , xIt , xRt Þ of the scaled process n−1 Xt can be identified
by virtue of the martingale representation in (A 3). Indeed,
the functions xSt , x

I
t and xRt satisfy

hxSt , fti ¼ hxS0 , f0i

þ
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ � fsðaÞhxIs, bða, †Þi

� �
xSs ðdaÞds,

hxIt , fti ¼ hxI0, f0i

þ
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ þ fsð0ÞhxIs, bða, †Þi

� �
xSs ðdaÞds

þ
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ � fsðaÞgðaÞ

� �
xIsðdaÞds

and hxRt , fti ¼ hxR0 , f0i

þ
ðt
0

ð1
0

@

@a
fsðaÞ þ @

@s
fsðaÞ þ fsð0ÞgðaÞ

� �
xIsðdaÞds,

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ðA 4Þ
for a sufficiently large class of test functions f : (a, s)→ fs(a).
Given that the initial measures xS0 , x

I
0 and xR0 admit densities

with respect to the Lebesgue measure, it can be shown that
the functions xSt , x

I
t and xRt admit densities with respect to

the Lebesgue measure throughout a finite-time interval
[0, T ] for some T > 0. Denoting the densities of the functions
xSt , x

I
t and xRt by ySðt, †Þ, yIðt, †Þ and yRðt, †Þ respectively, we

can describe the densities in terms of the following system of
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PDE (e.g. [12,13]):

(@t þ @s) ySðt, sÞ ¼ �ySðt, sÞ
ð1
0
bðs, uÞyIðt, uÞdu,

(@t þ @s) yIðt, sÞ ¼ �gðsÞyIðt, sÞ
and (@t þ @s) yRðt, sÞ ¼ 0,

9>>>=
>>>;
ðA5Þ

with boundary conditions

ySðt, 0Þ ¼ 0,

yIðt, 0Þ ¼
ð1
0
ySðt, sÞ

ð1
0
bðs, uÞyIðt, uÞduds

and yRðt, 0Þ ¼
ð1
0
gðsÞyIðt, sÞ,

9>>>>>>=
>>>>>>;

ðA6Þ

and initial conditions ySð0, †Þ :Rþ ! Rþ, yIð0, †Þ :Rþ ! Rþ
such thatð1

0
ySð0, sÞds ¼ 1 and

ð1
0
yIð0, sÞds ¼ r: ðA7Þ

We set yR(0, s) = 0 for all s [ Rþ in keeping with our assump-
tion that initially there are no recovered individuals. One can
interpret yS(t, s), yI(t, s) and yR(t, s) as the densities at time t of
susceptible, infected and recovered individuals at age s. The
limiting system of PDE in (A 5) is linear in yS, yI and yR,
but non-local.

Now, since we have assumed the global jump rates
are bounded above by a finite-positive number, we can
show that the solutions remain bounded on finite-time inter-
vals. In order to prove the uniqueness of the solutions, we can
show that the distance between two possible solutions must
vanish by invoking Grönwall’s lemma and by virtue of the
fact that the solutions remain bounded on finite-time
intervals.
Appendix B. Numerical scheme to solve the
mean-field PDE
In this section we describe the numerical schemes used to
solve the PDE equation (2.4). In numerical terms, equation
(2.4) is, inside the domain, an advection equation with one
spatial dimension, in which the characteristics move at vel-
ocity U(x, t) = 1, and with a forcing term given by the right-
hand side term −γ(s, t)y(s, t). Such equations are well
known and can be solved with an explicit Semi-Lagrangian
scheme [45,46]. The potential source of numerical instability
comes from the nonlinear non-local boundary condition
equation (2.5). We have opted for a numerical scheme that
combines the explicit Semi-Lagrangian approach inside the
domain and an implicit method to treat the solution at the
boundary. Note that at the boundary we need to compute a
scalar quantity; therefore, implementing an implicit method
does not have a notable impact on the run-time of the
numerical scheme itself, while improving the stability of the
solution.

We define a mesh with spacing ΔX = 1/M and ΔT = 1/N,
and points si = iΔx and tn = nΔT, with 0≤ i≤M and 0≤ n≤N.
The discretized set of equations is then:

yðtnþ1, siÞ � yðtn, si � ðDX=DTÞÞ
DT

¼ �g si � DX
2DT

� �
y tn, si � DX

DT

� �
ðB 1Þ

and

xSðtnþ1Þ � xSðtnÞ
DT

¼ �xðtnþ1Þ
XM
k¼1

byðtnþ1, skÞDx ðB 2Þ

and, for the boundary condition

yðtnþ1, 0Þ ¼ xðtnþ1Þ
XM
k¼1

byðtnþ1, kÞDx: ðB 3Þ

For simplicity, we use ΔX = ΔT, so that si− (ΔX/ΔT ) = si−1. In
algorithm B.1, we outline our implementation of the code.
This returns zs(t) and zIðtÞ ¼

Ð1
0 yIðt, sÞds. It is straightfor-

ward to modify it to return yI(t, s).
Algorithm B.1 Pseudo code to solve the PDE

Require: gðsÞ;b; r; f ðsÞ, number_of_points, Tf

1: time_mesh=[n � Tf=number_of_points for n in range(0,
number_of_points)]

2: space_mesh=time_mesh ▷ declare space and time
meshes

3: dx=1/number_of_points ▷ space step Dx
4: dt=dx
5: y=zeros[time_mesh] ▷ allocate memory for I(t)
6: Y=zeros[space_mesh] ▷ Allocate memory to hold

y[t][s] at every time step
7: xS=zeros[time_mesh] ▷ allocate memory for S(t)
8: x_s[0]=1 ▷ initial fraction of susceptible people
9:
10: for s in space_mesh do
11: Y=r f[s] ▷ initial condition on y[0][s]
12:
13: end for
14:
15: A=zeros(space_mesh,space_mesh)
16: for s in space_mesh do
17: A½s�½s� 1� ¼ 1=ð1þ dx � g½s� 1

2
�Þ ▷ first order

approximation of the PDE operator
18: end for
19: for t in time_mesh do
20: Y=A*Y ▷ PDE propagation
21: intY=sum(b½s�*Y*dx) ▷

Ð1
0 bðsÞyðtþ 1,sÞ ds

22: x[t+1]=x[t]/(1+dx*intY) ▷ update xðtÞ
23: y[t+1]=sum(Y)*dx ▷ IðtÞ ¼ Ð

yðt,sÞds
24: y[0]=x[t+1] * intY ▷ update Y at boundary

with implicit scheme
25:
26: end for
27: return y and x
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Appendix C. Additional figures for FMD and
COVID-19
We report the estimates for R0 from the bootstrap analysis
of the FMD data (figure 11) and COVID-19 Delta wave
in India (figure 12) (see §4). Results are based on 500 boot-
strap samples obtained from simulating infection/recovery
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Figure 11. FMD R0 estimates from the bootstrap method.
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Figure 12. COVID-19 R0 estimates from the bootstrap method.
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Figure 13. Comparison of cumulative incidence between (a) WEIBULL–GAMMA model
times with parameters given by the MLE. Additionally, we
report the cumulative incidence distribution for the predic-
tion of the FMD compared to that of a standard SIR model
(figure 13). Finally, we show the histogram of the distribution
of effective population size from bootstrap analysis in
figure 14.
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Figure 14. Frequency histogram of effective population size estimated from
the first 20 days of data for the FMD.
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and standard stochastic (b) EXPONENTIAL–EXPONENTIAL model.
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