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Breaking the Communication-Privacy-Accuracy
Trilemma

Wei-Ning Chen", Peter Kairouz, and Ayfer Ozgiir

Abstract—Two major challenges in distributed learning and
estimation are 1) preserving the privacy of the local samples;
and 2) communicating them efficiently to a central server, while
achieving high accuracy for the end-to-end task. While there has
been significant interest in addressing each of these challenges
separately in the recent literature, treatments that simultaneously
address both challenges are still largely missing. In this paper,
we develop novel encoding and decoding mechanisms that simul-
taneously achieve optimal privacy and communication efficiency
in various canonical settings. In particular, we consider the prob-
lems of mean estimation and frequency estimation under e-local
differential privacy and b-bit communication constraints. For
mean estimation, we propose the SQKR mechanism, a scheme
based on Kashin’s representation and random sampling, with
order-optimal estimation error under both constraints. We fur-
ther apply SQKR to distributed SGD and obtain a communica-
tion efficient and (locally) differentially private distributed SGD
protocol. For frequency estimation, we present the RHR mecha-
nism, a scheme that leverages the recursive structure of Walsh-
Hadamard matrices and achieves order-optimal estimation error
for all privacy levels and communication budgets. As a by-
product, we also construct a distribution estimation mechanism
that is rate-optimal for all privacy regimes and communication
constraints, extending recent work that is limited to b = 1 and
€ = O(1). Our results demonstrate that intelligent encoding
under joint privacy and communication constraints can yield a
performance that matches the optimal accuracy achievable under
either constraint alone. In other words, the optimal performance
is determined by the more stringent of the two constraints, and
the less stringent constraint can be satisfied for free.

Index Terms— Differential privacy, distributed estimation,
communication, Kashin’s representation, stochastic gradient
descend.

I. INTRODUCTION

HE rapid growth of large-scale datasets has been stim-
ulating interest in and demands for distributed learning
and estimation, where datasets are often too large and too
sensitive to be stored on a centralized machine. When data is
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distributed across multiple devices, communication cost often
becomes a bottleneck of modern machine learning tasks [1].
This is even more so in federated learning type settings,
where communication occurs over bandwidth-limited wireless
links [2]. Moreover, as more personal data is entrusted to data
aggregators, in many applications it carries sensitive individual
information, and hence finding ways to protect individual
privacy is of crucial importance. In particular, local differential
privacy (LDP) [3], [4], [5], [6] is a widely adopted privacy par-
adigm, which guarantees that the outcome from a privatization
mechanism will not release too much individual information
statistically. In this paper, we study the relationship between
utility (often in forms of accuracy for certain statistical tasks),
privacy, and communication jointly.

At first glance, privacy and communication may seem to
be in conflict with each other: achieving privacy requires the
addition of noise, therefore increasing the entropy of the data
and making it less compressible. For instance, consider the
mean estimation problem, which appears as a fundamental
subroutine in many distributed optimization tasks, e.g. distrib-
uted stochastic gradient descent (SGD). Here, the goal is to
estimate the empirical mean of a collection of d-dimensional
vectors. If we first privatize each vector via privUnit in [7]
(which is optimal under LDP constraints) and then quantize via
the RandomSampling quantizer in [8] (which is optimal under
communication constraints), a tedious but straightforward cal-
culation shows that the resulting /5 estimation error grows
with d2. However, this is far from matching the error rate under
each constraint separately, which has a linear dependence on d.
A similar phenomenon happens in the distribution estimation
problem, where each client’s data is drawn independently
from a discrete distribution p with domain size d. One can
satisfy both constraints by first perturbing the data via the
Subset Selection (SS) mechanism [9] (which is optimal under
LDP constraints) and then quantizing the noised data to b
bits. Again, it can be shown that under such strategy, the
{5 estimation error of p has a quadratic dependence on d.
This leaves a huge gap to the lower bounds under each
constraint separately, which have a linear dependence on d.
See Section A of the appendix for a detailed discussion.

While there has been significant recent progress on under-
standing how to achieve optimal accuracy under separate
privacy [9], [10] and communication [11], [12] constraints,
as illustrated above a simple concatenated application of these
optimal schemes can yield a highly suboptimal performance.
Recent works that attempt to break this communication-
privacy-accuracy trilemma have been either limited to specific
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regimes or, as we show, are far from optimal. For exam-
ple, [13] provides a 1-bit e-LDP scheme for distribution
estimation which is order-optimal only in the low commu-
nication regime (b = O(1)) and high privacy regime (¢ =
O(1)), while [8] tries to address both constraints in the mean
estimation setting, but the error rate achieved under their
mechanism is quadratic in d and therefore does not improve on
the above baseline. We note that the general privacy regime
(i.e. ¢ = (1)) is also of both theoretical and practical interest.
For instance, when n = € (d), one can combine LDP with
amplification techniques [14], [15], [16] to ensure stronger
central differential privacy.

This paper closes the above gaps for any given privacy
level € and communication budget b. Indeed, our results show
that the fundamental trade-offs are determined by the more
stringent of the two constraints, and with careful encoding
we can satisfy the less stringent constraint for free, thus
breaking the privacy-communication-accuracy trilemma. For
the same privacy level €, this allows us to achieve the accuracy
of existing mechanisms in the literature with a drastically
smaller communication budget, or equivalently, for the same
communication budget achieve higher privacy. It also explains,
for example, why 1-bit communication budget is sufficient
under the high privacy regime [13], [17]. We will demonstrate
this phenomenon in various canonical tasks and answer the
following question: “given arbitrary privacy budget ¢ and
communication budget b, what are the fundamental limits for
estimation accuracy?” We next formally define the settings and
the problem formulations we consider in this paper.

A. Problem Formulation

The general distributed statistical tasks we consider in this
paper can be formulated as follows: each one of the n clients
has local data X; € X and sends a message Y; € ) to the
server, who upon receiving Y™ aims to estimate some pre-
specified quantity of X™. Note that X" are not necessarily
drawn from some distribution. At client ¢, the message Y; is
generated via some mechanism (a randomized mapping that
possibly uses shared randomness across participating clients
and the server) denoted by a conditional probability Q;(y|X;)
satisfying the following constraints.

Local differential privacy: Let (Y, B) be a measurable
space, and Q(-|x) be probability measures for all z € X, with
{Q(-|x)|x € X} dominated by some o-finite measure y so that
the density Q(y|z) exists. A mechanism @ is e-LDP if

Qylz) _ -
Qyla") =

b-bit communication constraint: ) satisfies b-bit commu-
nication constraint if each of its elements can be described by
b bits, i.e. |V| < 2°.

The goal is to jointly design a mechanism (on the clients’
sides) and an estimator (on the server side) so that the accuracy
of estimating some target function >, f(X;) is maximized.
In this paper, we are mainly interested in the distribution-
free framework; that is, we do not assume any underlying
distribution on X;, but we also demonstrate that our results

Vo, 2' e X,y e,
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can be extended to probabilistic settings. To this end, we will
focus on the following four canonical tasks.

Mean estimation: For real-valued data, we consider the
d-dimensional unit euclidean ball X = B4(0,1) and are
interested in estimating the empirical mean X = %Zz X;.
The goal is to minimize the worst-case {5 estimation error
defined as

rug (f2,6,b) 2 min  max E “
(X,Qn) Xnexn

X - XHQ] o
2

where Q™ satisfies e-LDP and b-bit communication con-
straints. When the context is clear, we may omit ¢ and b in
TME ([ €5 b)

Statistical mean estimation: In the probabilistic version
of the mean estimation problem, we assume that X;’s are
drawn from some common but unknown distribution P sup-
ported on B4(0, 1), the goal is to estimate the statistical mean
6 (P) = Ep [X1] and to minimize the ¢ estimation error:

. 2
row (tn20) & min, a2 || x7) -0

Frequency estimation: When X consists of categorical
data,i.e. X = [d] = {1, ..., d}, we are interested in estimating
Dxn(z) £ L3, 1(x,24} for x € [d]. With a slight abuse of
notation, Dx~ is viewed as a vector (Dxn(1),..., Dxn(d))
lying in the d-dimensional probability simplex. The worst-case
estimation error is defined by

TrE (6757 b) £ min max E |:€ (D, DX71):| s
(Diom) ¥ER

where ¢ = |||, ||*||1, or ||-||3 and again Q™ satisfies e-LDP
and b-bit communication constraints.

Distribution estimation: A closely related setting is that
of discrete distribution estimation, where we assume that the
X;’s are drawn independently from a discrete distribution p
on the alphabet X = [d], and the goal is to estimate p. In this
case, the worst-case error is given by

TDE (87 87 b) é ian Sup E [g(f)ap)] )
(Q™,P) pePy
where P, is the d-dimensional probability simplex.

We note that these canonical tasks serve as fundamental
subroutines in many distributed optimization and learning
problems. For instance, the convergence rate of distributed
SGD is determined by the /5 error of estimating the mean
of the local gradient vectors (see [18] for more on this
connection). Lloyd’s algorithm [19] for k-means clustering or
the power-iteration method for PCA can also be reduced to
the mean estimation task.

Remark 1.1: In this work, we generally assume the avail-
ability of shared randomness across the participating clients
and the server. In this case, the encoding functions at each node
can be explicitly denoted as Q;(y|X;, U) where U is a shared
random variable that is independent of data, referred to as a
public coin. U is also available at the server and the estimator
implicitly depends on U. In our notation, we suppress this
dependence on U for simplicity. The entropy of U is referred
as the amount of shared randomness needed by a scheme.
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TABLE I

COMPARISON BETWEEN OUR MEAN ESTIMATION SCHEME AND VQSGD [8]. OUR SCHEME APPLIES TO GENERAL COMMUNICATION AND PRIVACY
REGIMES, AND ACHIEVES OPTIMAL ESTIMATION ERROR FOR ALL SCENARIOS

Privacy Comm. {5 error

SQKR (Thm. 3.1) Ve >0 Vb >0 ) (m)
Cross-polytope [8] e=0Q(1) b=Q(logd) 0] (%)
Simplex [8] c=Q(logd) | b= (logd) o (1)

In Section V, we discuss the amount of shared randomness
required by our schemes in order to achieve the optimal
estimation error. We point out that in the statistical settings
(i.e. statistical mean estimation and distribution estimation),
the optimal estimation error can be achieved without shared
randomness.

Notation: Throughout this paper, we use [d] to denote the
set of {1,...,m} for any d € N. For two sets S; and Ss, let
S1\ S22 {jlj €S and j & So}.

We also make use of Bachmann-Landau asymptotic nota-
tion: for two positive sequences a,, and b,,, if 7)1Lm an /by < C

for some C' > 0, we denote a,, = O(b,,) or anofj b,,; on the
other hand, lim,,_, o @y /b, = 0 will be denoted as a,, = o(b,,)
(or ay, < by). Similarly, when lim,, . a, /b, > C, we write
an = Q(by) or a, = by, and when lim,, oo an /b, = 00,
we write a,, = w(by,) or a,, > b,,. Finally, we use a,, = ©(b,,)
or a, < b, if both a,, = O(b,,) and a,, = Q(b,,) hold.

II. PRIOR WORK

Previous works in the mean estimation problem [8], [12],
[20], [21], [22], [23] mainly focus on reducing communication
cost, for instance, by random rotation [12] and sparsifica-
tion [20], [21], [24], [25]. Among them, [8] considers LDP
simultaneously. It proposes vector quantization and takes pri-
vacy into account, developing a scheme for ¢ = O(1) and
b = ©(logd) with estimation error O(d?/n). In contrast, the
scheme we develop in Theorem 3.1 achieves an estimation
error O(d/n) when ¢ = ©(1) and b = O(logd). Moreover,
our scheme is applicable for any € and b and achieves
the optimal estimation error, which we show by proving a
matching information-theoretic lower bound. See Table I for
a comparison of our results with [8]. A key step in our
scheme is to pre-process the local data via Kashin’s rep-
resentation [26]. While various compression schemes, based
on quantization, sparsification, and dithering have been pro-
posed in the recent literature and Kashin’s representation
for communication efficiency [27], [28], [29], [30] or for
LDP [31] has also been explored in a few works, it is
particularly powerful in the case of joint communication and
privacy constraints as it helps spread the information in a
vector evenly in every dimension. This helps mitigate the
error due to subsequent noise introduced by privatization and
compression.

The recent works of [32] and [33] also consider estimating
empirical mean under e-LDP. They show that if the data is
from a d-dimensional unit /., ball, i.e. X; € [—1,1]¢, then

directly quantizing, sampling and perturbing each entry can
achieve optimal /., estimation error that matches the LDP
lower bound in [34], where their privatization steps are based
on techniques developed in [34] and [7]. Nevertheless, their
approach does not yield good /5 error in general. Indeed, as in
the case of separation schemes discussed in Section A, the
{5 error of their scheme can grow with d?. We emphasize that
in many applications the /5 estimation error (i.e. MSE) is a
more appropriate measure than ¢.,. For instance, [18] shows
a direct connection between the MSE in mean estimation and
the convergence rate of distributed SGD.

Frequency estimation under local differential privacy has
been studied in [35], where they propose schemes for esti-
mating the frequency of an individual symbol and minimizing
the variance of the estimator. Some of their schemes, while
matching the information-theoretic lower bound on /o esti-
mation error under privacy constraints, require large commu-
nication. For instance, the scheme Optimal Unary Encoding
(OUE), which can be viewed as an asymmetric version of
RAPPOR [36], achieves optimal ¢ estimation error, but the
communication required is O(d) bits, which, as we show in
this work, can be reduced to O(min([e],logd)) bits. We do
this by developing a new scheme for frequency estimation
under joint privacy and communication constraints. We estab-
lish the optimality of our proposed schemes by deriving
matching information-theoretic lower bounds on ¢z (¢2, €, b).

Frequency estimation is also closely related to heavy hitter
estimation [10], [13], [17], [36], [37], [38], [39], where the
goal is to discover symbols that appear frequently in a given
data set and estimate their frequencies. This can be done if the
error of estimating the frequency of each individual symbol
can be controlled uniformly (i.e. by a common bound), and
thus is equivalent to minimizing the ¢, error of estimated
frequencies, i.e. 7rg (o0, €, ). It is shown in [10] that in the

logd
ne2 )

and this rate can be achieved via a 1-bit public-coin scheme
that has a runtime almost linear in n [17]. An extension,
which we describe in Section IV-B, generalizes the achiev-
ability in [10] to arbitrary € and b, achieving rrg (€0, €,b) =

o ( \/ n mi:lo(geg,e,b) ) .

After the initial conference version of this paper [40], [41]
shows that the optimal private mean estimation scheme
privUnit [7] and private frequency scheme asymmet-
ric RAPPOR [35], [36] can be efficiently and loss-
lessly compressed by having clients communicate seeds

high privacy regime € = O(1), rsg ({0, €,b) = ©
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TABLE 11
COMPARISON OF DIFFERENT FREQUENCY ESTIMATION SCHEMES

Loss

Estimation error

Communication

Asymmetric RAPPOR

d
£ © (nmin((e5—1)2755)>

d bits

RHR (this work, Thm 4.1) 12 S)

- da
nmin((esfl)g,eg)

min ([e],log d) bits

Heavy hitter loo

o (/ratien)

[€] bits

TABLE III

COMPARISON BETWEEN LDP DISTRIBUTION ESTIMATION SCHEMES.
UNDER THE SAME PRIVACY GUARANTEE, OUR SCHEME IS MORE
COMMUNICATION EFFICIENT WHILE ACHIEVING THE
SAME ACCURACY

Privacy regime e€(0,1) e € (1,logd)
SS d bits max (e%, log d)
HR log d bits log d bits
1bit-HR 1 bit -
RHR (this work, Thm. 4.1) 1 bit min ([e], log d)

(or indices of seeds if shared randomness is available) of
a cryptographically-secure pseudo number generator (PRG)
to the server. With a careful sampling of random seeds
(e.g., via rejection sampling), this method also achieves the
optimal privacy-communication-accuracy trade-off shown in
our results. However, their results rely on the assumption of
the existence of an exponentially strong PRG. In addition, the
decoding time complexity of their methods is more expen-
sive than ours. For example, for frequency estimation, the
server runtime of their scheme is O (nd) as opposed to ours
O (n+ dlogd) (see Remark 4.2).

We compare our scheme and existing results in Table II.

If we further assume X" are drawn from some discrete
distribution p, then the problem falls into distribution estima-
tion under local differential privacy [9], [13], [34], [36], [42],
[43], [44], [45], [46] and limited communication [11], [25],
[45], [46], [47], [48], [49], [50]. Tight lower bounds are given
separately: for instance [9], [44] shows 7pg (¢1,¢€,logd) =

Q ( Wil)%a)) and [49] shows TDE (81, oQ, b) =

We show that these lower bounds can be achieved simulta-
neously (Theorem 4.1). Our result recovers the result of [13]
when b = 1 and € = O(1) as a special case. See Table III for
a comparison.

III. MEAN ESTIMATION

In the mean estimation problem, each client has a
d-dimensional vector X; from the Euclidean unit ball, and the
goal is to estimate the empirical mean X = 1 3" X; under
e-LDP and b bits communication constraints. This problem has
applications in private and communication-efficient distributed
SGD. The following theorem characterizes the optimal /5 esti-
mation error for this setting.

Theorem 3.1: For mean estimation under e-LDP and b-bit
communication constraints, we can achieve

TvME (eg,&,b) =0 (m) . (2)

Moreover, if min(e2, &,b) = o(d) and n - min(e2, €,b) > d,
the above error is optimal.

Note that by taking ¢ — oo for a fixed b, or by taking
b — oo for a fixed € in part (i), Theorem 3.1 provides
the optimal error when we have the corresponding constraint
alone. Furthermore, for finite £ and b we see that the optimal
error is dictated by the error due to one of these constraints,
the one that leads to a larger error, and hence the less stringent
constraint is satisfied for free. This also implies that to achieve
the optimal accuracy under -LDP constraints, we do not need
more than [¢] bits.

The lower bounds are obtained by connecting the problem
to a specific parametric estimation problem with a distribu-
tion supported on the unit ball. To match this lower bound,
we propose a public-coin scheme, Subsampled and Quantized
Kashin’s Response (SQKR), based on Kashin’s representa-
tion [26] and random sampling.

Remark 3.1: We note that the two conditions for optimality
in the theorem are standard and are needed to restrict the
problem to the interesting parameter regime. To see this,
observe that if the first lower bound condition min(e?, e, b) =
o(d) is not met, then it would imply the privatization error of
our proposed scheme is o(1/n), which is dominated by the
sampling error O(1/n), and thus asymptotically the privacy
and communication constraints cause no effect to the accuracy.
In addition, ¢ = §(d) is typically not a meaningful regime,
as it preserves very weak privacy in practice.

On the other hand, if the second condition is not satisfied,
it would imply m > O(1). In this case, the server
could always output 0 € R? as the final estimator regardless
of local samples — which requires no communication from the
server, and still obtain an O(1) /o error. Indeed, the lower
bounds from [50] and [51] imply that under this regime, (1)
error is inevitable and that the trivial achievability scheme (i.e.,
having the server always output 0) achieves it.

A. Subsampled and Quantized Kashin’s Response
(Achievability of Theorem 3.1)

For each observation X;, we aim to construct an unbiased
estimator X; which is e-LDP, can be described in b bits, and
has a small variance. Towards this goal, our general strategy
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is to quantize, subsample, and privatize the data X;. However,
before this, it is crucial to pre-process each X; by a carefully
designed mechanism to increase the robustness of the signal
to noise introduced by sampling and privatization.

1) Kashin’s Representation and Randomized Rounding:
We first introduce the idea of a tight frame in Kashin’s
representation. We begin by introducing tight frames and
Kashin’s representation [26].

Definition 3.1 (Tight Frame): A tight frame is a set of
vectors [ug, ..., uy] € R¥N that obeys Parseval’s identity

N
H$||§ = Z(uj,:c>2, for all z € R%.
=1

A frame can be viewed as a generalization of an orthogonal
basis in R?, which can improve the encoding stability by
adding redundancy to the representation system when N > d.
To increase robustness, we wish the information to spread
evenly in each coefficient.

Definition 3.2 (Kashin’s Representation): For a set of vec-

tors [u1,...,un|, we say the expansion
N
K
r = a;ju w1thmaxa < x
2 ot 051 < 7 el

is a Kashin’s representation of vector x at level K.
Therefore, if we can obtain unbiased estimators
(a1,...,an) € RN of the Kashin’s representation of
X with respect to a tight frame [ug,...,uy]|, then the MSE
can be controlled by

E [(X—Xﬂ —E i(aj

[~
> (@

=1

N
= Var(a), 3)
j=1

where (a) is due to the Cauchy-Schwarz inequality and the
definition of a tight frame. Recall that X is deterministic,
so here the expectation is taken with respect to the randomness
on a;. Notice that the cardinality N of the frame determines
the compression (i.e. quantization) rate, and Kashin’s level K
affects the variance. Hence we are interested in constructing
tight frames with small N and K.

[26] shows that if N > (14 u)d for some p > 0, then
there exists a tight frame [uy,...,un] such that for any z €
RZ, one can find a Kashin’s representation at level K = O(1):

Lemma 3.1 (Uncertainty Principle and Kashin’s Represen-
tation): For any p > 0 and N > (1 + p)d, there exists a tight
frame [uq,...,un] with Kashin’s level K = O u_13 1og%).
Moreover, for each X, finding Kashin’s coefficient requires
O (dN log N) computation.

For our purpose, we choose p to be a constant, i.e.
uw = 0(1), so N = 0(d), K = ©(1), and we can obtain

2
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representation of X = ZN a;uj, with |a;| < for
some constant c. Therefore we quantize each a; as fol{ws

c/Vd—a;

2¢/Vd
LR @
20/\/3 :

d 2 (qi,...,qn) yields an unbiased estimator of a =
(a1,...,an) and can be described by N = O(d) bits.
2) Sampling: To further reduce the communication cost

c

a ) Va

ﬁ, with probability

with probability

95

to k = min([e],b) bits, we sample k bits uniformly at
random from q using public randomness. Let s1, ..., sk i

uniform[N] be the indices of the sampled elements, and define
the sampled message as

k
Q (qa (81, e 7816)) £ (qua s 7q5k) € {—C/\/E7 C/\/E}
(5)
Then @ can be described in & bits, and each of g5, , yields an
independent and unbiased estimator of a: for all j € [N]

E[Ngs,, - Lij=s,}] =E[E[Ngs,, - Lj=s,3|a1,- - an]]
~Elg] = ay. (©)

3) Privatization: Each client then perturbs  via 2*-RR
mechanism (as a k-bit string):

. Q, with probability
Q =
Q/ { _C

P
} \{Q}, with probability e€+2k T
)

k
where recall that {—c/ Vd,c/ \/E} \ {Q} denotes the differ-

k
i i __¢c _c
ence between two sets, i.e., removing Q from { Vi \/3} .

Since
>

Qe{~c/Vd.c/Vd}/{Q}
(%) Q yields an unbiased estimator of . Indeed, if we

ec—1
write @ = ({1, - - -

ef+2F -1\
E|:(€7> *Qm qlv"'quaslv"~7sk:| = ds,,, (8)
ef —1
or equivalently
e +2k
e

4) Analysis of the {5 Error: Given Q) =
G — N (e + 2k —1
Tk e —1

By (6) and (8), E [a;] = a;, and hence X (Q, (s1,---, sk)) £

Z;.V:l aju; gives an unbiased estimator of X.
Claim 3.1: Let C > 0 be some universal positive constant.
The MSE of X can be bounded by

] so (2L

.Gk ), then

(G1,--.,qx), define

k
Y dm Ljmsny-

m=1
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Finally, each client encodes its data X; independently, and
the server computes %Ez X;. Since X; is unbiased and by
Claim 3.1, we get

2
)

2
| 1 &
E|-Y"X-X| | == IE{
n; , anZ:I
E.

<C<ea+2k’—1)2 d

- ec —1

Finally, picking ¥ = min ([log, e]e,b) gives us the desired
upper bound. U

Remark 3.2: In order to achieve optimal communication
efficiency, SQKR uses public randomness at the sampling step.
That being said, we can still turn SQKR into a private scheme
by using additional communication. See Section V for more
details.

At a high level, SQKR resembles vqSGD [8] as both
schemes seek a suitably designed representation for X;
before quantizing it. vqSGD represents X; by a basis B =
{b1,...,bx} C R? where B is chosen in such a way that
its convex hull contains the unit ¢5 ball. Therefore we can
write X; = Z;V=1 ajb; with 37, a; = 1. Equivalently, the
pre-processing step of vqSGD corresponds to a linear transfor-
mation that embeds the d-dim #5 unit ball into a N-dim ¢; ball.
In contrast, Kashin’s representation above embeds the d-dim
{5 unit ball into an N-dim /., ball. Therefore, while both
schemes have a pre-processing step of a similar flavor, what is
achieved by these steps is quite different. The representation of
vqSGD is most efficient when it concentrates the information
in a few coefficients, while Kashin’s representation spreads
the information evenly across different coefficients. The first
representation serves us well when we only seek to quantize
the signal. However, the quantized signal becomes very sen-
sitive to privatization noise. Therefore vqSGD ends up with
O(d?) error in the case of both privacy and communication
constraints, while we can achieve O(d) error.

X — X;

B. Converse of Theorem 3.1

The lower bound of Theorem 3.1 can be obtained by
constructing a prior distribution on X, and analyzing the
statistical mean estimation problem. Therefore, we will impose
a prior distribution P on Xj,...,X,, and lower bound the
¢5 error of estimating the mean 6(P), where P is a distribution
supported on the d-dimension unit ball.

For any X , observe that

Eg xniep [HX_X ‘j

2e[(|x -0, - 1% -ocr,)]

>E [||% —9(P)Hj —2E[|X-op)| X -0(P)|,]
s - ocnf]

—2\/1@ [HX—@(P)Hj E[|I%-oP)[3], ©)
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where (a) and (b) follow from the triangular inequality and the
Cauchy-Schwartz inequality respectively. Since X; and 6(P)
are supported on the unit ball, E {H)_( —6(P) ||ﬂ = 1/n,so it
remains to find a distribution P* such that
. 5 NIE d
H};HE {HX —6(P7) ’2] ~ nmin (e2,¢,b)’

Consider the product Bernoulli model Y ~ H;lzl Ber(8;).
If we set © = [1/2 —¢,1/2 + €]? for some 1 > & > 0, then
it can be shown that both variance and sub-Gaussian norm of
the score function of this model is ©(1) [50, Corollary 4].
Therefore, applying [50, Corollary 8] and [51, Proposition 2,
Proposition 4] yields

2 a2
S [
0 [ 2 nmin (¢2,¢,b)

Finally, if we set X; =Y}/ V/d, then each X; is supported on
the unit ball and E [X;] = 6/+/d. Therefore

O —d
Vdlly| T nmin(e2,e,b)

Plugging into (9), as long as min(e?,&,k) = o(d), the first
term dominates and we get the desired lower bound. d

2
minE HX —
X

C. Application to Statistical Mean Estimation

Finally, we point out that SQKR easily extends to an optimal
scheme for statistical mean estimation, where each local data is
drawn from an unknown distribution P supported on B4(0, 1),
and the goal is to estimate the statistical mean. Under the
statistical setting, however, SQKR requires no shared random-
ness, as one can replace the random sampling step with a
deterministic grouping and sampling of coordinates across all
the clients (see the proof of Corollary 3.1 in Section B-A of
the appendix for details). This allows bypassing the use of
shared randomness and gives the following result:

Corollary 3.1: For statistical mean estimation under e-LDP
and b bits communication constraint, we can achieve

TsME (6275717) =0 ( (10)

d
nmin (e2,£,b,d) )’
without shared randomness. Moreover, if min(e2, €, b) = o(d),
the above error is optimal (even in the presence of shared
randomness).

IV. FREQUENCY ESTIMATION

Recall that in the frequency estimation problem, given
X1,... X, €[d], we want to estimate the empirical frequency
Dxn(z) under e-LDP and b bits communication budgets on
each X;. The following theorem characterizes the optimal
estimation error achievable in this setting.

Theorem 4.1: For frequency estimation under e-LDP and b
bits communication constraint, we can achieve

(@) 755 (f2) = O | — {ef,(edfl)Zx?bvd}>’ and

/) = d .
I ( 1) 0 \/nmin {eE,(eE—l)z,T’,d} ’
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(i) e (600) =0 (\/ nmirllo{geg,e,b})’
Moreover, if min (ee, (ef —1)%, 2”) = o(d)
and nmin (ee, (e — 1)2 , 2b) > d?, the errors in (i)

are order-optimal.

Note that, similar to Theorem 3.1, Theorem 4.1 shows that
for finite € and b, the error is determined by the error due
to one of these constraints, and hence the other less stringent
constraint is satisfied for free. It also implies that to achieve
the optimal accuracy under e-LDP constraints, we do not
need more than min ([log, e - £],1og d) bits. In the rest of the
section, we overview the scheme we develop to achieve the
optimal error in (2).

We next overview the scheme that achieves the error in
(i) of Theorem 4.1. We call this scheme Recursive Hadamard
Response (RHR) as it builds on the recursive structure of the
Hadamard matrix. The complete proof of Theorem 4.1 can be
found in Section IV-B (the achievability part) and Section IV-C
(the converse part).

A. Recursive Hadamard Response: An Overview of the
Scheme

For notational convenience, we will view Dx» as a
d-dimensional vector (Dxn(1),...,Dxn(d)) and assume X;
is one-hot encoded, i.e. X; = e; for some j € [d], so Dxn =
%Zi X;. We further assume, without of loss of generality,
that d = 2™ for some m € N. Recall that a Hadamard matrix
Hy € {—1,+1}%*4 can be constructed in a recursive fashion
as

H,, = |:Hm/2 Hm,/2 :| ,

Hm/2 —Hm/2

where H; = [1]. It can be easily shown that H; ' = H,/d.

Instead of directly estimating D xn, our strategy is to first
estimate H; - Dxn» and then perform the inverse transform
Hd_1 to get an estimate for Dx~. So each client will transmit
information about Y; £ H, - X; € {—1,1}¢ rather than its
original data X;.

1) The 1-bit Case: In this case, each client transmits a
uniformly at random chosen entry of Y; via any 1-bit LDP
channel (for instance, using the 2-randomized response (RR)
scheme [3], [43], [52]). Once receiving all the bits of the
clients, the server can construct an unbiased estimator of Y;
(since the randomness is public the server knows which entry
is chosen for communication by each client). It turns out that
this simple 1-bit scheme achieves optimal ¢; (and ¢3) error
O(4/d?/ne?) in the high privacy regime ¢ < 1. This idea is
not new and has been used in heavy hitter estimation [17]
and distribution estimation [13]. However, a key question
remains: how do we minimize the error given an arbitrary
communication budget b and privacy level £?

2) Moving Beyond the 1-bit Case: A natural way to extend
the 1-bit scheme above to the case when each client can
transmit b-bits is to have each client communicate b randomly
chosen entries of its transformed data Y; instead of a single
entry. This will boost the sample size by a factor of b,
equivalently decrease the ¢, error by a factor of b (v/b for £;).
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Instead, we argue next that we can exploit the recursive
structure of the Hadamard matrix to boost the sample size
by a factor of 2°, equivalently decreasing the error by an
exponential factor.

Consider b < |logd| and let B = d/2"~!. Note that
H; = Hy—1 ® Hp, where ® denotes the Kronecker product.
To visualize, for b = 3, H, has the following structure:

Hp Hp Hp Hsp X{;;

- o Hp —Hp Hp —Hp Xi
Hp -Hs —Hg Hp | |y®

i

where for [ = 1,...,2071, Xi(l) denotes the [’th block of
X; of length B = d/2b_1. Therefore, in order to com-
municate Y;, we can equivalently communicate H BXi(l) for
I =1,...,2°"1 Since Hos—:1 is known, this is sufficient to
reconstruct Y;. We next observe that while communicating Y;
requires d = B x 27! bits, communicating {HBXi(l),l =
1,...,2°71} requires B + (b — 1) bits. This is because X;
is one-hot encoded and all but one of the 2°~! vectors
{HBXi(l),Z = 1,...,2"1} are equal to zero. It suffices to
communicate the index [ of the non-zero vector, by using
(b — 1) bits, and its B entries by using additional B bits.
This is the key observation that RHR builds on.

When each client has only b bits, they cannot com-
municate sufficient information for fully reconstructing Y;,
ie. all {Hgx" 1 = 1,...,20=1}. Instead, each client
chooses a random index r; € [B] and communicates
the r;’th row of {Hp Xi(l),l = 1,...,2°71}, equivalently
{(HB)nXi(l),l = 1,...,2"71} where (Hp),, denotes the
r;’th row of Hp. Note that as before, only one of the 2b—1
numbers {(Hg),, Xi(l),l = 1,...,2°7!1 is non-zero and
therefore these numbers can be communicated by using b bits,
b — 1 bits to represent the index of the non-zero number and
a single bit to communicate its value. When there is a privacy
constraint, client i perturbs their b bits by a 2°-RR mechanism
with privacy level ¢, and this yields the privatized report of b
bits.

Upon receiving the reports from clients, the server con-
structs an unbiased estimator for Y;. To do this, it first con-
structs an unbiased estimator for { Hp Xi(l),l =1,...,2-1}
and then employs the structure Hy = Ho-1 ® Hp. Note
that since the randomness is shared the server knows the
index r chosen by each client, and since the clients choose
their indices independently and uniformly at random, roughly
speaking, they communicate information about different rows
of {Hp Xi(l),l =1,...,2"71}. Finally, an unbiased estimator
171- for Y; yields an unbiased estimator for X; through the
transformation X’z = éHd . Yi, and due to the orthogonality
of H,, it can be shown that the variance of X’z is the same as
the variance of Y; divided by d.

A subtle issue is that if e < 2P, the noise due to 2°-RR
mechanism may be too large, so instead of using all b bits,
we perform the above encoding and decoding procedure with
v £ min ([logy e - €]).
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Note that this careful construction based on the recursive
structure of the Hadamard matrix is only required in the case
when there are joint privacy and communication constraints.
When only one constraint is present, the optimal error can be
achieved in a much simpler fashion. When there is only a b bit
constraint, [49] shows that the optimal error can be achieved
by simply having each client communicate a subset of the
entries of its data vector X; (without requiring Hadamard
transform). When there is only a privacy constraint €, the
optimal error can be achieved by a number of schemes, such as
subset selection (2°-SS) [9] and Hadamard response (HR) [44].
We summarize our proposed scheme RHR in Algorithm 1 and
Algorithm 2.

Remark 4.1: As in mean estimation, RHR requires pub-
lic randomness to achieve optimal communication efficiency.
Indeed, we can show that RHR uses the minimum amount of
shared randomness. See Section V for more details.

Remark 4.2: The encoding mechanism above involves two
operations: 1) sampling a random index r; from [B] at each
client with the help of a public coin, and 2) computing (Hq),. -
X;. Since X; is one-hot, the encoding complexity is O(log d).
On the other hand, in order to efficiently decode, the server
first computes the joint histogram of client ¢’s report and r; in
O(n) time, which in turn allows us to calculate = >°. Y;, and
then apply the Fast Walsh-Hadamard transform (FWHT) to
obtain the estimator of empirical frequency in O(dlog d) time.
Hence the overall decoding complexity is O (n + dlogd).

B. Achievability of Theorem 4.1

Next, we show that Recursive Hadamard Response (RHR)
achieves optimal ¢; and /5 estimation error.

1) Decomposition of Hadamard Matrix: Let us set B =
d/2*=1. Since Hy; = Ha.1 ® Hp, for any j € [B] and

€ [2¢71],if 5/ = (m—1)B+j (and thus j = j' (mod B)),
we must have (Hq); = (Har-1),, ® (Hyp);, where @ is the
Kronecker product. This allows us to decompose the j'-th
component of Hy - X; into

(Ha)jr - Xi = ((Hoe—1),, ® (Hp);) - X;

2
=" (Hyr),,, (Hp); - X0, (b
=1

where X! is the I-th block of X;, i.e. X\ 2 X,[(I - 1)B +
1 : IB]. Therefore, as long as we know (Hp); - X\" for
l=1,...,28"1 we can reconstruct (Hy); - X;, for all j' = j
(mod B).

2) Encoding Mechanism: Let r; ~ Uniform(B) be gener-
ated from the shared randomness, and consider the following
quantizer

Q(Xivri) = ((HB)T’L Xl(l)) 1 € {_170a 1}2,671

1=1,...,2k~
Since X; is one-hot encoded, there is exactly one non-zero
Xfl , 80 Q(X;,r;) can be described by a k-bit string (with
k — 1 bits indicating the location of the non-zero entry and
1 bit indicating its sign).
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Given Q(X;,7;), by (11) we can recover 2*~1 coordinates
of Y, = Hy - X;:

2k‘,—1
Yi(r') = (Ha)y - Xi = 3 (Hower)yy (Hp)r, - X[
=1
= (Har-1),, - Q(Xi,73), (12)
for any v’ = (m — 1)B + r;. Therefore, if we define

N Y (), ifr =1,

F(Q(Xr) ) 2 { AT gy
0, else,

then E {Yz} = éHd - X;, where the expectation is taken with

respect to 7;.

To protect privacy, client ¢ then perturbs Q(X;,r;) via
2k_RR scheme, since @ takes values on an alphabet of size
2, denoted by Q = {+ey,...,+eqn1},

X {Q(Xzﬂ"z) Ww.p. W

QIEQ\{Q(X“”)} W.p. ea+2k 15

where e; denotes the [-th coordinate vector in R2"™
Client i then sends the k-bit report Q; to the server, and
with @Q;, the server can compute an estimate of (); since

{Q'L Q(X’L'7Ti):| = ea+2k 1Q(X17Tz)

3) Constructing Estimator for D: For a given Qz, we esti-
mate Y; by Y; (e ;’;271_1
(13), with Q(X;,r;) in (12) replaced by Q;.

Claim 4.1: Y; is an unbiased estimator of Y;.

The final estimator of Dx» = 1 3" X; is given by

D ((Qi,m) 3 ) ZHdY (e +2* _1@,7«1).

(14)

Qi =

Qz, rl) , where Y; is given by (12) and

Note that by Claim 4.1, D is an unbiased estimator for D xn.
Finally picking ¥ = min (b, [elog, e], |logd]) yields the
following bounds.

Claim 4.2: The estimator D in (14) achieves the optimal
f1 and /5 errors:

2 d

E { ] = and

2l n (min (es, (es — 1)2 , 20, d))

. d
]EH’D—DXW, }5 .
1
\/n (min (ef, (es — 1)2 ,2b, d))

This establishes part (i) of Theorem 4.1. ]

To obtain an upper bound on ¢, error, we extend the
TreeHist protocol in [17], a 1-bit LDP heavy hitter estima-
tion mechanism, to communicate b bits and satisfy the desired
privacy level €. A simpler version of TreeHist protocol,
which is not optimized for computational complexity, is as
follows: we first perform Hadamard transform on X;, and
sample one random coordinate with public randomness 7;.
The 1-bit message is then passed through a binary ¢-LDP
mechanism. We can show that from the perturbed outcomes,
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Algorithm 1 Encoding Mechanism Q; (at Each Client)

Input: client index ¢, observation X, privacy level €, alphabet size d

Result: Encoded message (sign,loc)
Set D = 2M°8 41k = min (b, [clogy e]), B = D/2F1;
Draw r; from uniform(B) using public-coin ;
begin
loc « [)](3],
Sigl’l — (Hd)T7X7’

(sign,loc) « 2¥ —RR. ((sign, loc))

end

/* (sign,loc) as a k-bit string */;

Algorithm 2 Estimator of Dx~ (at the Server)

Input:
Result: D

Set D = 2M°841 k= min (b, [elog, €]), B = D/2"° 1,
Partition messages into groups Gy, . ..

forall the j =1,...,B do
g+<—{10c |z€gj,Slgn( =+1};
G; — {loc(i)|i € Gj,sign(i) = —1};
Emp; — (h1stogram(g;) histogram(G;")) - 85§{cf1§
forall the [ =0,...,2"* — 1 do
| E[l-B+j] « FWHT(Empj)[l]
end
end

D~ 3 FWHT (E);

(§i~gn[1 :n], Loc|[l : n]), privacy level ¢, alphabet size d

,Gp, with message ¢ in G, ;

/* fast Walsh-Hadamard transform */

the server can construct an unbiased estimator of X; with
a bounded sub-Gaussian norm, and the /., error will be
O(y/logd/ne?).

To extend this scheme to an arbitrary privacy regime and
an arbitrary communication budget of b bits, we independently
and uniformly sample the Hadamard transform of X; for k =
min (b, [e]) times. Each 1-bit sample is then perturbed via a
¢/-LDP mechanism with &’ £ ¢/k.

Note that under the distribution-free setting, the randomness
comes only from the sampling and the privatization steps,
so we could view each re-sampled and perturbed message
as generated from a fresh new copy of X; since X; is
not random. Equivalently, this boils down to a frequency
estimation problem with n’ = nk clients and under ¢’ = ¢/k
and gives us the /., error

logd

o) o
n' (&)

Below we describe the details.

4) Encoding: Set k = min (b, [¢]). For each X;, we ran-
domly sample (Hd)xi (i.e. the X;-th column of Hy) k times,
identically and independently by using the shared randomness.
Let 7"(1), - ,rfk) be the sampled coordinates, which are
known to both the server and node i, and (Hd) . be the

sampling outcomes. Then due to the orthogonahty of Hg, for

logd
nmin (e2,£,0) |

all j € [d], ¢ € [K],

1, if j = X;
0, if j # X,
o,

E[(Ha), 00 (Ha)y, o] = { (15)
where the expectation is taken over r
We then pass {(Hd)Xmm ‘E =1,..., k} through % binary
¢’-LDP channels sequentizﬁly, with ¢/ £ ¢/k. By the com-
position theorem [5] of differential privacy, the privatized
outcomes, denoted as {(ﬁd)X,,r?“ } satisfy e-LDP.
5) Estimation: Observe that '

e +1 ~
(ea/ - 1) (Ha)x, 00

where the expectation is taken with respect to the randomness
from the privatization step. Therefore

E

(Ha)x, .o ] (Ha)y, 05

S 0), . eEI +1 ~
OE ( - 1) (Ha);x. (Ha) ., 0

defines an unbiased estimator of X;(j). Moreover,

;" (4) _Xi(j)‘ < <e +1 + 1) a.s.,

eE_

so X (i)( /) has sub-Gaussian norm bounded by

e +1
e _1°

o< 2 (16)

Authorized licensed use limited to: Stanford University. Downloaded on June 09,2023 at 19:43:46 UTC from IEEE Xplore. Restrictions apply.



1270

Finally, we estimate Dxn(j) by
n k
Observe that

b0) - D)= £33 (5

i=1 (=1

- X)) an

has sub-Gaussian norm bounded by o /+v/nk, where ¢ is given
by (16).

To bound the /., norm, we apply the maximum bound (see,
for instance, [53, Chapter 2]) for sub-Gaussian random vari-
ables (note that for 7, j/, D(j) and D(j’) are not independent):

E [max‘f)(j) —DXn(j)H < 2y/o%logd
JEld]

logd
nmin (g,e2, k)’

4 e +1 2logd@
n e’ —1 nk

where (a) holds since if € = o(1), then k£ = 1 and hence

, 2
e 11\ 1
e —1 ) T &2’

otherwise ¢ = Q(1) and &’ = Q(1), so

e 1 2
es +
= 1.
<66/_1>

Both cases are upper bounded by (18), so the result follows.
This establishes part (ii) of Theorem 4.1. [l

(18)

C. Converse of Theorem 4.1

We bound the error by imposing a prior distribution p on
Xi,...,X, and applying the lower bounds for distributional
setting from [9], [51] (under an LDP constraint) and [49], [50]
(under a communication constraint).

Let X4,...,X, b p. Then for any D(X™), we must have
. 2
maXEUD—DXn }
Xn~p 2
(@ [
2 moe| ([0 —p], - 10x: )
c e A
> maxE |[|D—p| | 28 [||D—p| 1Dx~ —pl,]
P 2 2
(®) NI 2]
> max [E } D —pH
P L 2
. 2 9
—2 E[HD—p‘ Q]E“Dxn -l (19)

where (a) and (b) follow from the triangular inequality and the
Cauchy-Schwarz inequality respectively. From [9] and [49],
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there exists a worst-case p* such that

d 1
c— <E
"\ min (ee, (e —1)%, 2”)

<t

(20)
™\ min (ef, (es —

1)2,2b)

for some positive constants ¢ and C.
On the other hand, the /> convergence of D(X™) to p is
O (1/n) for any p, which gives us
. 1
E [HDXn _p Hg} <d 1)

Plugging (20) and (21) back into (19) yields

max E {HD—DXn
X"~p

2 d 1
>Ch— 5
2 "\ min (65, (ec—1) ,2”)

1 d
—Cy— 5 .
"\ | min (ef, (ec—1) ,2”)
Note that the first term of the above equation dominates as long
2 9b
—-1)7,2
hence the desired ¢5 lower bound follows.
For ¢; error, similarly, we have

) 2 maxe [P p] |
~E(IDxe - pl].

Observe that it holds that E[||Dx~» —pl||,] < +/d/n (for
instance, see [54]), and again from the lower bounds of [9]
and [49],

as min (es, (ef = o(d) (see [54] for example), and

max [E [Hf) — DXH’
Xn~p

(22)

} .

maXE[ 5 .
p nmin{ef,(es—l) ,2b}

Plugging this into (22) yields the desired ¢; lower bound. [J

D. Application to Distribution Estimation

For frequency estimation, RHR requires shared random-
ness so that the server can construct an unbiased estimator.
However, for distribution estimation where X; ~ p, we can
replace the random sampling with a deterministic partitioning
of coordinates among the different clients and circumvent
the need for shared randomness. This gives us the following
theorem:

Corollary 4.1: For distribution estimation under e-LDP and
b-bit communication constraints,

d
nmin (ef, (ef —

d

\/nmin (es, (es — 1)2 ,2b, d) 7

rpg (f2) =< and

17?,2,d)

TDE (61) =
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without shared randomness. Moreover, if
n - min (ee, (ef — 1)2 , 2b,d) > d?,

the above errors are optimal even in the presence of shared
randomness.

The lower bounds follow directly from the results of [9]
(under LDP constraint) and [49], [50] (under communication
constraint). We leave the formal proof of the achievability to
Section B-B of the appendix.

V. ROLE OF SHARED RANDOMNESS
A. The Amount of Shared Randomness

In the achievability part of Theorem 3.1, our proposed
scheme SQKR randomly and independently samples b, =
min ([e],b) bits from the quantized d-dimensional binary
vector at each client. These bits are then privatized and
communicated to the server. In addition to the values of these
bits, the server needs to know the indices of the sampled
bits, which corresponds to an additional by;logd bits of
information that needs to be shared between each client and
the server. This information can be shared in two different
ways: 1) sampling can be done by using a public coin shared
a priori between the client and the server, or 2) sampling can
be done by using a private coin on the client side, which is
then communicated to the server. We can also combine both
1) and 2) when b > bj;: given b bits communication budget,
SQKR compresses the data to by, bits, so the client can use the
remaining b — by bits to communicate the locally generated
randomness required at the sampling step. Thus the amount
of shared randomness is reduced to by logd — (b — by, ) bits.
Moreover, by extending [13, Th. 4], we also obtain a lower
bound on the amount of shared randomness required, which
we summarize in the following corollary:

Corollary 5.1: Under e-LDP and b-bit communication con-
straints, SQKR uses min (bj; log d, d) — (b—0;;) bits of shared
randomness to achieve ryg (£2, b, ), where b, = min ([], b).
Moreover, if b < log d—2, any b-bit consistent mean estimation
scheme! requires at least log d—b — 2 bits.

We contrast this with the amount of shared randomness
needed in the generic scheme of [10] which provides e-LDP
by using 1 bit per client in the high privacy regime ¢ = O(1).
The shared randomness required by this scheme is d bits per
client. In contrast, when ¢ = O(1) and b = 1, SQKR requires
log d bits of shared randomness.

Similarly, for frequency estimation, it can be seen that RHR
requires log d — byy bits of shared randomness in the random
sampling step, where b%; = min ([¢log, €], b). Again, if the
communication budget b is greater than the privacy budget
[elog, e], the clients can privately generate b — [elog, €]
random bits and send it to the server, which reduces the
required public randomness to log d—b bits. Furthermore, as in
mean estimation, we can show that at least log d—b — 2 bits
are needed to get a consistent scheme, so RHR is also optimal
in the amount of public randomness it uses. We summarize it
in the following corollary:

'A scheme is consistent if it has vanishing estimation error as n — co.
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TABLE IV
THE AMOUNTS OF REQUIRED SHARED RANDOMNESS

Communication Shared randomness

SQKR (Thm. 3.1) [€] bits min ([£] logd, d) bits

RHR (Thm. 4.1) [logy e - €] bits | logd — |logg e - €] bits

communication budget (bits)

A
logd achievable region
achieved by RHR (Thm. 3.1)
felogy €] |- — — — N
P public randomness (bits)
0 logd

Fig. 1. Achievable region for frequency estimation with public randomness.

Corollary 5.2: Under e-LDP and b-bit communication con-
straints, RHR uses logd—b bits of shared randomness to
achieve 7pg (2,b,€). Moreover, if b < logd — 2, any
b-bit consistent frequency estimation scheme requires at least
log d—b — 2 bits of shared randomness. Thus RHR is optimal
in the amount of shared randomness it uses for frequency
estimation, up to an additive constant.

The achievability parts of Corollary 5.1 and Corollary 5.2
follow directly from the analysis of SQKR and RHR, and
we defer the proof of the converse part to Section B-C of
the appendix. Given a e-LDP constraint, we summarize the
minimum amounts of communication and shared random-
ness required to achieve the optimal error ryg (¢2,€,00) and
reg ({2,€,00) in Table IV.

In Figure 1, we plot the achievable region for the mini-
max frequency estimation error under e-LDP constraint (i.e.
rrg (l2,£,00)). Note that the red line in Figure 1 can be
achieved by RHR.

Remark 5.1: Note that shared randomness is only needed
for distribution-free settings; for distribution estimation and
statistical mean estimation, one can achieve the same esti-
mation error with only private randomness as noted in
Theorems 3.1 and 4.1.

B. Converting Public-Coin Schemes to Private-Coin Schemes

As discussed above, we can always replace shared ran-
domness with additional communication by first generating
the random bits at the client side and then sending them
to the server. Therefore, by Corollary 5.1 and Corollary 5.2,
we automatically obtain private-coin SQKR and private-coin
RHR by using additional communication. We next state these
observations for completeness.

Corollary 5.3 (Private-Coin SQKR): Under
b-bit communication constraints with b >

e-LDP and
logd and
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0 < ¢ < d, the {5 minimax error for private-coin mean
estimation, denoted as 7yz ({2, €, b)? (to distinguish it from the
minimax error ryg ({2, €, b) achieved by public-coin schemes),
is characterized as follows:

(i) if logd < b < d, then

~ d
’I"ME(€27E7b) =0 (nmln (627€,b/ 1Ogda d)) 7

(ii) if b > d, then

~ d
T’ME(£27€7b) =0 (m) ,

and the above errors can be achieved by private-coin SQKR.
Therefore private-coin SQKR requires O (min ([e]logd, d))
bits of communication to achieve g (¢2, £, 00).

Similarly, the estimation error of private-coin RHR is charac-
terized below:

Corollary 5.4 (Private-Coin RHR): Under ¢-LDP and b-bit
communication constraints with b > logd and 0 < € < logd,
the ¢2 minimax error for private-coin frequency estimation,
denoted as 7z (l2,£,b), is

d
nmin ((ef — 1), ec,d
(e =1, e.)

fFE(fg,&b) == O

)

which can be achieved by private-coin RHR. In words, for any
€, private-coin RHR always uses log d bits of communication
to achieve 7z (2, €, 00).

Moreover, the following lemma, an extension of [13, Th. 4],
establishes a lower bound on the communication required for
consistent private-coin schemes:

Lemma 5.1: Any consistent private-coin scheme for both
mean estimation and frequency estimation uses at least b >
log d — 2 bits of communication.

This shows that the logd lower bounds on b in both
corollaries are fundamental (within 2 bits). The proof of the
lemma is given in Section B-D of the appendix.

VI. APPLICATION TO PRIVATE STOCHASTIC GRADIENT
DESCENT AND FEDERATED LEARNING

In this section, we apply our SQKR mean estimation scheme
to (differentially private) stochastic gradient descent (SGD),
which yields a distributed local DP-SGD. In each round, the
server samples n out of IV clients uniformly at random, each
(sampled) client computes a local gradient from its data, and
the server aggregates the mean of the local gradients via the
SQKR. Since the SQKR ensures local DP, we call the resulting
scheme local DP-SGD.

We summarize local DP-SGD in Algorithm 3, in which we
use SQKR,,. to denote the clients’ procedure and SQKR g
to denote the server’s procedure.

2The definition of 7z (-) is the same as that of 7z (-) in (1), except that
now the minimum is taken over all private-coin schemes.
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Algorithm 3 Local DP-SGD
Input: Clients local dataset D1,..., Dy € D, SQKR
parameters € > 0, b € N, loss function
0(+,-) : W x D — Ry, learning rate v > 0
Result: Compute wr = arg min,, Ef\il ¢(D;,w)
Server generates initial model weights wy € W,
forall the iteration t =1,...,T do
Server samples a subset of n clients C; C [N] and
broadcasts w;_1 to them;
forall the each client i € C; do
Computes g = Clip,, . (V€ (di,wi—1));
Computes Z! = SQKR.c (g});
Send Z! to the server;
end
(Server) decodes §! = SQKRgec (Z:), Vi € Cy;
(Server) updates the model by w; = w1 + 2 > 94
end
Return: wr;

A. Privacy of Local DP-SGD

Since the SQKR satisfies e-LDP, for each round ¢ the
(local) privacy loss of each client is at most €. Applying the
composition theorem [5] for T' rounds, we conclude that the
local privacy guarantee for each client is no worse than T'e.

Nevertheless, T'e-LDP is the worst-case guarantee, as it con-
siders the worst-case event in which a client is sampled for all
T rounds. However, this event happens with an exponentially
small probability. To mitigate these worst-case scenarios, one
can consider without-replacement SGD (SGDo) [55], [56],
[57], [58], which ensures each client being sampled exactly
L times, and hence the total privacy loss is reduced to <.
We provide a local DP-SGDo in Algorithm 4.3

We remark that although it is observed empirically that
SGDo can potentially converge at a faster rate [56] than
standard SGD, the theoretical convergence is less known and
existing analysis only focuses on convex and smooth loss
functions.

B. Convergence Analysis

To analyze the convergence rate of Algorithm 3, the next
lemma(which originates from [59] but we use a version
adapted from [18]) builds the connection between distributed
SGD and mean estimation.

Lemma 6.1 ([18]): Assume F(w) = %Ei]\ilﬁ(w;di),
where £(-,d) is an L-smooth and c-Lipschitz function for
all d € D. Let wy satisfies F'(wp) — F (w*) < Dp. Let
p, be an unbiased estimate of VF(w;) and let i}, be the
noisy (privatized) version of u’. Let the learning rate v =

-1
min {Ll, V2DFg (m/ LT) ? Then after 1" rounds,

2DrL 2v20\/LDp
T VT
3In Algorithm 4, we abuse notation of a random shuffling o and let
AN
U((alv"'va‘N)) = (ad(1)7"'7ad(1\7))‘

Epmanifcr) [[IVE(wr)]l3] < + B,
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Algorithm 4 Local DP-SGDo

Input: Clients local dataset dy,...,dy € D, SQKR
parameters € > 0, b € N, loss function
£(-,-) : W x D — Ry, learning rate v > 0
Result: Compute wp &~ arg min,, Zivzl (D, w)
Server generates initial model weights wg € W,
forall the epochs k=0,..., K — 1 do
Sever generates a random shuffling o, € Sy;

forall the iterationt =1,...,N/n do
Server broadcasts wy, ;—1to cohort

Ci 2 o ([n(t — 1) : nt]);
forall the each client i € C; do
Computes g = Clip,, . (V£ (di,wi—1));
Computes Z! = SQKRqc (g8);
Send Z! to the server;
end
(Server) decodes ! = SQKRgec (Zi), Vi € Cy;
(Server) updates the model by
Wit = Wey—1 + L Y0 Gis
end
Server updates wg41,0 < Wk, N/n>
end
Return: wr;

where
2
-2 :2(1?%15 [y = T w)]3]

112
+ max Bo [~ 1)),
and B = maxi<i<7 ||Eq [uf — ][, -

To apply Lemma 6.1 to Algorithm 3, observe that (1) /fg
(the true mean of gradients of C;) is an unbiased estimator of
VF(w:) (because clients are sampled uniformly at random),
and (2) fi}, is an unbiased estimator of p!, since the SQKR is
unbiased.* This implies B = 0 and 0 = max; Var (u}) +
Var (7t ).

Note that the first term Var (utg) is bounded by ¢?. Applying
Theorem 3.1, we can bound the second Var (Ah|pt) by
m. Thus we arrive at the following conclusion:

Corollary 6.1 (Convergence of Local DP-SGD): Under
the same assumptions of Lemma 6.1, after 7 ~ uniform(T")
iterations, the output of Algorithm 3 satisfies

E, [IIVF(wo)II}]

LD V8c2LD d
< o v8LDr [ :
T VT nmin(e,e2,b,d)

for some universal constant Cy > 0.

Remark 6.1: Since the convergence guarantees of
Lemma 6.1 is derived for the average of all intermediate steps,
i.e., wy for t in[T], in Corollary 6.1 we apply Algorithm 3
with a random stopping time 7.

“Notice that the clipping step in Algorithm 3 does not cause any bias since
the Lipschitz condition implies ||V£]|, < c.
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Finally, we remark that one can also obtain convergence
guarantees for SGDo (i.e., Algorithm 4) by following similar
analysis in [55] (for generalized linear models) or in [56] (for
convex and smooth loss functions). See [60, Corollary 2] for
example.

1) Discussion on the Convergence Rates: Most existing
results in private empirical risk minimization (ERM) problems,
such as the exponential mechanism [61] and DP-SGD [62],
focus on central DP instead of local DP. An important
exception is [63], in which stochastic risk minimization under
g-local DP is studied (with an assumption that ¢ = O(1)).
Under the stochastic setting, each local sample is assumed
to be i.i.d. from an unknown distribution P, and the goal
is to minimize the population risk R(w) = Ep [¢(X,w)].
Under an e-LDP constraint, [63] gives a lower bound on
the excess error for generalized linear or convex models:
R (wr) — R(w*) = Q %) Moreover, for the generalized
linear model, this lower bound is achievable via a private SGD
[63, Theorem 5]. By replacing the private local randomizer
in [34] with SQKR, we can obtain the same convergence rate

%) but with much less communication, i.e., © ([e]) bits
per client. In addition, the resulting ERM algorithm is essen-
tially the same as Algorithm 4 (note that under the stochastic
setting, the convergence analysis for with-replacement SGD
and without-replacement SGD remains the same), implying
that the convergence rate in Corollary 6.1 is optimal for convex
loss functions and € = O(1). For general loss or low privacy
regime ¢ = (1), however, the optimal rate remains open.

We remark that there have been extensive works studying
ERM under central DP, e.g., [64], [65], [66], [67]. As opposed
to the local DP setting, under central DP, it is shown that the
optimal convergence rate for stochastic convex optimization

(DP-SCO) becomes O (ﬁ) [64], [67] when ¢ = O(1), and

hence we see a /n factor as the price for ensuring local DP.

VII. EXPERIMENTS

In this section, we implement our mean estimation and
frequency estimation schemes and present our experimental
results.’

A. Mean Estimation

We implement our mean estimation scheme Subsampled
and Quantized Kashin’s Response (SQKR) as in Section III
under private-coin setting and compare it with a baseline,
a concatenation of DJW [7], [34] (which is order-optimal under
e-LDP for ¢ = O(1)) and the quantizer based on Kashin’s
representation [26] (which is optimal up to a logarithmic
factor, under b-bit communication constraint).

DJW (Lemma 1 in [34]) samples a vector from the unit
sphere with proper probability density (which depends on
X;), and scales it by a factor of O(v/d) in order to make it
unbiased. Although under public-coin setting, one can sample
the vector with the help of public randomness and reduce the

SThe code can be found in https:/github.com/WeiNingChen/Kashin-mean-
estimation (for the SQKR scheme) and https://github.com/WeiNingChen/RHR
(for the RHR scheme).
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Fig. 2. {2 error of privUnit, DJW, reDJW and SQKR with different dimensions d = 200.

communication to [e]| bits [17], for private-coin model each
client has to send a d-dimensional vector to the server and
hence requires to communicate ©(d) bits.® To compare with
SQKR under private-coin setting, we use an (order-optimal)
quantizer based on Kashin’s representation to further compress
the communication to b[logd] bits. It can be shown that
such direct concatenation will result in O(dQ) error rate (see
Section A in the appendix for more details).

1) Generating the Data: In order to capture the distribution-
free setting, we generate data independently but non-

identically; in particular, we set Z1,...,Z, /s e N(1,1)®d
and Zy o415 2n " N(10,1)® (this also makes the
data non-central, i.e. E[> Z;] # 0). Since each sample has
bounded /> norm, we normalize each Z; by setting X; =
Zi [ | Zill,-

2) Generating the Tight Frame: We construct the tight
frame by using the random partial Fourier matrices in [26].
Specifically, we set N = 219824141 — ©(q), and choose the

basis U = {1/\/N,—1/\/N A by selecting the first d
rows of Hy - D, where Hy is a N x N Hadamard matrix
and D is a random diagonal matrix with each diagonal entry
generated from uniform {41, —1}. It can be shown that the
tight frame based on U has Kashin’s level K = O(1).

In Figure 4, we fix the sample size to n = 10° and ¢, b, and
increase the dimension d. From the result, we see that SQKR
has a linear dependence on d, whereas the baseline (labeled
as “Separation” since it is based on the idea of separately
coding for privacy and communication efficiency) has super-
linear dependence. Therefore the performance differs drasti-
cally when d increases.

a) Compare to optimal €-LDP schemes [7]: We first
compare our scheme SQKR, under private-coin setting, with
1) privUnit [7], which is order-optimal for all £ and
2) DJW [34], which is order-optimal for e = O(1). Note that
although DJW is originally designed for high-privacy regime
e = O(1), one can independently and repeatedly apply it
with ¢/ = 1 for |¢] times and return the mean of the |¢]

6We remark that after our paper being published, a recent work [41] shows
that DJW and its improved version privUnit [7] can be compressed in a
more efficient way. We refer the reader to [41] for more details.

vectors. By the composition theorem [5] for DP, the output
satisfies |¢|-LDP, and the MSE is reduced by a factor of
|e]. The repeated version of DJW (denoted as reDJW) is
hence asymptotically optimal, and we also compare it with
our scheme.

Note that the outcomes of privUnit, DJW and reDJW
are d-dimensional vectors lying in a radius O(\/E) sphere,
so in general we need 32d bits to represent it (where we
assume each float requires 32 bits). Figure 2 shows that
SQKR achieves similar performance with significantly less
communication budgets. For instance, under the private-coin
model, when € = 5 and d = 200, the communication cost of
privUnit is roughly 32 x 200 ~ 6K bits, while according
to Corollary 5.3, SQKR uses only 5 x [log, 200] = 40 bits.

b) Compare with the baseline scheme: Next, we com-
pare SQKR with a combination of privUnit and an optimal
quantizer.

i) Baseline: a direct concatenation of privUnit, Kashin’s
quantizer and sampling: For each X; in unit /5 ball,

privUnit maps it to a vector X; with length HX}
2

() (\/d/ min (g, 62)). If we quantize X; according to its
Kashin’s representation and then subsample b bits from it as
in Section III, then the ¢5 error (i.e. variance) will be

~(dn~12 N d?
Ol - HX ; =0 — |-
(b ! > <bm1n(5,52)>
Therefore, averaging over n clients, the {5 error of estimating
the empirical mean is

~ d?
© (n-bmin(e,62)> '

However, in Theorem 3.1, we see that with a more sophis-
ticated design, we can achieve smaller ¢y error

d
© (n'min(e,z-:?,b)) '

In the experiment, we mainly focus on the high-privacy low-
communication setting where ¢ = b = 1, and the low-privacy
high-communication setting where ¢ = b = 5. We consider
different dimensions d and plot the (log-scale) /5 estimation
error (i.e. mean square error) with sample size n. For each
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different privacy and communication budgets.

e =1, b=1, n =100000 e =1, b=1, n=100000

’ —SQKR
,
’
" 4
4
. o
2] e
e
Ew ’ 5 om
g ’ g
0 4
< . Sow
e
N e
- a0
_-
N -
-
- o
2 -
_-
N e e e W He @ B W % @ #
d dimension d dimension
£ =5, b =5, n=100000 - £ =5, b=5, n=100000
—SQKR
0z ’
’ o
4
7’ 84
0z -
o 14 L 82
5 ’ 5
s ’ g
g P g
< ’ <
-7 "
o1 7/
P s
_-
i 74
o -
-
- 72
-
P

d dimension d dimension

Fig. 4. {2 error with n = 105 and different dimensions d. In order to
better emphasize the dependence to d, on the right-hand side we only plot
the o error of SQKR.

point, i.e. each combination of parameters ¢, b, d, n, we repeat
the simulation for 8 iterations and compute the average.
In Figure 3, we see that SQKR drastically outperforms the
baseline (labeled as “Separation” since it is based on the
idea of separately coding for privacy and communication
efficiency). The gain increases in higher dimensions or with
more stringent privacy/communication constraints.

In order to study the dependence on d, we fix the sample
size to n = 10° and ¢,b, and increase the dimension d.
In Figure 4, We see that SQKR has linear dependence on
d, and Separation has super-linear dependence. Therefore the
performance differs drastically when d increases.

B. Frequency Estimation

For frequency estimation problem, we experimentally com-
pare our scheme, Recursive Hadamard Response (RHR),
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Fig. 6. ¢y error with d = 5000 and d = 10000, under (truncated) Geo(0.8)
and different .

with SS [9], HR [44] and 1-bit HR [13].7 We set
d = {1000,5000,10000}, ¢ € {0.5,2,5} and n =
{50000, 100000, . .., 500000}, and evaluate the ¢; estimation
errors on uniform distribution and truncated and normalized
geometric distribution with A = 0.8. For each point (i.e., for
each parameter n, €, d), we repeat the simulation 30 times and
average the /5 errors. Figure 5 and Figure 6 show that RHR

7For HR, we use the codes from [44] (https:/github.com/zitengsun/
hadamard_response)
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can achieve the same performance as HR but is significantly
more communication efficient. For instance, in Figure 6 with
d = 10000,¢ = 5, RHR uses only half of the communication
budget for HR and achieves better performance. In all settings,
k-SS has the best statistical performance, but this comes with
drastically higher communication and computation cost.

VIII. CONCLUSION

We have investigated mean estimation and frequency esti-
mation under e-LDP and b-bit communication constraints.
A significant advantage of the approaches we presented is
that they achieve the privacy and communication constraints
simultaneously at the cost of the harsher one. We also study
the role of shared randomness in distributed estimation and
how it benefits communication costs and accuracy. Finally,
we apply our mean estimation scheme SQKR to local DP-SGD
and analyze its convergence rate.

APPENDIX A
SEPARATE QUANTIZATION AND PRIVATIZATION IS
STRICTLY SUB-OPTIMAL

Distribution estimation: First, let us recap the sub-
set selectionu (SS) scheme proposed by [9]. Assume
X1, X, B p = (p1,-..,pa). Client i maps the local
data X; into y € Vo 2 {y {01}y g = w} with
the transitional probability
e“y; + (1 —yj)

d—1 d—1\ "
e® (w—l) + ( w )
The estimator for p; is defined by
. <<d—1>e€+%ﬁ‘“> T, (w—1)ef+d—w

st(y|X = j) =

- (d—w)(es —1) n (d—we —1

=

(23)
where T; £ Y"1 | Yi(j). Note that by picking w = [ea;‘_l’_l]
SS is order-optimal for all privacy regimes.

To demonstrate that separating privatization and quan-
tization is strictly sub-optimal, we analyze the estimation
error of directly concatenating the 2°-SS mechanism with
the grouping-based quantization in [49]. Note that both
schemes are known to be optimal under the corresponding
constraints, privacy and communication respectively. How-
ever, their direct combination yields an ¢y error of order
O (d?), which is far from the optimal accuracy established in
Theorem 4.1.

We first group [d] into s = d/2° equal-sized groups
G1,...,Gs, and each client is only responsible for sending
information about one particular group. That is, let Y; be the
outcome of the 2°-SS mechanism, i.e. Y; ~ Qss (-|X;), and
client ¢ only transmits {Y;(j)|j € Gy}, for some s’ € [s].
Since the server estimates each component of p separately as
in (23), this grouping strategy reduces the effective sample
size from n to n’ = n2%/d. Plugging n’ into the £ error (see
[9, Proposition III.1], we conclude that the error grows as

X (mb min (eil?(ee - 1>2>> |
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Note that since each Y; contains exactly w ones, the required
communication budget to describe {Y;(j),j € G;} may be
larger than b bits. But this is fine since it implies that even
given more than b bits, the estimation error still grows with d?.
In Theorem 4.1, on the other hand, we show that the optimal
£y error is linear in d, so this demonstrates that separate
quantization and privatization is sub-optimal.

Mean estimation: For the mean estimation problem,
a straightforward combination is using the privUnit mechanism
[7, Algorithm 1] to perturb the local data X; € B4(0,1),
and then using RandomSampling quantization in [8, Th. 6]
to compress the perturbed data. Both schemes are known
to be optimal under the corresponding constraints, privacy,
and communication respectively. (Note that in the implemen-
tation, we replaced the RandomSampling quantization with
a Kashin’s quantizer, since implementing the theoretically
optimal RandomSampling quantization is computationally
infeasible.)

By [7, Proposition 4], the output of privUnit, denoted as

Z; = privUnit (X;, €),

d

min(e,e?)

apply RandomSampling to b bits, by Theorem 6 in [8], the

{5 estimation error grows as
d2
(nb min (e, 62)> ’

d
o (1z1.%;) —e

showing a quadratic dependence in d. By Theorem 3.1,
nevertheless, we can construct a better scheme with
O(d/nmin (g,e%,b)) dependence under both constraints.

has ¢, norm of order © ( ) However, if we further

APPENDIX B
PROOF OF CLAIMS, LEMMAS, AND COROLLARIES

A. Proof of Corollary 3.1

The lower bounds follow directly from [7] (under e-LDP
constraint) and [12] (under b-bit communication constraint).
For the achievability part, we apply SQKR except for
replacing the random sampling step with deterministic
grouping.

Let X; "~ P with P supported on B(0,1). First, as in
the proof of Theorem 4.1, by Lemma 3.1 we can write X; =
S Ajjuy with N = cod and |Ay| < K/vVd, K = © (1),
Since X; i P, if we denote A; = [A4;1,...,A;n], then
A "

Now we group n clients into m = N/b* groups G1, . . ., G,
each with nb*/N clients, where b* £ min ([elog,e],b).
Also, we divide all of N coordinates (of A;) into m groups
Ii,...,Zm, and each group of clients is responsible for

estimating the corresponding group of coordinates of ¢ (]5) €

Q for some P supported on [—%, %}

N _
[—%, %} , where 6 (P) = [E5[A] is the population mean
of P.
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Quantization: If client ¢ belongs to G;, then it quantizes
A;j to Q5 according to

_%, with probability %7 it
Qij = %, with probability %1%/&, it j e,
0, else.
(24)

Conditioned on A;, {Qi; | 7 € Z;} yields an unbiased estima-
tor of {A;; | 7 € Z;} and can be described by |Z;| = b* bits.

Privatization: Client i then perturbs the b*-bit message
{Qi; | j € Z;} into {Qij |je Il} via 2°"-RR, as described
in (7). Similarly,

b* _
() e

yields an unbiased estimator on {4;; | j € I;}.

Analysis of the (; error: For all j € I, Ay £
(%) Qij yields an unbiased estimator on E s [A;;],
and note that Qij €
controlled by

B [(4s 0@ ()] < (#) (%)

:O(m)-

Since for each coordinate j € Z;, there are |G;| clients
(samples) that output 1ndependent and unbiased estimators
A”, the estimator A =G g | > A” has variance

1€
1
O —
(d |gz|)

1
=0 —= ).
(nmin (b*,€2)>
Therefore, we arrive at

N
£ Y (4 - (4)) =O(m)

j=1

K K ; A i
{_ﬁ’ ﬁ}’ so the variance of A;; is

Write 6 =
N
i E

Z;.V:l Aju; and note that 6(P) =
P [fl]} u;, so by (3) we conclude that

:O(m)
-0 (i)

e |10 - 03]

B. Proof of Corollary 4.1

The construction of the distribution estimation scheme

mainly follows Section IV, except we replace the random

sampling step by a deterministic grouping idea. We will use
the same notation as in Section IV.

1277

Encoding mechanism: We group n samples into B equal-
sized groups, each with n’ = n/B samples. For sample X; €

G;, we quantize it to a 2F~1_dimensional {1,0, —1} vector:
(Hp); - X"
(2)
(HB)j - X k—1
Q;(X;) = N e e U S

(Hp); - X
Since X; is one-hot encoded, there is only one [ €
{1,...,2%=1} such that (Hg); - Xi(l) # 0, so Q;(X;) can
be described by & bits (1 bit for the sign and (k — 1) bits for
the location of the non-zero element). Also, notice that

(Hp); - pV

(Hg); - p®
E[Q;(Xi)] = : :

(Hp); - p@" )

where p) £ p[(l — 1)B + 1 : IB]. By (11), the estimator
Gy = ((Hak-1),,,Q;(X;)) is unbiased for g;; (where j' =
(m —1)B + ).

We further perturb @; via 2F-RR scheme, since Q
takes values on an alphabet of size 2¥, denoted by Q =

{iel,...,i62k—1},
Q' _ Qj, W.p. ﬁi«,l
;=
Q' € 2\ {Q;}, wp. Wlk,l;

. . k— .
where e; denotes the I-th coordinate vector in R? " This

gives us

~ e —1
E [Qy} = MTE[QJ']-
Therefore < ;’;2 T 1Qj yields an unbiased estimator of
(Hp); - pt
(Hp); - p®
(Hg); - p? ")
Constructing the estimator for p: For each j = j

(mod B), we estimate (Hgr-1),, /), € G; (recall that

: Qj (X’L

j' =7+ (m —1)B). Define the estimator
a4y ({XM' €G;})
ef+2F 1Y -
S (Hyn) (7> Q, (X))
|g]| i€G; e -1
B (e +2F -1 ~
=% (ﬁ) D (Hoier),, Qi(X).

i€G;
The MSE of ¢§;; can be obtained by
. 2
g Var (q/\zl)

® d [ee+2F—1
T p2k-1 e —

)2 Var ((sz—l)m -Q; (Xi))
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© d (e +28 -1\
< )
— n2k-1 es —1
where (a) is due to the unbiasedness of G;/, (b) is due to Ehe
independence across X, and (c) is because ((Hak-1),,,Q;)
only takes value in {—1,1}.

Finally, let p be the inverse Hadamard transform of @, the
MSE is

(25)

Elp—pl; =E[p - p,p - p)]
=E [(?1 —q)T (H) H (g- q)}

1. 2
= ZEla—ql;

d (e +2F —1\7
< - ([t= -
— n2k e —1

_0 d [ef+2F 2
N n2k \ e —1 ’
where the last inequality holds due to (25).
Picking k£ = min (b, [elog, €], |log d]) yields

N 2 d e’ ?
Elp—pl, =0 <nmin(2b,es,d) (ee - 1> ) '

Observe that if ¢ = O(2), then ¢ < 2%, so E ||p —pH; =
O (dieaz) On the other hand, if e® = 9(2”), then —£— =
n(es—1) 1

0(1), and E [~ pl2 = O (s )-
Therefore we conclude that

Elp—pll} = i de
— max
P Plly = ma nmin (2,d)’ p (es — 1)

d 1
7\ min {ef, (e —1)%,20, d}

~
S

Finally, by Jensen’s
inequality, we also have

inequality and Cauchy-Schwarz

Ellp—pl < (E[1p-pl2])* < (¢-Elp-pl3)”
d

\/n (min {ef, (es — 1)2 , 20 d}) |

establishing the achievability part of Theorem 4.1.

=

C. Proof of Corollary 5.1 and Corollary 5.2

Notice that since one can always “simulate” the public coin
by uplink communication (i.e. each client generates its private
random bits and send them to the server), any b bits public-coin
scheme can be cast into a private coin scheme with additional
b bits communication. This implies the above impossibility
results (Lemma 5.1) also serve a valid lower bound for the
amount of public randomness: for any public-coin scheme
with b < logd — 2 bits communication budgets, we need
at least logd — b — 2 bits of shared randomness in order to
obtain a consistent estimate of the empirical mean or empirical
frequency.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

D. Proof of Lemma 5.1

Without access to the public randomness, [13] shows that at
least ©(d) bits of communication is required for heavy hitter
estimation in order to obtain a consistent estimator.? We state
their result here:

Lemma 2.1 ([13] Theorem 4): Let b < logd — 2. For all
private-coin schemes (Q”, D) with only private randomness
and b bits communication budgets, there exists a data sets
X1,..., X, with n > 12(2% + 1)2, such that

. 1
IE{HD ") _ Dyn }>7.
(@) =Dxn|| | = 50257

Based on this, we claim that without a public coin, each
client needs to transmit at least ©(logd) bits in order to
construct consistent schemes for frequency estimation or mean
estimation.

Frequency estimation: We lower bound ¢; and /5 error
by ¢ and apply Lemma 2.1.
a

2[Joi@) x| =5 [[p@) - ox
|

J)

2 2b+2 + 4’ an
(26)

d

E wb (Q") — Dxn

j >E [Hf?(Q”) Dy

> (E[|D@") - Dxn

> (1 i
TA\20t2 44 )

This implies that it is impossible to construct consistent
schemes with less than log d—2 bits per client in the absence of
a public randomness. On the other hand, given log d bits, one
can readily achieve the optimal estimation accuracy without
any public randomness, for instance, by using Hadamard
response [44] (see also the discussion in [13]). Therefore, the
problem of frequency estimation is somewhat trivialized in the
absence of public randomness.

Mean estimation: Let X; € [d] be one-hot encoded,
so X; € By(0,1). Then (26) implies the {2 error of mean
estimation is at least 1/ (2b+2 +4)2. Thus with less than
log d — 2 bits of communication budget, it is also impossible
to construct a consistent scheme for mean estimation. |

E. Proof of Claim 3.1

According to (3), it suffices to control Var (a;). To bound

the variance, consider
N2 [es 42k —1)\7 .
1

2
N2 (e 428 1) i
<zz'Ci;?T—>E G Lg=an)
1

8Recall that an estimator is consistent if it has vanishing estimation error
as n tends to infinity.

Var (a;)

M=~ iM-

3
I
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2
@NQ ec+28_1\?/ ¢ 2]E k L Plugging this in to (28), we arrive at
- ﬁ ' ( et —1 > (ﬁ) Z {i=sm} . 9 d e€—|—2k 1 2
E HD—D A<
[o=2x )= = (T )

© N (421N Kk
=Yz e — 1 N2 T N Picking & = min (b, [¢log, €], [logd]) yields

e+2t—1N\? /1 1 2 d e \?
() : e
es—1 Nk £ 2 © nmin (2%, e2,d) \ec — 1 '
2
2} B

m=1

D — Dxn

where (a) is due to |G| = ok and (b) is due to the second  (ypeerve that

moment bound on Binomial(k,1/N) and the fact N = O(d). () if ¢ = O(2°%), then e =< 2° so E {Hﬁ — Dxn
Therefore by (3), B

0 ()

T al e +28—1\"d .
E |:HX_XH2:| < CO Zvar (dz) < Cl (ﬁ) E’ (11) If e = Q(Qb), then 65671 = 9(1), and
i= . 2
1 o
establishing the claim. (] 2 '
Therefore we conclude that
F. Proof of Claim 4.1 E Hﬁ — Dx» 2 < max d de*
i : : . 2] nmin (2,d)” p (es — 1)
Y, yields an unbiased estimator since
. eyok _ 1. d 1
E [Yi <7e s Qiﬂ“i)] =~ 2
e —1 7\ min {ef, (es—1) 72”,d}
ol (€ +28 -1~ . . . .
=E|E|Y; ﬁ@i; Ti | |Ti By Jensen’s inequality and Cauchy-Schwarz inequality,

we also have

S I,

:A € 2k_1~
O Y(E[”il@
66_

—E|Y, (Q(Xi,m),m)}

1)

J < <IE {HD — Dx»

1
L . 2\ 2
1 < . — Dxn
= ZHyX;, 27) = (d EHD Dx ’2)
d d
where (a) holds since conditioning on 7;, Yi(Q, r;) is a linear = 5 :
function of Q. O \/n (mln {es, (e —1)7,2P, d})
O
G. Proof of Claim 4.2
The /5 error is ACKNOWLEDGMENT
. 2 1 . 112 The authors would like to thank Jakub Konecny for bringing
E {HD — Dxn 2] =3 ZE “ H.Y; — HiE [ z} ‘2] Kashin’s representation to their attention. This was helpful
i=1

in achieving orderwise optimality for mean estimation. They
would also like to thank Vitaly Feldman and Kunal Talwar for
pointing out a mistake in the experiments of mean estimation
as well as the connection between SQKR and [31].

= [ -= (]

. 2
It remains to bound E U Y, —E[Y]] ‘ } Observe that
2
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