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Abstract—Group testing was conceived during World
War II to identify soldiers infected with syphilis using
as few tests as possible, and it has attracted renewed
interest during the COVID-19 pandemic. A long-standing
assumption in the probabilistic variant of the group testing
problem is that individuals are infected by the disease
independently. However, this assumption rarely holds in
practice, as diseases often spread through interactions
between individuals and therefore cause infections to be
correlated. Inspired by characteristics of COVID-19 and
other infectious diseases, we introduce an infection model
over networks which generalizes the traditional i.i.d. model
from probabilistic group testing. Under this model, we
ask whether knowledge of the network structure can be
leveraged to perform group testing more efficiently, fo-
cusing specifically on community-structured graphs drawn
from the stochastic block model. We prove that a sim-
ple community-aware algorithm outperforms the baseline
binary splitting algorithm when the model parameters
are conducive to “strong community structure.” Moreover,
our novel lower bounds imply that the community-aware
algorithm is order-optimal in certain parameter regimes.
We extend our bounds to the noisy setting and support our
results with numerical experiments.

Index Terms—Group testing, infectious diseases, adap-
tive algorithms, stochastic block model, network commu-
nity structure

I. INTRODUCTION

Identifying individuals who are infected by a disease
is crucial for curbing epidemics and ensuring the well-
being of society. However, due to high costs or limited
resources, it is often infeasible to test every member of
the population individually. During World War II, when
the U.S. military sought to identify soldiers infected with
syphilis, Dorfman introduced the breakthrough concept
of group testing [1]. He showed that by testing groups
or pools of samples, the infected people in a population
of size n can be identified with far fewer than n tests.
The key insight was that if the infected population is
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sparse, then each pooled test is likely to produce a
negative result, in which case all individuals included in
the test can simultaneously be deemed healthy. Today,
group testing strategies are actively being used in the
COVID-19 pandemic to identify infected individuals in
an efficient and cost-effective manner [2]-[5]. There has
also been a recent influx of papers which seek to improve
or better understand group testing for COVID-19, e.g.,
[6]-17].

Dorfman’s seminal work and many subsequent works
by other authors [18]-[24] assume that the disease in-
fects individuals in a statistically independent fashion.
The simplest and most widely studied case, known as the
i.i.d. model or binomial model, assumes individuals are
infected independently with some common probability
p.! However, this assumption of independence rarely
holds in practice. Diseases typically spread through
interactions between individuals (e.g., familial, work-
related, or other social interactions), thereby inducing
correlated infections. It is thus natural to ask whether
exploiting information about this connectivity structure
can lead to more efficient group testing strategies. This
problem is especially timely given the critical role that
group testing has played in the COVID-19 pandemic,
and given that the disease is known to spread between
individuals in close contact with each other.

In this paper, we contribute to the nascent area
of “group testing under correlations” by investigating
whether knowledge of the interaction network dictating
the spread of the disease can be leveraged to perform
pooled testing more efficiently. We introduce a novel
community-oriented infection model, called the stochas-
tic block infection model (SBIM), which generalizes the
standard i.i.d. model to a setting in which the disease
can be transmitted between individuals. Our model is
equivalent to a certain graph-based infection spread

In a related, commonly studied probabilistic model—often called
the combinatorial prior model or the hypergeometric model —it is
assumed that a random set of d individuals out of n are infected accord-
ing to some distribution (typically uniform) over all (3) possibilities
[25]-[34]. While this is slightly different from an i.i.d. assumption, it
is still somewhat simplistic and fails to capture any dependencies that
may exist between individuals.
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mechanism operating upon the well-known stochastic
block model (SBM) for random graphs. For decades, the
SBM has been utilized across the social, biological, and
information sciences as a very simple yet natural way to
model community structure in probabilistic networks.

On the algorithmic side, we consider adaptive group
testing schemes, where the design of each test can be
informed by the previous test results. We compare two
different schemes: the standard binary splitting algo-
rithm [35] which is oblivious to the underlying net-
work structure, and a simple community-aware algorithm
which essentially performs two stages of binary splitting:
the first stage identifies the communities containing
at least one infected member, and the second stage
performs more fine-grained testing within the infected
communities. We give precise upper bounds on the
expected number of tests performed by each algorithm.
Crucially, we show that when the model parameters
yield “strong community structure” (in which case the
disease is much more likely to be transmitted within a
community than between communities), the community-
aware algorithm’s average complexity is asymptotically
strictly better than that of binary splitting. Furthermore,
we derive novel information-theoretic lower bounds that
apply to all adaptive strategies and imply the order-
optimality of the community-aware algorithm in certain
parameter regimes. We then extend our algorithms and
bounds to the noisy setting—in which the test outcomes
are passed through a binary symmetric channel—and
find that the presence of noise does not affect the relative
gains of using a community-oriented approach. Finally,
we corroborate our results with numerical experiments.
To the best of our knowledge, this is the first thorough
characterization of the complexity of adaptive group
testing in a networked setting.

We note that the underlying principles of this paper
may be relevant to numerous settings beyond epidemi-
ology. In the past, group testing has been successfully
applied to diverse domains including wireless commu-
nications [19], [22], [36]-[41], machine learning [42]—
[44], signal processing [45], [46], and the analysis of data
streams [47], [48]. In these settings and others, there may
be a natural “clustering” of the population into different
subgroups which can inform the design of better group
testing strategies, i.e., be exploited as “side information.”
For example, devices which are closer together in a
multiple access network may tend to be active or inactive
at the same time. Exploring the potential applications
of network-oriented group testing to these types of
problems is of great interest.

a) Related Works: In graph-constrained group test-
ing [49]-[52], the tests must conform to a given network
topology. For example, if the objective is to identify
faulty links in a communication network by sending
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diagnostic packets, then each test must correspond to a
valid path in the network. By contrast, our problem setup
permits arbitrary tests, but we ask whether knowledge of
the interaction network can help reduce the number of
tests.

There is a rich literature on adaptive group testing
dating back to the early work of Dorfman [1] and
others [20], [53]-[59], with several important results
having emerged in recent years, e.g., [60], [61], [31],
[62], [63], [64]. These works focus on relatively simple
combinatorial or probabilistic models. A few prior works
have departed from these standard models by assuming
that infections occur independently with non-identical
prior probabilities [18], [23], [24]. However, our paper
pertains to the fully non-i.i.d. case in which infections
can be correlated with potentially different priors, de-
pending on the network structure.?

The idea of community-aware group testing was first
explored in [13], which assumed the population is par-
titioned into disjoint “families” and that the disease
spreads in two stages with independent infections at
each stage. Our work considers an infection mechanism
which similarly operates in two stages but is designed
to model the interaction-based transmissions by which
diseases often spread in reality. Finally, we would like
to acknowledge a number of independent and concurrent
works related to community-aware group testing [16],
[65]-[68].

b) Notation: Let [n] = {1,2,...,n}. We denote by
n, k, and m £ % the size of the population, size of each
community, and number of communities, respectively.
X £ (Xy,...,X,) € {0,1}" is the infection status vec-
tor, where X; = 1 iff the i" individual is infected. With
a slight abuse of notation, let X¢, € {0,1}, 7 € [m], be
the infection status of community C;, where X¢, = 1 iff
di € C; : X; = 1. The indicator function for an event
A is given by 14. The entropy of a discrete random
variable and the binary entropy function (both in bits)
are H(-) and hy(-), respectively. We write f(z) < g(z)
to denote f(x) = o(g(z)), and f(z) =< g(x) to denote
f(z) = O(g(x)).

¢) Paper Organization: The rest of this paper is or-
ganized as follows. In Section II, we provide background
and preliminary results. In Section III, we introduce the
stochastic block infection model (SBIM) and discuss its
equivalence to a certain graph-based infection spread
mechanism acting upon the stochastic block model. In
Section IV, we discuss the main algorithms studied in
this paper: binary splitting and our proposed community-
aware algorithm. Section V gives upper and lower

2For the sake of obtaining comprehensive results, we focus on a
symmetric model in which infections are correlated and identically
distributed. However, the general infection model that we propose in
Section III-C is fully non-i.i.d.

Authorized licensed use limited to: Stanford University. Downloaded on June 09,2023 at 19:47:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3247520

AHN, CHEN, AND OZGUR: ADAPTIVE GROUP TESTING ON NETWORKS WITH COMMUNITY STRUCTURE: THE STOCHASTIC BLOCK MODEL 3

bounds for adaptive group testing over the general SBIM,
and Section VI provides an in-depth treatment of the
disjoint k-cliques model, which is a special case of the
SBIM. We then extend our algorithms and bounds to
the noisy case in Section VII. Finally, we present the
results of our numerical experiments in Section VIII, and
conclude in Section IX. All omitted proofs are given in
the Appendices.

II. BACKGROUND AND PRELIMINARY RESULTS

A. The Group Testing Problem

In the group testing problem, a test corresponds to
a subset of individuals S C [n]. The test outcome is
positive if X; = 1 for some ¢ € S; that is, if at least
one member of S is infected. Otherwise, the outcome is
negative. Equivalently, the outcome is a binary variable
Y € {0,1} given by a Boolean OR operation over S:

Y = \/ X;. (1)
€S
A group testing algorithm describes how to select subsets
S1, ..., S and—given the corresponding test outcomes
Y1,...,Yp—how to generate an estimate X of X. In
adaptive schemes, the subsets S; are chosen sequentially
and are allowed to depend on the previous test outcomes.
In the first part of this paper, we assume that test
outcomes are noiseless (meaning the algorithm gets to
observe Y as given in (1)), and we require exact recovery
of X1,...,X, (i.e., zero error).
Subsequently, we consider a noisy variant of the
problem in which the test outcomes are given by

v=(\Vx)ag @)
i€s

where ¢ ~ Bernoulli(p) for some p € (0,1), and @
denotes modulo-2 addition. This is the widely-adopted
symmetric noise model [69]-[71], and it is equivalent
to passing each noiseless test outcome through a binary
symmetric channel with crossover probability p. It is
assumed that tests are subject to independent noise. Due
to the uncertainty in the test outcomes, we can no longer
guarantee exact recovery of X. Instead, we seek to
ensure a vanishing error probability P, £ Pr(X # X),
where the randomness is due to the infection statuses
and the noisy test outcomes.

In our setting, the number of tests T performed by an
adaptive scheme is a random variable because it depends
on the X;, which are generated by our probabilistic
SBIM model, as well as the (possibly noisy) test results.
Our goal is to characterize the average complexity of
adaptive schemes under the SBIM by providing both
upper and lower bounds on E[T7].

B. Information-Theoretic Lower Bounds

A fundamental result in probabilistic group testing
is that any adaptive algorithm which is guaranteed to
identify all infected members of the population, assum-
ing noiseless test results, requires a number of tests 7'
satisfying

E[T] ZH(Xlw--aXn)- (3)

This bound highlights the intimate connection between
adaptive group testing and source coding. Indeed, to
summarize a discussion from [19], the outcomes of
the adaptive tests can be viewed as a binary, variable-
length source code for X. The lower bound then follows
directly from existing results in data compression (e.g.,
[72, Eqn. 5.38]). Equation (3) will serve as the point of
departure for the lower bounds on E[T] that we derive
under the SBIM in the noiseless case. The key challenge
will be to obtain good approximations to H(X) in
the presence of correlations induced by the underlying
network.

For the noisy setting, we prove the following coun-
terpart to (3). This lower bound holds for any adaptive
scheme and any underlying stochastic infection model,
including those with correlations. We provide the proof
in Section VII.

Theorem 1. Assume H(X1,Xs,...,X,) — oo as
n — oo. Under the symmetric noise model (2), any
adaptive algorithm achieving P, — 0 must use an
average number of tests lower bounded as

H(X1,...,X,
]E[T] Z ( 1, 9 )7
1(p)
where I(p) = 1—hp(p) = 1—plog, % —(1-p) logﬁ
is the capacity of the binary symmetric channel with
crossover probability p € (0, 3).

4)

Note that our bound recovers the noiseless lower
bound (3) when p = 0. Moreover, in the special case
of the combinatorial prior model where the number of
infections d is fixed and the set of infected members

is uniformly distributed over the (7}) possibilities, our

bound reduces to E[T] > lolg (E‘;) . A version of this bound
appears in [71], which does not prove it directly but
argues it can be shown using an existing result from
[61] along with the variable-length coding capacity of
the binary symmetric channel. In Section VII, we provide
a stand-alone proof of the more general lower bound in
Theorem 1 which encompasses all adaptive schemes and
probabilistic infection models with symmetric testing
noise. Though we will primarily focus on the implica-
tions of Theorem 1 in the context of the SBIM, we again
emphasize that this result is independent of any particular
infection model and thus can be of interest in its own
right.
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III. STOCHASTIC BLOCK INFECTION MODEL

(SBIM)

In this section, we introduce the stochastic block
infection model (SBIM), which extends the traditional
ii.d. group testing model to a community-oriented set-
ting. Here, individuals infect their fellow community
members with a higher probability than those in other
communities, giving rise to strongly correlated clus-
ters of infections. We then describe a special case of
the SBIM—the disjoint k-cliques model—in which the
communities are “disconnected.” Finally, we discuss the
relationship between the SBIM and the stochastic block
model (SBM), and conclude the section with some
practical considerations.

A. General SBIM

Assume we are given a partition of the population of
size n into m £ n/k communities Cy,...,C,, of size
|Ci| = k, Vi € [m]. The SBIM comprises the following
two stages (each executed once):

1) Seed Selection: Individuals in the population are
infected independently with probability p € (0, 1].
These initial infected members are called the seeds.
They model the introduction of the disease into the
population via some external entity (e.g., a traveler
carrying the disease into a country).

2) Neighbor Infection: Every seed infects its neigh-
bors within the same community independently
with probability ¢; € [0,1] and those outside its
community independently with probability ¢, €
[0,1], where g1 > go. This models how the dis-
ease spreads through the population via interactions
between carriers and nearby individuals. Members
of the same community are more likely to interact
with each other within a given time frame (e.g., by
interacting socially or professionally, or by being
in the same physical space, e.g., a supermarket or a
restaurant) and therefore more likely to infect each
other than members of different communities.

We denote this model by SBIM(n, k,p, ¢1,¢2). Note
that SBIM(n, k, p, 0, 0), for any value of k, is equivalent
to the i.i.d. group testing model with prior probability
p. We assume the communities are known to the group
testing algorithms in advance, but that nothing more is
known about the specific interactions between individu-
als.

The SBIM can be viewed as a model for the ini-
tial spread of an epidemic. It is motivated in part by
diseases such as COVID-19, which are introduced into
a population from an external source and subsequently
transmitted between individuals in close contact. We
also believe the SBIM can be a natural model for other
application areas where group testing has played a role.
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For example, in the context of coding for multiple access
sensor networks [38]-[40] it can capture the fact that
sensors in close proximity can have correlated activity
patterns and measurements.

B. Special Case: Disjoint k-Cliques Model

After analyzing the SBIM in full generality in Sec-
tion V, we thoroughly investigate the special case of
SBIM(n, k,p, ¢,0), which we call the disjoint k-cliques
model, in Section VI. Here, we have m = n/k commu-
nities of size k, with seed selection probability p, intra-
community transmission rate ¢, and an inter-community
transmission rate of zero. Thus, the communities can
be treated as independent, as no transmissions between
communities are possible. We note that in this special
case our model becomes similar (but not equivalent) to
the disjoint families model introduced in [13]. We com-
ment further on this in Section V1. Figure 1 illustrates the
SBIM(n, k,p, q1,q2) and contrasts the disjoint k-cliques
model (g2 = 0) with the general SBIM (g2 > 0).

C. Relationship to the Stochastic Block Model (SBM)

The SBIM is equivalent to a certain graph-based in-
fection spread model operating upon the stochastic block
model (SBM) [73]—a well-known random graph model
with the tendency to produce graphs with community
structure. The standard SBM produces a random undi-
rected graph G = (V, ) as follows. (In our context, the
vertices V represent members of the population, and the
edges £ can be thought of as representing an interaction
(e.g., a social or professional interaction, being in prox-
imity, etc.) between the two members of the population
in a time frame of interest.) First, it is assumed the n
vertices are partitioned into m communities, Cy, . .., Cpp,
where U, Ci = V and C;NC; = 0, Vi # j. In
addition, we are given a symmetric matrix P € R™*"™ of
edge probabilities. The graph is then generated by first
initializing £ = (), then adding an edge between each
pair of vertices u € C;, v € Cj;, u # v, with probability
Py;.
Consider a special case of the SBM in which the com-
munities are all of size k (where k is a factor of n), the
edge probabilities within each community are constant
(p1), and the edge probabilities between communities
are also constant (py, where py < p;, which models
the assumption that members of the same community
are more likely to have an interaction). That is, the
diagonal entries of P are p;, and the off-diagonal entries
are py. Additionally, consider the following probabilistic
infection model with parameters p,q € [0,1] which
operates upon an arbitrary graph G = (V, £). First, the
vertices are infected independently with probability p,
producing the seeds V, C V. Next, every seed v € V,
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Y

(b) Neighbor infection with g2 = 0 (the
disjoint k-cliques model). Individuals cannot
be infected by seeds outside their own com-
munity.

Y

(c) Neighbor infection with g2 > 0 (the
general SBIM). Any individual can be in-
fected by any seed, even those in external
communities.

Fig. 1: Mlustration of SBIM(n, k, p, q1, ¢2). In this example, there are m = 4 communities of size k = 7. Seeds are
colored green, and individuals infected by seeds during the neighbor infection stage are colored orange.

infects its neighbors N'(v) = {u € V : {u,v} € &£}
independently with probability ¢g. This models the fact
that if two members have an interaction, the disease is
transmitted between them with a certain probability ¢. 3
Note that this infection model reduces to the i.i.d. group
testing model with prior p when (i) ¢ = 0, or (ii) G is the
empty graph (£ = (). Moreover, by setting ¢; = p1 - ¢
and g3 = ps - g, we see that the SBIM(n, k,p, q1,q2)
is equivalent to this infection model operating upon the
SBM.

D. Practical Considerations

The “communities” within the SBIM can represent
populations at different scales: counties, cities, schools,
companies, etc. In practice, the specific values of p, g
can be tailored to the disease in question (for example,
by using contact tracing to estimate the infectiousness
of the disease). Lastly, when the communities are not
known in advance, one might first estimate the network
from data (e.g., contact tracing, mobile phone, or social
network data), then run a graph clustering algorithm to
identify communities in the network.

At the same time, we acknowledge the practical lim-
itations of the SBIM. First, the symmetry of the model
(e.g., the assumptions that every community has the same

3This infection model forms the “first time step” of the independent
cascade model [74] from the study of influence maximization in social
networks.

probability of containing a seed and that a given indi-
vidual can be infected by a seed from any community)
does not capture the reality that the transmissibility of
a disease can vary from person to person depending on
their habits (e.g., whether they practice social distancing
or mask wearing). However, we still believe the SBIM
is an important and natural “first-order” extension of the
traditional i.i.d. group testing model (which has been
studied for decades) to models of greater complexity
and practical relevance, while still being analytically
tractable. We note that some of the aforementioned is-
sues can be incorporated through the study of the general
graph infection model we introduced in Section III-C, by
assuming the matrix P has a more general structure, e.g.,
by allowing different edge probabilities within and/or
between different blocks, and/or different block sizes.
Studying the group testing problem in these more general
settings is an exciting direction to pursue in future work.

IV. ALGORITHMS
A. Binary Splitting Algorithm

Most adaptive group testing algorithms are based on
the idea, first introduced by Sobel and Groll [20], of
recursively splitting the population until all infected
members are found. The most fundamental adaptive pro-
cedure is binary splitting, which finds a single infected
member at a time by repeatedly halving the population.
It works even when the number of infected members d is
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unknown [57], and is most effective in the sparse regime,
d = O(n?), where 3 € [0,1). We make extensive use
of the following performance guarantee throughout this
paper:*

Lemma 1. In a population of size n with d infected
members—where d is unknown—the binary splitting
algorithm is guaranteed to identify all infected members
using at most d[log, n]+d+1 < dlogy n+2d+1 tests.

Proof. The first step of binary splitting is to perform
a single test on the entire population to check for the
presence of an infected member. If the test is positive,
an infected member is identified in a recursive fashion
using at most [log, n| adaptive tests (see [61], [35, p.24-
25], or [75, Theorem 1.2] for details of the proof). The
infected individual is then removed from the population
and the aforementioned steps are repeated until either
no individuals remain, or a negative test is obtained in
the first step. It is straightforward to see that d + 1 tests
are performed due to the first step (once per infected
member, and again when no infections remain), and
d[log, n] total tests are used to recursively identify all
d infected members. O

We treat binary splitting as the baseline algorithm in
this paper due to its simplicity and its role as a key
subroutine in many other adaptive procedures.

B. Community-Aware Algorithm

As an alternative to standard adaptive procedures
such as binary splitting, we consider a simple two-stage
scheme which leverages the community structure of the
graph. Our scheme first treats the communities as “meta-
individuals” by mixing the samples within each com-
munity and applying binary splitting to quickly identify
those with at least one infected member. Subsequently,
we run binary splitting again—this time within each
infected community—to identify the infected individu-
als. Note that this procedure will recover the infection
statuses of all members of the population with zero error,
which follows from the fact that binary splitting achieves
exact recovery.

Adaptive Community-Aware Algorithm

1) Mix the samples within each community.

2) Perform binary splitting on the mixed samples to
determine which communities contain at least one
infected member.

It is well-known that Lemma 1 can be improved via Hwang’s
generalized binary splitting algorithm [56] or Allemann’s split and
overlap algorithm [60]. However, in contrast to binary splitting, these
methods require the number of infected individuals (or an upper bound
on this quantity) to be known a priori.
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3) For each positive test from Step 2, perform binary
splitting within the corresponding community to
identify the infected members.

Under what circumstances would we expect
the community-aware algorithm to outperform
binary splitting? Suppose the underlying model is
SBIM(n, k,p, q1,q2). If the seed selection probability p
is small, then we expect only a few of the m £ n/k
communities to contain a seed. Thus, after the neighbor
infection stage, several of the communities are likely
to contain no infected members at all, especially
if go is small. In Step 2 of the community-aware
algorithm, we can efficiently rule out these uninfected
communities from consideration. In Step 3, we need
only perform group testing within each of the remaining
communities (which contain at least one infected
member). In contrast, the binary splitting algorithm
ignores the community structure (specifically, the fact
that entire communities are likely to be uninfected), and
is therefore unlikely to enjoy the same benefits as the
community-aware algorithm under these circumstances.
We will rigorously verify this intuition in the upcoming
sections.

V. BOUNDS FOR THE SBIM

In this section, we derive general lower and upper
bounds on the average complexity of adaptive group
testing over the SBIM(n, k, p, q1, g2). As we saw in the
previous section, the community-aware algorithm is a
simple extension of the binary splitting algorithm to a
community-oriented setting. From a technical perspec-
tive, our main contribution is a careful evaluation of the
performance of these schemes for the SBIM model as
well as the system entropy H (X ), which is required to
obtain meaningful lower bounds. We start with the lower
bound.

A. Information-Theoretic Lower Bound

Recall from (3) that E[T] > H(X) for any adaptive
group testing algorithm which exactly identifies the
infected individuals using 7T tests. The following lemma
gives both a general lower bound on H(X) as well as
an easier-to-compute bound in terms of two independent
binomial random variables. The proof is in Appendix A.

Lemma 2. Let X1,...,X,, be the infection statuses
generated from SBIM(n, k, p, q1,q2), as defined in Sec-
tion III, and let S; be the indicator variable of whether
the i individual is a seed. Then the number of tests
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T required to identify the infected individuals is lower
bounded as

E[T] > H(Xy, ..., X»)
>0 I(X0S1) + H(X1,e o, X | St 80) (5)

>m By (k= 2)h (1- (1—aq)? (1-0)7)],
©)

where Z ~ Binom (k,p) and Z' ~ Binom(n — k, p) are
independent.

By leveraging the concentration of Z and Z’ around
their means, we obtain our first main result, which
characterizes the asymptotic behavior of (6). The proof
is in Appendix B.

Theorem 2 (SBIM Lower Bound). Assume

I)n-p-g=1

2)n-p= 1,

N Ekpq=1,

1

Vas o
The number of tests T needed to recover all infected
members over SBIM(n, k,p, q1,q2) is lower bounded as

1
E[T] = m2k*pgqs - log ( )
npqz

+ mk?pq; - log () .
q1 + npgqz

Remark 1. The upper bounds on p,q; and qo in
Theorem 2 allow us to evaluate the lower bound in
Lemma 2 in a regime where the infected population is
sparse enough. This is the relevant regime since group
testing is known to improve upon individual testing when
infections are sparse. However, the specific upper bounds
we impose may be artifacts of our lower bounding
technique and could potentially be loosened.

As we will see in Section VI-A, a secondary lower
bound under SBIM(n,k,p,q,0,0) (i.e., the disjoint
k-cliques model) is given by H(Xc¢,,...,Xc, ) =
> icim) H(Xc,), which leverages the fact that the
community-level infection statuses {Xc,,..., X¢, } are
mutually independent in this setting. This bound turns
out to dominate when kp = m~—P? for some fixed
B € (0,1). It is difficult to obtain an analogous lower
bound under the general SBIM since the {X¢,, ..., X¢,, }
are no longer mutually independent when gy > 0.
Therefore, we suspect that the lower bound given in
Theorem 2 is not tight when kp is small. Obtaining a
tighter bound in this regime is an open problem.

B. Algorithm Analysis

To analyze binary splitting and the community-aware
algorithm over the SBIM, we begin by characterizing

the marginal probability that a given individual will be
infected. The proof is in Appendix C.

Lemma 3. The marginal probability of infection for
every individual under SBIM(n, k, p, q1, q2) is given by

P(X,=1)=1—(1-p)-(1—p-q)* " (1—p-q2)" "

1) Binary Splitting: The following result bounds the
expected number of tests used by the binary splitting
algorithm under the SBIM.

Theorem 3 (Binary Splitting Bound). Under
SBIM(n, k,p,q1,q2), the binary splitting algorithm
identifies all infected individuals using T tests, where

E[T] <n-(logon+2)
(1= == ) 1= pr )" ")
+ 1.

Proof. Let K be the number of infected individuals.
Then

E[K] :E[Zn:&} - Zn:]P’(X,» —1)

=n: (1 —(1=p)(l—p-q)* (1—p- Q2)”_k)

where the last equality follows from Lemma 3. Invoking
Lemma 1 yields the result. O

Corollary 1. Under SBIM(n, k,p,q1,q2), the average
complexity of binary splitting satisfies

E[T] < mk®p - (logm + log k)
1
- (g +q1 + mgs + mkp2q1Q2)-

Proof. Using the fact that (1 4+ x)* > 1 + kx for x >
—1, k > 1, we have

E[T] <n-logn
(1= (=) (1= kpa)(1 = (= k) - pa2) )
<n-logn
: ((n — k)pg2 + kpgi +p + k(n — k)p3q1qz)
< mk?p - (logm + logk)
(7)
O

1 2
: (% + q1 + mge + mkp 611qQ>~

2) Community-Aware Algorithm: First, we provide
a lemma needed to prove the upper bound for the
community-aware algorithm. The proof is in Ap-
pendix D.

Lemma 4. Let X¢, € {0,1},¢ € [m], be the in-
fection status of community C;, where X¢, = 1 iff
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there exists at least one infected member in C;. Under
SBIM(n, k, p, ¢1,¢2),

P(Xe, =1) =1—(1-p)* (1—p(1—(1—q2)k)> :

In Theorem 4 below (which is proved in Appendix F),
the two terms in the sum correspond, respectively, to
the expected number of tests in Steps 2 and 3 of the
community-aware algorithm.

Theorem 4 (Community-Aware Bound). Under
SBIM(n, k,p,q1,q2), the community-aware algorithm
identifies all infected individuals using T tests, where

E[T] < T (logg(n/k‘) + 3)

: (1 ¢! p>’“<1 —p(1-(1 q2>’“)>n_k>

n- (log2 k+ 2)
: (1 —(1=p)(1—pg)* (1 - qu)"_k>
+ 1.

Corollary 2. Under SBIM(n, k,p,q1,q2), the average
complexity of the community-aware algorithm satisfies

E[T] < mkp - logm - (1 + mkq2>
+ mk?p - log k - ( + q1 + mqgs + mkp Q1QQ)
3

Proof. Let T1 and T3 be the first and second terms in
the Theorem 4 bound, respectively. Using the fact that
(1-— qg)k > 1 — kqo, we have

1—p(1—(1-q)") >1— pkeo,
SO

E[T1] < mlogm

~(1—(1

< mlogm - (1— (1-p

ok (1— (1-(-a)))"")
" (1 — pkas )"*k)

—(1- kp)(l —(n—k) - pkq))
kp + npkqz) .

<mlogm - (
< mlogm - (
We can then bound E[T%] by following the previous
asymptotic analysis for binary splitting:

E[T3] = mkzplogk( + q1 +mgqa +mkp Q1QQ)

k
O
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C. Discussion

Comparing (7) and (8) term-by-term, we see that the
binary splitting bound has an extra additive factor of
mk?pqy log m(1+mkp?qe) compared to the community-
aware bound, implying that the community-aware algo-
rithm is never worse (order-wise) than binary splitting.
Furthermore, one can verify that when ¢; < 1/k and
g2 = 0 (which includes the i.i.d. setting, where commu-
nity structure has no bearing on the infection spread),
the bounds are order-wise equivalent. This supports our
intuition that knowledge of the community structure may
not help when ¢; and ¢o are small, as the infection
statuses of the individuals are “mostly independent” in
this regime.

In other regimes, the community-aware algorithm is
asymptotically strictly better than binary splitting. The
main takeaway from the following corollary is that
the community-aware algorithm can potentially improve
upon binary splitting when there are several moderately
sized communities in the network, and the transmission
rate within each community is significant.

Corollary 3. Iflogm = logk, kq1 = 1, and 1 = mkqo,
then the community-aware algorithm’s average complex-
ity is asymptotically strictly better than binary splitting’s
by a factor of min {k;ql, ll‘z)gg;:

If logm > logk, kg > 1, mkqgy > 1, and
mkqy < kg1 =< }%, then the improvement is a factor

of min { 77:1.1(12 , ll(z)géz,l }
Proof. Suppose logm > logk, kq1 > 1, and 1 = mkqs.
Binary splitting’s average complexity (7) becomes

mk?pgq, - logm

whereas the community-aware algorithm’s average com-
plexity is

max { mkp -logm, mk?pq, - logk }
(a) (b)

Both (a) and (b) are strictly smaller than the binary
splitting bound. We see that (a) saves a factor of kq; > 1,
while (b) saves a factor of lfj)i T = 1. Thus, the overall

logm
log k

Next, suppose logm > logk, kq1 = 1, mkgs = 1,
and mkqe < kg1 = 1% Binary splitting’s average
complexity is m - k2 - p-q; -logm (same as before), and
the community-aware algorithm’s complexity becomes

improvement is a factor of min {kql,

max {m2k2pq2 -logm, mk3pq, - log k},

which represents an improvement over binary splitting
R O

by a factor of min { —4, lo&m
m-qz’ logk
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In general, the lower bound given in Theorem 2
exhibits a gap to the upper bounds in Theorem 3 and
Theorem 4. However, we will see in the next section that
this gap can be eliminated under certain assumptions.

VI. BOUNDS FOR THE DISJOINT k-CLIQUES MODEL

Having studied the SBIM in full generality, we now
focus on the special case of SBIM(n,k,p,q,0). Here,
the transmission rate within a community is ¢ € [0, 1],
and no transmissions are possible between communities.
This simplifying assumption allows us to obtain a tighter
lower bound than in the general SBIM, and to further
show that the community-aware algorithm is order-
optimal in certain parameter regimes.

This setting is conceptually similar to the disjoint
families model from [13]. However, in their model, each
member of an “infected family” is infected indepen-
dently with a fixed probability, whereas the infection
rate within a given community in our model depends
on the number of seeds in the community, which in turn
depends (probabilistically) on the size of the commu-
nity. This models the realistic scenario where a larger
community has a larger probability of being “infected,”
i.e., having some infected members. In addition, the
state of a given member of an infected community is
not independent of the states of the other members; an
individual has a higher probability of being infected if
there are more infected members in their community.
This property of our model makes the derivation of lower
bounds and the analysis of group testing schemes more
intricate.

A. Information-Theoretic Lower Bound

We obtain the following lower bounds for adaptive
group testing over the the disjoint k-cliques model.

Lemma 5. Under the disjoint k-cliques model, the num-
ber of tests 'T' required to identify the infected individuals
is lower bounded as

E[T] > H(X1,...,Xn)
>m-Ez [(k—=2)-hy (1-(1-9)7)],
where Z ~ Binom (k,p) .
Proof. Direct consequence of Lemma 2. O
Next is a technical lemma which characterizes the
asymptotic behavior of Lemma 5 by leveraging the con-

centration of Z around its mean, using similar techniques
as in Theorem 2. The proof is in Appendix E.

Lemma 6. Let Z ~ Binom (k,p) and assume kp < 1

and q = Mﬁip) Then
Ez[(k—Z) - ho(1 = (1 - ¢)%)]

1
= k%pq - (logk‘ + log log ()> .
kp

Upon combining Lemma 5 and Lemma 6, we see that
the number of tests 7" needed to recover all infected
members in the disjoint k-cliques graph (in the specified
parameter regime) is lower bounded as

E[T] = mk*pq - (logk + loglog </€1p>> ()

Recall that X¢, is the indicator variable of whether
community C; contains at least one infected member.
A different lower bound is given by

(a)
E[T] > H(X1,...,X,) > H(Xc,,...,Xc,,)
(b)
= m by (1= (1= p)*) = mikp-logy(1/kp)

(10)

where (a) uses the fact that X¢,,..., X¢,, are a function
of Xy,...,X,, and (b) uses the fact that hb<1 - (1-

p)*) = k-p-logy(1/kp) since kp < 1.
In the following theorem, we summarize the refined
lower bound obtained by combining (9) and (10):

Theorem 5 (Disjoint k-Cliques Lower Bound). Assume

kp <1 and q =< ——L __ Then under the disjoint

N
k-cliques model, the expected number of tests required
to identify the infected individuals is lower bounded as

1
E[T] = max {kapq- <10gk + loglog </€p)> ’

mkp - log (kip>’ 1}.

Recall that ¢ = 0 corresponds to i.i.d. group testing, in
which case (3) gives the lower bound E[T] > n-hy(p) >
nplog(1/p). On the other hand, substituting ¢ = 0
into Theorem 5 yields nplog(1/kp), which differs from
the i.i.d. case by an additive factor of nplog(1/k). In
this special case, our bound can be seen as slightly
suboptimal. However, observe that when ¢ = 0, the
disjoint k-cliques models are equivalent for all values
of k. This is because the community structure plays no
role in the i.i.d. setting. Therefore, Theorem 5 holds for
any value of k£ when ¢ = 0, and can thus be maximized
over k to obtain the best-possible bound. The maximum
occurs at £k = 1 (i.e., when every vertex is its own
community), which recovers the i.i.d. lower bound of
nplog(1/p) as desired.
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Binary splitting

m-kQ-p-(%+q)-10gm+m-k2-p-(%+q)-logk

Community-aware

m~k~p~logm+m-k2-p~<%+q)-logk

Lower bound

m-k-p-log(é)er-kz-p-q-<logk+10glog<kip>)+1

TABLE I: Upper and lower bounds on the expected number of tests in the disjoint k-cliques model.

B. Algorithm Analysis

1) Binary Splitting: As a direct consequence of The-
orem 3 and Corollary 1, we obtain the following non-
asymptotic and asymptotic upper bounds on the expected
number of tests used by binary splitting under the
disjoint k-cliques model.

Corollary 4. Under the disjoint k-cliques model, the bi-
nary splitting algorithm identifies all infected individuals
using T’ tests, where

E[T] < mk - <log2 m + logy k + 2)
(1= =p)(1—pg) ) 41
< (mk®p - (logym + logy k) - (1/k +q)) .

The following
consequences of

2) Community-Aware Algorithm:
bounds are obtained as direct
Theorem 4 and Corollary 2.

Corollary 5. Under the disjoint k-cliques model, the
community-aware algorithm identifies all infected indi-
viduals using T' tests, where

E[T] <m- (10g2m+3) (1 g _p)k>
+n- (log2k+2> (1 —(1-p1 7pq)k71) 1

1
=< mkp - logm + mk?p - (E —i—q) -log k.

C. Discussion

We summarize the expected number of tests of binary
splitting and the community-aware algorithm, as well
as the information-theoretic lower bound, in Table I.
If we compare the bounds for binary splitting and the
community-aware algorithm term-by-term, we observe
that the binary splitting bound has an extra additive
factor of mk?pqlog m. Thus, as with the general SBIM,
the community-aware algorithm is never worse (order-
wise) than binary splitting.

Next, we discuss different parameter regimes where
1) the lower bound holds, 2) the community-aware algo-
rithm is order-optimal (i.e., the lower bound is tight), and
3) the community-aware algorithm’s average complexity
is strictly better than binary splitting’s. As stated in
Theorem 5, the lower bound holds when kp < 1 and

1 . .
q = —————. The next corollary specifies the regime
vhlos(z;) o .
where the community-aware algorithm is order-optimal:

Corollary 6. Under the disjoint k-cliques model, the
community-aware algorithm is order-optimal under the
following conditions:
1) kp = m=" for some fixed 3 € (0,1),
2) g ——.
k VEloe()
Proof. Plugging log (kip) > Blogm into the lower

bound and using the fact that k& > log k—lp

second condition (which implies logk > loglogm)
yields

from the

E[T] > mkp - logm + mk*pq - (log k + loglogm) + 1
> mkp - logm + mk?pq - log k,

and applying ¢ > 1/k to the bound for the community-
aware algorithm yields

E[T] < mkp - logm 4+ mk*pq - log k.
O

Finally, using Corollary 3 from our discussion on
the general SBIM, we specify the regime where the
community-aware algorithm outperforms binary split-
ting:

Corollary 7. Under the disjoint k-cliques model, if
logm > logk and kq > 1, them the community-
aware algorithm’s average complexity is asymptotically
strictly better than binary splitting’s by a factor of
min {kq,

logm
logk [*

Remark 2. Recall from Corollary 3 that when logm >
logk, kgi = 1, and mkqs =< 1 under the general

logm

logk [’
matching Corollary 7 above. Intuitively, this is because
the SBIM resembles the disjoint k-cliques model when

q2 is very small.

SBIM, the improvement factor is also min {kql,

In Table II, we summarize the different parameter
regimes discussed so far. As with the general SBIM,
we find that the community-aware algorithm potentially
improves upon binary splitting when (i) there are several
moderately sized communities in the network, and (ii)
the transmission rate within each clique is significant.
Additionally, the community-aware algorithm is order-
optimal when the seeds are sparse.
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Lower bound’s conditions

kp<1landgq< —L1—

k]og(k—lp)

Tightness conditions

kp<m =P and 1 < kq < \/k/log (;—p)

Improvement conditions

logm > logk and kq > 1

TABLE II: Parameter regimes of interest for the disjoint k-cliques model.

VII. NOISY SETTING

In this section, we develop noise-resilient analogues to
our previously discussed algorithms, which we call noisy
binary splitting (NBS) and the noisy community-aware
(NCA) algorithm. We obtain bounds on the algorithms’
average complexity under a high-probability recovery
criterion and find that the NCA algorithm offers the
same improvement in testing efficiency compared to
NBS as observed between the corresponding algorithms
in the noiseless case. We also provide the proof of our
lower bound (Theorem 1) and discuss how this result
implies the order-optimality of the NCA algorithm in
the same parameter regimes as the noiseless community-
aware algorithm. Thus, broadly speaking, the presence of
testing noise does not affect the relative gains of using
a community-oriented approach.

A. Noisy Binary Splitting

In [71], an algorithm called modified noisy binary
search (MNBS)® was used as a sub-routine of an adap-
tive procedure for the symmetric noise model (2). The
MNBS algorithm is said to succeed if it identifies an
infected member of the population when one exists, and
otherwise outputs a special symbol ¢ when no infected
members remain in the population. We will employ the
MNBS algorithm in a black-box manner and utilize the
following performance guarantee [71, Lemma 2]:

Lemma 7 (MNBS Guarantee). Under the symmetric
noise model (2), given any 6 € (0,1), the MNBS
algorithm succeeds with probability at least 1 — § while
satisfying
logn 1
El# tests] < —— +O<log7) +O(10g10gn),

# el < 1) 5
where I(p) = 1—hy(p) = 17p10g2%7(17p) logﬁ
is the capacity of the binary symmetric channel with
crossover probability p € (0, %)

Proof. See [71, Appendix Al. O

We obtain a very simple noisy binary splitting (NBS)
algorithm for the symmetric model via repeated ap-
plications of MNBS. Note that NBS does not take

SThis is essentially the noisy binary search algorithm from [76]
adapted to the group testing framework.

into account the community structure of the population
inherent to SBIM(n, k, p, q1, q2)-

Noisy Binary Splitting (NBS) Algorithm

0) Initialize X = 0); P = [n].

1) Run MNBS with error parameter 6 € (0,1) on P. If
the result is ¢, terminate and return X. Otherwise,
add the result to X and remove it from P. Repeat
Step 1.

Remark 3. If binary search algorithms are developed
for other noise models (e.g., dilution noise or Z-channel
noise), then NBS (and consequently the NCA algorithm
discussed later) can easily be adapted to these models by
replacing the MNBS algorithm with the channel-specific
algorithm. Likewise, to analyze the error probability
and average number of tests, we need only replace the
performance guarantees of the MNBS algorithm with
those of the channel-specific algorithm.

Recall that our objective is to ensure a vanishing
probability of error, defined as P, £ Pr(X # X). We
obtain the following bound on the average number of
tests used by NBS under this recovery guarantee. The
proof closely follows that of [71, Theorem 1], the main
difference being the random nature of infections in our
setting, in contrast to their assumption that the number
of infections is fixed.

Theorem 6 (NBS Bound). Suppose the infections
in the population are distributed according to the
SBIM(n, k,p, q1,q2), and let

p2ne (1= (1=p)(1 = pa)* (1 - pg2)" ")

denote the expected number of infected individuals.
Under the symmetric noise model (2), for any 6 € (0,1)
such that § < % the NBS algorithm achieves P, <
o — 0 and uses an expected number of tests satisfying

ulogn 1

(p) + plog 5
Proof. We first analyze the probability of error. Note
that, as long as the MNBS algorithm always succeeds
in Step 1, the NBS algorithm will produce the correct
output (i.e., achieve X=X ) and do so using D41 calls
to the MNBS algorithm, where D is the total number

E[T] =

(1)
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of infected individuals in the population. (The +1 is
due to the final call to the algorithm when no infected
members remain.) Let £ denote the event that the ™ call
to the MNBS algorithm fails. Then, by conditioning on
the number of infections and performing a union bound
over the error events, we have

pegpr@gi)

=1

:iPr(D:d)-Pr(LDJ&

d=0 i=1

=

<> Pr(D=d)-do
d=0
=dp — 0 (by assumption).

Next, we bound the average number of tests used by
the algorithm. By Lemma 7, the average number of tests
performed during the first D + 1 calls to the MNBS
algorithm is

(AL + 1) (%L—FO(log %) + O(loglog n)>

_ plogn 1

() + plog 5
Note that the algorithm may make more than D+ 1 calls
to MNBS if at least one of the calls fails. However, these
additional tests do not affect the overall scaling in (12)
for the following reasons. Since the tests are subject to
independent noise, the calls to MNBS fail independently
with probability O(6). Hence, the number of failures
encountered before the first success is distributed as a
Geometric(¢) random variable where § = 1 —O(0). The

12)

mean of this variable is 1% = 0(9), and it follows
that E[T] is within a multiplicative 1 + O(J) factor of
(12). O

Remark 4. Note that the bound in Corollary 1 (the
average number of tests used by binary splitting in
the noiseless case) can be expressed as plogn. The
bound in Theorem 6 scales this inversely by 1(p) (the
capacity of the binary symmetric channel) and includes
an additive factor, plog %, that depends on the desired
error probability.

We further remark that Theorem 6 applies to any un-
derlying probabilistic infection model, not just the SBIM.
One just needs to replace (i in the theorem statement with
the corresponding model-specific quantities.

B. Noisy Community-Aware Algorithm

Following the same template as the noiseless
community-aware algorithm, our noisy community-
aware (NCA) algorithm applies NBS in two stages:

IEEE TRANSACTIONS ON INFORMATION THEORY

first to identify communities with at least one infected
member, and then to identify the infected individuals
within each positive community from the first stage.

Noisy Community-Aware (NCA) Algorithm
1) Mix the samples within each of the communities
and run the NBS algorithm with error parameter
§’ € (0,1) on the mixed samples.
2) Run the NBS algorithm with error parameter § €
(0,1) within each community identified as positive
in Step 1.

We now state and prove the performance guarantee of
the NCA algorithm.

Theorem 7 (NCA Bound). Suppose the infec-
tions in the population are distributed according to
SBIM(n, k,p, q1,q2), and let

p2ne (1= (1 =p)(1 = pa) (1 - pg2)" ")

s 2 <1 ~-pf(1-p-0-0 q2>k>)"_k>

denote the expected number of infected individuals and
expected number of infected communities, respectively.
Under the symmetric noise model (2), for any 0,6 €
(0,1) such that 6" < ﬁ and § < %, the NCA algorithm
achieves P, < §'ppr + 6 — 0 and uses an expected
number of tests satisfying
parlogm + plogk 1
E[T] < 00) + plog 5
Proof. Provided that each step of the algorithm succeeds,
the algorithm’s final output will be correct. Moreover,
the NBS algorithm will be executed once in Step 1 and
M times in Step 2, where M is the number of infected
communities. Let £(1) denote the event that the single
call to NBS in Step 1 fails, and let 52-(2) denote the event
that the i call to NBS in Step 2 fails. Additionally, let
wx denote the expected number of infected members in
a single community conditioned on the event that the
community contains at least one infected member. We
have

M
P. <Pr <5<1> Yy 55’“)
i=1

m M
<Pr(€W) + 3 Pr(M =) Pr ( e? ‘ M= j)
=0

13)

(14)

i=1
(15)
<& pm+ Y Pr(M=j)-j-6px (16)
§=0
=0 pnr + 0 e - i (17)
=0 +0-p =0 (18)
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where (15) applies a union bound and conditions on the
number of infected communities, (16) applies another
union bound along with the NBS error guarantee from
Theorem 6, and (18) uses the identity p = pg - pias-

To obtain a bound on the average number of tests, we
will apply Theorem 6 twice and sum the results. First,
we apply it with p replaced by par, n replaced by m,
and ¢ replaced by ¢’ (corresponding to Step 1). Second,
we apply it with u replaced by px and n replaced by k
(corresponding to Step 2). The overall average number of
tests performed during a single call to the NBS algorithm
in Step 1 and M calls to the algorithm in Step 2 is thus
given by

war logm 1
ET] X ——— log —
1] < () + parlog

log k 1
+ Har (/m()g+uKlog>

I(p) §
war logm 1 ulogk
=" + uplog — +
I(p)  "TMTRE T I()

par logm + plogk
1(p)

where the second line uses the identity u = px - s
and the final line uses the fact that p /s log % =< ulog %.
Again, we note that additional tests may be required if
one or more of the calls to the NBS algorithm fails,
but that the above scaling will remain intact. (See the
argument in the proof of Theorem 6.)

1
Jrulogg

lo1

O

Remark 5. The bound in Corollary 2 (the community-
aware algorithm in the noiseless case) can be expressed
as pprlogm + plogk. Hence, as similarly discussed in
Remark 4, we find that Theorem 7 scales the noiseless
bound inversely by I(p) and includes an additive factor
that depends on the desired error probability §.

It follows that the NCA algorithm is always at least
as efficient (order-wise) as NBS (recall our discussion
in Section V-C). Moreover, if 6 = k™ T (which ensures
that the plog % term does not dominate), then the NCA
algorithm is strictly better than NBS under the same
conditions we derived in Corollary 3. That is, the param-
eter regimes in which the community-aware algorithm
improves upon binary splitting in the noiseless case are
the same regimes in which the NCA algorithm improves
upon NBS, provided that the desired error probability is
not too stringent.

Lastly, we emphasize the generality of Theorem 7
beyond the SBIM. The result holds under any proba-
bilistic infection model satisfying the following symmetry
condition, which states that the expected number of

infections in an infected community should be the same
across all communities: Vi, j € [m],

E{quxcizq :E{ZXK\chzl .

LeC; Lec;

Also, note that our result holds even when there are no
“communities” in the population. In this case, we simply
set m =1, k =n in (13) and find that it reduces to the
community-oblivious bound in Theorem 6.

C. Proof of the Lower Bound (Theorem 1)

Before delving into the proof of Theorem 1, we make
a few remarks. Provided that 6 > k=11 (p), note that
the NBS upper bound (Theorem 6) and the NCA upper
bound (Theorem 7) each scale their noiseless counterpart
(Theorem 3 and Theorem 4, respectively) by I(p).
Moreover, our lower bound in Theorem 1 also scales its
noiseless counterpart (3) by I(p). Taken together, these
results imply that the NCA algorithm is order-optimal
under the same conditions as the noiseless community-
aware algorithm (recall Corollary 6), as long as 4 is not
too small. Thus, the benefits of using a community-aware
scheme persist in the presence of symmetric testing
noise.

To prove our main result, we will leverage a slightly
more general version of Fano’s inequality given in the
following lemma.

Lemma 8. For any estimator X such that X —Y —
X, with P, = Pr(X # X)), we have

H(X|Y)<1+P. H(X).

Proof. The proof is a small modification to the proof of
Fano’s inequality [72, Theorem 2.10.1]. First, we define
the error random variable

Pt if X #£X
o if X = X.

Then, we expand H (X, E | X) using two applications of
the chain rule for entropy:

H(X,E|X)=H(X|X)+ H(E|X,X)
T/
= H(E|X)+ H(X|E,X).

Since  conditioning  reduces
H(E|X) < H(E) =
currently have

entropy, we have
ho(P.) < 1. Therefore, we

H(X|X)<1+ H(X|E,X)
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and we can bound H(X | E, X) as
H(X|E,X)=Pr(E=0)-H(X|X,E=0)
—_———
=0
+Pr(E=1)-HX|X,E=1)
S Pe ! H(X)
where the inequality follows from the fact that con-
ditioning reduces entropy. Finally, the data processing
inequality yields
HX|Y)<HX|X)<1+4P,-H(X)
as desired. O

Now we prove our main result, which we restate below
for convenience.

Theorem 1. Assume H(Xp,Xs,...,X,) — oo as
n — o0. Under the symmetric noise model (2), any
adaptive algorithm achieving P, — (0 must use an
average number of tests lower bounded as

H(Xy,..., X,
E[T] > M (19)
1(p)
Proof. For ¢ = 1,2,..., M, where M is the maximum

number of tests allowed by the algorithm, let S; C [n]
denote the subset of individuals included in the i™ test.

Further, let
Zi=\/ X,
JES:

denote the noiseless outcome of the i™ test, and let

1
Yi=Z; @& &~ Bernoulli(p), p € (O, 5)

denote the corresponding noisy outcome. An adaptive
algorithm applies a sequence of tests Sp,Ss,... and
observes their outcomes Y7, Ys,..., where S; can be
chosen as a function of the previous test outcomes
Y1,...,Y;_1. The algorithm terminates at a random time
T which is determined by the test outcomes up to the
Th test, ie., Yi,...,Yy. For i > T, we will write
S =0, Z;, = 0, and Y; = ( to indicate that the
algorithm has been terminated and no further tests will
be performed. We will also use the shorthand notation
X=0X1,...,X,),Y=(M,...,Yu).

We proceed by expanding the mutual information
between the infection statuses X7, ..., X,, and the noisy
test outcomes Y7, ..., Yy, as follows:

I(X;Y)=H() - H(Y|X)

M
=Y H(Y;|Y1,...,Yi)
=1

IEEE TRANSACTIONS ON INFORMATION THEORY

For now, let us assume that the algorithm is deterministic
and that the first test, Sy, is fixed. Note that S; can be
recursively deduced from Y7,...,Y;_1, and hence S; is
a function of Y7,...,Y;_1. Combining this with the fact
that conditioning reduces entropy, we obtain

H(Y;|Y1,....,Yi1) = HY;| S, Y1,...,Yi1)
< H(Y;|S;). 21
Next, we have
H(K |XaY17~~~a}/;71) = H(Y; |XaY17"';}/;7172i)
(22)
= H(Y;| Z;) (23)

where (22) uses the fact that Z; is a function of {X,S;}
and hence is a function of {X,Y7...,Y;_1}; and (23)
uses the fact that Y; is conditionally independent of X
and Yi,...,Y;_; given Z;.
Plugging (21) and (22) into (20) yields
M
[H(Yi|S) — H(Y;| )]

:ZPr(SZ-;A(Z))- [H(YHSmSi #0)

i=1

—H(}/i|ZiaSi7A®)}

M-

Pr(S; # 0) - (1 — ho(p)) (24)
z;[l
= Pr(T > i) (1-hy(p))
i=1
=E[T]- (1 - hp(p)) (25)
~ E[T]- 1(p) (26)

where (24) uses the fact that H(Y;|S;,S; # 0) < 1
since Y; is a binary random variable conditioned on
S; # ), and (25) follows from the tail-sum formula for
expectation.

Now, combining (26) and our modified Fano’s in-
equality (Lemma 8) with the fact that H(X) =
I(X;Y)+ H(X|Y) gives us

H(X) <E[T] - I(p) + P.- H(X) +1

which can be rearranged to

E[T] - 1(p) + 1
po>1— ST
- H(X)
Finally, let £ > 0, and observe that if E[T] < I}(Eff)) .
(1—¢), then P. > ¢ — ﬁ — ¢ by the assumption

that H(X) — oo as n — oo.

We can easily extend our analysis to allow for ran-
domized tests by assuming S; depends on some ex-
ternal randomness 6;, independent of the noise and
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the infection statuses. Thus, S; is a function of
{Y1,...,Yi_1,01,...,0;,_1}. Then, using the shorthand
notation § = (6y,...,05r), we have

H(X)=H(X|0)=I(X;Y|0)+ H(X|Y,0)
—H(Y|0)— HY | X,0)+ H(X|Y,0).

Note that
HX|Y,0)<H(X|Y)<1+P.-H(X).

Additionally, using the fact that S; is a function of
{V1,...,Yi_1,04,...,6;}, it follows that

M
H(Y‘G) :ZH(}/i|Y17"'7)/i—130)
i=1

M
=Y H(Y;|Y1,...,Y:1,0,8))
=1

IN

M
ZH(Yi |Si).
=1

Finally,

M
H(Y|X,0)=> H(Y;|X,Y1,...Yi_1,0)
=1
M
:ZH()/?|X7Y17.

i=1

M
=Y H(Yi|Z)
i=1

7)/1—1797 Z’L)

and the remainder of the proof is exactly the same as in
the deterministic case. O

VIII. NUMERICAL EXPERIMENTS

We implemented the binary splitting and community-
aware algorithms and evaluated their performance over
random instances of the SBIM. The population size was
set to n = 1,000, and p was varied over the interval
[0, 0.01], while g1, g2 were fixed at different values. We
ran 500 trials for each value of p, where a trial consists
of generating an instance from SBIM(n, k, p, ¢1, g2) and
observing the number of tests used by binary splitting
and the community-aware algorithm to identify the in-
fected individuals. For the lower bound, we computed

the non-asymptotic expression given in (5). To do so,
one can expand (5) as follows:

0 I(X1581) + H(X | S)

n- (H(Xl)—H(X151)> +H(X]S)

=n- (H(X1)—P(Sl:0)~H(X1|31:0)>

+H(X|S)

—n. (hb(IP’(Xl - 1))

—(1=p) - he(P(X1 =115 =0))>
+H(X|S)

where X = (X1,...,X,), S = (S1,...,5). The terms
P(X; =1) and P(X; = 1|5, = 0) are straightforward
to compute (see Lemma 3 and its proof in Appendix C).
The term H (X | S) is lower-bounded by (6). To estimate
(6), we took an average over many independent samples
of Z ~ Binom(k,p) and Z’' ~ Binom(n — k, p).

Figure 2 shows some representative plots of the es-
timated E[T] as a function of p, with £k = 50 and
different values of q1, go. The error bars show + one
standard deviation of the values of T obtained for a
particular value of p. For comparison, we also plot the
theoretical upper bounds from Theorem 3 and Theo-
rem 4, and we find that these bounds closely match
the empirical results. Additionally, the community-aware
algorithm consistently outperforms binary splitting. For
example, in Figure 2c, at p ~ 0.009, binary splitting
has already exceeded the individual testing threshold
with an average of 1,044 tests, whereas the community-
aware algorithm uses an average of 708 tests; this
represents a 32% reduction in testing. The community-
aware algorithm’s performance also seems to exhibit
lower variance than binary splitting. In Figure 3, we
fix ¢ = 0.1, g2 = 0.001, and vary the community
size k € {10, 50, 100, 200}. The community-aware
algorithm appears to perform most favorably (relative to
binary splitting) for more intermediate values of k, i.e.,
when there are several moderately sized communities
in the network. These findings are consistent with our
earlier theoretical results.

The estimated lower bound is fairly close to the
community-aware algorithm’s bound in the regime
where the seeds are very sparse (small p) and the net-
work exhibits strong community structure (intermediate
k,q1; small g2). This corroborates our analysis from
Section VI-C. In other regimes—such as when p, k,
or qo are larger—there is a sizable gap between the
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Fig. 2: Performance comparison between binary splitting and the community-aware algorithm under the SBIM with
n = 1000, k = 50, and different values of p, qi, g2. Theoretical upper and lower bounds are also shown.

community-aware bound and the lower bound. How-
ever, this gap seems to be at most a constant factor
in many cases, suggesting that the order-optimality of
the community-aware algorithm still holds in broader
regimes. Nevertheless, these results suggest the potential
to further improve the non-asymptotic upper or lower
bounds.

IX. CONCLUSION

In this paper, we investigated the group testing prob-
lem over networks with community structure. Moti-
vated by infectious diseases such as COVID-19, we
proposed a network-based infection model which gen-
eralizes the traditional i.i.d. group testing model to
settings in which interactions between individuals dictate
the disease spread. Our proposed adaptive algorithm,
which exploits the known community structure of the
underlying graph, provably outperforms the community-
oblivious binary splitting algorithm and is order-optimal
in certain parameter regimes, as implied by our novel

lower bounds based on the system entropy. Even in the
presence of symmetric noise, our community-oriented
approach offers the same gains in testing efficiency as it
does in the noiseless case.

We conclude with some future directions. As dis-
cussed in Section V and further suggested by our sim-
ulations, there remains a gap between our upper and
lower bounds in certain regimes of the general SBIM,
due to the difficulty of bounding H (X¢,, ..., X¢,, ) when
{Xec,,...,Xc, } are not mutually independent. Other
directions of interest include designing non-adaptive
group testing schemes for our setting, deriving bounds
under other noise models such as dilution and Z-channel
models, and extending our infection model to longer
time horizons (e.g., SIR or SIS-type infection models
from the epidemiology literature). Finally, characterizing
the complexity of group testing under the general graph-
based infection model described in Section III-C (beyond
the SBIM studied in this paper) is fertile ground for
future work.
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Fig. 3: Performance comparison between binary splitting and the community-aware algorithm under the SBIM with
n = 1000, ¢; = 0.1, g2 = 0.001, and different values of p, k. Theoretical upper and lower bounds are also shown.

APPENDIX A from the fact that conditioning reduces entropy.) We have
PROOF OF LEMMA 2
H(X[S)= ) P(S=s -HX|S=s).
Let S; be the indicator variable of whether the 5™ s€{0,1}"

individual is a seed. We will use the shorthand notation
X = (X1,...,Xpn), S = (51,...,5,). By standard
information-theoretic arguments, we have

Observe that after conditioning on the locations of the
seeds, X1, ..., X,, are mutually independent. Moreover,
for ¢ € C;, the marginal distribution of X; can be

ified as follows:
H(X) = I(X:S) + H(X|S) specified as follows

:H(S)—H(S|X)+H(X|S) P(X;=1|S8=5s)
1 s; =1
=n-H(Sy) H(S;|X,5,...,8i_ =3 . s
n- 1 ; | 1 1) 1— (1 _ql)Zjecz fi (1 _qz)zjece i 5;=0
+ H(X|S)

Writing 2, 2 3.
>n-H(S1)—n-H(S | X))+ H(X|S) by e

=n-I(X1;8) + H(X|S).

, $j» the conditional entropy is given

X|S=s)= =)
This proves (5) in Lemma 2. H(X] ;
Next, we prove (6). First, note that H(X) > . ( N (1 N z£/>
H (X |S) since I(X;S) > 0. (This also follows directly ho (1= =)™ (1 -a) ’
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where hy, (+) is the blnary entropy function. Since S R
Ber(p), we have Z; ' & " Binom(k, p) and hence

H(X‘S) :Ez7zl[m' (k’—Z)
Shp(1 = (1= q1)”(1 = g2)7)),
27
where Z ~ Binom (k, p) and Z’ ~ Binom (n — k, p).
(|

APPENDIX B
PROOF OF THEOREM 2

In light of Lemma 2, it suffices to show that the
following lower bound holds under the assumptions in
the theorem statement:

o[- (10— G- )

1
= mk*pgs log () + k*pqy log () :
npqs q1 + npgs

where Z ~ Binom (k, p) and Z’ ~ Binom(n—k, p). Our
proof leverages the concentration of Z and Z’ around
their means.

First we assume n-p-go < 1, and let € € (0,1) be a
value to be specified. Define

s 12 mp(l+ e,
q1

Then as long as Z and Z’ satisfy the following two
conditions

D {np(l—¢€) <Z' <np(l+¢)},

2) Z < z¥,
we have

1 ,
5zZ~q1+Z’-qg21—(1—q1)z<1—qz)2 . (28)

Since 1— (1 —q1)? (1 — qg)Z’ is an increasing function
of Z and 7', hy (1- (1= 1) (1- )"
crease with Z and Z’ if they satisfy the above conditions.
Therefore, we have

Ez z [(k — Z)hy (1 —(1-q)?(1- q2)2'>]
> Bz (k- Z)ho(1- (1 - @)?(1 - )

) must in-

“Lio<z<zry 1{np<1fe>§z’§np<1+s>}}
>Ey [(k _ Z)hb(l (- qQ)Z’) {70}

. 1{np(1—e)§Zf§np(1+e>}] (29)
+Ezz [(k - Z)hb(l —(1—q)?a - qz)Z’)

A<z ﬂ{np(ke)gzgnp(ue)}}-
(30)

IEEE TRANSACTIONS ON INFORMATION THEORY

We will pick € =
by

%. Then (29) can be bounded above

k - hb(qz -np(l —e€) = (g2 -np(1 - 6))2)
.(1—2~exp
=k- (nPQQ(l—E) log (m)
.(1—2.exp(—n63p>))
=k (npqzlog (@))

where in the first inequality we use
1) Z' > np(l —e)
2) (1—q)? <e®? <1—q-Z'+ (g
3) Chernoff bound on Z’,

and in the third inequality we assume np >~ 1. Next, (30)
can be bounded above by

~Z’)2

hb(Q1 +npga(1l —€) — (g1 + npgz(1 — 6))2)

"))

Bz [(k - Z)1{1gzgz*}] : (1 —2-exp ( -

= +n lo _—
= (q1 + npgz) log (ql +npq2>
7z [(k=2)lpcz<any]

We will now lower bound Ez [(k — Z)1{1<z<.-}] as
in Theorem 5. Observe that

[k Z) ]]-{1<Z<z*}}
>Ey[k— Z] k-P{Z=0}—k P{Z >z}
>k (1- —p)' —P{Z>2:"})
=k (kp — ]P{Z>z }. (31

Finally, applying Hoeffding’s inequality to P{Z > 2*}
yields

1
=exp | —

P\ 2k¢?
2)
2 ke
=7
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where in (1) we use the facts that 1) n-p- g2 =< 1 and APPENDIX D
2) p =< q%k, and (2) holds when PROOF OF LEMMA 4
1 Let A be the event that no member of community
Q< : C; is selected as a seed, and let B be the event that
\/ 2k - (log (kflp) + 1) some member of C; is infected by an individual outside

Cy. We further denote by B, the event that vertex wu
infects some member of C;, where u ¢ C;. Note that
E, [(k _ Z)]l{lgzgz*}] = k2p, (32) X, = 1if and only if either A occurs or ANB occurs.

) Moreover, A and B are independent events. We have that
and thus by putting together our bounds on (29), (30), P(A) = (1 — p)k and thus

we arrive at

Ez.z [(k — Z)hs (1 —l-q)?(1- qQ)Z’)}

Plugging into (31) yields

P(Xe, = 1) = P(A°) + P(A) - P(B)

1 —1-(1-p)*+1-p)"-B(B)
> k  npgalo =1-(1-pk.-(1-P(B)).
> i (npaatos (1)) (1-p)* - (1 P(B))

) 1 Finally, we compute P(B) as
+ k*p - (q1 + npg2) log <)
q1 + npqz P(B)=1— H P(BS)
1
> mk*pgs log () ugCy
npgs 1 -1-J] (p(g; 1S, =1)-P(S, = 1)
+ k?pqy log () . ugCy -
q1 + npgz .
=1 =1-p
APPENDIX C c .
PROOF OF LEMMA 3 =1- g (1_p+p'P(Bu‘S“_1)>
ugCy
Let S, be the indicator random variable of whether k
an individual v is a seed, and assume without loss of =1- H (1 —p+p-(1—-q) )
generality that v € C;. We have ugCy .
P(X, = 1) = P(X, = 1| S, = 1)-P(S, = 1) _1- (l_p. (1_<1—q2)’“)> .
=1 =p
+P(X,=1]5,=0))-P(S, =0) O
=p+(1-p -PX,=1|5,=0).
APPENDIX E

Given that v is not a seed, X, = 1 if and only if v is

. PROOF OF LEMMA 6
infected by another seed. Hence,

Let f (q) = lolg(gl(z)q), so that f(q) solves 1—(1—¢q)% =
P(X,=1|5,=0) 1 —gq. Then

= P({v is infected by another individual}) Eyl(k = Z) - ho(1 — (1 — ¢)%)]

=1- H P({v isn’t infected by u}) >Ey[(k—Z)-hy(1— (1 — %) - Li<z<f(a))]
u€[n] a
=1- H (1 — P({v is infected by u})) (Z) ho(q) - Ez[(k = Z) - Ln<z<(q)}]
wein] > ho(q) (Ez[k — 2] — k- P{Z = 0}
=1- H (1 — P ({v is infected by u}|S, = 1) —k-P{Z> f(q)})
u€[n]
B(5, = 1)) =k ho(a) (1= p)(1 = (1= p)* ) = P{Z > f(0)})
(b)
—1- ( II «a —pq1)> : < IIa —pQ2)> - k'hb(q)(u 7p)((k7 Dp = (k= 1)2p2)
uei\{v} wiCs -P{Z> f(q)})
=1—(1-pq)* (1 —pg) " © k
o =35 @k p-P{Z>f(@)}), (33)
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where (a) is due to the fact that h,(z) > hy(g) for all
g <z <1-—gq, (b)holds since (1 —p)" < e~ P" and
e? < 14+ ax+ 2% forz < 1, and (c) is due to the
assumption p < 1/k.

We then upper bound P{Z > f(q)} by Hoeffding’s
inequality:
2
P2 > [(a)} < exp (—% (»-£2) )

(_% (f;gf)

exp
£
2’

where (a) holds by the assumption &k - p- ¢ < 1, so that

q 1 1
p=< = < <
kop= 3 log (q) ,1 log (q) < f(q),
1

V- foa (i)

and (b) holds due to the assumption ¢ =<
Plugging into (33) yields

B [0~ 2) by (1= (- 0%)] = gt (1)

1
q- <logk + log log ()) ,
kp

where in the last inequality we use the assumption ¢ <

1 .
—F— again.
Vk- log( ﬁ) &

= k*-p

]

APPENDIX F
PROOF OF THEOREM 4

Let 77 and 75 be the number of tests performed,
respectively, in Step 2 and Step 3 of the community-
aware algorithm. Specifically, 7} is equal to the number
of tests used by binary splitting to identify the infected
communities, and 75 is the number of tests to identify
infected individuals within each infected community.
Note that T' = T3 + T5. We will bound E[T}] and E[T5]
separately.

Let N be the number of infected communities. By
Lemma 4, we have

n
E ’ HJ)(‘XC1 = 1)

== (1—(1—p)k<1—p-(1—(1—Q2)’“>>n_ )

Taking Lemma 1 with n = n/k and a = N gives

T < (logy(n/k)+2)-N+1

IEEE TRANSACTIONS ON INFORMATION THEORY

so that
E[71] < 7 - (1ogy(n/k) + 1)

: <1 - (1-p)* (1 *p(l - (1= qQ)k)>n_k>

+ 1.

For the second stage of the algorithm, let Z; denote
the number of tests used by binary splitting to iden-

tify all infected members of the i community. Since
n/k

T, = Z: -1 h
5 Z; i Lrx. —1)» we have

n/k

-3 E[n t ] - B (B 1]
- % P(Xe, =1)-E[Z) | Xe, =1].

Let M denote the number of infected members of C;.
Then by Lemma 1,

E[Z:|Xe, = 1] < (logy k+2) - E[M]| X¢, = 1] + 1

and, assuming without loss of generality that C; = [k],
E[M|Xe, =1] Z]P’ i=1|Xe, =1)
=k-P(X, = l\Xcl —1)

L PG =1 X, = 1)
P(Xe, =1)
P =1)
P(Xcl = 1)
_ . 1= =p)( —pg)* T (1~ pgo)" "
]P(Xcl = 1)

where in the last line we invoke Lemma 3. Putting
everything together gives

E[T5] <n - (logy k +2)
: (1 —(1-p)(1—-pg)* (1 —sz)""“)

+% (1—(1—p)k<1—p(1—(1—qz)k)>n )

and therefore
BT <” (1 ( /k)+3>
<z 0gs(n

: (1—<1—p>k<1—p(1—<1—q2>k)>n )
+

n- (log2k+1)

: (1 —(I=p)(1—pa)* 11— sz)”_k)
+1.
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