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AbstractÐGroup testing was conceived during World
War II to identify soldiers infected with syphilis using
as few tests as possible, and it has attracted renewed
interest during the COVID-19 pandemic. A long-standing
assumption in the probabilistic variant of the group testing
problem is that individuals are infected by the disease
independently. However, this assumption rarely holds in
practice, as diseases often spread through interactions
between individuals and therefore cause infections to be
correlated. Inspired by characteristics of COVID-19 and
other infectious diseases, we introduce an infection model
over networks which generalizes the traditional i.i.d. model
from probabilistic group testing. Under this model, we
ask whether knowledge of the network structure can be
leveraged to perform group testing more efficiently, fo-
cusing specifically on community-structured graphs drawn
from the stochastic block model. We prove that a sim-
ple community-aware algorithm outperforms the baseline
binary splitting algorithm when the model parameters
are conducive to ªstrong community structure.º Moreover,
our novel lower bounds imply that the community-aware
algorithm is order-optimal in certain parameter regimes.
We extend our bounds to the noisy setting and support our
results with numerical experiments.

Index TermsÐGroup testing, infectious diseases, adap-
tive algorithms, stochastic block model, network commu-
nity structure

I. INTRODUCTION

Identifying individuals who are infected by a disease

is crucial for curbing epidemics and ensuring the well-

being of society. However, due to high costs or limited

resources, it is often infeasible to test every member of

the population individually. During World War II, when

the U.S. military sought to identify soldiers infected with

syphilis, Dorfman introduced the breakthrough concept

of group testing [1]. He showed that by testing groups

or pools of samples, the infected people in a population

of size n can be identified with far fewer than n tests.

The key insight was that if the infected population is
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sparse, then each pooled test is likely to produce a

negative result, in which case all individuals included in

the test can simultaneously be deemed healthy. Today,

group testing strategies are actively being used in the

COVID-19 pandemic to identify infected individuals in

an efficient and cost-effective manner [2]±[5]. There has

also been a recent influx of papers which seek to improve

or better understand group testing for COVID-19, e.g.,

[6]±[17].

Dorfman’s seminal work and many subsequent works

by other authors [18]±[24] assume that the disease in-

fects individuals in a statistically independent fashion.

The simplest and most widely studied case, known as the

i.i.d. model or binomial model, assumes individuals are

infected independently with some common probability

p.1 However, this assumption of independence rarely

holds in practice. Diseases typically spread through

interactions between individuals (e.g., familial, work-

related, or other social interactions), thereby inducing

correlated infections. It is thus natural to ask whether

exploiting information about this connectivity structure

can lead to more efficient group testing strategies. This

problem is especially timely given the critical role that

group testing has played in the COVID-19 pandemic,

and given that the disease is known to spread between

individuals in close contact with each other.

In this paper, we contribute to the nascent area

of ªgroup testing under correlationsº by investigating

whether knowledge of the interaction network dictating

the spread of the disease can be leveraged to perform

pooled testing more efficiently. We introduce a novel

community-oriented infection model, called the stochas-

tic block infection model (SBIM), which generalizes the

standard i.i.d. model to a setting in which the disease

can be transmitted between individuals. Our model is

equivalent to a certain graph-based infection spread

1In a related, commonly studied probabilistic modelÐoften called
the combinatorial prior model or the hypergeometric model Ðit is
assumed that a random set of d individuals out of n are infected accord-
ing to some distribution (typically uniform) over all

(

n

d

)

possibilities
[25]±[34]. While this is slightly different from an i.i.d. assumption, it
is still somewhat simplistic and fails to capture any dependencies that
may exist between individuals.
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mechanism operating upon the well-known stochastic

block model (SBM) for random graphs. For decades, the

SBM has been utilized across the social, biological, and

information sciences as a very simple yet natural way to

model community structure in probabilistic networks.

On the algorithmic side, we consider adaptive group

testing schemes, where the design of each test can be

informed by the previous test results. We compare two

different schemes: the standard binary splitting algo-

rithm [35] which is oblivious to the underlying net-

work structure, and a simple community-aware algorithm

which essentially performs two stages of binary splitting:

the first stage identifies the communities containing

at least one infected member, and the second stage

performs more fine-grained testing within the infected

communities. We give precise upper bounds on the

expected number of tests performed by each algorithm.

Crucially, we show that when the model parameters

yield ªstrong community structureº (in which case the

disease is much more likely to be transmitted within a

community than between communities), the community-

aware algorithm’s average complexity is asymptotically

strictly better than that of binary splitting. Furthermore,

we derive novel information-theoretic lower bounds that

apply to all adaptive strategies and imply the order-

optimality of the community-aware algorithm in certain

parameter regimes. We then extend our algorithms and

bounds to the noisy settingÐin which the test outcomes

are passed through a binary symmetric channelÐand

find that the presence of noise does not affect the relative

gains of using a community-oriented approach. Finally,

we corroborate our results with numerical experiments.

To the best of our knowledge, this is the first thorough

characterization of the complexity of adaptive group

testing in a networked setting.

We note that the underlying principles of this paper

may be relevant to numerous settings beyond epidemi-

ology. In the past, group testing has been successfully

applied to diverse domains including wireless commu-

nications [19], [22], [36]±[41], machine learning [42]±

[44], signal processing [45], [46], and the analysis of data

streams [47], [48]. In these settings and others, there may

be a natural ªclusteringº of the population into different

subgroups which can inform the design of better group

testing strategies, i.e., be exploited as ªside information.º

For example, devices which are closer together in a

multiple access network may tend to be active or inactive

at the same time. Exploring the potential applications

of network-oriented group testing to these types of

problems is of great interest.

a) Related Works: In graph-constrained group test-

ing [49]±[52], the tests must conform to a given network

topology. For example, if the objective is to identify

faulty links in a communication network by sending

diagnostic packets, then each test must correspond to a

valid path in the network. By contrast, our problem setup

permits arbitrary tests, but we ask whether knowledge of

the interaction network can help reduce the number of

tests.

There is a rich literature on adaptive group testing

dating back to the early work of Dorfman [1] and

others [20], [53]±[59], with several important results

having emerged in recent years, e.g., [60], [61], [31],

[62], [63], [64]. These works focus on relatively simple

combinatorial or probabilistic models. A few prior works

have departed from these standard models by assuming

that infections occur independently with non-identical

prior probabilities [18], [23], [24]. However, our paper

pertains to the fully non-i.i.d. case in which infections

can be correlated with potentially different priors, de-

pending on the network structure.2

The idea of community-aware group testing was first

explored in [13], which assumed the population is par-

titioned into disjoint ªfamiliesº and that the disease

spreads in two stages with independent infections at

each stage. Our work considers an infection mechanism

which similarly operates in two stages but is designed

to model the interaction-based transmissions by which

diseases often spread in reality. Finally, we would like

to acknowledge a number of independent and concurrent

works related to community-aware group testing [16],

[65]±[68].

b) Notation: Let [n] ≜ {1, 2, . . . , n}. We denote by

n, k, and m ≜ n
k the size of the population, size of each

community, and number of communities, respectively.

X ≜ (X1, . . . , Xn) ∈ {0, 1}n is the infection status vec-

tor, where Xi = 1 iff the ith individual is infected. With

a slight abuse of notation, let XCi
∈ {0, 1}, i ∈ [m], be

the infection status of community Ci, where XCi
= 1 iff

∃i ∈ Ci : Xi = 1. The indicator function for an event

A is given by ✶A. The entropy of a discrete random

variable and the binary entropy function (both in bits)

are H(·) and hb(·), respectively. We write f(x) ≺ g(x)
to denote f(x) = o(g(x)), and f(x) ⪯ g(x) to denote

f(x) = O(g(x)).
c) Paper Organization: The rest of this paper is or-

ganized as follows. In Section II, we provide background

and preliminary results. In Section III, we introduce the

stochastic block infection model (SBIM) and discuss its

equivalence to a certain graph-based infection spread

mechanism acting upon the stochastic block model. In

Section IV, we discuss the main algorithms studied in

this paper: binary splitting and our proposed community-

aware algorithm. Section V gives upper and lower

2For the sake of obtaining comprehensive results, we focus on a
symmetric model in which infections are correlated and identically
distributed. However, the general infection model that we propose in
Section III-C is fully non-i.i.d.
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bounds for adaptive group testing over the general SBIM,

and Section VI provides an in-depth treatment of the

disjoint k-cliques model, which is a special case of the

SBIM. We then extend our algorithms and bounds to

the noisy case in Section VII. Finally, we present the

results of our numerical experiments in Section VIII, and

conclude in Section IX. All omitted proofs are given in

the Appendices.

II. BACKGROUND AND PRELIMINARY RESULTS

A. The Group Testing Problem

In the group testing problem, a test corresponds to

a subset of individuals S ⊆ [n]. The test outcome is

positive if Xi = 1 for some i ∈ S; that is, if at least

one member of S is infected. Otherwise, the outcome is

negative. Equivalently, the outcome is a binary variable

Y ∈ {0, 1} given by a Boolean OR operation over S:

Y =
∨

i∈S
Xi. (1)

A group testing algorithm describes how to select subsets

S1, . . . ,ST andÐgiven the corresponding test outcomes

Y1, . . . , YT Ðhow to generate an estimate X̂ of X . In

adaptive schemes, the subsets St are chosen sequentially

and are allowed to depend on the previous test outcomes.

In the first part of this paper, we assume that test

outcomes are noiseless (meaning the algorithm gets to

observe Y as given in (1)), and we require exact recovery

of X1, . . . , Xn (i.e., zero error).

Subsequently, we consider a noisy variant of the

problem in which the test outcomes are given by

Y =
( ∨

i∈S
Xi

)

⊕ ξ, (2)

where ξ ∼ Bernoulli(ρ) for some ρ ∈ (0, 1
2 ), and ⊕

denotes modulo-2 addition. This is the widely-adopted

symmetric noise model [69]±[71], and it is equivalent

to passing each noiseless test outcome through a binary

symmetric channel with crossover probability ρ. It is

assumed that tests are subject to independent noise. Due

to the uncertainty in the test outcomes, we can no longer

guarantee exact recovery of X . Instead, we seek to

ensure a vanishing error probability Pe ≜ Pr(X̂ ̸= X),
where the randomness is due to the infection statuses

and the noisy test outcomes.

In our setting, the number of tests T performed by an

adaptive scheme is a random variable because it depends

on the Xi, which are generated by our probabilistic

SBIM model, as well as the (possibly noisy) test results.

Our goal is to characterize the average complexity of

adaptive schemes under the SBIM by providing both

upper and lower bounds on E[T ].

B. Information-Theoretic Lower Bounds

A fundamental result in probabilistic group testing

is that any adaptive algorithm which is guaranteed to

identify all infected members of the population, assum-

ing noiseless test results, requires a number of tests T
satisfying

E[T ] ≥ H(X1, . . . , Xn). (3)

This bound highlights the intimate connection between

adaptive group testing and source coding. Indeed, to

summarize a discussion from [19], the outcomes of

the adaptive tests can be viewed as a binary, variable-

length source code for X . The lower bound then follows

directly from existing results in data compression (e.g.,

[72, Eqn. 5.38]). Equation (3) will serve as the point of

departure for the lower bounds on E[T ] that we derive

under the SBIM in the noiseless case. The key challenge

will be to obtain good approximations to H(X) in

the presence of correlations induced by the underlying

network.

For the noisy setting, we prove the following coun-

terpart to (3). This lower bound holds for any adaptive

scheme and any underlying stochastic infection model,

including those with correlations. We provide the proof

in Section VII.

Theorem 1. Assume H(X1, X2, . . . , Xn) → ∞ as

n → ∞. Under the symmetric noise model (2), any

adaptive algorithm achieving Pe → 0 must use an

average number of tests lower bounded as

E[T ] ≥
H(X1, . . . , Xn)

I(ρ)
, (4)

where I(ρ) = 1−hb(ρ) = 1−ρ log2
1
ρ − (1−ρ) log 1

1−ρ
is the capacity of the binary symmetric channel with

crossover probability ρ ∈ (0, 1
2 ).

Note that our bound recovers the noiseless lower

bound (3) when ρ = 0. Moreover, in the special case

of the combinatorial prior model where the number of

infections d is fixed and the set of infected members

is uniformly distributed over the
(
n
d

)
possibilities, our

bound reduces to E[T ] ≥
log (nd)
I(ρ) . A version of this bound

appears in [71], which does not prove it directly but

argues it can be shown using an existing result from

[61] along with the variable-length coding capacity of

the binary symmetric channel. In Section VII, we provide

a stand-alone proof of the more general lower bound in

Theorem 1 which encompasses all adaptive schemes and

probabilistic infection models with symmetric testing

noise. Though we will primarily focus on the implica-

tions of Theorem 1 in the context of the SBIM, we again

emphasize that this result is independent of any particular

infection model and thus can be of interest in its own

right.
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III. STOCHASTIC BLOCK INFECTION MODEL

(SBIM)

In this section, we introduce the stochastic block

infection model (SBIM), which extends the traditional

i.i.d. group testing model to a community-oriented set-

ting. Here, individuals infect their fellow community

members with a higher probability than those in other

communities, giving rise to strongly correlated clus-

ters of infections. We then describe a special case of

the SBIMÐthe disjoint k-cliques modelÐin which the

communities are ªdisconnected.º Finally, we discuss the

relationship between the SBIM and the stochastic block

model (SBM), and conclude the section with some

practical considerations.

A. General SBIM

Assume we are given a partition of the population of

size n into m ≜ n/k communities C1, . . . , Cm of size

|Ci| = k, ∀i ∈ [m]. The SBIM comprises the following

two stages (each executed once):

1) Seed Selection: Individuals in the population are

infected independently with probability p ∈ (0, 1].
These initial infected members are called the seeds.

They model the introduction of the disease into the

population via some external entity (e.g., a traveler

carrying the disease into a country).

2) Neighbor Infection: Every seed infects its neigh-

bors within the same community independently

with probability q1 ∈ [0, 1] and those outside its

community independently with probability q2 ∈
[0, 1], where q1 > q2. This models how the dis-

ease spreads through the population via interactions

between carriers and nearby individuals. Members

of the same community are more likely to interact

with each other within a given time frame (e.g., by

interacting socially or professionally, or by being

in the same physical space, e.g., a supermarket or a

restaurant) and therefore more likely to infect each

other than members of different communities.

We denote this model by SBIM(n, k, p, q1, q2). Note

that SBIM(n, k, p, 0, 0), for any value of k, is equivalent

to the i.i.d. group testing model with prior probability

p. We assume the communities are known to the group

testing algorithms in advance, but that nothing more is

known about the specific interactions between individu-

als.

The SBIM can be viewed as a model for the ini-

tial spread of an epidemic. It is motivated in part by

diseases such as COVID-19, which are introduced into

a population from an external source and subsequently

transmitted between individuals in close contact. We

also believe the SBIM can be a natural model for other

application areas where group testing has played a role.

For example, in the context of coding for multiple access

sensor networks [38]±[40] it can capture the fact that

sensors in close proximity can have correlated activity

patterns and measurements.

B. Special Case: Disjoint k-Cliques Model

After analyzing the SBIM in full generality in Sec-

tion V, we thoroughly investigate the special case of

SBIM(n, k, p, q, 0), which we call the disjoint k-cliques

model, in Section VI. Here, we have m ≜ n/k commu-

nities of size k, with seed selection probability p, intra-

community transmission rate q, and an inter-community

transmission rate of zero. Thus, the communities can

be treated as independent, as no transmissions between

communities are possible. We note that in this special

case our model becomes similar (but not equivalent) to

the disjoint families model introduced in [13]. We com-

ment further on this in Section VI. Figure 1 illustrates the

SBIM(n, k, p, q1, q2) and contrasts the disjoint k-cliques

model (q2 = 0) with the general SBIM (q2 > 0).

C. Relationship to the Stochastic Block Model (SBM)

The SBIM is equivalent to a certain graph-based in-

fection spread model operating upon the stochastic block

model (SBM) [73]Ða well-known random graph model

with the tendency to produce graphs with community

structure. The standard SBM produces a random undi-

rected graph G = (V, E) as follows. (In our context, the

vertices V represent members of the population, and the

edges E can be thought of as representing an interaction

(e.g., a social or professional interaction, being in prox-

imity, etc.) between the two members of the population

in a time frame of interest.) First, it is assumed the n
vertices are partitioned into m communities, C1, . . . , Cm,

where
⋃

i∈[m] Ci = V and Ci ∩ Cj = ∅, ∀i ̸= j. In

addition, we are given a symmetric matrix P ∈ R
m×m of

edge probabilities. The graph is then generated by first

initializing E = ∅, then adding an edge between each

pair of vertices u ∈ Ci, v ∈ Cj , u ̸= v, with probability

Pij .

Consider a special case of the SBM in which the com-

munities are all of size k (where k is a factor of n), the

edge probabilities within each community are constant

(p1), and the edge probabilities between communities

are also constant (p2, where p2 < p1, which models

the assumption that members of the same community

are more likely to have an interaction). That is, the

diagonal entries of P are p1, and the off-diagonal entries

are p2. Additionally, consider the following probabilistic

infection model with parameters p, q ∈ [0, 1] which

operates upon an arbitrary graph G = (V, E). First, the

vertices are infected independently with probability p,

producing the seeds Vs ⊆ V . Next, every seed v ∈ Vs
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(a) Seed selection stage

(b) Neighbor infection with q2 = 0 (the
disjoint k-cliques model). Individuals cannot
be infected by seeds outside their own com-
munity.

(c) Neighbor infection with q2 > 0 (the
general SBIM). Any individual can be in-
fected by any seed, even those in external
communities.

Fig. 1: Illustration of SBIM(n, k, p, q1, q2). In this example, there are m = 4 communities of size k = 7. Seeds are

colored green, and individuals infected by seeds during the neighbor infection stage are colored orange.

infects its neighbors N (v) = {u ∈ V : {u, v} ∈ E}
independently with probability q. This models the fact

that if two members have an interaction, the disease is

transmitted between them with a certain probability q. 3

Note that this infection model reduces to the i.i.d. group

testing model with prior p when (i) q = 0, or (ii) G is the

empty graph (E = ∅). Moreover, by setting q1 = p1 · q
and q2 = p2 · q, we see that the SBIM(n, k, p, q1, q2)
is equivalent to this infection model operating upon the

SBM.

D. Practical Considerations

The ªcommunitiesº within the SBIM can represent

populations at different scales: counties, cities, schools,

companies, etc. In practice, the specific values of p, q
can be tailored to the disease in question (for example,

by using contact tracing to estimate the infectiousness

of the disease). Lastly, when the communities are not

known in advance, one might first estimate the network

from data (e.g., contact tracing, mobile phone, or social

network data), then run a graph clustering algorithm to

identify communities in the network.

At the same time, we acknowledge the practical lim-

itations of the SBIM. First, the symmetry of the model

(e.g., the assumptions that every community has the same

3This infection model forms the ªfirst time stepº of the independent
cascade model [74] from the study of influence maximization in social
networks.

probability of containing a seed and that a given indi-

vidual can be infected by a seed from any community)

does not capture the reality that the transmissibility of

a disease can vary from person to person depending on

their habits (e.g., whether they practice social distancing

or mask wearing). However, we still believe the SBIM

is an important and natural ªfirst-orderº extension of the

traditional i.i.d. group testing model (which has been

studied for decades) to models of greater complexity

and practical relevance, while still being analytically

tractable. We note that some of the aforementioned is-

sues can be incorporated through the study of the general

graph infection model we introduced in Section III-C, by

assuming the matrix P has a more general structure, e.g.,

by allowing different edge probabilities within and/or

between different blocks, and/or different block sizes.

Studying the group testing problem in these more general

settings is an exciting direction to pursue in future work.

IV. ALGORITHMS

A. Binary Splitting Algorithm

Most adaptive group testing algorithms are based on

the idea, first introduced by Sobel and Groll [20], of

recursively splitting the population until all infected

members are found. The most fundamental adaptive pro-

cedure is binary splitting, which finds a single infected

member at a time by repeatedly halving the population.

It works even when the number of infected members d is
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unknown [57], and is most effective in the sparse regime,

d = Θ(nβ), where β ∈ [0, 1). We make extensive use

of the following performance guarantee throughout this

paper:4

Lemma 1. In a population of size n with d infected

membersÐwhere d is unknownÐthe binary splitting

algorithm is guaranteed to identify all infected members

using at most d⌈log2 n⌉+d+1 ≤ d log2 n+2d+1 tests.

Proof. The first step of binary splitting is to perform

a single test on the entire population to check for the

presence of an infected member. If the test is positive,

an infected member is identified in a recursive fashion

using at most ⌈log2 n⌉ adaptive tests (see [61], [35, p.24-

25], or [75, Theorem 1.2] for details of the proof). The

infected individual is then removed from the population

and the aforementioned steps are repeated until either

no individuals remain, or a negative test is obtained in

the first step. It is straightforward to see that d+1 tests

are performed due to the first step (once per infected

member, and again when no infections remain), and

d⌈log2 n⌉ total tests are used to recursively identify all

d infected members.

We treat binary splitting as the baseline algorithm in

this paper due to its simplicity and its role as a key

subroutine in many other adaptive procedures.

B. Community-Aware Algorithm

As an alternative to standard adaptive procedures

such as binary splitting, we consider a simple two-stage

scheme which leverages the community structure of the

graph. Our scheme first treats the communities as ªmeta-

individualsº by mixing the samples within each com-

munity and applying binary splitting to quickly identify

those with at least one infected member. Subsequently,

we run binary splitting againÐthis time within each

infected communityÐto identify the infected individu-

als. Note that this procedure will recover the infection

statuses of all members of the population with zero error,

which follows from the fact that binary splitting achieves

exact recovery.

Adaptive Community-Aware Algorithm

1) Mix the samples within each community.

2) Perform binary splitting on the mixed samples to

determine which communities contain at least one

infected member.

4It is well-known that Lemma 1 can be improved via Hwang’s
generalized binary splitting algorithm [56] or Allemann’s split and

overlap algorithm [60]. However, in contrast to binary splitting, these
methods require the number of infected individuals (or an upper bound
on this quantity) to be known a priori.

3) For each positive test from Step 2, perform binary

splitting within the corresponding community to

identify the infected members.

Under what circumstances would we expect

the community-aware algorithm to outperform

binary splitting? Suppose the underlying model is

SBIM(n, k, p, q1, q2). If the seed selection probability p
is small, then we expect only a few of the m ≜ n/k
communities to contain a seed. Thus, after the neighbor

infection stage, several of the communities are likely

to contain no infected members at all, especially

if q2 is small. In Step 2 of the community-aware

algorithm, we can efficiently rule out these uninfected

communities from consideration. In Step 3, we need

only perform group testing within each of the remaining

communities (which contain at least one infected

member). In contrast, the binary splitting algorithm

ignores the community structure (specifically, the fact

that entire communities are likely to be uninfected), and

is therefore unlikely to enjoy the same benefits as the

community-aware algorithm under these circumstances.

We will rigorously verify this intuition in the upcoming

sections.

V. BOUNDS FOR THE SBIM

In this section, we derive general lower and upper

bounds on the average complexity of adaptive group

testing over the SBIM(n, k, p, q1, q2). As we saw in the

previous section, the community-aware algorithm is a

simple extension of the binary splitting algorithm to a

community-oriented setting. From a technical perspec-

tive, our main contribution is a careful evaluation of the

performance of these schemes for the SBIM model as

well as the system entropy H(X), which is required to

obtain meaningful lower bounds. We start with the lower

bound.

A. Information-Theoretic Lower Bound

Recall from (3) that E[T ] ≥ H(X) for any adaptive

group testing algorithm which exactly identifies the

infected individuals using T tests. The following lemma

gives both a general lower bound on H(X) as well as

an easier-to-compute bound in terms of two independent

binomial random variables. The proof is in Appendix A.

Lemma 2. Let X1, ..., Xn be the infection statuses

generated from SBIM(n, k, p, q1, q2), as defined in Sec-

tion III, and let Si be the indicator variable of whether

the ith individual is a seed. Then the number of tests
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T required to identify the infected individuals is lower

bounded as

E[T ] ≥ H(X1, ..., Xn)

≥ n · I(X1;S1) +H(X1, . . . , Xn |S1, . . . , Sn) (5)

≥ m · EZ,Z′

[

(k − Z) hb

(

1− (1− q1)
Z (1− q2)

Z′
)]

,

(6)

where Z ∼ Binom (k, p) and Z ′ ∼ Binom(n− k, p) are

independent.

By leveraging the concentration of Z and Z ′ around

their means, we obtain our first main result, which

characterizes the asymptotic behavior of (6). The proof

is in Appendix B.

Theorem 2 (SBIM Lower Bound). Assume

1) n · p · q2 ⪯ 1,

2) n · p ⪰ 1,

3) k · p · q1 ⪯ 1,

4) q1 ≤ 1
√

2k(log( 1
kp )+1)

.

The number of tests T needed to recover all infected

members over SBIM(n, k, p, q1, q2) is lower bounded as

E[T ] ⪰ m2k2pq2 · log

(
1

npq2

)

+mk2pq1 · log

(
1

q1 + npq2

)

.

Remark 1. The upper bounds on p, q1 and q2 in

Theorem 2 allow us to evaluate the lower bound in

Lemma 2 in a regime where the infected population is

sparse enough. This is the relevant regime since group

testing is known to improve upon individual testing when

infections are sparse. However, the specific upper bounds

we impose may be artifacts of our lower bounding

technique and could potentially be loosened.

As we will see in Section VI-A, a secondary lower

bound under SBIM(n, k, p, q, 0, 0) (i.e., the disjoint

k-cliques model) is given by H(XC1
, . . . , XCm

) =
∑

i∈[m] H(XCi
), which leverages the fact that the

community-level infection statuses {XC1 , ..., XCm
} are

mutually independent in this setting. This bound turns

out to dominate when kp ⪯ m−β for some fixed

β ∈ (0, 1). It is difficult to obtain an analogous lower

bound under the general SBIM since the {XC1
, ..., XCm

}
are no longer mutually independent when q2 > 0.

Therefore, we suspect that the lower bound given in

Theorem 2 is not tight when kp is small. Obtaining a

tighter bound in this regime is an open problem.

B. Algorithm Analysis

To analyze binary splitting and the community-aware

algorithm over the SBIM, we begin by characterizing

the marginal probability that a given individual will be

infected. The proof is in Appendix C.

Lemma 3. The marginal probability of infection for

every individual under SBIM(n, k, p, q1, q2) is given by

P(Xv = 1) = 1−(1−p) ·(1−p ·q1)
k−1 ·(1−p ·q2)

n−k.

1) Binary Splitting: The following result bounds the

expected number of tests used by the binary splitting

algorithm under the SBIM.

Theorem 3 (Binary Splitting Bound). Under

SBIM(n, k, p, q1, q2), the binary splitting algorithm

identifies all infected individuals using T tests, where

E[T ] ≤ n · (log2 n+ 2)

·
(

1− (1− p)(1− p · q1)
k−1(1− p · q2)

n−k
)

+ 1.

Proof. Let K be the number of infected individuals.

Then

E[K] = E

[ n∑

i=1

Xi

]

=
n∑

i=1

P(Xi = 1)

= n ·
(

1− (1− p)(1− p · q1)
k−1(1− p · q2)

n−k
)

where the last equality follows from Lemma 3. Invoking

Lemma 1 yields the result.

Corollary 1. Under SBIM(n, k, p, q1, q2), the average

complexity of binary splitting satisfies

E[T ] ⪯ mk2p · (logm+ log k)

·
(1

k
+ q1 +mq2 +mkp2q1q2

)

.

Proof. Using the fact that (1 + x)k ≥ 1 + kx for x ≥
−1, k ≥ 1, we have

E[T ] ⪯ n · log n

·
(

1− (1− p)(1− kpq1)(1− (n− k) · pq2)
)

≤ n · log n

·
(

(n− k)pq2 + kpq1 + p+ k(n− k)p3q1q2

)

≤ mk2p · (logm+ log k)

·
(1

k
+ q1 +mq2 +mkp2q1q2

)

. (7)

2) Community-Aware Algorithm: First, we provide

a lemma needed to prove the upper bound for the

community-aware algorithm. The proof is in Ap-

pendix D.

Lemma 4. Let XCi
∈ {0, 1}, i ∈ [m], be the in-

fection status of community Ci, where XCi
= 1 iff
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there exists at least one infected member in Ci. Under

SBIM(n, k, p, q1, q2),

P(XC1 = 1) = 1−(1−p)k

(

1−p
(

1−(1−q2)
k
)
)n−k

.

In Theorem 4 below (which is proved in Appendix F),

the two terms in the sum correspond, respectively, to

the expected number of tests in Steps 2 and 3 of the

community-aware algorithm.

Theorem 4 (Community-Aware Bound). Under

SBIM(n, k, p, q1, q2), the community-aware algorithm

identifies all infected individuals using T tests, where

E[T ] ≤
n

k
·
(

log2(n/k) + 3
)

·

(

1− (1− p)k

(

1− p
(

1− (1− q2)
k
)
)n−k)

+ n ·
(

log2 k + 2
)

·
(

1− (1− p)(1− pq1)
k−1(1− pq2)

n−k
)

+ 1.

Corollary 2. Under SBIM(n, k, p, q1, q2), the average

complexity of the community-aware algorithm satisfies

E[T ] ⪯ mkp · logm ·
(

1 +mkq2

)

+mk2p · log k ·
(1

k
+ q1 +mq2 +mkp2q1q2

)

(8)

Proof. Let T1 and T2 be the first and second terms in

the Theorem 4 bound, respectively. Using the fact that

(1− q2)
k ≥ 1− kq2, we have

1− p
(
1− (1− q2)

k
)
≥ 1− pkq2,

so

E[T1] ⪯ m logm

·
(

1− (1− p)k
(
1− p

(
1− (1− q2)

k
))n−k

)

⪯ m logm ·
(

1− (1− p)k (1− pkq2)
n−k

)

⪯ m logm · (1− (1− kp)(1− (n− k) · pkq2))

⪯ m logm · (kp+ npkq2) .

We can then bound E[T2] by following the previous

asymptotic analysis for binary splitting:

E[T2] ⪯ mk2p log k
(1

k
+ q1 +mq2 +mkp2q1q2

)

.

C. Discussion

Comparing (7) and (8) term-by-term, we see that the

binary splitting bound has an extra additive factor of

mk2pq1 logm(1+mkp2q2) compared to the community-

aware bound, implying that the community-aware algo-

rithm is never worse (order-wise) than binary splitting.

Furthermore, one can verify that when q1 ⪯ 1/k and

q2 = 0 (which includes the i.i.d. setting, where commu-

nity structure has no bearing on the infection spread),

the bounds are order-wise equivalent. This supports our

intuition that knowledge of the community structure may

not help when q1 and q2 are small, as the infection

statuses of the individuals are ªmostly independentº in

this regime.

In other regimes, the community-aware algorithm is

asymptotically strictly better than binary splitting. The

main takeaway from the following corollary is that

the community-aware algorithm can potentially improve

upon binary splitting when there are several moderately

sized communities in the network, and the transmission

rate within each community is significant.

Corollary 3. If logm ≻ log k, kq1 ≻ 1, and 1 ⪰ mkq2,

then the community-aware algorithm’s average complex-

ity is asymptotically strictly better than binary splitting’s

by a factor of min
{

kq1,
logm
log k

}

.

If logm ≻ log k, kq1 ≻ 1, mkq2 ⪰ 1, and

mkq2 ≺ kq1 ⪯ 1
p2 , then the improvement is a factor

of min
{

q1
m·q2 ,

logm
log k

}

.

Proof. Suppose logm ≻ log k, kq1 ≻ 1, and 1 ⪰ mkq2.

Binary splitting’s average complexity (7) becomes

mk2pq1 · logm

whereas the community-aware algorithm’s average com-

plexity is

max
{

mkp · logm
︸ ︷︷ ︸

(a)

, mk2pq1 · log k
︸ ︷︷ ︸

(b)

}

.

Both (a) and (b) are strictly smaller than the binary

splitting bound. We see that (a) saves a factor of kq1 ≻ 1,

while (b) saves a factor of logm
log k ≻ 1. Thus, the overall

improvement is a factor of min
{

kq1,
logm
log k

}

.

Next, suppose logm ≻ log k, kq1 ≻ 1, mkq2 ⪰ 1,

and mkq2 ≺ kq1 ⪯ 1
p2 . Binary splitting’s average

complexity is m · k2 · p · q1 · logm (same as before), and

the community-aware algorithm’s complexity becomes

max
{

m2k2pq2 · logm, mk2pq1 · log k
}

,

which represents an improvement over binary splitting

by a factor of min
{

q1
m·q2 ,

logm
log k

}

≻ 1.
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In general, the lower bound given in Theorem 2

exhibits a gap to the upper bounds in Theorem 3 and

Theorem 4. However, we will see in the next section that

this gap can be eliminated under certain assumptions.

VI. BOUNDS FOR THE DISJOINT k-CLIQUES MODEL

Having studied the SBIM in full generality, we now

focus on the special case of SBIM(n, k, p, q, 0). Here,

the transmission rate within a community is q ∈ [0, 1],
and no transmissions are possible between communities.

This simplifying assumption allows us to obtain a tighter

lower bound than in the general SBIM, and to further

show that the community-aware algorithm is order-

optimal in certain parameter regimes.

This setting is conceptually similar to the disjoint

families model from [13]. However, in their model, each

member of an ªinfected familyº is infected indepen-

dently with a fixed probability, whereas the infection

rate within a given community in our model depends

on the number of seeds in the community, which in turn

depends (probabilistically) on the size of the commu-

nity. This models the realistic scenario where a larger

community has a larger probability of being ªinfected,º

i.e., having some infected members. In addition, the

state of a given member of an infected community is

not independent of the states of the other members; an

individual has a higher probability of being infected if

there are more infected members in their community.

This property of our model makes the derivation of lower

bounds and the analysis of group testing schemes more

intricate.

A. Information-Theoretic Lower Bound

We obtain the following lower bounds for adaptive

group testing over the the disjoint k-cliques model.

Lemma 5. Under the disjoint k-cliques model, the num-

ber of tests T required to identify the infected individuals

is lower bounded as

E[T ] ≥ H(X1, ..., Xn)

≥ m · EZ

[
(k − Z) · hb

(
1− (1− q)Z

)]
,

where Z ∼ Binom (k, p) .

Proof. Direct consequence of Lemma 2.

Next is a technical lemma which characterizes the

asymptotic behavior of Lemma 5 by leveraging the con-

centration of Z around its mean, using similar techniques

as in Theorem 2. The proof is in Appendix E.

Lemma 6. Let Z ∼ Binom (k, p) and assume kp ⪯ 1
and q ⪯ 1√

k·
√

log( 1
k·p )

. Then

EZ [(k − Z) · hb(1− (1− q)Z)]

⪰ k2pq ·

(

log k + log log

(
1

kp

))

.

Upon combining Lemma 5 and Lemma 6, we see that

the number of tests T needed to recover all infected

members in the disjoint k-cliques graph (in the specified

parameter regime) is lower bounded as

E[T ] ⪰ mk2pq ·

(

log k + log log

(
1

kp

))

. (9)

Recall that XCi
is the indicator variable of whether

community Ci contains at least one infected member.

A different lower bound is given by

E[T ] ≥ H(X1, . . . , Xn)
(a)

≥ H(XC1 , . . . , XCm
)

= m · hb
(

1− (1− p)k
) (b)

⪰ mkp · log2(1/kp)

(10)

where (a) uses the fact that XC1
, . . . , XCm

are a function

of X1, . . . , Xn, and (b) uses the fact that hb

(

1 − (1 −

p)k
)

⪰ k · p · log2(1/kp) since kp ⪯ 1.

In the following theorem, we summarize the refined

lower bound obtained by combining (9) and (10):

Theorem 5 (Disjoint k-Cliques Lower Bound). Assume

kp ⪯ 1 and q ⪯ 1
√

k log( 1
kp )

. Then under the disjoint

k-cliques model, the expected number of tests required

to identify the infected individuals is lower bounded as

E[T ] ⪰ max
{

mk2pq ·

(

log k + log log

(
1

kp

))

,

mkp · log
( 1

kp

)

, 1
}

.

Recall that q = 0 corresponds to i.i.d. group testing, in

which case (3) gives the lower bound E[T ] ≥ n·hb(p) ≥
np log(1/p). On the other hand, substituting q = 0
into Theorem 5 yields np log(1/kp), which differs from

the i.i.d. case by an additive factor of np log(1/k). In

this special case, our bound can be seen as slightly

suboptimal. However, observe that when q = 0, the

disjoint k-cliques models are equivalent for all values

of k. This is because the community structure plays no

role in the i.i.d. setting. Therefore, Theorem 5 holds for

any value of k when q = 0, and can thus be maximized

over k to obtain the best-possible bound. The maximum

occurs at k = 1 (i.e., when every vertex is its own

community), which recovers the i.i.d. lower bound of

np log(1/p) as desired.
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Binary splitting m · k2 · p ·
(

1
k
+ q

)

· logm+m · k2 · p ·
(

1
k
+ q

)

· log k

Community-aware m · k · p · logm+m · k2 · p ·

(

1
k
+ q

)

· log k

Lower bound m · k · p · log
(

1
kp

)

+m · k2 · p · q ·
(

log k + log log
(

1
kp

))

+ 1

TABLE I: Upper and lower bounds on the expected number of tests in the disjoint k-cliques model.

B. Algorithm Analysis

1) Binary Splitting: As a direct consequence of The-

orem 3 and Corollary 1, we obtain the following non-

asymptotic and asymptotic upper bounds on the expected

number of tests used by binary splitting under the

disjoint k-cliques model.

Corollary 4. Under the disjoint k-cliques model, the bi-

nary splitting algorithm identifies all infected individuals

using T tests, where

E[T ] ≤ mk ·
(

log2 m+ log2 k + 2
)

·
(

1− (1− p)(1− pq)k−1
)

+ 1

⪯
(
mk2p · (log2 m+ log2 k) · (1/k + q)

)
.

2) Community-Aware Algorithm: The following

bounds are obtained as direct consequences of

Theorem 4 and Corollary 2.

Corollary 5. Under the disjoint k-cliques model, the

community-aware algorithm identifies all infected indi-

viduals using T tests, where

E[T ] ≤ m ·
(

log2 m+ 3
)(

1− (1− p)k
)

+ n ·
(

log2 k + 2
)(

1− (1− p)(1− pq)k−1
)

+ 1

⪯ mkp · logm+mk2p ·
(1

k
+ q
)

· log k.

C. Discussion

We summarize the expected number of tests of binary

splitting and the community-aware algorithm, as well

as the information-theoretic lower bound, in Table I.

If we compare the bounds for binary splitting and the

community-aware algorithm term-by-term, we observe

that the binary splitting bound has an extra additive

factor of mk2pq logm. Thus, as with the general SBIM,

the community-aware algorithm is never worse (order-

wise) than binary splitting.

Next, we discuss different parameter regimes where

1) the lower bound holds, 2) the community-aware algo-

rithm is order-optimal (i.e., the lower bound is tight), and

3) the community-aware algorithm’s average complexity

is strictly better than binary splitting’s. As stated in

Theorem 5, the lower bound holds when kp ⪯ 1 and

q ⪯ 1
√

k log( 1
kp )

. The next corollary specifies the regime

where the community-aware algorithm is order-optimal:

Corollary 6. Under the disjoint k-cliques model, the

community-aware algorithm is order-optimal under the

following conditions:

1) kp ⪯ m−β for some fixed β ∈ (0, 1),
2) 1

k ⪯ q ⪯ 1
√

k log( 1
kp )

.

Proof. Plugging log
(

1
kp

)

⪰ β logm into the lower

bound and using the fact that k ⪰ log
(

1
kp

)

from the

second condition (which implies log k ⪰ log logm)

yields

E[T ] ⪰ mkp · logm+mk2pq · (log k + log logm) + 1

⪰ mkp · logm+mk2pq · log k,

and applying q ⪰ 1/k to the bound for the community-

aware algorithm yields

E [T ] ⪯ mkp · logm+mk2pq · log k.

Finally, using Corollary 3 from our discussion on

the general SBIM, we specify the regime where the

community-aware algorithm outperforms binary split-

ting:

Corollary 7. Under the disjoint k-cliques model, if

logm ≻ log k and kq ≻ 1, then the community-

aware algorithm’s average complexity is asymptotically

strictly better than binary splitting’s by a factor of

min
{

kq, logm
log k

}

.

Remark 2. Recall from Corollary 3 that when logm ≻
log k, kq1 ≻ 1, and mkq2 ⪯ 1 under the general

SBIM, the improvement factor is also min
{

kq1,
logm
log k

}

,

matching Corollary 7 above. Intuitively, this is because

the SBIM resembles the disjoint k-cliques model when

q2 is very small.

In Table II, we summarize the different parameter

regimes discussed so far. As with the general SBIM,

we find that the community-aware algorithm potentially

improves upon binary splitting when (i) there are several

moderately sized communities in the network, and (ii)

the transmission rate within each clique is significant.

Additionally, the community-aware algorithm is order-

optimal when the seeds are sparse.
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Lower bound’s conditions kp ⪯ 1 and q ⪯ 1
√

k log
(

1
kp

)

Tightness conditions kp ⪯ m−β and 1 ⪯ kq ⪯

√

k/ log
(

1
kp

)

Improvement conditions logm ≻ log k and kq ≻ 1

TABLE II: Parameter regimes of interest for the disjoint k-cliques model.

VII. NOISY SETTING

In this section, we develop noise-resilient analogues to

our previously discussed algorithms, which we call noisy

binary splitting (NBS) and the noisy community-aware

(NCA) algorithm. We obtain bounds on the algorithms’

average complexity under a high-probability recovery

criterion and find that the NCA algorithm offers the

same improvement in testing efficiency compared to

NBS as observed between the corresponding algorithms

in the noiseless case. We also provide the proof of our

lower bound (Theorem 1) and discuss how this result

implies the order-optimality of the NCA algorithm in

the same parameter regimes as the noiseless community-

aware algorithm. Thus, broadly speaking, the presence of

testing noise does not affect the relative gains of using

a community-oriented approach.

A. Noisy Binary Splitting

In [71], an algorithm called modified noisy binary

search (MNBS)5 was used as a sub-routine of an adap-

tive procedure for the symmetric noise model (2). The

MNBS algorithm is said to succeed if it identifies an

infected member of the population when one exists, and

otherwise outputs a special symbol ϕ when no infected

members remain in the population. We will employ the

MNBS algorithm in a black-box manner and utilize the

following performance guarantee [71, Lemma 2]:

Lemma 7 (MNBS Guarantee). Under the symmetric

noise model (2), given any δ ∈ (0, 1), the MNBS

algorithm succeeds with probability at least 1− δ while

satisfying

E[# tests] ≤
log n

I(ρ)
+O

(

log
1

δ

)

+O
(

log log n
)

,

where I(ρ) = 1−hb(ρ) = 1−ρ log2
1
ρ − (1−ρ) log 1

1−ρ
is the capacity of the binary symmetric channel with

crossover probability ρ ∈ (0, 1
2 ).

Proof. See [71, Appendix A].

We obtain a very simple noisy binary splitting (NBS)

algorithm for the symmetric model via repeated ap-

plications of MNBS. Note that NBS does not take

5This is essentially the noisy binary search algorithm from [76]
adapted to the group testing framework.

into account the community structure of the population

inherent to SBIM(n, k, p, q1, q2).

Noisy Binary Splitting (NBS) Algorithm

0) Initialize X̂ = ∅; P = [n].
1) Run MNBS with error parameter δ ∈ (0, 1) on P . If

the result is ϕ, terminate and return X̂ . Otherwise,

add the result to X̂ and remove it from P . Repeat

Step 1.

Remark 3. If binary search algorithms are developed

for other noise models (e.g., dilution noise or Z-channel

noise), then NBS (and consequently the NCA algorithm

discussed later) can easily be adapted to these models by

replacing the MNBS algorithm with the channel-specific

algorithm. Likewise, to analyze the error probability

and average number of tests, we need only replace the

performance guarantees of the MNBS algorithm with

those of the channel-specific algorithm.

Recall that our objective is to ensure a vanishing

probability of error, defined as Pe ≜ Pr(X̂ ̸= X). We

obtain the following bound on the average number of

tests used by NBS under this recovery guarantee. The

proof closely follows that of [71, Theorem 1], the main

difference being the random nature of infections in our

setting, in contrast to their assumption that the number

of infections is fixed.

Theorem 6 (NBS Bound). Suppose the infections

in the population are distributed according to the

SBIM(n, k, p, q1, q2), and let

µ ≜ n ·
(

1− (1− p)(1− pq1)
k−1(1− pq2)

n−k
)

denote the expected number of infected individuals.

Under the symmetric noise model (2), for any δ ∈ (0, 1)
such that δ ≺ 1

µ , the NBS algorithm achieves Pe ≤
δµ → 0 and uses an expected number of tests satisfying

E[T ] ⪯
µ log n

I(ρ)
+ µ log

1

δ
. (11)

Proof. We first analyze the probability of error. Note

that, as long as the MNBS algorithm always succeeds

in Step 1, the NBS algorithm will produce the correct

output (i.e., achieve X̂ = X) and do so using D+1 calls

to the MNBS algorithm, where D is the total number
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of infected individuals in the population. (The +1 is

due to the final call to the algorithm when no infected

members remain.) Let Ei denote the event that the ith call

to the MNBS algorithm fails. Then, by conditioning on

the number of infections and performing a union bound

over the error events, we have

Pe ≤ Pr

(
D⋃

i=1

Ei

)

=

n∑

d=0

Pr(D = d) · Pr

(
D⋃

i=1

Ei

∣
∣
∣D = d

)

≤
n∑

d=0

Pr(D = d) · dδ

= δµ → 0 (by assumption).

Next, we bound the average number of tests used by

the algorithm. By Lemma 7, the average number of tests

performed during the first D + 1 calls to the MNBS

algorithm is

(

µ+ 1
)
(

log n

I(ρ)
+O
(

log
1

δ

)

+O(log log n)

)

≍
µ log n

I(ρ)
+ µ log

1

δ
. (12)

Note that the algorithm may make more than D+1 calls

to MNBS if at least one of the calls fails. However, these

additional tests do not affect the overall scaling in (12)

for the following reasons. Since the tests are subject to

independent noise, the calls to MNBS fail independently

with probability O(δ). Hence, the number of failures

encountered before the first success is distributed as a

Geometric(θ) random variable where θ = 1−O(δ). The

mean of this variable is 1−θ
θ = O(δ), and it follows

that E[T ] is within a multiplicative 1 + O(δ) factor of

(12).

Remark 4. Note that the bound in Corollary 1 (the

average number of tests used by binary splitting in

the noiseless case) can be expressed as µ log n. The

bound in Theorem 6 scales this inversely by I(ρ) (the

capacity of the binary symmetric channel) and includes

an additive factor, µ log 1
δ , that depends on the desired

error probability.

We further remark that Theorem 6 applies to any un-

derlying probabilistic infection model, not just the SBIM.

One just needs to replace µ in the theorem statement with

the corresponding model-specific quantities.

B. Noisy Community-Aware Algorithm

Following the same template as the noiseless

community-aware algorithm, our noisy community-

aware (NCA) algorithm applies NBS in two stages:

first to identify communities with at least one infected

member, and then to identify the infected individuals

within each positive community from the first stage.

Noisy Community-Aware (NCA) Algorithm

1) Mix the samples within each of the communities

and run the NBS algorithm with error parameter

δ′ ∈ (0, 1) on the mixed samples.

2) Run the NBS algorithm with error parameter δ ∈
(0, 1) within each community identified as positive

in Step 1.

We now state and prove the performance guarantee of

the NCA algorithm.

Theorem 7 (NCA Bound). Suppose the infec-

tions in the population are distributed according to

SBIM(n, k, p, q1, q2), and let

µ ≜ n ·
(

1− (1− p)(1− pq1)
k−1(1− pq2)

n−k
)

µM ≜ m ·

(

1− (1− p)k
(

1− p · (1− (1− q2)
k)
)n−k

)

denote the expected number of infected individuals and

expected number of infected communities, respectively.

Under the symmetric noise model (2), for any δ, δ′ ∈
(0, 1) such that δ′ ≺ 1

µM
and δ ≺ 1

µ , the NCA algorithm

achieves Pe ≤ δ′µM + δµ → 0 and uses an expected

number of tests satisfying

E[T ] ⪯
µM logm+ µ log k

I(ρ)
+ µ log

1

δ
. (13)

Proof. Provided that each step of the algorithm succeeds,

the algorithm’s final output will be correct. Moreover,

the NBS algorithm will be executed once in Step 1 and

M times in Step 2, where M is the number of infected

communities. Let E(1) denote the event that the single

call to NBS in Step 1 fails, and let E
(2)
i denote the event

that the ith call to NBS in Step 2 fails. Additionally, let

µK denote the expected number of infected members in

a single community conditioned on the event that the

community contains at least one infected member. We

have

Pe ≤ Pr

(

E(1) ∪
M⋃

i=1

E
(2)
i

)

(14)

≤ Pr(E(1)) +

m∑

j=0

Pr(M = j) · Pr

(
M⋃

i=1

E
(2)
i

∣
∣
∣M = j

)

(15)

≤ δ′ · µM +
m∑

j=0

Pr(M = j) · j · δ · µK (16)

= δ′ · µM + δ · µK · µM (17)

= δ′ · µM + δ · µ → 0 (18)
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where (15) applies a union bound and conditions on the

number of infected communities, (16) applies another

union bound along with the NBS error guarantee from

Theorem 6, and (18) uses the identity µ = µK · µM .

To obtain a bound on the average number of tests, we

will apply Theorem 6 twice and sum the results. First,

we apply it with µ replaced by µM , n replaced by m,

and δ replaced by δ′ (corresponding to Step 1). Second,

we apply it with µ replaced by µK and n replaced by k
(corresponding to Step 2). The overall average number of

tests performed during a single call to the NBS algorithm

in Step 1 and M calls to the algorithm in Step 2 is thus

given by

E[T ] ⪯
µM logm

I(ρ)
+ µM log

1

δ′

+ µM

(

µK log k

I(ρ)
+ µK log

1

δ

)

=
µM logm

I(ρ)
+ µM log

1

δ′
+

µ log k

I(ρ)
+ µ log

1

δ

⪯
µM logm+ µ log k

I(ρ)
+ µ log

1

δ

where the second line uses the identity µ = µK · µM

and the final line uses the fact that µM log 1
δ′ ⪯ µ log 1

δ .

Again, we note that additional tests may be required if

one or more of the calls to the NBS algorithm fails,

but that the above scaling will remain intact. (See the

argument in the proof of Theorem 6.)

Remark 5. The bound in Corollary 2 (the community-

aware algorithm in the noiseless case) can be expressed

as µM logm+ µ log k. Hence, as similarly discussed in

Remark 4, we find that Theorem 7 scales the noiseless

bound inversely by I(ρ) and includes an additive factor

that depends on the desired error probability δ.

It follows that the NCA algorithm is always at least

as efficient (order-wise) as NBS (recall our discussion

in Section V-C). Moreover, if δ ⪰ k−
1

I(ρ) (which ensures

that the µ log 1
δ term does not dominate), then the NCA

algorithm is strictly better than NBS under the same

conditions we derived in Corollary 3. That is, the param-

eter regimes in which the community-aware algorithm

improves upon binary splitting in the noiseless case are

the same regimes in which the NCA algorithm improves

upon NBS, provided that the desired error probability is

not too stringent.

Lastly, we emphasize the generality of Theorem 7

beyond the SBIM. The result holds under any proba-

bilistic infection model satisfying the following symmetry

condition, which states that the expected number of

infections in an infected community should be the same

across all communities: ∀i, j ∈ [m],

E

[∑

ℓ∈Ci

Xℓ |XCi
= 1
]

= E

[∑

ℓ∈Cj

Xℓ |XCj
= 1
]

.

Also, note that our result holds even when there are no

ªcommunitiesº in the population. In this case, we simply

set m = 1, k = n in (13) and find that it reduces to the

community-oblivious bound in Theorem 6.

C. Proof of the Lower Bound (Theorem 1)

Before delving into the proof of Theorem 1, we make

a few remarks. Provided that δ ⪰ k−1/I(ρ), note that

the NBS upper bound (Theorem 6) and the NCA upper

bound (Theorem 7) each scale their noiseless counterpart

(Theorem 3 and Theorem 4, respectively) by I(ρ).
Moreover, our lower bound in Theorem 1 also scales its

noiseless counterpart (3) by I(ρ). Taken together, these

results imply that the NCA algorithm is order-optimal

under the same conditions as the noiseless community-

aware algorithm (recall Corollary 6), as long as δ is not

too small. Thus, the benefits of using a community-aware

scheme persist in the presence of symmetric testing

noise.

To prove our main result, we will leverage a slightly

more general version of Fano’s inequality given in the

following lemma.

Lemma 8. For any estimator X̂ such that X → Y →
X̂ , with Pe = Pr(X ̸= X̂), we have

H(X |Y ) ≤ 1 + Pe ·H(X).

Proof. The proof is a small modification to the proof of

Fano’s inequality [72, Theorem 2.10.1]. First, we define

the error random variable

E =

{

1 if X̂ ̸= X

0 if X̂ = X.

Then, we expand H(X,E | X̂) using two applications of

the chain rule for entropy:

H(X,E | X̂) = H(X | X̂) +H(E |X, X̂)
︸ ︷︷ ︸

=0

= H(E | X̂) +H(X |E, X̂).

Since conditioning reduces entropy, we have

H(E | X̂) ≤ H(E) = hb(Pe) ≤ 1. Therefore, we

currently have

H(X | X̂) ≤ 1 +H(X |E, X̂)
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and we can bound H(X |E, X̂) as

H(X |E, X̂) = Pr(E = 0) ·H(X | X̂, E = 0)
︸ ︷︷ ︸

=0

+ Pr(E = 1) ·H(X | X̂, E = 1)

≤ Pe ·H(X)

where the inequality follows from the fact that con-

ditioning reduces entropy. Finally, the data processing

inequality yields

H(X |Y ) ≤ H(X | X̂) ≤ 1 + Pe ·H(X)

as desired.

Now we prove our main result, which we restate below

for convenience.

Theorem 1. Assume H(X1, X2, . . . , Xn) → ∞ as

n → ∞. Under the symmetric noise model (2), any

adaptive algorithm achieving Pe → 0 must use an

average number of tests lower bounded as

E[T ] ≥
H(X1, . . . , Xn)

I(ρ)
. (19)

Proof. For i = 1, 2, . . . ,M , where M is the maximum

number of tests allowed by the algorithm, let Si ⊆ [n]
denote the subset of individuals included in the ith test.

Further, let

Zi =
∨

j∈Si

Xj

denote the noiseless outcome of the ith test, and let

Yi = Zi ⊕ ξ, ξ ∼ Bernoulli(ρ), ρ ∈
(

0,
1

2

)

denote the corresponding noisy outcome. An adaptive

algorithm applies a sequence of tests S1,S2, . . . and

observes their outcomes Y1, Y2, . . . , where Si can be

chosen as a function of the previous test outcomes

Y1, . . . , Yi−1. The algorithm terminates at a random time

T which is determined by the test outcomes up to the

T th test, i.e., Y1, . . . , YT . For i > T , we will write

Si = ∅, Zi = ∅, and Yi = ∅ to indicate that the

algorithm has been terminated and no further tests will

be performed. We will also use the shorthand notation

X = (X1, . . . , Xn), Y = (Y1, . . . , YM ).
We proceed by expanding the mutual information

between the infection statuses X1, . . . , Xn and the noisy

test outcomes Y1, . . . , YM as follows:

I(X;Y ) = H(Y )−H(Y |X)

=

M∑

i=1

H(Yi |Y1, . . . , Yi−1)

−
M∑

i=1

H(Yi |X,Y1, . . . , Yi−1).

(20)

For now, let us assume that the algorithm is deterministic

and that the first test, S1, is fixed. Note that Si can be

recursively deduced from Y1, . . . , Yi−1, and hence Si is

a function of Y1, . . . , Yi−1. Combining this with the fact

that conditioning reduces entropy, we obtain

H(Yi |Y1, . . . , Yi−1) = H(Yi | Si, Y1, . . . , Yi−1)

≤ H(Yi | Si). (21)

Next, we have

H(Yi |X,Y1, . . . , Yi−1) = H(Yi |X,Y1, . . . , Yi−1, Zi)
(22)

= H(Yi |Zi) (23)

where (22) uses the fact that Zi is a function of {X,Si}
and hence is a function of {X,Y1 . . . , Yi−1}; and (23)

uses the fact that Yi is conditionally independent of X
and Y1, . . . , Yi−1 given Zi.

Plugging (21) and (22) into (20) yields

I(X;Y ) ≤
M∑

i=1

[

H(Yi | Si)−H(Yi |Zi)
]

=

M∑

i=1

Pr(Si ̸= ∅) ·
[

H(Yi | Si,Si ̸= ∅)

−H(Yi |Zi,Si ̸= ∅)
]

≤
M∑

i=1

Pr(Si ̸= ∅) · (1− hb(ρ)) (24)

=

M∑

i=1

Pr(T ≥ i) · (1− hb(ρ))

= E[T ] · (1− hb(ρ)) (25)

= E[T ] · I(ρ) (26)

where (24) uses the fact that H(Yi | Si,Si ̸= ∅) ≤ 1
since Yi is a binary random variable conditioned on

Si ̸= ∅, and (25) follows from the tail-sum formula for

expectation.

Now, combining (26) and our modified Fano’s in-

equality (Lemma 8) with the fact that H(X) =
I(X;Y ) +H(X |Y ) gives us

H(X) ≤ E[T ] · I(ρ) + Pe ·H(X) + 1

which can be rearranged to

Pe ≥ 1−
E[T ] · I(ρ) + 1

H(X)
.

Finally, let ε > 0, and observe that if E[T ] ≤ H(X)
I(ρ) ·

(1 − ε), then Pe ≥ ε − 1
H(X) → ε by the assumption

that H(X) → ∞ as n → ∞.

We can easily extend our analysis to allow for ran-

domized tests by assuming Si depends on some ex-

ternal randomness θi, independent of the noise and
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the infection statuses. Thus, Si is a function of

{Y1, . . . , Yi−1, θ1, . . . , θi−1}. Then, using the shorthand

notation θ = (θ1, . . . , θM ), we have

H(X) = H(X | θ) = I(X;Y | θ) +H(X |Y, θ)

= H(Y | θ)−H(Y |X, θ) +H(X |Y, θ).

Note that

H(X |Y, θ) ≤ H(X |Y ) ≤ 1 + Pe ·H(X).

Additionally, using the fact that Si is a function of

{Y1, . . . , Yi−1, θ1, . . . , θi}, it follows that

H(Y | θ) =
M∑

i=1

H(Yi |Y1, . . . , Yi−1, θ)

=

M∑

i=1

H(Yi |Y1, . . . , Yi−1, θ,Si)

≤
M∑

i=1

H(Yi | Si).

Finally,

H(Y |X, θ) =

M∑

i=1

H(Yi |X,Y1, . . . Yi−1, θ)

=
M∑

i=1

H(Yi |X,Y1, . . . , Yi−1, θ, Zi)

=

M∑

i=1

H(Yi |Zi)

and the remainder of the proof is exactly the same as in

the deterministic case.

VIII. NUMERICAL EXPERIMENTS

We implemented the binary splitting and community-

aware algorithms and evaluated their performance over

random instances of the SBIM. The population size was

set to n = 1,000, and p was varied over the interval

[0, 0.01], while q1, q2 were fixed at different values. We

ran 500 trials for each value of p, where a trial consists

of generating an instance from SBIM(n, k, p, q1, q2) and

observing the number of tests used by binary splitting

and the community-aware algorithm to identify the in-

fected individuals. For the lower bound, we computed

the non-asymptotic expression given in (5). To do so,

one can expand (5) as follows:

n · I(X1;S1) +H(X |S)

= n ·

(

H(X1)−H(X1 |S1)

)

+H(X |S)

= n ·

(

H(X1)− P(S1 = 0) ·H(X1 |S1 = 0)

)

+H(X |S)

= n ·

(

hb

(

P(X1 = 1)
)

− (1− p) · hb
(

P(X1 = 1 |S1 = 0)
)
)

+H(X |S)

where X = (X1, . . . , Xn), S = (S1, . . . , Sn). The terms

P(X1 = 1) and P(X1 = 1 |S1 = 0) are straightforward

to compute (see Lemma 3 and its proof in Appendix C).

The term H(X |S) is lower-bounded by (6). To estimate

(6), we took an average over many independent samples

of Z ∼ Binom(k, p) and Z ′ ∼ Binom(n− k, p).

Figure 2 shows some representative plots of the es-

timated E[T ] as a function of p, with k = 50 and

different values of q1, q2. The error bars show ± one

standard deviation of the values of T obtained for a

particular value of p. For comparison, we also plot the

theoretical upper bounds from Theorem 3 and Theo-

rem 4, and we find that these bounds closely match

the empirical results. Additionally, the community-aware

algorithm consistently outperforms binary splitting. For

example, in Figure 2c, at p ≈ 0.009, binary splitting

has already exceeded the individual testing threshold

with an average of 1,044 tests, whereas the community-

aware algorithm uses an average of 708 tests; this

represents a 32% reduction in testing. The community-

aware algorithm’s performance also seems to exhibit

lower variance than binary splitting. In Figure 3, we

fix q1 = 0.1, q2 = 0.001, and vary the community

size k ∈ {10, 50, 100, 200}. The community-aware

algorithm appears to perform most favorably (relative to

binary splitting) for more intermediate values of k, i.e.,

when there are several moderately sized communities

in the network. These findings are consistent with our

earlier theoretical results.

The estimated lower bound is fairly close to the

community-aware algorithm’s bound in the regime

where the seeds are very sparse (small p) and the net-

work exhibits strong community structure (intermediate

k, q1; small q2). This corroborates our analysis from

Section VI-C. In other regimesÐsuch as when p, k,

or q2 are largerÐthere is a sizable gap between the
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(a) (b)

(c) (d)

Fig. 2: Performance comparison between binary splitting and the community-aware algorithm under the SBIM with

n = 1000, k = 50, and different values of p, q1, q2. Theoretical upper and lower bounds are also shown.

community-aware bound and the lower bound. How-

ever, this gap seems to be at most a constant factor

in many cases, suggesting that the order-optimality of

the community-aware algorithm still holds in broader

regimes. Nevertheless, these results suggest the potential

to further improve the non-asymptotic upper or lower

bounds.

IX. CONCLUSION

In this paper, we investigated the group testing prob-

lem over networks with community structure. Moti-

vated by infectious diseases such as COVID-19, we

proposed a network-based infection model which gen-

eralizes the traditional i.i.d. group testing model to

settings in which interactions between individuals dictate

the disease spread. Our proposed adaptive algorithm,

which exploits the known community structure of the

underlying graph, provably outperforms the community-

oblivious binary splitting algorithm and is order-optimal

in certain parameter regimes, as implied by our novel

lower bounds based on the system entropy. Even in the

presence of symmetric noise, our community-oriented

approach offers the same gains in testing efficiency as it

does in the noiseless case.

We conclude with some future directions. As dis-

cussed in Section V and further suggested by our sim-

ulations, there remains a gap between our upper and

lower bounds in certain regimes of the general SBIM,

due to the difficulty of bounding H (XC1
, ..., XCm

) when

{XC1 , ..., XCm
} are not mutually independent. Other

directions of interest include designing non-adaptive

group testing schemes for our setting, deriving bounds

under other noise models such as dilution and Z-channel

models, and extending our infection model to longer

time horizons (e.g., SIR or SIS-type infection models

from the epidemiology literature). Finally, characterizing

the complexity of group testing under the general graph-

based infection model described in Section III-C (beyond

the SBIM studied in this paper) is fertile ground for

future work.
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(a) (b)

(c) (d)

Fig. 3: Performance comparison between binary splitting and the community-aware algorithm under the SBIM with

n = 1000, q1 = 0.1, q2 = 0.001, and different values of p, k. Theoretical upper and lower bounds are also shown.

APPENDIX A

PROOF OF LEMMA 2

Let Si be the indicator variable of whether the ith

individual is a seed. We will use the shorthand notation

X = (X1, . . . , Xn), S = (S1, . . . , Sn). By standard

information-theoretic arguments, we have

H(X) = I(X;S) +H(X |S)

= H(S)−H(S |X) +H(X |S)

= n ·H(S1)−
n∑

i=1

H(Si |X,S1, . . . , Si−1)

+H(X |S)

≥ n ·H(S1)− n ·H(S1 |X1) +H(X |S)

= n · I(X1;S1) +H(X |S).

This proves (5) in Lemma 2.

Next, we prove (6). First, note that H(X) ≥
H (X |S ) since I(X;S) ≥ 0. (This also follows directly

from the fact that conditioning reduces entropy.) We have

H (X |S) =
∑

s∈{0,1}n

P (S = s) ·H (X |S = s) .

Observe that after conditioning on the locations of the

seeds, X1, ..., Xn are mutually independent. Moreover,

for i ∈ Cℓ, the marginal distribution of Xi can be

specified as follows:

P (Xi = 1 |S = s)

=

{

1, si = 1,

1− (1− q1)
∑

j∈Cℓ
sj (1− q2)

∑

j ̸∈Cℓ
sj , si = 0.

Writing zℓ ≜
∑

j∈Cℓ
sj , the conditional entropy is given

by

H (X |S = s) =
m∑

ℓ=1

(k − zℓ)

· hb
(

1− (1− q1)
zℓ (1− q2)

∑

ℓ′ ̸=ℓ zℓ′
)

,
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where hb (·) is the binary entropy function. Since Si
i.i.d.
∼

Ber(p), we have Zℓ
i.i.d.
∼ Binom(k, p) and hence

H(X |S) = EZ,Z′ [m · (k − Z)

· hb(1− (1− q1)
Z(1− q2)

Z′

)],
(27)

where Z ∼ Binom (k, p) and Z ′ ∼ Binom (n− k, p).
□

APPENDIX B

PROOF OF THEOREM 2

In light of Lemma 2, it suffices to show that the

following lower bound holds under the assumptions in

the theorem statement:

EZ,Z′

[

(k − Z) · hb
(

1− (1− q1)
Z (1− q2)

Z′
)]

⪰ mk2pq2 log

(
1

npq2

)

+ k2pq1 log

(
1

q1 + npq2

)

,

where Z ∼ Binom (k, p) and Z ′ ∼ Binom(n−k, p). Our

proof leverages the concentration of Z and Z ′ around

their means.

First we assume n · p · q2 ⪯ 1, and let ϵ ∈ (0, 1) be a

value to be specified. Define

z∗ ≜
1/2− np(1 + ϵ)q2

q1
.

Then as long as Z and Z ′ satisfy the following two

conditions

1) {np(1− ϵ) ≤ Z ′ ≤ np(1 + ϵ)},

2) Z ≤ z∗,

we have

1

2
≥ Z · q1 + Z ′ · q2 ≥ 1− (1− q1)

Z
(1− q2)

Z′

. (28)

Since 1− (1− q1)
Z
(1− q2)

Z′

is an increasing function

of Z and Z ′, hb

(

1− (1− q1)
Z
(1− q2)

Z′
)

must in-

crease with Z and Z ′ if they satisfy the above conditions.

Therefore, we have

EZ,Z′

[

(k − Z)hb

(

1− (1− q1)
Z (1− q2)

Z′
)]

≥ EZ,Z′

[

(k − Z)hb

(

1− (1− q1)
Z(1− q2)

Z′
)

· ✶{0≤Z≤z∗} · ✶{np(1−ϵ)≤Z′≤np(1+ϵ)}
]

≥ EZ,Z′

[

(k − Z)hb

(

1− (1− q2)
Z′
)

· ✶{Z=0}

· ✶{np(1−ϵ)≤Z′≤np(1+ϵ)}
]

(29)

+ EZ,Z′

[

(k − Z)hb

(

1− (1− q1)
Z(1− q2)

Z′
)

· ✶{1≤Z≤z∗} · ✶{np(1−ϵ)≤Z′≤np(1+ϵ)}
]

.

(30)

We will pick ϵ = 1
2 . Then (29) can be bounded above

by

k · hb
(

q2 · np(1− ϵ)− (q2 · np(1− ϵ)
)2)

·
(

1− 2 · exp
(

−
nϵ2p

3

))

⪰ k ·
(

npq2(1− ϵ) log
( 1

npq2(1− ϵ)

)

·
(

1− 2 · exp
(

−
nϵ2p

3

)))

⪰ k ·

(

npq2 log

(
1

npq2

))

where in the first inequality we use

1) Z ′ ≥ np(1− ϵ)
2) (1− q2)

Z′

≤ e−q2·Z′

≤ 1− q2 · Z
′ + (q2 · Z

′)2

3) Chernoff bound on Z ′,

and in the third inequality we assume np ⪰ 1. Next, (30)

can be bounded above by

hb

(

q1 + npq2(1− ϵ)− (q1 + npq2(1− ϵ))2
)

· EZ

[
(k − Z)✶{1≤Z≤z∗}

]
·
(

1− 2 · exp
(

−
nϵ2p

3

))

⪰ (q1 + npq2) log

(
1

q1 + npq2

)

· EZ

[
(k − Z)✶{1≤Z≤z∗}

]
.

We will now lower bound EZ

[
(k − Z)✶{1≤Z≤z∗}

]
as

in Theorem 5. Observe that

EZ

[
(k − Z)✶{1≤Z≤z∗}

]

≥ EZ [k − Z]− k · P {Z = 0} − k · P {Z ≥ z∗}

≥ k
(
1− p− (1− p)k − P {Z ≥ z∗}

)

⪰ k (kp− P {Z ≥ z∗}) . (31)

Finally, applying Hoeffding’s inequality to P {Z ≥ z∗}
yields

P {Z ≥ z∗} ≤ exp

(

−2k

(

p−
z∗

k

)2
)

= exp

(

−2k

(

p−
1
2 − npq2(1 + ϵ)

q1k

)2
)

(1)

⪯ exp

(

−2k

(
1

2q1k

)2
)

= exp

(

−
1

2kq21

)

(2)

≤
kp

2
,
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where in (1) we use the facts that 1) n · p · q2 ⪯ 1 and

2) p ⪯ 1
q1k

, and (2) holds when

q1 ≤
1

√

2k ·
(

log
(

1
kp

)

+ 1
) .

Plugging into (31) yields

EZ

[
(k − Z)✶{1≤Z≤z∗}

]
⪰ k2p, (32)

and thus by putting together our bounds on (29), (30),

we arrive at

EZ,Z′

[

(k − Z)hb

(

1− (1− q1)
Z (1− q2)

Z′
)]

≥ k

(

npq2 log

(
1

npq2

))

+ k2p · (q1 + npq2) log

(
1

q1 + npq2

)

≥ mk2pq2 log

(
1

npq2

)

+ k2pq1 log

(
1

q1 + npq2

)

.

□

APPENDIX C

PROOF OF LEMMA 3

Let Sv be the indicator random variable of whether

an individual v is a seed, and assume without loss of

generality that v ∈ C1. We have

P(Xv = 1) = P(Xv = 1 |Sv = 1)
︸ ︷︷ ︸

=1

·P(Sv = 1)
︸ ︷︷ ︸

=p

+ P (Xv = 1 |Sv = 0)) · P(Sv = 0)

= p+ (1− p) · P (Xv = 1 |Sv = 0) .

Given that v is not a seed, Xv = 1 if and only if v is

infected by another seed. Hence,

P (Xv = 1 |Sv = 0)

= P
(
{v is infected by another individual}

)

= 1−
∏

u∈[n]

P
(
{v isn’t infected by u}

)

= 1−
∏

u∈[n]

(

1− P
(
{v is infected by u}

))

= 1−
∏

u∈[n]

(

1− P ({v is infected by u} |Su = 1)

· P(Su = 1)
)

= 1−

(
∏

u∈C1\{v}
(1− pq1)

)

·

(
∏

w ̸∈C1

(1− pq2)

)

= 1− (1− pq1)
k−1(1− pq2)

n−k.

□

APPENDIX D

PROOF OF LEMMA 4

Let A be the event that no member of community

C1 is selected as a seed, and let B be the event that

some member of C1 is infected by an individual outside

C1. We further denote by Bu the event that vertex u
infects some member of C1, where u ̸∈ C1. Note that

XC1
= 1 if and only if either Ac occurs or A∩B occurs.

Moreover, A and B are independent events. We have that

P(A) = (1− p)k, and thus

P(XC1 = 1) = P(Ac) + P(A) · P(B)

= 1− (1− p)k + (1− p)k · P(B)

= 1− (1− p)k · (1− P(B)).

Finally, we compute P(B) as

P(B) = 1−
∏

u ̸∈C1

P(Bc
u)

= 1−
∏

u ̸∈C1

(

P(Bc
u |Su = 1) · P(Su = 1)

︸ ︷︷ ︸
=p

+ P(Bc
u |Su = 0)

︸ ︷︷ ︸
=1

·P(Su = 0)
︸ ︷︷ ︸

=1−p

)

= 1−
∏

u ̸∈C1

(

1− p+ p · P(Bc
u |Su = 1)

)

= 1−
∏

u ̸∈C1

(

1− p+ p · (1− q2)
k
)

= 1−

(

1− p ·
(

1− (1− q2)
k
)
)n−k

.

□

APPENDIX E

PROOF OF LEMMA 6

Let f (q) = log(q)
log(1−q) , so that f(q) solves 1−(1−q)Z =

1− q. Then

EZ [(k − Z) · hb(1− (1− q)Z)]

≥ EZ [(k − Z) · hb(1− (1− q)Z) · ✶{1≤Z≤f(q)}]
(a)

≥ hb(q) · EZ [(k − Z) · ✶{1≤Z≤f(q)}]

≥ hb(q)
(

EZ [k − Z]− k · P{Z = 0}

− k · P{Z > f(q)}
)

= k · hb(q)
(

(1− p)(1− (1− p)k−1)− P{Z > f(q)}
)

(b)

≥ k · hb(q)
(

(1− p)
(

(k − 1)p− (k − 1)2p2
)

− P{Z > f(q)}
)

(c)

⪰
k

2
· hb(q) (k · p− P {Z > f(q)}) , (33)
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where (a) is due to the fact that hb(x) ≥ hb(q) for all

q ≤ x ≤ 1 − q, (b) holds since (1 − p)r ≤ e−pr and

ex ≤ 1 + x + x2 for x ≤ 1, and (c) is due to the

assumption p ⪯ 1/k.

We then upper bound P {Z > f(q)} by Hoeffding’s

inequality:

P {Z > f(q)} ≤ exp

(

−2k

(

p−
f(q)

k

)2
)

(a)

⪯ exp

(

−2k

(
f(q)

2k

)2
)

≤ exp

(

−
f(q)2

2k

)

(b)

⪯
kp

2
,

where (a) holds by the assumption k · p · q ⪯ 1, so that

k · p ⪯
q

2
log

(
1

q

)

≤
q

1− q
log

(
1

q

)

≤ f(q),

and (b) holds due to the assumption q ⪯ 1√
k·
√

log( 1
k·p )

.

Plugging into (33) yields

EZ

[
(k − Z) · hb

(
1− (1− q)Z

)]
⪰ k2 · p · q · log

(
1

q

)

⪰ k2 · p · q ·

(

log k + log log

(
1

kp

))

,

where in the last inequality we use the assumption q ⪯
1√

k·
√

log( 1
k·p )

again.

□

APPENDIX F

PROOF OF THEOREM 4

Let T1 and T2 be the number of tests performed,

respectively, in Step 2 and Step 3 of the community-

aware algorithm. Specifically, T1 is equal to the number

of tests used by binary splitting to identify the infected

communities, and T2 is the number of tests to identify

infected individuals within each infected community.

Note that T = T1 + T2. We will bound E[T1] and E[T2]
separately.

Let N be the number of infected communities. By

Lemma 4, we have

E[N ] =
n

k
· P(XC1

= 1)

=
n

k
·

(

1− (1− p)k

(

1− p ·
(

1− (1− q2)
k
)
)n−k)

.

Taking Lemma 1 with n = n/k and α = N gives

T1 ≤ (log2(n/k) + 2) ·N + 1

so that

E[T1] ≤
n

k
·
(

log2(n/k) + 1
)

·

(

1− (1− p)k

(

1− p
(

1− (1− q2)
k
)
)n−k)

+ 1.

For the second stage of the algorithm, let Zi denote

the number of tests used by binary splitting to iden-

tify all infected members of the ith community. Since

T2 =
n/k∑

i=1

Zi · ✶{XCi
=1}, we have

E[T2] =

n/k
∑

i=1

E

[

Zi · ✶{XCi
=1}

]

=
n

k
· E
[

Z1 · ✶{XC1
=1}

]

=
n

k
· P(XC1

= 1) · E [Z1 |XC1
= 1] .

Let M denote the number of infected members of C1.

Then by Lemma 1,

E [Z1 |XC1 = 1] ≤ (log2 k + 2) · E [M |XC1 = 1] + 1

and, assuming without loss of generality that C1 = [k],

E [M |XC1 = 1] =

k∑

j=1

P (Xj = 1 |XC1 = 1)

= k · P (X1 = 1 |XC1
= 1)

= k ·
P(X1 = 1, XC1

= 1)

P(XC1
= 1)

= k ·
P(X1 = 1)

P(XC1 = 1)

= k ·
1− (1− p)(1− pq1)

k−1(1− pq2)
n−k

P(XC1
= 1)

where in the last line we invoke Lemma 3. Putting

everything together gives

E[T2] ≤ n · (log2 k + 2)

·
(

1− (1− p)(1− pq1)
k−1(1− pq2)

n−k
)

+
n

k
·

(

1− (1− p)k

(

1− p
(

1− (1− q2)
k
)
)n−k)

and therefore

E[T ] ≤
n

k
·
(

log2(n/k) + 3
)

·

(

1− (1− p)k

(

1− p
(

1− (1− q2)
k
)
)n−k)

+ n ·
(

log2 k + 1
)

·
(

1− (1− p)(1− pq1)
k−1(1− pq2)

n−k
)

+ 1.
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