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Abstract

The structure of power flows in transmission grids is evolving and is likely to change
significantly in the coming years due to the rapid growth of renewable energy generation
that introduces randomness and bidirectional power flows. Another transformative aspect
is the increasing penetration of various smart-meter technologies. Inexpensive measure-
ment devices can be placed at practically any component of the grid. Using model data,
we propose a two-stage procedure for detecting a fault in a regional power grid. In the
first stage, a fault is detected in real time. In the second stage, the faulted line is identified
with a negligible delay. The approach uses only the voltage modulus measured at buses
(nodes of the grid) as the input. Our method does not require prior knowledge of the fault
type. The method is fully implemented in R. Pseudo code and complete mathematical
formulas are provided.

Keywords: fault detection, fault localization, data-driven approaches.

1. Introduction

Faults in power systems cause excessive currents and can pose safety threats to personnel
and property, and even cause major disasters, like widespread fires, as well as disruptions
of economic and social activities. Detection of power grid faults is therefore of paramount
importance. As the penetration of renewable energy sources, with pronounced stochastic
components, increases, traditional fault detection methods can become insufficient. The ob-
jective of this work is to propose a statistical methodology for detecting a fault in a regional
power grid, with almost no delay, and locating the faulted line. The faulted line is also deter-
mined almost immediately. The algorithm we propose takes as inputs the moduli of voltage
measured at high frequency at grid buses. Such data are becoming increasing available due
to the growing deployment of phasor measurement units (PMUs) able to communicate power
transmission measurements in real time and from practically any location where transmission
lines connect, start or terminate (generators, transformers, forks, loads etc.). Such nodes
of the grid are referred to as buses. The algorithm is developed on a training dataset and
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evaluated on a test data set that remains inaccessible to us until the algorithm development
is complete. This widely adopted approach is designed to ensure that new methodology gen-
eralizes well. The novelty of our approach relative to previous research is discussed in greater
detail in Section 4. We merely note here that we are not aware of any study that uses a large
database of faults and statistically evaluates performance of a fault detection and localization
methodology in terms of success rates.

The statistical methodology used in this paper falls into the general field of change point
detection and anomaly localization. The field of statistical change point detection is now
well-established, and there are consequently many monographs on change point analysis, e.g.
Brodsky and Darkhovsky (1993); Csörgő and Horváth (1997); Gustafsson (2000); Chen and
Gupta (2011); Basseville, Nikifirov, and Tartakovsky (2012); Brodsky (2017). The methods
we consider are known as sequential- or online detection or monitoring. Their objective is to
raise an alarm if there is some departure from the desired state. They focus on minimizing
the Expected Detection Delay (EDD) and maximizing the Average Run Length (ARL), i.e.,
the expected time until a false detection. The last two decades have seen important advances
in theoretical understanding of methods for sequential detection of change-points which may
occur in one of many channels or sensors. Research in Dragalin, Tartakovsky, and Veeravalli
(1999) is concerned risk optimality theory for multichannel log-likelihood ratio tests. There
are M channels, and a penalty is imposed if a change in density is detected in an incorrect
channel; stopping occurs as soon as a fault is detected in one of the channels. The work
in Mei (2005) incorporates a decision center into the optimality considerations, while that
in Raghavan and Veeravalli (2010) studies a situation where the change propagates across
sensors. Reference Xie and Siegmund (2013) is concerned with mathematical properties of
sequential change point detection in an idealized multi-sensor network with a change occurring
in a subset of networks. Temporal and spatial independence and normality of observations
are assumed. A somewhat similar approach is taken by Zhang, Siegmund, Ji, and Li (2010)
who assume independence across i and t and Gaussian observations, and propose a method
of dealing with data that have a large cross-sectional dimension p, tens of thousands, and
a huge temporal size T , hundred of thousands. They study gene expression data. In our
setting, the value of p will be much smaller, and T will also have to be smaller to use a
reasonable moving window. There is also very extensive research on detecting anomalies
in various types networks networks. To illustrate different flavors of such research, we list,
as subjectively selected examples, Huang, Nguyen, Garofalakis, Jordan, Joseph, and Taft
(2007), Lévy-Leduc and Roueff (2009), Paschalidis and Smaragdakis (2009), Bartos, Rehak,
and Krmicek (2011), Xie (2012), Rassam, Zainala, and Maarof (2013) and Vaughan, Stoev,
and Michailidis (2013). The methods developed in these and many other papers are designed
to study networks and anomalies different from the power grid anomalies.

Power grid faults are very different from typical data that has motivated the development
of existing approaches and the theory that underlies them. They are typically based on the
statistical likelihood principle that leads to procedures based on the likelihood ratio. Such
procedures enjoy optimality properties, but only under specific assumptions, almost always
involving independence and often normal distribution. Power grid data satisfy none of these
assumptions. All lines are connected and a fault propagates almost immediately through an
affected subgrid. As the figures in Section 2 show, the fault data are very dependent. For the
detection of a fault, this is a blessing, but it makes the problem of the localization of a fault
very hard (measurements at all buses look similar). Our method is specific to a power grid
and has no analog in existing network anomaly detection methods.

The paper is organized as follows. Section 2 introduces the grid data we work with and
presents exploratory data analysis that motivates our approaches. In Section 3, we derive our
detection and localization algorithms, present them by means of mathematical formulas and
pseudocode, and assess their performance. Section 4 is dedicated to the discussion of existing
or proposed engineering approaches and a comparison with another method. We conclude
with a brief summary and main conclusions in Section 5.
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line to line (LL): two phases of a three phase circuit are short circuited.

line to ground (LG): one conductor comes in contact with the ground or the neutral
conductor.

line to line to ground (LLG): any two phases of the power circuit are short circuited
to ground or neutral.

three-phase (TP): all three phases of the power circuit are shorted.

The minniWECC data were generated using the Power System Toolbox (PST), Cheung,
Chow, and Rogers (2009), which is based on MATLAB. The input data files required to run
the simulations were created by Dr. D. Trudnowski. The details of how the simulations
are carried out is well documented in the PST manual. The faults were generated using the
switching condition matrix, in which the time of fault, time of clearing the fault, total duration
of simulation and sampling rate were specified. The values of zero sequence (z0) impedance
and negative sequence (zn) impedance were also specified in the switching condition matrix.
For the generated data the value z0 and zn were chosen randomly. These values, in per unit
(p.u), are z0 = 0.17 and zn = 0.4. The elements in the system model are the same for all types
of faults. The sequence networks and the fault impedance vary for different types of faults.
The equations used for calculating the impedance after different faults, in the simulation are:

three phase fault: zf = 0

line to ground fault: zf = zn ∗ z0
zn+z0

line to line to ground: zf = zn+ z0

line to line: zf = zn

In the above formulas, zf is the impedence with respect to ground after a fault.

Cases where simulation terminated due to numerical instability, are not included in further
analysis. This results in a total of 546 simulations, where 117 simulations are from the TP
fault cases, 139 simulations are from LLG cases, 145 simulations are from LL cases, and 145
simulations are from LG cases.

There are 116 out of 122 buses that have at least one line starting from it and can be considered
as start buses. The number of possible indexes i in the (i, j) pairs is 116. For 91 out of these
116 i values, there exists only one unique j, i.e. there is only one line starting at i.

The simulated data consist of 120 measurements per second for 900 seconds (15 minutes).
They include voltage readings at all buses reported as complex numbers. We consider the
modulus of voltage at bus readings. The dimension of the dataset for each fault simulation is
122×108000. A fault is applied in the time interval (600− 1

120
, 600) in seconds, which is between

observations 72000 and 72001 in each dataset. We set observation 72001 to be an exact fault
time and so assume that second 600 is the earliest moment when the fault can be detected.
To illustrate, we consider bus 105, which is the start bus of line 96. We gathered magnitude
of voltage readings at bus 105 from all available simulations and highlighted simulations
where line 96 was faulted. As different periods of the experiments have different variance of
data, we represent the data by splitting the records into several time intervals (in seconds):
[0, 600− 1

120
), [600− 1

120
, 600 + 1

6
), [600 + 1

6
, 900]. These intervals reflect the data before the

fault, just after the fault including one point before the fault, and recovery after the fault.
The beginning of the recovery phase is selected based on exploratory analysis. The graphs are
shown in Figure 2. Notice that during the period [0, 600) the data between simulation only
differ by white noise. Bus 105 shows different responses to faults of different types. TP fault
at line 96 has the largest effect on the readings at bus 105. For all fault types, most variability
can be seen in the interval [600, 6001

6
]s (second panel in Figure 2). Approximately 0.1s after

the fault, the recovery of the system begins. Figure 2 shows that one can expect to identify
the start bus of the faulted line because it shows a special behavior. On the other hand, this
special behavior is more pronounced for some fault types than for other fault types, so the



Austrian Journal of Statistics 147

task requires careful consideration. Figure 2 also shows that localization of the faults should
be achievable within a second after a fault.

Figure 2: Modulus of voltage readings at bus 105 from all available (546) simulations. Faults
at line 96 are highlighted (black) as bus 105 is the start bus of line 96. Readings resulting
from faults at other lines (not 96) are plotted in gray. The three graphs represent different
time stages of simulations. Notice the different voltage scales and different lengths of time
intervals at the different stages.

Figure 3 presents the data in the interval [600 − 1

120
, 600 + 1

6
) from a different angle. The

second panel of Figure 2 shows how a fixed bus “sees” the faults at all lines. Figure 3 shows
how all buses see faults at a fixed line within the critical time interval just after a fault. To
illustrate the differences in behavior between the buses, we consider faults at line 90. This
line connects buses 88 and 121. The response to a fault at a specific bus depends on its
relative location relative to the faulted line. For a given fault, the responses at all buses
exhibit similar patterns; the size of the response is generally the largest at busses where the
faulted line starts and ends, but the pattern is not obvious. Figure 3 shows that an almost
instantaneous localization of a faulted line should be possible, but the task is clearly not
trivial. The next section is devoted to a systematic study of this problem.

3. Derivation of fault detection and localization algorithms

The goal of the fault detection algorithms is to estimate the time M when the fault occurs and
the goal of localization algorithms is to identify the faulted line. Localization is equivalent
to finding the pair of buses (i0, j0) such that i0 is the start bus and j0 is the end bus of the
faulted line l0. Since we have only readings at buses, it is not possible to identify the faulty
line in cases where there is more than one line that has the same start and end buses. In such
cases, we can only identify the pair (i0, j0).

In order to describe our algorithms using mathematical formulas, it is convenient to introduce
simple notation. We denote by A the set of all pairs of buses that are connected by at least
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Figure 3: Responses at all buses to four fault types at line 90: LG, LL, LLG, and TP, from top
to bottom. Responses at buses 88 and 121, which are connected by line 90, are highlighted
in black; bus 88 in solid black, bus 121 in dashed black.

one line, i.e.

A = {(i, j) : i, j ∈ 1, . . . , 122, i 6= j , there is line

l ∈ {1, . . . , 171}, such that start bus of line l is i

and end bus is j}. (1)

Define by B the set of buses that are start buses of some line, i.e. B = {i : there is j ∈
{1, . . . , 122}, (i, j) ∈ A}. For each i ∈ B, define set Bi by Bi = {j : (i, j) ∈ A}. For each
i ∈ B, Bi contains all possible end buses for lines that starts from bus i. The goal of a fault
localization algorithm is to predict (i0, j0) ∈ A, where i0 ∈ B and j0 ∈ Bi0 . The prediction
is denoted as (î0, ĵ0).

We model the data as follows. In each simulation, we have a sample of random functions, or
fine resolution time series, xi(t), where i = 1 . . . , N . In MinniWECC, we have N = 122 (the
number of buses). The value xi(t) is the modulus of the voltage at bus i at time t. Define δ as
the time difference, in seconds, between two consecutive time points. Then t = 0, δ, 2δ, . . . , T
is the time domain. In this paper, δ = 1

120
and T = 60 · 15 = 900 (seconds). Define M as the

time in seconds when the fault occurs. In our simulations, a fault occurs at the beginning of
second 600, thus M = 600s at each simulation run. This value is known to us, but not to any
algorithms. The same applies to the location of the faulted line. The proposed procedure for
fault detection consists of three stages: 1) detect an event of a fault in the grid in real-time;
2) identify the start bus of the faulted line; 3) identify the end bus of the faulted line.

The evaluation of algorithms on the entire data set might lead to procedures that fit the
dataset well, but do not lead to a preferred algorithm that generalizes well. Therefore, in
this paper, the data analysis and algorithm development are done on training data, and
performance is evaluated using test data. The training dataset has been created by randomly,
uniformly sampling 436 simulations (80%) out of 546 available simulations, The remaining
110 simulations are set aside as the test dataset. This is typically called a train-test split
approach to algorithm development and evaluation.
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3.1. Detection of the time a fault event

The goal is to identify the time point M when the fault occurs. In the proposed monitoring
procedure, we consider a moving window, [t − S0 − S1, t], where t is the current moment of
time, S0 ≥ δ is the length, in seconds, of the window ending at t − S1, and S1 ≥ 0 is the
length, in second, of the window ending at t. This is illustrated in Figure 4. The value S1 = 0
corresponds to the case of taking only a single observation (at time t). A moving window
ensures that a detection statistic can be calculated in real-time, as it is based on only a limited
number of observations, and that it adjusts to the most recent state of the system. A slow
evolution of system readings does not indicate a fault of the type we are aiming to detect.

Figure 4: The moving window at t = 3 seconds with S0 = 1s and S1 = 0.24s. The light
grey area represents the window (t− S1, t] that is used to evaluate (4). The darker gray area
represents the window [t− S0 − S1, t− S1) that is used to evaluate (2) and (3).

To evaluate the state of the system up to time t − S1, we use statistics x̄i(t, S0, S1) and
SDi(t, S0, S1) defined for each bus i as follows:

x̄i(t, S0, S1) =
1

S0/δ

S0/δ
∑

k=1

xi(t− S1 − kδ), (2)

SDi(t, S0, S1) =





1

S0/δ − 1

S0/δ
∑

k=1

(xi(t− S1 − kδ)− x̄i(t, S0, S1))
2





1/2

. (3)

These are just the mean and the standard deviation of the magnitude of the voltage at each
bus in the moving window [t− S0 − S1, t− S1) in their native resolution. To assess the most
recent state of the system, we calculate the averages in the window [t− S1, t], i.e.

mi(t, S1) =
1

1 + S1/δ

S1/δ
∑

k=0

xi(t− kδ), (4)

Notice that mi(t, S1 = 0) = xi(t). For each bus i, we define fault detector Di(t, S0) as

Di(t, S0, S1) =
|mi(t, S1)− x̄i(t, S0, S1)|

SDi(t, S0, S1)
. (5)

The detector Di(t, S0, S1) is the absolute difference between the means in S0 second before
t − S1 and S1 seconds before t (including t) normalized by the standard deviation of the
observations in the moving window [t− S0 − S1, t− S1).

To check if a fault occurred at time t, we first compute

imax = argmax
i

Di(t, S0, S1). (6)
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The index imax identifies the bus, which is the most ”perturbed” at time point t. If the
perturbation is large enough, the algorithm should detect the fault. In order to evaluate the
size of the perturbation, we introduce a threshold parameter τ > 0. The algorithm detects a
fault, if

Dimax
(t, S0, S1) = max

i
Di(t, S0, S1) > τ. (7)

If condition (7) fails, we move on to the next time point and perform the calculations again.
The above procedure is summarized in Algorithm 1.

Algorithm 1 Detection of a fault in a grid

Input: Tuning parameters τ , S0, and S1, input data X, time resolution δ, and upper time
limit T ;

Output: tD {The time where the fault is detected}
1: Initialization Fault = 0 and t = S0 + S1 {Requires at least S0 + S1 seconds of data

before the fault}
2: while Fault = 0 & t ≤ T do

3: Set t := t+ δ
4: Find Di(t, S0, S1) for each i (5)
5: Find imax = argmaxiDi(t, S0, S1) (6)
6: if Dimax

(t, S0, S1) > τ then

7: Set tD := t and Fault = 1
8: end if

9: end while

There are several tuning parameters in Algorithm 1: S0, S1 and τ . We want to determine
the tuning parameters that balance two criteria: 1) if there is no fault, false alarms should
be rare, 2) if there is a fault, it should be detected with a large probability and the delay of
detection (time of detection - time of fault) should be small. In traditional online monitoring
problems, larger τ ensures that criterion 1) is met, and smaller τ ensures that criterion 2) is
met. In power grids, the system is perturbed the most just after the fault happens, and the
size of this perturbation is large; an occurrence of a fault is generally easy to spot.

We consider the following quantities:

F1 - Fraction of simulation in which a fault is detected over the first 10 minutes. This quantity
is similar to the size of a test or type I error.

F2 - Fraction of simulations in which a fault is detected over the whole 15 minutes. This
quantity is similar to power under alternative or 1 minus type II error.

D - The first t (in seconds) such that maxiDi(t, S0, S1) > τ less 600s, averaged over all
simulation where a fault is detected. The quantity D is thus the average time of detection
minus the time at each the fault has occurred (600s in our experiments).

In traditional tests, we would like to have F1 ≈ 0.05. Since in a power grid, a false alarm
may be expensive, we may target a different value of F1. Even F1 = 0 might be reasonable.
This is the case for our simulated data. Once we determined S0, S1, τ that give the desired
F1, we compute for them the fraction F2 and select the values that give the largest F2. We
could then further select the tuning parameters such that D is the smallest possible. This
general strategy can be applied to any regional grid, as long as software for simulating faults
at the grid of interest is available. Details of its implementation are explained below, cf. the
discussion around Tables 1 and 2.

The parameter S0 determines how much prior data we need to detect a fault. In Algorithm 1,
this parameter directly affects how accurate the estimates of the mean and standard deviation
are. Thus S0 should not be too small as a standard deviation estimate using just a few points
is not accurate. The parameter S1 is related to the detection delay, so it should be as small
as reasonable. To determine values of S0, S1, and τ , we need to examine the behavior of the
detector maxiDi(t, S0, S1) over the first 600 seconds and during the fault. To explain, we



Austrian Journal of Statistics 151

begin with two pairs of parameters: S0 = 30δ, S1 = 0 and S0 = 480δ, S1 = 11δ. Since the
time step δ is equal to (1/120)s, these values correspond, respectively, to pairs of intervals
of lengths (0.25s, (1/120)s) and (4s, (1/12)s). Values of the detector are larger for smaller
values of S0 and S1, as shown in Figure 5. This means that useful values of τ must depend
on S0 and S1, as illustrated in Figure 5.

Figure 5: Values of the detector maxiDi(t, S0, S1) over the first 600 seconds in one of the
training simulations (no faults). Upper panel: S0 = 30δ, S1 = 0, lower panel: S0 = 480δ, S1 =
11δ.

Table 1: The maximum of the detector maxiDi(t, S0, S1) over a single simulation in the
training sample for t ≤ 600 (before a fault) for various parameters S0 and S1 (S1 = 0
corresponds to a single data point). For fixed S0 and S1, the threshold τ should be larger
than the values in the table.

S1 = 0 S1 = 4δ S1 = 11δ S1 = 19δ
S0 = 15δ 9.84 15.16 18.26 19.79
S0 = 30δ 8.13 10.27 12.75 12.97
S0 = 120δ 5.97 5.77 6.61 7.40
S0 = 240δ 5.58 5.24 5.61 5.31
S0 = 480δ 5.31 4.85 4.78 5.31
S0 = 960δ 5.17 4.86 4.64 4.21
S0 = 1920δ 5.22 4.75 4.59 4.16
S0 = 7200δ 5.37 4.95 4.70 4.19

As every simulation is conducted identically before the fault at second 600, there is no need
to examine the behavior of the detector for all simulations. However, after the fault, each
simulation exhibits a different behavior as the location and type of the fault differ from one
simulation to another. To understand the behavior of the detector in (7) at the time of the
fault, one must therefore examine the whole training data set. A fault is detected if the
detector exceed a threshold τ , so we must determine the minimum values of the detector at
the time of the fault. These are presented in Table 2.

During a fault, the values of maxiDi(t, S0, S1) given in Table 2 are noticeably larger than
the corresponding values given in Table 1. The quantity F2 (power of detection) can be
maximized using a threshold τ that does not exceed the values in Table 2. The specific choice
of S0 and S1 should be the one that maximizes the gap between corresponding values between
S0 and S1 in Tables 1 and 2. One can see that the values should be S0 = 30 and S1 = 0, even
though all other values would be acceptable. Focusing on S0 = 30δ and S1 = 0, we see that
we can take τ = 15, but many other values will work too. Taking S0 = 30δ, S1 = 0, τ = 15
gives F1 = 0 and F2 = 1 and D = 0 on the training data set.
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Table 2: The value of the detector maxiDi(t, S0, S1) at t = 600 (time of fault) over all
simulations in the training dataset.

S1 = 0 S1 = 4δ S1 = 11δ S1 = 19δ
S0 = 15δ 288.97 63.21 27.35 7.98
S0 = 30δ 244.72 36.22 15.18 10.58
S0 = 120δ 190.05 38.16 15.79 9.04
S0 = 240δ 133.16 26.57 11.31 6.75
S0 = 480δ 134.13 26.78 11.49 6.98
S0 = 960δ 157.24 31.64 13.66 8.29
S0 = 1920δ 175.12 35.30 15.25 9.26
S0 = 7200δ 178.11 35.91 15.51 9.44

We summarize the general procedure for selecting the window lengths S1, S0 and the threshold
τ .

1. Consider several potential values of S0 and several values of S1.

2. For each pair (S0, S1) in step 1, compute τmax,0 = maxt∈T0 maxiDi(t, S0, S1), where T0 is
the time interval with no faults.

3. For each pair (S0, S1) in step 1, compute τmin,F = mint∈TF maxiDi(t, S0, S1), where TF is a
short time interval containing the time of the faults. (The simulations must be synchronized
so that all faults occur at the same time; we used TF to be a single point set equal to the
time of the fault.)

4. Select the pair (S0, S1) maximizing τmin,F − τmax,0.

5. Set τ = (τmin,F + τmax,0)/2.

As this is our final methodology for the detection of the time of the fault (derived from the
training dataset), we tested it on the test dataset as well. Using S0 = 30, S1 = 0, τ = 15 leads
to F1 = 0, F2 = 1, and D = 0 on the test dataset. We conclude that there is no room for
improvement in terms of performance.

The investigations reported in this section show that it is relatively easy to detect a fault in a
regional grid if measurements at all buses are available. The parameters of the detector can
be chosen in such a way that the detection is instantaneous, there are no false alarms and
each fault is detected. One might be concerned that false alarms may occur due to the system
evolution, e.g., load shedding or demand re-dispatch. To address this issue with confidence,
one would need to simulate a large number of normal changes in the power system. Intuitively,
the faults that we have in mind are sudden and large, as demonstrated in the figures shown
above. The thresholds in our algorithms are trained for such large faults and they are unlikely
to relatively small (in terms of the whole system), normal load changes.

3.2. Identification the faulted line

Once a fault has been detected, we want to determine the line at which it had occurred. This
means that we must identify the pair (i0, j0) of terminal buses of the faulted line l0. Our
algorithm does it in a sequential manner. We first identify a bus that exhibits the “most
anomalous” behavior is a sense that will be quantified. We call such a bus the start bus of
the faulted line. Then, we identify the end bus from among those that are connected to the
start bus by a single line.

Denote by tD the time of detection, i.e. the first t such that maxiDi(t, S0, S1) > τ . A natural
choice for the prediction of the start bus of the faulted line would be the bus imax defined
in (6) with t replaced by tD. This approach indeed works reasonably well, but it can be
improved. We obtained more accurate identification of the start bus by simply comparing the
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averages, i.e. by setting

î0 = argmax
i∈B

|mi(tD, S1)− x̄i(tD, S0, S1)| (8)

Restricting the index i to the set B simply means that we consider only buses which are start
buses of some line. If we use the values S1 = 0 and S0 = 30δ arising from the investigations
reported in Section 3.1, we are looking at the difference between a single observation at the
time of detection and the average of observations over the prior 0.25s. Using equation (8)
with S0 = 30δ, and S1 = 0, the start bus i0 of the faulted line l0 was identified correctly in
422 out of 436 simulations (422 cases where î0 = i0). This gives a 97% success rate.

Additional analysis shows that the 14 incorrectly identified instances (î0 6= i0) relate to only
three buses: 121, 122, and 89. The potential reason for failure in these cases could be that the
magnitudes of the voltage at buses 121 and 89 correlate perfectly before the fault (correlation
is equal exactly to 1). This could be due to a simulation setup. Our proposed methodology
tends to favor the wrong bus. For example, in cases where bus 89 is the start bus of the
faulted line, relation (8) tends to select Bus 122. More complete results are given in Table 3.

Table 3: Prediction of the start bus of the faulted line over all training simulations for buses
89, 121 and 122

Predicted
Bus 89 Bus 121 Bus 122

A
ct
u
al Bus 89 4 0 10

Bus 121 3 0 0
Bus 122 1 0 0

Once the start bus of the faulted line l0 is predicted as î0, we need to predict the end bus of
the faulted line. We denote this prediction by ĵ0. Notice that once we have î0, the prediction
ĵ0 must be from Bî0

. Otherwise, the l0 prediction would not make sense as î0 and ĵ0 would

not define a line. This greatly narrows the potential options for ĵ0. If there is only one line
originating at î0, then ĵ0 is its end bus. However there are cases, where multiple lines originate
at î0. Thus, if there are indexes ja and jb, such that ja 6= jb and ja, jb ∈ Bî0

, an approach

is needed to choose ĵ0 from Bî0
. To find a prediction of the end bus of the faulted line, we

propose and test two different procedures. The main difference between them is the time
between the fault detection and the time when the prediction of j0 is made. One may expect
that an additional time delay in the identification of the end bus may increase the accuracy
of the predictions, as the algorithm can utilize more information.

Notice that if the start bus prediction î0 is incorrect, the prediction of l0 will be automati-
cally incorrect. Thus for the end bus prediction, we only consider simulations, where i0 was
identified correctly. Using equation (8), we identified the start bus correctly in 422 out of 436
training simulations. Also, in 222 out of 422 simulations with correctly identified î0, Bî0

has

only one element, so the determination of ĵ0 is trivial. The following algorithms are designed
to identify the j0 in the 200 training simulations, where the start bus was predicted correctly
and there is more than one element in Bî0

.

In the first approach, j0 is predicted at time tD. This algorithm predicts the end bus of the
faulted line similarly to equation (8), where the potential end buses must be in Bî0

, i.e.

ĵ0 = argmax
j∈B

î0

|mj(tD, S1)− x̄j(tD, S0, S1)| (9)

This algorithm thus predicts (i0, j0) at time tD, the time of the fault detection. Using equation
(9) with S0 = 30δ and S1 = 0, the end bus was correctly identified in 71 out of 200 simulations.
This gives only 35% accuracy.
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To describe the second approach, we need to introduce additional notation. We define the
recovery process of bus i as

D∗
i (t, tD, S0, S1) = mi(t, S1)− x̄i(tD, S0, S1), t > tD. (10)

Compared to (9), in (10) we use the interval ending at tD to evaluate the state of the system
before the fault, but push the current time forward after the fault. To illustrate, we show in
Figure 6 the process (10) over the period of 0.25s after the fault (with S0 = 30δ, S1 = 0).
We do so for three training simulations. Notice that for each simulation, D∗

i (t, tD, S0, S1)
undergoes a visible change approximately after 0.1s. This remains true for the remaining
training simulations with the magnitude of change varying from simulation to simulation.

Figure 6: The recovery process (10) for three different training simulations (S0 = 30δ, S1 = 0)

To determine the moment when recovery begins, we compute the absolute value of relative
change and test the condition

∣

∣

∣
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∣

∣

∣

∣

∣

> τ1. (11)

Examples illustrating the behavior of the left-hand side of (11) are shown in Figure 7. The
time of the recovery, tR, is defined as the smallest t > tD such that condition (11) is met. Its
computation requires a selection of the value of τ1. This threshold must be chosen sufficiently
small to ensure that condition (11) is met for all simulations in the training dataset over a
reasonably short time interval after a fault has been detected. Evaluating all potential τ1 ∈
(0.01, 1) in increments of 0.01, shows that we need τ1 ≤ 0.17 if we require tR ∈ (tD+δ, ctD+1)
(the δ refers to (1/120)s and the 1 to 1s). The value τ1 = 0.1 is one of several values that
maximize the performance of the algorithm we now describe on the training dataset, and this
is the value we use in the following.

Figure 7: The left-hand side of (11) for three predicted start buses (S0 = 30δ, S1 = 0)

We now describe an algorithm that identifies j0 at time tR. For each bus j ∈ Bî0
, we consider

the recovery process D∗
j (t, tD, S0, S1) defined by (10). Examples illustrating its behavior are

shown in Figure 8. Approximately 0.1s after the fault, the buses in Bî0
exhibit differing

behaviors. The recovery process of the end bus of the faulted line shows somewhat different
behavior compared to other buses in Bî0

. It generally undergoes the most pronounced change
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Figure 8: The absolute value of recovery process (10) for end buses in Bî0
for three different

training simulations (S0 = 30δ, S1 = 0). In each of the three panels, the absolute value of
recovery process corresponding to the correct end bus is highlighted (black). The vertical
dotted line indicates the time tR where τ1 = 0.1 is used.

between 0.09s and 0.1s after the fault. To distinguish the end point of the faulted line from
other end points, we use differences in absolute values of recovery process formula, i.e.

|D∗
j (t, tD, S0, S1)| − |D∗

j (t− δ, tD, S0, S1)|, t > tD, (12)

Examples illustrating the behavior of differences (12) are shown in Figure 9. Notice that the
value of (12) for the end bus of the faulted line 0.1s after the fault is the largest compared to
other buses in Bî0

. Our algorithm thus predicts j0 as

ĵ0 = argmax
j∈B

î0

(|D∗
j (t, tD, S0, S1)| − |D∗

j (t− δ, tD, S0, S1)|). (13)

Figure 9: Differences in absolute value of recovery process (12) for end buses in Bî0
for three

different training simulations (S1 = 0). The line for the correct end bus is highlighted (black).
The vertical dotted line indicates time tR where τ1 = 0.1 is used.

The above algorithm correctly identified the end bus in 179 out of 200 applicable simulations,
89% accuracy. Using (9), we only got 35% accuracy. We see that by delaying the identification
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of the end bus by 1s at most (in training simulations such value did not exceed 0.11s), we
increased the performance by 54% on the training simulations. We thus recommend the
algorithm based on (11). If we include the identification of the bus of the faulted line, we
conclude that our methodology correctly identifies the faulted line in 401 simulations out of
436 training simulations. To summarize, our final methodology is defined by relations (8) and
(13) with S0 = 30δ, S1 = 0 and τ1 = 0.1. The procedure is summarized in Algorithm 2.

On the test dataset, our methodology correctly identifies the faulted line in 92% of simulations
(102 simulations out of 110). The start bus of the faulted line was identified correctly in 95%
validation simulations (104 cases out of 110). In simulations where the start bus i0 was
identified correctly and where was more than one eligible choice for j0, the end bus was
correctly identified in 97% of instances (56 simulations out of 58).

Algorithm 2 (i0, j0) prediction using time points tD and tR
Input: Tuning parameters τ1, S0, and S1, input data X, time resolution δ, network descrip-

tion data Y, the fault moment tD
Output: î0, ĵ0
1: Find î0 using (8)
2: if |Bî0

| = 1 then

3: Set ĵ0 = j0, where j0 ∈ Bî0
4: else

5: Find tR using (11)
6: Find ĵ0 using (13)
7: end if

4. Discussion of other approaches

Faults in power grids have been the subject of intense research. In general, existing fault detec-
tion schemes in power systems can be categorized into the following three approaches: quan-
titative model-based, qualitative model-based, and data-driven approaches Jiang, Chuang,
Wang, Hung, Wang, Lee, and Hsiao (2011). Quantitative model-based approaches and qual-
itative model-based approaches could achieve good detection performance in simulations.
However, when implemented in real-world applications, they are quite sensitive to the noise
in the voltage and current measurements. Moreover, they assume that the system models
are accurately given and their detection performance would be greatly affected by the inac-
curacy in the system models. Recently, data-driven approaches begin to receive considerable
attentions from the researchers due to the following reasons: 1) various intelligent electronic
devices (IEDs) have been widely adopted and installed in the power grid Moghaddass and
Wang (2017); Ghosal and Conti (2019); Chen, Hill, and Wang (2020), which collect large
amount of different data at many nodes across the entire grid; and 2) compared to the
traditional model-based approaches, the data-driven approaches are more resilient against
measurement errors and system model inaccuracy. Meanwhile, they have more flexibility
in their implementations and adapt better to the variations in system components and/or
topology Chen, Jiang, Chen, and Yi (2018); Chen, Yi, Jiang, Zhang, and Chen (2019); Tri-
pathi and De (2018); Yin, Li, Gao, and Kaynak (2014). Following Zhou, Wang, Srivastava,
Wu, and Banerjee (2019), we note that event detection was studied using moving averages,
Chow, Chakrabortty, Arcak, Bhargava, and Salazar (2007), principal components, Xie, Chen,
and Kumar (2014), geographical visualization, Kaci, Kamwa, Dessaint, and Guillon (2014),
wavelets, Kim, Chun, Yoon, Lee, and Shin (2017), dynamic programming, Cui, Wang, Tan,
Florita, and Zhang (2019) and energy similarities, Yadav, Pradhan, and Kamwa (2019). Past
work has considered fault classification, Nguyen, Barella, Wallace, Zhao, and Liang (2015),
cascading events, Rafferty, Liu, Laverty, and McLoone (2016), and cyber events, Pan, Morris,
and Adhikari (2015), Giani, Bitar, Garcia, McQueen, Khargonekar, and Poolla (2013), Liao
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and Chakrabortty (2019). The above list of citations is only meant to illustrate the scope of
the research and is not exhaustive.

Several papers are closely related to our research. Before discussing them, we note that the
chief and novel feature of our work is that we consider a large grid (122 buses) that mimics a
real regional grid and a large number of faults. Existing research focuses on small test grids
and methods are often illustrated on a single fault. Our work thus has important practical and
statistical dimensions. In certain aspects, our approach is less sophisticated than many other
approaches, but simplicity may be of advantage in practical applications. The complex struc-
ture of existing methods makes them difficult to implement on our grid data. Moreover, their
descriptions generally omit the details of the implementation and no publicly available code
is available. The papers discussed below make profound contributions, but the approaches
they propose are difficult to implement using the information they provide. Another novel
aspect of our approach is that it can identify the faulted line with high probability, not just
an affected bus (which may have many connecting lines) or its neighborhood.

We now discuss selected papers to justify the points made above. Using the magnitude of the
voltage, Gholami, Srivastava, and Panday (2019) develop advanced fault detection methods
based on multiple detectors and likelihood computed from an ensemble model. The approach
of Hannon, Deka, Jin, Vuffray, and Lokhov (2019) requires more data than our approach
- current, frequency, voltages, and the application is concerned with one bus. The focus
of Ardakanian, Yuan, Dobbe, von Meier, Low, and Tomlin (2017) is the estimation of the
admittance matrix. A change in this matrix and its localization provide information on the
timing and the localization of a fault. The algorithm is evaluated on a 13 bus grid and one
fault. In Pandey, Srivastava, and Amidan (2020) the authors provide a method to find the
bus (PMU) and the subgraph where the fault occurred. This is similar to finding the start
bus of the faulted line in our approach. Similarly, Li, Deka, Chertkov, and Wang (2019)
develop methodology to detect the bus that is close (in a small neighborhood) to the faulted
line.

To provide some idea on the advance our method makes relative to existing statistical ap-
proaches to change point detection, we implemented the standard moving window CUSUM
approach which is described in many textbooks, see e.g. Brodsky and Darkhovsky (1993).
We consider a moving window, (t − Kδ, t]. The lag K is similar to (S0 + S1)/δ and cor-
responds to the number of points in a window. The algorithm is the same for each t, so
it is easier to think about the beginning and the end of the window. We compute the av-
erages before and after the potential change point (fault): µ̂i(k) = 1

k

∑k
l=1

xi(t − K + lδ);

µ̃i(k) =
1

K−k

∑K
l=k+1

xi(t − K + lδ), where k ∈ {1, . . . ,K − 1}. Next, we compute the nor-
malized difference of these averages,

Pi(t, k) =
k(K − k)

K
[µ̂i(k)− µ̃i(k)]

and the detector for a single bus

Di(t,K) =
1

K − 1

K−1
∑

k=1

Pi(t, k)
2.

The detector for the whole grid is

D(t,K) =
1

N

N
∑

i=1

Di(t,K). (14)

We signal a fault if D(t,K) > τ . The value of τ would be determined by a procedure we
employed in Section 3, but we can illustrate more convincingly that our method works much
better by the examination of Figure 10 which shows that the detector (14) reacts to a fault
much slower than our detector.
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Figure 10: Comparison of the proposed method and the traditional moving window CUSUM
approach. Curves in black show our detector calculated using (7) with S0 = 30δ and S1 = 0.
Curves in gray are calculated using (14) with K = 30. The vertical dashed line represents the
time of the fault. Both detectors have two spikes. For our proposed detector the first spike
occurs almost simultaneously with the fault and is so high that it crosses the upper boundary
of the display. The second, not relevant, spike of our detector coincides with the first spike of
the traditional detector.

Intuitively, the detector based on equation (7) works better because instead of calculating
statistics for each point of a moving window, we only calculate them at the windows [t −
S0 − S1, t − S1) and [t − S1; t]. This also make our method much faster. We introduce the
normalization with the SD, as this helps to standardize the signals from each bus and tune up
the τ properly. This is useful because the SDs at different buses are not necessarily the same.
The identification of an appropriate threshold τ is more difficult in case of detector (14), but
we do not discuss the details because our proposed detector works much better with a clear
cut threshold.

5. Summary

We have proposed a two-stage procedure for fault monitoring in a regional power grid. In
the first stage, a fault is detected. In the second stage, the faulted line is identified. Our
methods are fully data-driven and require only knowing the start and end buses of each line.
Our procedure assumes that a fault occurred on a line, which corresponds to most practical
scenarios. If a fault occurs on a bus, the identification of the faulted bus can follow the
algorithm for finding the start bus i0 of the faulted line. While some faults are easier to detect
than others, our method does not require prior knowledge of the fault type. The approach
uses only the voltage modulus measured at buses as the input. The general framework can be
extended to different inputs, e.g. current or power. The chief contribution of this work is to
develop a general statistical approach to anomaly detection and localization suited to regional
power grids. These grids can be viewed as networks or graphs, but methods developed for
such data structures in different context are not applicable due to a very special form of power
transmission networks and anomalies that can occur in them. Our approach can be adapted
and fine-tuned to work with somewhat different regional grids, but the general paradigm could
be followed.

We emphasize that the approach we presented assumes that PMUs are placed at all buses. As
pointed out by a reviewer, so far, power grids in the real world are only partially covered by
PMUs. While a complete coverage may be expected in the future, it is important to extend
the method to grids with incomplete PMU coverage. Partial insights in this direction are
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reported in Rimkus, Kokoszka, Prabakar, and Wang (2022) who focus on fault detection (no
localization) in a smaller distribution grid.

It may be of interest to compare our method to other approaches that may be developed in the
future. To facilitate such comparisons, we placed our commented code at https://github.com/MantautasRimku
The code is written in R R Core Team (2022). We are not aware of an existing method that
can be readily applied to detect and localize a fault in a regional power grid to which our
method can be compared. Several sound and promising approaches exist that could poten-
tially be generalized to a regional grid, but they are not implemented in publicly available
software.
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