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ABSTRACT

We recently proposed inline tests for validating individual program
statements; they allow developers to provide test inputs, expected
outputs, and test oracles immediately after a target statement. But,
existing code can have many target statements. So, automatic gen-
eration of inline tests is an important next step towards increasing
their adoption. We propose ExL1, the first technique for automat-
ically generating inline tests. EXLI extracts inline tests from unit
tests; it first records all variable values at a target statement while
executing unit tests. Then, EXLI uses those values as test inputs
and test oracles in an initial set of generated inline tests. Target
statements that are executed many times could have redundant
initial inline tests. So, EXLI uses a novel coverage-and-mutation
based reduction process to remove redundant inline tests. We im-
plement EXL1 for Java and use it to generate inline tests for 718
target statements in 31 open-source programs. ExL1 reduces 17,273
initially generated inline tests to 905 inline tests. The final set of
generated inline tests kills up to 25.1% more mutants than developer
written and automatically generated unit tests. That is, EXL1 gener-
ates inline tests that can improve the fault-detection capability of
the test suites from which they are extracted.
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1 INTRODUCTION

Inline tests [46] enable developers to test individual program state-
ments, thereby increasing the fault-detection capability of test
suites. Inline tests are complementary to existing levels of test
granularity—unit tests, integration tests, and end-to-end tests. Inline
tests can help find single-statement bugs, which often occur [38, 39]
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but elude unit tests [42]. Inline tests can also provide other software
engineering benefits, e.g., they document complex target statements
and they could be easier to co-evolve with code than unit tests.

We developed two tools to provide framework-level support for
inline testing. These tools make it easier for developers to write in-
line tests and they increase the chances for the relatively new inline
testing paradigm to be adopted. One tool, pytest-inline, supports
inline testing in Python [33, 47]; it is integrated with pytest, the
most popular testing framework for Python [34]. We presented the
other tool for Java, I-TEST, in our original inline testing paper [46].

Automatic generation of inline tests is an important next step
towards increasing their adoption for two reasons. First, automatic
generation can reduce manual developer effort for retrofitting in-
line tests into existing code bases that have many target statements.
Second, automatic generation can enable future inline testing re-
search by providing more inline tests for evaluation than exist today.
For example, we previously simulated runtime costs by repeatedly
executing 152 manually written inline tests thousands of times [46].

We propose ExL1, the first technique for automatically generating
inline tests. EXLI extracts inline tests from unit tests. Unit tests
are an attractive source of inline tests since they are abundant
in practice and they can be automatically generated [16, 62]. In
turn, the extracted inline tests can help find single-statement bugs
that unit tests miss [42]. Extracted inline tests can also help find
bugs that occur in executed statements that are deeply-nested in
conditional expressions, which can be missed by automatically
generated unit tests [1].

Given the code under test (CUT), a target statement, and unit
tests that cover the target statement, EXL1 generates a set of inline
tests for the target statement. ExLI can automatically discover the
four kinds of target statements that we identified in prior work
as being able to benefit from inline testing [46], and extract inline
tests from the unit tests that cover them. ExL1 is agnostic to the
source of unit tests; they can be manually written by developers
or automatically generated by tools like Randoop [62, 68] or Evo-
Suite [16]. EXL1 outputs a new version of the CUT in which the
target statement is immediately followed by the generated inline
tests. Since ExLI is a first step towards inline test generation, we
assume that unit tests correctly exercise the CUT, i.e., the inline
tests generated by EXLI on one code version can detect regression
bugs in future versions.

ExLi first instruments the CUT to record all observed variable val-
ues in the target statement during unit testing. Then, the recorded
values are used in automatically generate inline tests. For example,
consider assignment statements. The recorded values of right-hand
side variables are used as input values, and the recorded values
of the left-hand side variable are used as expected values in the
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generated inline test. EXLI can also generate inline tests for decla-
rations and expressions in if conditions. We plan to support more
locations of target statements in the future.

Inline tests are co-located with target statements, so an important
concern is that readability could be degraded if too many inline
tests are generated per target statement. Compilation could also
fail if adding the generated inline tests causes a method’s body to
exceed the maximum allowable size [61]. Too many inline tests can
be generated for target statements in which many sets of values are
observed during unit testing. Such many-valued target statements
could be covered by many unit tests, or they may be in loops. In a
particularly egregious case, 14,928 sets of values were recorded for
a target statement during our experiments.

To address the concern of generating too many initial inline tests
per target statement, ExLI introduces a coverage-and-mutation based
test reduction process. We consider an inline test to be redundant if
it has the same fault-detection capability as other inline tests with
respect to code covered and mutants killed. Code coverage [7, 21]
and mutation score [36, 69] are established metrics for measuring
the quality and fault-detection capability of unit tests. We adapt
these two metrics to guide inline test reduction.

ExL1 uses target coverage—code covered by the inline test—and
context coverage—code covered in the context from which the inline
test is extracted. EXL1 also builds on existing mutation analysis
tools [25, 37] but it only mutates target statements.

The coverage-and-mutation based test reduction process in ExL1
works as follows. EXLI tracks the code covered in the target state-
ment and its context during unit testing, and only records sets of
values that cover code that was not covered by previously extracted
inline tests. EXLI also mutates the target statement and ensures
that each generated inline test kills at least one unique mutant. If
no mutant is generated for a target statement, ExLI’s reduction is
based on coverage. But, if coverage and mutation score are com-
puted, reduction is based on mutation score as prior work suggests
that mutation score is a more accurate metric of the fault-detection
capability than coverage [73].

We implement EXL1 for Java and apply it to 718 target statements
in 31 open-source programs. EXLI generates an initial set of 17,273
inline tests. EXL1-UM, which uses universalmutator [25] for muta-
tion analysis, generates a final set of 905 inline tests (reduction rate:
94.8%). ExL1-Major, which uses Major [37] for mutation analysis,
generates a final set of 930 inline tests (reduction rate: 94.6%).

We also evaluate whether generated inline tests enhance the
fault-detection capability of test suites from which they are ex-
tracted. We do so by performing mutation analysis only on the
target statements. ExL1-UM kills 25.1% more mutants, and ExLi-
Major Kkills 24.6% more mutants than those killed by developer
written and automatically generated unit tests. Our manual inspec-
tion shows why generated inline tests can kill more mutants: the
unit tests reach the target statements and infect program state, but
those unit tests lack “local” oracles at the target statement. That is,
errors induced by mutants do not propagate to the assertions in the
unit tests, or those assertions do not check relevant parts of state.

This paper makes the following contributions:

* Technique. EXL1 is the first technique for automatically generat-
ing inline tests; it extracts inline tests from unit tests.
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1 public static final String MULTI_VALUE_DELIMITTER = ",";

2 public static final char EQ = '=';

3 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
4 if (null != spec) {

5 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

6 for (String field : properties) {

7 final int index = field.indexOf(EQ); //target statement

8 new Here().given(field, "profile.requestStart.ms")

9 .checkEq(index, -1);

10 new Here().given(field, " mdcName='long']").checkEq(index, 8);

11 if (-1 == index) { continue; }
12 ... //add field to gelfMsg
13 33}

Figure 1: Target statement with ExLi-generated inline tests.

* Reduction approach. ExLr uses a novel inline test reduction
approach that is based on both code coverage and mutation score.

* Evaluation. EXL1’s reduction strategy is effective, yielding inline
tests that improve fault-detection capability of unit test suites.

* Dataset. EXL1 generates the largest dataset of inline tests to date.
ExL1 and our dataset enable future work on inline tests.

ExLr and our dataset is open-sourced at
https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example code with a target statement and inline
tests that ExL1 generates for that target statement after reduction.
The example is simplified from mp911de/logstash-gelf [49]. Method
setAdditionalFields splits spec using “” as the delimiter, stores
the results in the properties variable, and adds each field in
fields that contains “=” to gelfMsg. Line 7 is the target state-
ment; it finds the index of first occurrence of EQ (“=”) in field. All
variables in this example have primitive types, but EXL1 supports
non-primitive types as well (see example in Figure 5 in Section 4).

Suppose that a developer gives this target statement as input to
ExLi, e.g., because it is in a loop and it is reached by lots of other
methods. Line 8 is an inline test that ExL1 generates. All inline
tests consist of three parts. First, the “Declare” part—newHere()—
signifies that the current statement is an inline test. Second, the “As-
sign” part—given(field, "profile.requestStart.ms")—allows
developers to provide inputs to the inline test. Third, the “Assert”
part—checkEq(index, —1)—allows developers to specify a test ora-
cle that includes the expected output. In Figure 1, given the input
for field, the index variable that is being computed in the target
statement should equal —1 for the inline test on line 8 to pass.

The example target statement is executed 2,413 times with 215
unique set of variable values during unit testing. But, directly gen-
erating 215 inline tests to check one statement could be an overkill
for two reasons. First, many of the 215 sets of values are redundant
because they exercise the target statement in the same way. So,
running them all is wasteful. Second, adding 215 inline tests for
this target statement will likely make the code harder to read and
maintain. So, EXL1 must reduce the number of generated inline tests
by eliminating redundancy. EXL1’s coverage-and-mutation based
reduction process reduces those 215 inline tests into the two shown
in Figure 1, without no loss in fault-detection capability.
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Figure 2: The steps in ExLr’s workflow.

3 TECHNIQUE

Figure 2 shows ExL1’s procedure for generating inline tests. The
inputs are the CUT (required), the unit tests (required), and line
numbers of the target statements (optional, not shown). EXLr’s
output is the generated inline tests after the coverage-and-mutation
based reduction, at the rightmost of the workflow, which we refer to
as ExL1-UM/ExL1-Major inline tests (using universalmutator/Major
to perform mutation analysis, respectively). EXLI also produce two
intermediate outputs for evaluation and debugging purposes: EXL1-
Base inline tests without any reduction; and EXL1-Cov inline tests
with reduction only based on code coverage but not mutation score.

3.1 Finding and Analyzing Target Statements

The first two steps of ExLr’s workflow are for finding and analyz-
ing the target statements. In step @ TargetStmtFinder parses
the abstract syntax tree (AST) of the CUT and extracts the target
statements. If developers provided the optional input of line num-
bers of the target statements, ExL1 will skip this step and directly
use the developer-specified target statements. Then, in step (2),
VariablesFinder identifies the variables used in each target state-
ment, which will be the input or output variables in the generated
inline tests. For example, VariablesFinder should identify three
variables for the target statement in Figure 1: two input variables
fields and EQ, and one output variable index.

3.2 Generating Inline Tests

We then describe the steps of generating ExLi-Base inline tests with-
out reduction, i.e., steps @ @ @ and @ First, Instrumenter
(step @) adds code before each target statement to collect the val-
ues of input variables and after each target statement to collect
the output variable value. Figure 3 shows how we instrument the
example code in Figure 1: collectInputs (line 7) is added before
the target statement to collect the values of fields and EQ, and
collectOutputs (line 9) is added after the target statement to col-
lect the value of index. Other code added by Instrumenter is for
the reduction process and will be described in Section 3.3.

Then, the Executor (step @) runs unit tests on the instrumented
code, and the Collector stores in memory the unique sets of vari-
able values of the target statements (step @)

Using the collected sets of values, InlineTestConstructor (step
@) synthesizes inline tests. To do so, the value collected for each in-
put variable is used in given(...) calls, which can be chained. That
is, the inline test being constructed will assign each input value to
the corresponding variable when testing the target statement. Then,
the matching value of the output variable is used in a check_eq(. . .)
construct. That is, the inline test being constructed will check that
the observed value that is computed by the target statement from
the assigned input values is equal to the output variable value that

1 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
2 if (null != spec) {

3 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

4 for (String field : properties) {

5 try {

6 collectCov(); //covl

7 collectInputs(field, EQ);

8 final int index = field.indexOf(EQ); //target statement

9 collectOutputs(index);

10 collectCov(); //cov2

11 if (-1 == index) { continue; }
12 ... //add field to gelfMsg

13 } finally { collectCov(); } //cov3
14 31}

Figure 3: Example showing ExLr’s instrumentation.

was recorded during unit testing. InlineTestConstructor edits
the CUT to insert the constructed inline tests immediately after
the target statement. Moreover, EXL1 uses [-TEST (an inline testing
framework for Java) to execute each generated inline test. If any of
the executed inline tests fail, EXL1 filters it out: the failing inline
test is removed from the CUT. Such failing inline tests are due to
the target statement relying on some global program state (e.g.,
a static variable being used in a method invoked from the target
statement) that is not captured by collected variable values; future
work can explore considering such global program state.

3.3 Coverage-and-Mutation Based Reduction

ExLi-Base generates an inline test for each unique set of values
collected during executing unit tests. However, too many sets of
values could be collected for some target statements (even if we only
keep unique sets of values, which is 12.5% of all sets of values in
our experiments). Using too many sets of values may result in gen-
erating too many inline tests, which (1) could degrade readability,
since inline tests are co-located with code; or (2) cause compila-
tion failure, if adding generated inline tests causes a method to
exceed the maximum allowable size [61]. But, we observe in our
experiments that many sets of collected values are redundant with
respect to one another: they have similar fault-detection capability
and exercise the target statement in the same way. (Recall that, from
a unit testing point of view, the sets of values that ExLI collects are
intermediate values.)

To avoid generating redundant inline tests, ExL1 performs a
novel coverage-and-mutation based test reduction process: reducing
the inline tests (or sets of values, if reducing before constructing
inline tests) that have redundant fault-detection capability, using
both code coverage [7, 21] and mutation score [36, 69] as metrics
for fault-detection capability.

3.3.1 Reduction by Code Coverage. ExL1 collects code coverage
with the help of JaCoCo [56], a widely-used code coverage tool for
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Algorithm 1 CovReducer

Global var: tgtStmtToCovered: mapping from target statement to the set
of lines covered by the target statement’s collected values
Inputs: cov1, cov2, cov3: code coverage information for the current set
of values; 10: target statement’s lineno
Outputs: true if the set of values should be kept, false otherwise
: procedure sHOULDKEEPVALUES(cov1, cov2, cov3, 10)
tgtCovChanged « covCHANGED(cov1, cov2,10)
ctxCovChanged « covCHANGED(cov2, cov3, 10)
return tgtCovChanged Vv ctxCovChanged

change « false
for 1 € cov’.keys() do
if 1 ¢ covV cov[l] < cov’'[1] then
if 1 ¢ tgtStmtToCovered[10] then
> line 1 not covered by 10’s collected values

1

2

3

4

5: procedure covCHANGED(cov, cov’, 10)
6

7

8 > line 1 coverage changed
9

10: change « true
11: tgtStmtToCovered[10] « tgtStmtToCovered[10] U {1}

2: return change

—_

Java. To fit the inline testing scenario, EXLI considers two kinds of
code coverage: target coverage, the coverage during executing the
target statement; and context coverage, the coverage after executing
the target statement but during executing the context of the target
statement. The context of a target statement is defined the code
between it and the end of its containing basic block. For example,
for the target statement in Figure 1 (line 7), its containing basic
block is the for loop from lines 6 to 13, and its context is the code
from lines 11 to 13. Using context coverage in additional to the
target coverage makes the reduction more accurate, as the target
coverage alone may not provide enough information to distinguish
non-redundant inline tests. For example, the inline tests at line 8 and
line 10 in Figure 1, which have different fault-detection capability,
have the same target coverage, but they have different context
coverage because only the first inline test covers the then branch
of the if statement in the context at line 11.

To collect target coverage and context coverage, Instrumenter
(step @) also adds code to collect code coverage at three time
points, see the collectCov calls in Figure 3: (1) the instruction-
level coverage just before the target statement (line 6, cov1), (2) the
instruction-level coverage right after the target statement (line 10,
cov2) and (3) the instruction-level coverage at the end of target state-
ment’s containing basic block (line 13, cov3). Then, CovReducer
(step @) processes each collected set of values and instruction-level
coverage information, and only keeps the set of values (and sends
to InlineTestConstructor) if it increases either target coverage
or context coverage of the corresponding target statement.

The sHOULDKEEPVALUES procedure in Algorithm 1 describes
when CovReducer keeps the collected set of values, given the
code coverage information cov1, cov2, cov3, and for the given
target statement 10. CovReducer uses a global variable, tgtStmt-
ToCovered, to save the lines of code covered by the collected sets
of values (which is initialized to empty) of each target statement.
SHOULDKEEPVALUES checks if the target coverage changed (line 2)
and if the context coverage changed (line 3), both using covCHANGED,
and returns true if either of the two changed. covCHANGED com-
pares the code coverage at two time points, and checks if the later
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one has covered any line not covered by the former one (line 8)
and that line has not been covered by any collected values (line 9);
if so, it updates the tgtStmtToCovered variable and will return
true. Note that the code coverage reported by JaCoCo is a mapping
from line number to the count of instructions on that line being
covered, thus line 8 considers a line’s coverage changed if its count
of instructions changed (usually from zero to non-zero; but maybe
from non-zero to a larger value for lines with ternary operators or
boolean expressions).

3.3.2  Reduction by Mutation Score. Mutation score is an estab-
lished metric of the fault-detection capability of unit tests [36, 69],
which is computed as the number of mutants killed by the unit
tests (i.e., that cause the tests to fail) divided by the total number
of mutants, where mutants are small modifications to the CUT.
ExLI currently supports two popular mutation generators for Java:
universalmutator [25] and Major [37]. EXL1 uses all mutation oper-
ators provided in the two generators, but only mutate the target
statements. To do so, we specify line numbers to mutate (for uni-
versalmutator) or filter out mutants that are not for the target
statements (for Major).

MutReducer (step ) performs the reduction by mutation score,
given the ExLi-Base inline tests without reduction and ExL1-Cov
inline tests after reduction by code coverage. Note that the mutant
generator may fail to generate mutants for some target statements
(9.6% for universalmutator, 8.9% for Major), in which case mutation
score cannot be computed, and MutReducer will directly output
the ExL1-Cov inline tests for those target statements. For all other
target statements, MutReducer further reduces the inline tests by
mutation score, on top of the inline tests reduced by code coverage,
as prior work suggests that mutation score is a more accurate metric
of the fault-detection capability than coverage [73].

Specifically, MutReducer first executes the ExLi-Base and ExLi-
Cov inline tests on the mutants and collects the mapping from
each inline test to the mutants killed by it. Then, MutReducer uses
an existing test-suite minimization algorithm [72] (used in prior
work [73, 75, 77]), given the mapping of ExL1-Cov inline tests to
killed mutants, to reduce ExL1-Cov inline tests that kill the same
mutants; each inline test in the reduced set should kill at least
one unique mutant. Finally, if ExLi-Base inline tests kill any mu-
tant that is not killed by the reduced ExL1-Cov inline tests, which
means reduction by coverage results in a loss in mutation score,
MutReducer adds the ExLi-Base inline tests that killed that mutant
to the reduced inline tests to remedy this loss.

We refer to the final set of inline tests after MutReducer as EXL1-
UM or ExL1-Major, when using universalmutator or Major as the
mutant generator, respectively. This set of inline tests preserve fault-
detection capability, as measured by mutation score, compared to
ExLi-Base inline tests before reduction.

Remark 1. Conceptually, ExL1 could directly use test-suite mini-
mization with respect to mutants on the target statement to reduce
the collected sets of values. Instead, we make the design choice to
also use reduction by code coverage for three reasons. First, using
mutants for minimization requires to first generate inline tests for
all the collected sets of values. It is not always possible to do so
due to limits on method sizes [61]. Second, using reduction by code
coverage has the benefit that we can use mutation testing as a sanity
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Table 1: API used to filter statements.

Type | API
Regex ‘ Matcher.matches(), Matcher.find(), Matcher.group()
. String.split(), String.substring(), String.indexOf(),
String . .
String.format(), String.replace()
Bit ‘ » & |, &=, =, "=, v, «=
Stream ‘ Stream.of(), *.stream()

check of the fault-detection capability of the reduced set of inline
tests. There would be no automated sanity check if mutation testing
is used initially. Lastly, ExL1 will need to preserve all inline tests for
target statements in which no mutant is created. So, if EXL1 only
uses reduction by mutation score and a frequently covered target
statement has no mutants, then readability may degrade because
too many inline tests are generated.

Remark 2. Implicitly, generating inline tests from unit tests induces
a trade-off space among the competing goals of good readability,
high coverage, and high fault-detection capability. Since inline tests
are co-located with the CUT, fewer inline tests will likely lead to
better readability, but at the cost of possibly lower coverage or lower
fault-detection capability. We design EXLI to have high readability
and high fault-detection capability at the cost of possible loss in the
code coverage of the target statement or its context. Specifically,
reduction by mutation score is not guaranteed to preserve the
code coverage achieved by ExL1-Cov inline tests. We optimize for
code maintenance settings where high readability with high fault-
detection capability is likely preferable to poor readability. EXL1
can be configured to optimize differently along the trade-off space.
Also, now that EXLI can generate many more inline tests than
previously possible, future work can more easily perform user
studies of developers’ trade-off preferences.

4 IMPLEMENTATION

We describe our ExL1 implementation, using the same step numbers
as in Section 3 to make our description easier to follow.

@ Find target statements. EXLI currently supports finding the
same four kinds of Java target statements as in our prior work [46]:
regular expressions, string manipulation, bit manipulation, and
stream processing. Given a kind of target statement, TargetStmt-
Finder searches for target statements that use APIs that are com-
monly used in the kinds of statements of interest. Table 1 lists the
APIs that ExL1 looks for. Unlike our earlier I-TEST prototype that
searches program text, ExL1 improves accuracy by parsing the AST
(using JavaParser [35]) to find target statements.

@ Identify variables. VariablesFinder parses the AST of a
given target statement (using JavaParser [35]) to identify its free
variables, i.e., not including the variables whose scope is fully con-
tained by the target statement. For example, in the following target
statement, str and 1ist are free variables, but item is not:

String str = list.stream().map(item -> item.replace("a",

"b")).collect(Collectors.joining(","));

An array indexing expression, e.g., arr[i], is also treated as a
single variable, because inline tests may only need to assign to or
check certain elements of the array.

1
2
3
4
5
6
7
8
9
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public String[] match(String value) {

for (int i = @; i < patterns.length; i++) {
try {
Matcher matcher = patterns[i].matcher(value);
collectCov(); //covl
collectInputs(matcher);
if (matcher.matches()) { //target statement
collectOutputCond(true);
collectCov(); //cov2
int count = matcher.groupCount();
String[] groups = new String[count];
for (int j = 0; j < count; j++)
groups[j] = matcher.group(j + 1);
return groups;
} else { collectOutputCond(false); }
} finally { collectCov(); } //cov3
}

return null; }

Figure 4: Example of a condition with instrumentation.

@ Instrument CUT. Instrumenter is implemented using the
ASM library [6]. EXL1 currently supports instrumenting target state-
ments at three syntactic locations:

(1) Condition of an if statement. Figure 4 shows an example from
json-schema-validator [57]. Line 8 is the target statement;
it checks if value matches a pattern. Instrumenter adds code
before the if statement (line 7) to collect input variables, at the
beginning of the then branch (line 9) to collect true as the value
of the output variable—the result of evaluating the condition
expression, and at the beginning of the else branch (line 16) to
collect false as the value of the output variable.

Declaration statement. Instrumenter adds code before the tar-
get statement to collect values of right-hand side variables and
after the target statement to collect the values of the left-hand
side variables.

@

(3) Assignment statement. Instrumenter adds code to collect left-
and right-hand side variable values before the target statement
and to collect left-hand side variable values after the target
statement. Instrumentation of left-hand side values before the
target statement is done to avoid overwriting the left-side input
value in statements like a += 1.

Moreover, Instrumenter handles the following special cases:
o If there is an increment/decrement expression in an array index,
Instrumenter rewrites the array indexing expression such that
the correct element is collected. For example, when adds code
to collect the output variable after the target statement a[i++]
= i»1, Instrumenter uses a[i-1] instead of a[i++].

e Some target statements are in if blocks that have jump (return,
break, continue, throw, etc.) instructions in the then and
else branches. To avoid compilation errors that would occur if
Instrumenter adds code to the end of blocks in those branches
(unreachable code), Instrumenter always wraps the parent
node of the target statement in the AST in a try block. If the
target statement’s parent node is a constructor body whose first
statement is a constructor call (e.g., super() or this()), ExL1
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public CompiledTemplate compile(IdentifiableStringTemplateSource
templateSource) throws TemplateException {
String id = templateSource.getId().replace('/', ';'); //target statement
new Here().given(templateSource, "25.xml")
.checkEq(id, ";root;body@;folder;descriptor.txt");
String source = templateSource.getSource();
StringTemplateSource currentTemplateSource =
(StringTemplateSource) templatelLoader.findTemplateSource(id);
-3
(a) An inline test with an object saved in an XML file.
<org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>
<id>/root/body@/folder/descriptor.txt</id>

<source>${body}</source>
</org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

(b) The content in the XML file.

Figure 5: An inline test that saves an object in an XML file.

excludes such constructor calls from the try block to avoid

compilation error (super/this has to be the first statement).
@ Execute unit tests and @ collect values. Executor runs unit
tests on the instrumented CUT and the Collector stores the values
of input and output variables that are observed during execution.
ExL1 is agnostic to the source of unit tests; they can be manually
written or automatically generated. We currently use Randoop
and EvoSuite for automatic unit test generation; future work can
investigate other test generators.

When the variable to collect is of a primitive type, a wrapper type
for a primitive type, a String, or an array of these types, Collector
directly stores the collected values (which will be generated in
code when constructing the inline test). Otherwise, Collector
uses XStream [50] to serialize the values, which will be deserialized
in future executions of the generated inline test. This support for
non-primitive types was not available in our earlier Inline Test
prototype and is added in this work. Figure 5 shows an example
inline test using XStream to support non-primitive types, from
craftercms/core [80]. Line 3 is the target statement; it replaces “/”
in templateSource’s id with “;”. Line 4 is an inline test that EXL1
generates. The variable being assigned, templateSource, is of a
non-primitive type IdentifiableStringTemplateSource, whose
value is serialized into “25.xm1” (Figure 5b).

@ Reduce by code coverage. CovReducer reduces redundancy
among collected sets of variable values that cover a target state-
ment in the same way. We set JaCoCo [56], the code coverage
tool used by ExL1, to instrument and collect all classes in the cur-
rent project and dependency libraries, including the Java standard
library. However, some classes in the Java standard library (e.g.,
java.lang.String) are loaded when JaCoCo is initializing and thus
are not instrumented. To avoid missing coverage information in
such classes, especially for string-related and regex-related target
statements, our implementation uses wrapper classes that we write
for java.lang.String and java.util.Matcher so that the method
calls of these classes can be instrumented. It is necessary to wrap
java.util.Matcher because some java.lang.String methods that
are used by our evaluation subjects depend on it.

@ Construct inline tests. InlineTestConstructor constructs
the inline tests at the AST level with the help of JavaParser [35].
Reduce by mutation score. MutReducer performs mutation
analysis, using universalmutator [25] and Major [37], and test-suite
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Table 2: Projects used in our evaluation.

PID project SHA | LOC
P1 AquaticInformatics/aquarius-sdk-java 8f4edb9 21,634
P2 Asana/java-asana 52fef9b 5,572
P3 awslabs/amazon-sgs-java-extended-client-lib ~ 58fed25 1,288
P4 Bernardo-MG/maven-site-fixer 60244c0 1,689
P5 Bernardo-MG/velocity-config-tool 262265 358
P6 craftercms/core 4d394a9 10,233
P7 CycloneDX/cyclonedx-core-java d933705 6,011
P8 finos/messageml-utils b4c75c6 21,765
P9 fleipold/jproc b872abf 1,189
P10 hyperledger/fabric-sdk-java da35400 33,677
P11 jenkinsci/email-ext-plugin 699277c¢ 13,190
P12 jkuhnert/ognl 5c30ele 18,190
P13 jscep/jscep b20e944 6,310
P14  lamarios/sherdog-parser aa6806a 1,546
P15  liquibase/liquibase-oracle 6ab7dea 7,170
P16 maxmind/geoip-api-java 1030316 11,526
P17  medcl/elasticsearch-analysis-pinyin 01dda56 2,169
P18  mojohaus/build-helper-maven-plugin f1fac8c 2,424
P19 mojohaus/properties-maven-plugin 6cf7c2b 891
P20 mp911de/logstash-gelf 66debd8 13,130
P21  mpatric/mp3agic 407f7a9 9,907
P22 netceteragroup/trema-core fa9f76d 3,285
P23 phax/ph-pdf-layout f2d7b98 14,408
P24  ralscha/extclassgenerator 40ad147 6,271
P25  red6/pdfcompare 1259ef2 4,213
P26 restfb/restfb 35a34dd 42,022
P27  steveash/jopenfst 14c4ald 5,180
P28  TNG/property-loader 928f414 1,860
P29  uwolfer/gerrit-rest-java-client adbf7cc 14,594
P30 visenze/visearch-sdk-java Qefcda3 7,643
P31 wmixvideo/nfe 1ccdba7 133,698
Total 423,043
Avg 13,646.5

minimization, using an existing implementation [72], to further
reduce the generated inline tests. The test-suite minimization imple-
mentation supports four algorithms: greedy [86], GE, and GRE [9],
as well as HGS [31]. In our experiments, the four algorithms always
result in the same number of inline tests in the reduced set (but
different inline tests are selected), thus we use the greedy algorithm
as the default algorithm.

5 EVALUATION

We answer the following research questions:

RQ1: How many inline tests does ExLI generate before reduction?
RQ2: How many inline tests does ExLI generate after reduction?
RQ3: How effective are the generated inline tests in terms of fault-
detection capability, compared with unit tests?

RQ4: What are the runtime costs of ExL1?

Experimental environment. We run all experiments on a ma-
chine with Intel Core i7-11700K @ 3.60GHz (8 cores, 16 threads)
CPU, 64 GB RAM, Ubuntu 20.04, Java 8, and Maven 3.8.6.

5.1 Curating an Evaluation Dataset

We start with a large set of projects from our recent work on learn-
ing to complete unit tests [58]. That prior work used different exper-
imental requirements than ours to filter projects. So, we start from
our original unfiltered set containing 1,535 Java projects that use
Maven, have no compilation error, and have appropriate licenses.
To simplify our experiments, we select the subset of 1,209 single-
module projects. From these, we select the 128 actively-maintained
projects that have commits after January 1, 2022, to facilitate future
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Table 3: Statistics about unit tests used in this paper.

PID Dev Randoop EvoSuite
| #tests  T[s] L[%] B[%] | #tests T[s] L[%] B[%] | #tests T[s] L[%] B[%]
P1 165 23 1 50 8728 122 67 43 167 57 9 51
P2 67 1.9 24 79 1476 7.7 89 36 | 1,040 108 90 41
P3 36 33 69 63 | 16400 204 18 7 3 43 12 3
P4 73 35 88 84 2,098 7.7 24 8 62 40 38 44
P5 15 47 100 100 | 18927 174 24 7 11 3.0 37 28
P6 63 76 52 47 3741 10.2 40 23 396 10.6 23 19
P7 371 6.6 67 37 3286 173 55 28 37 50 3 3
P8 1170 53 89 81 2,886 125 44 27 | 1221 340 55 43
P9 38 141 89 89 4867 87 31 23 39 30 24 20
P10 430 215.2 12 9 8,697 182 25 20 77 380 1 0
P11 334 4350 66 54 7,032 29.6 23 11 9 110 1 0
P12 939 108 70 61 194 77 29 17 | 1905 83 44 35
P13 210 383 80 73 1412 82 32 29 104 5.1 12 10
P14 12 241 68 52 1,212 2204 73 43 70 145 49 28
P15 140 33 37 9| 11,098 146 67 49 72 58 12 12
P16 11 2.5 22 5| 10869 118 17 4 18 29 11 0
P17 20 31 78 76 7341 121 35 24 144 2156 81 76
P18 55 42 14 7| 19884 206 31 23 45 36 11 8
P19 0 37 30 22 2159 7.9 36 32 20 32 7 5
P20 269 92 78 70 | 11467 127 53 30 81 5.2 4 8
P21 495 27 88 68 | 10,147 118 68 49 | 1257 56 81 70
P22 60 35 72 61 4332 89 44 31 98 46 20 16
P23 99 56 70 58 2,708 107 27 18 575 3 2
P24 99 34 78 70 763 5.3 24 11 176 59 49 41
P25 73 103 43 37 2,968 104 36 29 126 52 20 16
P26 1273 210 59 75 7,100 236 68 30 442 161 12 12
P27 88 1.9 84 74 7843 124 36 33 75 37 12 8
P28 105 238 85 91 3,421 65 74 54 13 36 78 68
P29 244 36 51 35 | 10961 109 53 34 435 7.8 24 16
P30 151 3.9 75 68 3,496 134.1 73 51 15 31 2 0
P31 3,600 3.6 32 13| 17451 217 49 14 | 2287 243 20 13
Total | 10,715 861.0 N/A N/A | 215264 7343 N/A  N/A | 1059 4812 N/A  N/A
Avg 3456 278 572 506 | 69440 237 440 270 | 3416 155 273 225
work on integrating the generated inline tests into these projects.
Next, we filter out projects in which developer written unit tests , 1000
fail (84 remain), in which JaCoCo fails (73 remain), and in which S 800
Randoop or EvoSuite fails (48 remain). §
On these remaining 48 projects, we use ExLI to find target state- 7 600
2
ments and generate inline tests. We filter out 6 projects that do not S 400
have the kinds of target statement that we look for [46]; one project g
200

where all target statements are not covered by any unit test; and
one project for which EXLI does not generate any passing inline
test. We also filter out 8 projects where EXLI’s instrumentation
clashes with the projects’ instrumentation for other purposes, and
one project where developer written tests take more than one hour.

We use the remaining 31 projects as our evaluation subjects.
Table 2 shows the PIDs and names of these projects, the SHA that
we use, and total lines of Java code.

Figure 6 shows statistics about the number of target statements
in the 31 projects. EXLI initially finds 1,104 target statements (84
for regular expression, 745 for string manipulation, 241 for bit
manipulation, and 34 for stream operations). Of these, 820 target
statements are covered by at least one unit test (532 are covered by
at least one developer written unit test, 491 are covered by at least
one Randoop-generated unit test, and 613 are covered by at least
one EvoSuite-generated unit test). After removing failing inline
tests and corresponding target statements, EXLI generates inline
tests for 718 target statements (79 for regular expression, 432 for
string manipulation, 192 for bit manipulation, and 15 for stream
operations); we use them in the rest of our evaluation.

Figure 6: No. of target statements that we find for four kinds
of APIs, covered by (all, developer written, Randoop, and
EvoSuite) unit tests, and where EXLI generates inline tests.

5.2 Extracting Inline Tests

First, we run Randoop and EvoSuite to generate automatically gen-
erated unit tests for each project in our dataset. We run Randoop
with a time limit of 10 minutes to generate unit tests for each project
(as suggested by the Randoop user manual [83]); we set other op-
tions set to default values. We run EvoSuite with a time limit of
120 seconds (as suggested by the configuration in the recent SBST
competition [70]) for each class with at least one target statement.

Table 3 shows the statistics about the unit tests: number of test
methods (#tests), test-running time (T[s]), line coverage (L[%]),
and branch coverage (B[%]). Note that EvoSuite’s line and branch
coverage for some projects are low, because it is setup to only
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Figure 7: Distribution of inline tests per target statement.

generate unit tests for classes with target statements which may be
a small number of classes with few lines and branches.

Next, we run ExLI to extract inline tests from unit tests. We
compile and run tests from the three sources (developer written,
Randoop-generated, EvoSuite-generated) separately to allow flexi-
ble set up of different environments for each source and regenerat-
ing automatically generated unit tests. We run developer written
and Randoop-generated tests using Maven, but we run EvoSuite-
generated tests with a JUnit runner. EvoSuite puts generated tests
in customized runners that cause problems with Maven.

When performing coverage-based reduction, EXLI supports sav-
ing the code coverage information at the end of previous run and
loading it at the beginning of the next run, e.g., the extraction of
inline tests from Randoop-generated unit tests can still benefit from
the coverage information collected from developer written unit
tests, and the extraction from EvoSuite-generated unit tests can
benefit from the coverage information collected from developer
written and Randoop-generated unit tests.

For each source of unit tests, we set an upper limit for the num-
ber of inline tests generated per target statement to 100, to avoid
excessive disk space consumption in corner cases (especially when
not performing reduction). With three sources of tests, our upper
limit for inline tests generated per target statement is 300.

We compare the four sets of inline tests generated by ExL1
as intermediate or final results (also see workflow in Figure 2):
ExLi-Base without reduction, ExL1-Cov with only reduction by
code coverage, ExL1-UM with coverage-and-mutation based re-
duction using universalmutator, and ExL1-Major with coverage-
and-mutation based reduction using Major.

Figure 7 shows the distribution of generated inline tests per
target statement. We also include the number of unique sets of
variable values collected during executing the unit tests (denoted
as Values), to show the number of inline tests that ExL1 would
generate without setting the 300 upper limit. The average number
of inline tests per target statement for Values, ExLi-Base, ExL1-Cov,
ExL1-UM, and ExLi-Major are 88.9, 24.1, 1.9, 1.3, and 1.3, respec-
tively. The medians for Values, ExL1-Base, ExL1-Cov, EXL1-UM, and
ExL1-Major are 10.0, 9.0, 2.0, 1.0, and 1.0, respectively.

The distribution of the number of inline tests per target statement
for Values is long-tailed, which justifies our decision to set an upper
limit of number of inline tests to prevent issues in corner cases.

Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

17500 23.8
, 15000 20
2 =
212500 2
[ [
< E 15
Z 10000 =
- c
%5 =]
5 7500 S10
o 9
€ 5000 o
= 5
2500 1333 905 930 ﬁ 2.2 2.3
0 il miiin 0 I
o 5 N & o N D &
J o O O 9 o O O
_\9;0 SO 3 v@\ K © » >

.. O h .
FH & & &

(a) Number of inline tests. (b) Execution time.

Figure 8: Number and execution time of inline tests extracted
by ExL1 with different levels of reduction.

We observe that 95% of target statements are not affected by the
limit of 300 inline tests per target statement. That is, the number of
inline tests per target statement at the 95th percentile is 225.8.

Answer to RQ1. EXL1 could generate an average of 88.9
inline tests per target statement if recording all values dur-
ing execution. Limiting to at most 300 per target statement
and removing the failing ones, EXLI generates 24.1 inline
tests before reduction per target statement on average.

Figure 8 shows the number of inline tests and their execution
time (note that we did not include compilation time here, unlike our
prior work [46] that also measured compilation time). To evaluate
the effectiveness of ExL1’s reduction, we consider ExLi-Base as the
baseline before reduction; it generates 17,273 inline tests that take
23.8 seconds to execute.

ExLr’s coverage-based reduction (ExL1-Cov) reduces the number
of inline tests to 1,333 (reduction rate: 92.3%) and the time to 3.0
seconds (reduction rate: 87.4%). Then, when performing mutation-
based reduction using universalmutator (ExL1-UM), the number
of inline tests is further reduced to 905 (cumulative reduction rate:
94.8%) and the time to 2.2 seconds (cumulative reduction rate: 90.8%).
When using Major (ExL1-Major), the number of inline tests is fur-
ther reduced to 930 (cumulative reduction rate: 94.6%) and the time
to 2.3 seconds (cumulative reduction rate: 90.2%). The reduction
rate of ExL1-UM and ExL1-Major compared to ExL1-Cov is 32.1%
and 30.2% in terms of number of inline tests, and 27.1% and 22.2%
in terms of execution time, respectively.

Comparing ExL1-UM and ExL1-Major, we observe that using
universalmutator achieves more reduction than using Major. Our
inspections showed that universalmutator generates more mutants
than Major (3,784 vs. 2,388 mutants), and that mutants generated by
Major tend to be generic (e.g., changing right hand side of an assign-
ment to null) compared to the ones generated by universalmutator.
Future work can explore improving the quality of the generated
mutants, e.g., by using mutation operators designed for the four
kinds of target statements, to further improve the effectiveness of
ExLr’s mutation-based reduction.
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Table 4: Mutants evaluation results. P15 is excluded because no mutant was generated on this project.

PID #stmts #mutants Dev Randoop | EvoSuite | | ExLi-Base | ExL1-Cov | ExLi-UM | ExL1-Major

mutated | #tests  M[%] | #tests M[%] | #tests M[%] || #tests M[%] | #tests M[%] | #tests M[%] | #tests M[%]
P1 3 10 165 60.0 8,728 30.0 167 30.0 16 100.0 4 100.0 4 100.0 4 100.0
P2 244 494 67 8.1 1,476 7.3 1,040 10.7 6,287 100.0 486 100.0 313 100.0 319 99.8
P3 2 10 36 80.0 16,400 0.0 3 0.0 5 80.0 3 80.0 2 80.0 3 70.0
P4 2 18 73 83.3 2,098 0.0 62 0.0 10 83.3 3 83.3 2 83.3 2 72.2
P5 1 19 15 57.9 18,927 0.0 11 0.0 39 57.9 1 36.8 1 57.9 1 36.8
Pe6 13 44 63 86.4 3,741 18.2 396 100.0 555 77.3 26 75.0 14 77.3 12 59.1
P7 2 2 371 50.0 3,286 100.0 37 0.0 10 100.0 3 100.0 3 100.0 3 100.0
P8 11 47 1,170 83.0 2,886 10.6 1,221 48.9 98 89.4 15 76.6 11 89.4 11 85.1
P9 2 2 38 100.0 4,867 50.0 39 100.0 42 100.0 3 100.0 3 100.0 2 100.0
P10 16 75 430 77.3 8,697 13.3 77 2.7 455 82.7 33 82.7 22 82.7 23 80.0
P11 8 25 334 68.0 7,032 0.0 9 0.0 321 96.0 17 84.0 10 96.0 17 84.0
P12 130 1,434 939 57.7 494 8.0 1,905 33.6 2,313 69.6 244 67.0 156 69.6 176 67.4
P13 3 5 210 60.0 1,412 40.0 104 100.0 53 100.0 5 100.0 6 100.0 5 100.0
P14 2 5 12 60.0 1,212 0.0 70 0.0 21 100.0 4 100.0 2 100.0 3 100.0
P16 17 241 11 60.2 10,869 2.9 18 0.0 298 80.9 27 74.3 22 80.9 19 80.5
P17 6 42 20 64.3 7,341 19.0 144 28.6 72 76.2 10 61.9 9 76.2 9 57.1
P18 12 52 55 96.2 19,884 67.3 45 21.2 300 96.2 16 96.2 15 96.2 16 96.2
P19 7 34 10 73.5 2,159 0.0 20 55.9 292 76.5 19 67.6 9 76.5 7 67.6
P20 34 229 269 38.4 11,467 100.0 81 31.0 850 83.8 54 69.9 36 83.8 37 80.8
P21 32 497 495 85.3 10,147 47.9 1,257 88.3 889 81.7 57 53.3 38 81.7 40 78.1
P22 4 10 60 100.0 4,332 30.0 98 30.0 42 90.0 11 60.0 5 90.0 9 70.0
P23 5 42 99 23.8 2,708 59.5 45 38.1 249 100.0 8 81.0 7 100.0 8 100.0
P24 2 3 99 100.0 763 33.3 176 100.0 19 100.0 4 100.0 1 100.0 3 100.0
P25 5 25 73 92.0 2,968 0.0 126 100.0 55 92.0 11 92.0 6 92.0 5 92.0
P26 18 97 1,273 97.9 7,100 100.0 442 83.5 249 70.1 30 69.1 22 70.1 19 64.9
P27 3 31 88 22.6 7,843 0.0 75 19.4 11 90.3 4 51.6 3 90.3 3 90.3
P28 5 19 105 84.2 3,421 53 113 53 114 73.7 12 73.7 8 73.7 6 73.7
P29 10 66 244 424 10,961 47.0 435 100.0 487 93.9 18 92.4 14 93.9 16 89.4
P30 4 12 151 333 3,496 100.0 15 100.0 46 100.0 9 100.0 5 100.0 5 100.0
P31 46 194 3,600 90.7 17,451 53.1 2,287 87.6 1,016 96.9 78 84.0 59 96.9 51 92.3
Total 649 3,784 10,575 N/A | 204,166 N/A 10,518 N/A 15,214 N/A 1,215 N/A 808 N/A 834 N/A
Avg 21.6 126.1 352.5 67.9 6,805.5 314 350.6 43.8 507.1 87.9 40.5 80.4 26.9 87.9 27.8 82.9
Answer to RQ2. EXL1’s coverage-and-mutation based re- B ExLi-Cov

[0 ExLi-UM

duction can effectively reduce all generated inline tests by
94.8% (with universalmutator) or 94.6% (with Major), result-
ing in an average of 1.3 inline tests per target statement.

5.3 Performing Mutation Analysis

Mutation testing is widely used to evaluate the quality of test
suites [11, 65]. In this section, we perform mutation analysis using
the mutants generated by universalmutator. We reuse the same
mutants that universalmutator generated during step @ in Sec-
tion 4 for reducing inline tests. We report results based on the 649
target statements that have non-stillborn mutants, and compare the
mutation scores of inline tests generated by EXLI against unit tests.
Note that universalmutator did not generate any mutant for any
target statement in project liquibase/liquibase-oracle (P15), which
was excluded from the mutation analysis evaluation.

Table 4 shows the number of tests and mutation scores of de-
veloper written, Randoop-generated, and EvoSuite-generated unit
tests, and ExLi-Base, ExL1-Cov, ExL1-UM, and ExLi-Major inline
tests. Note that the mutation scores of EXL1-UM and ExLi-Base
are always the same by design, because during the mutation-based
reduction, EXL1 adds any inline test from ExLi-Base that kills a mu-
tant that survives inline tests from ExLi-Cov. The average mutation
score of ExLi-Base is 87.9%, which is much higher than the muta-
tion score of developer written (67.9%), Randoop-generated (31.4%),
and EvoSuite-generated (43.8%) unit tests. ExL1-Cov achieves 80.4%
which is slightly lower than ExLi-Base, but it is still higher than the

[0 ExLi-Major

Figure 9: Sets of mutants killed by inline tests and unit tests.

mutation score of unit tests. By performing additional mutation-
based reduction, ExL1-UM fully recovers the mutation score to
87.9%, and ExL1-Major improves the mutation score to 82.9%. The
difference between ExLi-UM and ExL1-Major is small, and suggests
that the two mutation generation tools are quite similar (see also
reports in prior work [25]).

Figure 9 shows a Venn diagram illustrating the overlap among
the sets of mutants killed by all unit tests and inline tests from
ExLi-Cov, ExL1-UM (which is the same as ExLi-Base), and ExLi-
Major. All inline tests and unit tests kill 3,278 mutants in total. 2,404
mutants are killed by both inline tests and unit tests. The set of
mutants killed by ExLi-Major inline tests is a subset of the set of
mutants killed by ExL1-UM inline tests, but the difference is small:
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ExL1-UM inline tests kills 111 or 3.8% more mutants than ExLi-
Major inline tests. Compared with ExL1-UM inline tests, ExL1-Cov
inline tests miss 299 mutants (9.1% of all killed mutants). Compared
with unit tests, EXL1-UM inline tests miss 216 mutants (6.6% of all
killed mutants). This is because unit tests can check global program
state (e.g., fields) that is modified by the target statement, but inline
tests currently cannot; future extensions of inline tests can lift this
limitation. But, ExL1-UM Kkills 658 more mutants than unit tests
(20.1% of all killed mutants or 25.1% of mutants killed by unit tests).

We manually inspect surviving mutants that lead to loss of mu-
tation scores when ExL1-Cov is compared with ExL1-Base. So far,
we found two limitations of EXLI that lead to such intermediate
losses. (1) There are multiple clauses in an if condition, but the
mutation operator only modifies one of them. This limitation occurs
because, unlike pytest-inline, I-TEST does not yet support testing
individual clauses in a condition. This limitation will go away as
I-TEST matures. (2) Multiple sets of values can kill a mutant but they
all cover the target statement and its context in the same way as a
chosen set of values that cannot kill the mutant. This is a limitation
of coverage-based reduction as we discussed in Section 3.

Observe from Figure 9 that inline tests and unit tests are comple-
mentary in terms of their fault-detection capability, and inline tests
can enhance the fault-detection capability of the unit test suites
from which they are extracted. To understand why some mutants
can be killed by inline tests but not by the unit tests, we manually
inspected 63 randomly sampled mutants from the 658. We found
two reasons: (1) unit tests lack good assertions to kill the mutants,
i.e., the mutant could be killed if we add assertions to the unit tests
(77.8% of cases); (2) the mutant does not change program state that
propagates to unit tests, i.e., it only changes local variables or con-
trol flow but not the return value or global variables, but inline
tests” “local” assertions kill such mutants (22.2% of the cases).

Answer to RQ3. Inline tests complement the fault-
detection capability of unit tests. ExL1-UM and ExLi-Major
generate inline tests with average mutation scores of 87.9%
and 82.9%, respectively, which are higher than the mutation
scores of unit tests written by developers (67.9%), and those
generated by Randoop (31.4%) and EvoSuite (43.8%).

5.4 Measuring ExLr’s Runtime Cost

Generating inline tests with ExL1-UM and ExL1-Major takes, on
average across projects, 1,053.7s and 949.9s, respectively. (We omit
compilation time of the mutants; it is an offline process and is cur-
rently slow because we recompile per mutant. Future work can
optimize this process by compiling in parallel or by using incre-
mental compilation.) The breakdown of the runtime is as follows:
67.0s for running unit tests, 598.2s for recording variable values,
coverage-based reduction, and generating inline tests, and 388.5s
(universalmutator) or 284.7s (Major) for mutation-based reduction.

We are very encouraged by these early results on runtime costs,
especially when compared with our estimated amount of time that
it would take developers to write all 905-930 inline tests that ExL1
generates. Our prior user study [46] showed that participants spent
around 6.3 minutes (378s) to understand and write inline tests
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for each target statement in Python. Assume that the times to
understand target statements and write inline tests is uniformly
distributed and are the same for Java and Python. Then, on average,
participants would have needed 8769.6s to write inline tests for the
23.2 target statements per project used in our study.

Answer to RQ4. Running ExL1-UM/ExLi-Major takes
949.9s to 1,053.7s on average per project, excluding mu-
tant compilation times. Our estimates, based on our prior
user study, suggests that these average times is evidence
that ExL1 can reduce manual effort for writing inline tests.

6 DISCUSSION

Usage Modes. The inline tests that EXL1 generates can help find
regressions in future versions of the code, and there is need for
future work on co-evolving inline tests with code. But, EXL1 can also
help find bugs in the current program versions if developers inspect
the generated tests. By inspecting inline tests in prior work [46],
we found two bugs that have now been fixed by the developers.
Limitations. (1) EXL1 uses coverage of the target statement and its
context for initially reducing the set of inline tests. Flaky tests [3,
26,41, 51, 64, 74] can cause coverage to fluctuate. We do not control
for flaky tests in the unit tests that EXLI uses. (2) Extracted inline
tests may be flaky and fail if the expected output in the oracles that
are generated depend on data that may change, e.g., current date or
device configuration. (3) When potential inputs to cause the target
statement or its context to throw an exception, EXLI does not use
such values to construct inline tests because I-TEST [46] does not
yet support using expected exceptions as test oracles. (4) We do
not evaluate the extracted inline tests with developers of the open-
source projects that we evaluate. But, we have initial confidence
from our prior user study, which showed that participants find
inline tests useful. We plan to communicate more with open-source
developers in the future, especially as I-TEsT [46] matures.
Threats to Validity. Our code to instrument target statements,
collect coverage rates, and perform reduction could contain bugs.
To mitigate this threat, at least two co-authors review the code, and
multiple authors inspect the results. Our findings could be limited to
projects that we evaluate and their unit tests. To mitigate this threat,
we used open-source projects with various characteristics and used
automatically generated more unit tests. The ideas in ExLI are
general but our results may not generalize to other programming
languages. We plan to use our pytest-inline tool [47] as a basis for a
tool that extracts inline tests from Python unit tests.

Future Work. We plan to (1) support generation of inline tests
for target statements in other program locations than the three
that ExL1 supports (if conditions, assignment statements, and dec-
larations); (2) support other kinds of target statements than the
four that our inline testing research so far considered; (3) generate
inline tests for other programming languages; and (4) investigate
regression test selection (RTS) for inline tests borrowing from our
work on RTS for unit tests [19, 20, 23, 27, 43, 44, 48, 76, 89].



Extracting Inline Tests from Unit Tests

7 RELATED WORK

Single-Statement Bugs. Inline tests are partly motivated by recent
work [38, 39, 42, 67] showing that many bugs are caused by faults in
single statements, and that unit tests miss such bugs. We used inline
tests to find single-statement bugs [46], and EXLI could help find
more in the future. The ManySStuBs4]J [39] dataset contains single-
statement bugs that are curated by statically analyzing open-source
Java projects and their version histories. As the ManySStuBs4]
dataset evolves to capture more recent versions of those projects, it
can be a benchmark for evaluating the bug-detection capability of
inline tests. We do not use ManySStuBs4] because (1) the filtering
process that was followed to curate the dataset resulted in many
false positives during our initial search for target statements; (2) the
commits that are used in the dataset are from before 2019-01-28, so
we had trouble running the unit tests in some projects.
Automatic Test Generation. Automatically generation of tests
is a popular research topic and many test generation techniques
have been proposed for Java [2, 8, 16, 18, 22, 59, 62, 71]. But, ExL1
is the first automatic generation technique for inline tests, which
we recently proposed. Elbaum et al’s technique [14] extracts unit
tests from system tests. ExL1 is similar in spirit—it also extracts
lower granularity tests from higher granularity tests—but differs
in the granularity levels that it targets. Also, unlike Elbaum et al’s
technique, EXLI further reduces generated inline tests.

Test Suite Minimization/Reduction. Yoo and Harman [86] present
a survey on test suite minimization. Zhang et al. [88] study the effec-
tiveness of test suite minimization techniques. Test Suite Minimiza-
tion techniques include those that use (1) greedy algorithms [10, 79],
(2) heuristics [9, 31], and (3) integer programming [32, 45]. We use
a recent implementation of four algorithms [72] to further reduce
inline tests that EXL1 generates.

Shi et al. [73] find that techniques based on statement coverage
reduce test-suite sizes by 62.9% but lose 20.5% in killed mutants.
Conversely, techniques based on killed mutants have no loss in
killed mutants but have test-suites that are 10.9 percentage points
larger than those produced by coverage-based minimization, on
average. Shi et al’s study gives more confidence in preservation of
fault-detection capability in ExL1 reduction based on killed mutants.

Noemmer and Haas [60] recently compare test suite minimiza-
tion techniques on open-source projects and find that, on average,
test suites reduce by 70% while losing 12.5% of the fault-detection
capability. Our results show that traditional test suite minimization
reduces generated inline tests by 31.9% and ExL1’s feedback loop
preserves fault-detection capability.

Using Coverage as Feedback in Automated Testing. Coverage
was used as feedback for test generation [16, 17, 54] and test-suite
reduction [30, 40, 53]. We use a combined change of coverage rate
of target statements and the blocks containing target statements.

Assertion/Invariant Generation. Program assertions/invariants
are useful for checking the correctness of program states. Inline
tests are similar to assert statements: both are co-located with pro-
gram statements and they can be turned off in production. But,
inline tests are different: they allow to provide arbitrary inputs,
expected outputs, and oracles for testing statements. Further, assert
statements only run if they are in code covered by unit tests, but
inline tests run in a different context even if the target statement is
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not covered by unit tests. Lastly, existing inline testing frameworks
provide features that are typically not supported in assert state-
ments: parameterized tests, repeating test runs (helpful to see if
inline tests are flaky), grouping tests, and running tests in parallel.

There have been many techniques for automatically generating
assertions and invariants, including those that (1) infer invariants
from runtime information [5, 12, 15]; (2) generate assertions from
comments and documentation [4, 24, 55]; and (3) learn assertions
from code [13, 28, 58, 84, 87]. EXLI is most similar to approaches
in the first category, as it extracts inline tests from runtime infor-
mation. But, ExL1 additionally (1) uses the collected information to
construct inputs, expected outputs, and oracles for the generated
inline tests; and (2) reduces the set of generated inline tests.

Jane Street’s “ppx inline tests” [78] and the inline tests in this pa-
per [46] share a name and the characteristic that they are co-located
with code. But, a “ppx inline test” executes functions and seems
closer to unit tests than tests for checking individual statements.

Xiong et al. [85] propose inner oracles, assertions declared in unit

test code to check internal states in test-input specific ways. Inline
tests target statements in the code, not unit tests.
Mutation testing. Mutation testing is a technique for evaluating
the effectiveness of test suites [29, 63, 66]. Popular mutation testing
tools include PIT [82], MuJava [52], Major [81] and universalmuta-
tor [25]. We use universalmutator because it uses source code level
replacement of operators and is easy to specify mutated line num-
bers. Also, the default mutation operators generated by PIT, Major,
and universalmutator are similar. But, future work can explore the
use of other mutation testing tools.

8 CONCLUSION

In this paper, we presented ExL1, a technique for automatically
generating inline tests with coverage-and-mutation based test re-
duction. The coverage-based reduction is based on context-aware
coverage feedback, and the mutation-based reduction is based on
killed mutants. We evaluate ExXLI on 31 open-source Java projects
and find that EXL1 generates between 905 inline tests (when using
universalmutator to reduce tests) and 930 inline tests (when using
Major to reduce tests) inline tests for 718 target statements. EXL1
reduces initially generated inline tests by 94.8%-94.6%. EXLI enables
developers to enhance the fault-detection capability of their test
suites by easily obtaining and adding inline tests.
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