
Extracting Inline Tests from Unit Tests

Yu Liu★, Pengyu Nie★, Anna Guo★, Milos Gligoric★, Owolabi Legunsen†
★The University of Texas at Austin; †Cornell University

USA
{yuki.liu,pynie,anna.guo,gligoric}@utexas.edu,legunsen@cornell.edu

ABSTRACT

We recently proposed inline tests for validating individual program

statements; they allow developers to provide test inputs, expected

outputs, and test oracles immediately after a target statement. But,

existing code can have many target statements. So, automatic gen-

eration of inline tests is an important next step towards increasing

their adoption. We propose ExLi, the first technique for automat-

ically generating inline tests. ExLi extracts inline tests from unit

tests; it first records all variable values at a target statement while

executing unit tests. Then, ExLi uses those values as test inputs

and test oracles in an initial set of generated inline tests. Target

statements that are executed many times could have redundant

initial inline tests. So, ExLi uses a novel coverage-and-mutation

based reduction process to remove redundant inline tests. We im-

plement ExLi for Java and use it to generate inline tests for 718

target statements in 31 open-source programs. ExLi reduces 17,273

initially generated inline tests to 905 inline tests. The final set of

generated inline tests kills up to 25.1% more mutants than developer

written and automatically generated unit tests. That is, ExLi gener-

ates inline tests that can improve the fault-detection capability of

the test suites from which they are extracted.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Inline tests, unit tests, automatic test generation

ACM Reference Format:

Yu Liu★, Pengyu Nie★, Anna Guo★, Milos Gligoric★, Owolabi Legunsen†.

2023. Extracting Inline Tests from Unit Tests. In Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

’23), July 17ś21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3597926.3598149

1 INTRODUCTION

Inline tests [46] enable developers to test individual program state-

ments, thereby increasing the fault-detection capability of test

suites. Inline tests are complementary to existing levels of test

granularityÐunit tests, integration tests, and end-to-end tests. Inline

tests can help find single-statement bugs, which often occur [38, 39]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598149

but elude unit tests [42]. Inline tests can also provide other software

engineering benefits, e.g., they document complex target statements

and they could be easier to co-evolve with code than unit tests.

We developed two tools to provide framework-level support for

inline testing. These tools make it easier for developers to write in-

line tests and they increase the chances for the relatively new inline

testing paradigm to be adopted. One tool, pytest-inline, supports

inline testing in Python [33, 47]; it is integrated with pytest, the

most popular testing framework for Python [34]. We presented the

other tool for Java, I-Test, in our original inline testing paper [46].

Automatic generation of inline tests is an important next step

towards increasing their adoption for two reasons. First, automatic

generation can reduce manual developer effort for retrofitting in-

line tests into existing code bases that have many target statements.

Second, automatic generation can enable future inline testing re-

search by providing more inline tests for evaluation than exist today.

For example, we previously simulated runtime costs by repeatedly

executing 152 manually written inline tests thousands of times [46].

We propose ExLi, the first technique for automatically generating

inline tests. ExLi extracts inline tests from unit tests. Unit tests

are an attractive source of inline tests since they are abundant

in practice and they can be automatically generated [16, 62]. In

turn, the extracted inline tests can help find single-statement bugs

that unit tests miss [42]. Extracted inline tests can also help find

bugs that occur in executed statements that are deeply-nested in

conditional expressions, which can be missed by automatically

generated unit tests [1].

Given the code under test (CUT), a target statement, and unit

tests that cover the target statement, ExLi generates a set of inline

tests for the target statement. ExLi can automatically discover the

four kinds of target statements that we identified in prior work

as being able to benefit from inline testing [46], and extract inline

tests from the unit tests that cover them. ExLi is agnostic to the

source of unit tests; they can be manually written by developers

or automatically generated by tools like Randoop [62, 68] or Evo-

Suite [16]. ExLi outputs a new version of the CUT in which the

target statement is immediately followed by the generated inline

tests. Since ExLi is a first step towards inline test generation, we

assume that unit tests correctly exercise the CUT, i.e., the inline

tests generated by ExLi on one code version can detect regression

bugs in future versions.

ExLi first instruments the CUT to record all observed variable val-

ues in the target statement during unit testing. Then, the recorded

values are used in automatically generate inline tests. For example,

consider assignment statements. The recorded values of right-hand

side variables are used as input values, and the recorded values

of the left-hand side variable are used as expected values in the

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

generated inline test. ExLi can also generate inline tests for decla-

rations and expressions in if conditions. We plan to support more

locations of target statements in the future.

Inline tests are co-locatedwith target statements, so an important

concern is that readability could be degraded if too many inline

tests are generated per target statement. Compilation could also

fail if adding the generated inline tests causes a method’s body to

exceed the maximum allowable size [61]. Too many inline tests can

be generated for target statements in which many sets of values are

observed during unit testing. Such many-valued target statements

could be covered by many unit tests, or they may be in loops. In a

particularly egregious case, 14,928 sets of values were recorded for

a target statement during our experiments.

To address the concern of generating too many initial inline tests

per target statement, ExLi introduces a coverage-and-mutation based

test reduction process. We consider an inline test to be redundant if

it has the same fault-detection capability as other inline tests with

respect to code covered and mutants killed. Code coverage [7, 21]

and mutation score [36, 69] are established metrics for measuring

the quality and fault-detection capability of unit tests. We adapt

these two metrics to guide inline test reduction.

ExLi uses target coverageÐcode covered by the inline testÐand

context coverageÐcode covered in the context from which the inline

test is extracted. ExLi also builds on existing mutation analysis

tools [25, 37] but it only mutates target statements.

The coverage-and-mutation based test reduction process in ExLi

works as follows. ExLi tracks the code covered in the target state-

ment and its context during unit testing, and only records sets of

values that cover code that was not covered by previously extracted

inline tests. ExLi also mutates the target statement and ensures

that each generated inline test kills at least one unique mutant. If

no mutant is generated for a target statement, ExLi’s reduction is

based on coverage. But, if coverage and mutation score are com-

puted, reduction is based on mutation score as prior work suggests

that mutation score is a more accurate metric of the fault-detection

capability than coverage [73].

We implement ExLi for Java and apply it to 718 target statements

in 31 open-source programs. ExLi generates an initial set of 17,273

inline tests. ExLi-UM, which uses universalmutator [25] for muta-

tion analysis, generates a final set of 905 inline tests (reduction rate:

94.8%). ExLi-Major, which uses Major [37] for mutation analysis,

generates a final set of 930 inline tests (reduction rate: 94.6%).

We also evaluate whether generated inline tests enhance the

fault-detection capability of test suites from which they are ex-

tracted. We do so by performing mutation analysis only on the

target statements. ExLi-UM kills 25.1% more mutants, and ExLi-

Major kills 24.6% more mutants than those killed by developer

written and automatically generated unit tests. Our manual inspec-

tion shows why generated inline tests can kill more mutants: the

unit tests reach the target statements and infect program state, but

those unit tests lack łlocalž oracles at the target statement. That is,

errors induced by mutants do not propagate to the assertions in the

unit tests, or those assertions do not check relevant parts of state.

This paper makes the following contributions:

★ Technique. ExLi is the first technique for automatically generat-

ing inline tests; it extracts inline tests from unit tests.

1 public static final String MULTI_VALUE_DELIMITTER = ",";

2 public static final char EQ = '=';

3 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){

4 if (null != spec) {

5 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

6 for (String field : properties) {

7 final int index = field.indexOf(EQ); // target statement

8 new Here().given(field, "profile.requestStart.ms")

9 .checkEq(index, -1);

10 new Here().given(field, " mdcName='long']").checkEq(index, 8);

11 if (-1 == index) { continue; }

12 ... // add field to gelfMsg

13 }}}

Figure 1: Target statement with ExLi-generated inline tests.

★ Reduction approach. ExLi uses a novel inline test reduction

approach that is based on both code coverage and mutation score.

★ Evaluation. ExLi’s reduction strategy is effective, yielding inline

tests that improve fault-detection capability of unit test suites.

★ Dataset. ExLi generates the largest dataset of inline tests to date.

ExLi and our dataset enable future work on inline tests.

ExLi and our dataset is open-sourced at

https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example code with a target statement and inline

tests that ExLi generates for that target statement after reduction.

The example is simplified from mp911de/logstash-gelf [49]. Method

setAdditionalFields splits spec using ł,ž as the delimiter, stores

the results in the properties variable, and adds each field in

fields that contains ł=ž to gelfMsg. Line 7 is the target state-

ment; it finds the index of first occurrence of EQ (ł=ž) in field. All

variables in this example have primitive types, but ExLi supports

non-primitive types as well (see example in Figure 5 in Section 4).

Suppose that a developer gives this target statement as input to

ExLi, e.g., because it is in a loop and it is reached by lots of other

methods. Line 8 is an inline test that ExLi generates. All inline

tests consist of three parts. First, the łDeclarež partÐnew Here()Ð

signifies that the current statement is an inline test. Second, the łAs-

signž partÐgiven(field, "profile.requestStart.ms")Ðallows

developers to provide inputs to the inline test. Third, the łAssertž

partÐcheckEq(index,−1)Ðallows developers to specify a test ora-

cle that includes the expected output. In Figure 1, given the input

for field, the index variable that is being computed in the target

statement should equal −1 for the inline test on line 8 to pass.

The example target statement is executed 2,413 times with 215

unique set of variable values during unit testing. But, directly gen-

erating 215 inline tests to check one statement could be an overkill

for two reasons. First, many of the 215 sets of values are redundant

because they exercise the target statement in the same way. So,

running them all is wasteful. Second, adding 215 inline tests for

this target statement will likely make the code harder to read and

maintain. So, ExLimust reduce the number of generated inline tests

by eliminating redundancy. ExLi’s coverage-and-mutation based

reduction process reduces those 215 inline tests into the two shown

in Figure 1, without no loss in fault-detection capability.

Extracting Inline Tests from Unit Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

CUT

unit tests

TargetStmt

Finder

1

Variables

Finder

2

Instrumenter

3

Executor

4

Collector

5

Cov

Reducer
6

InlineTest

Constructor

7
ExLi-Base
inline tests

ExLi-Cov
inline tests

Mut

Reducer

8

ExLi-UM/
ExLi-Major
inline tests

Figure 2: The steps in ExLi’s workflow.

3 TECHNIQUE

Figure 2 shows ExLi’s procedure for generating inline tests. The

inputs are the CUT (required), the unit tests (required), and line

numbers of the target statements (optional, not shown). ExLi’s

output is the generated inline tests after the coverage-and-mutation

based reduction, at the rightmost of the workflow, which we refer to

as ExLi-UM/ExLi-Major inline tests (using universalmutator/Major

to perform mutation analysis, respectively). ExLi also produce two

intermediate outputs for evaluation and debugging purposes: ExLi-

Base inline tests without any reduction; and ExLi-Cov inline tests

with reduction only based on code coverage but not mutation score.

3.1 Finding and Analyzing Target Statements

The first two steps of ExLi’s workflow are for finding and analyz-

ing the target statements. In step 1 , TargetStmtFinder parses

the abstract syntax tree (AST) of the CUT and extracts the target

statements. If developers provided the optional input of line num-

bers of the target statements, ExLi will skip this step and directly

use the developer-specified target statements. Then, in step 2 ,

VariablesFinder identifies the variables used in each target state-

ment, which will be the input or output variables in the generated

inline tests. For example, VariablesFinder should identify three

variables for the target statement in Figure 1: two input variables

fields and EQ, and one output variable index.

3.2 Generating Inline Tests

We then describe the steps of generating ExLi-Base inline tests with-

out reduction, i.e., steps 3 , 4 , 5 , and 7 . First, Instrumenter

(step 3) adds code before each target statement to collect the val-

ues of input variables and after each target statement to collect

the output variable value. Figure 3 shows how we instrument the

example code in Figure 1: collectInputs (line 7) is added before

the target statement to collect the values of fields and EQ, and

collectOutputs (line 9) is added after the target statement to col-

lect the value of index. Other code added by Instrumenter is for

the reduction process and will be described in Section 3.3.

Then, the Executor (step 4) runs unit tests on the instrumented

code, and the Collector stores in memory the unique sets of vari-

able values of the target statements (step 5).

Using the collected sets of values, InlineTestConstructor (step

7) synthesizes inline tests. To do so, the value collected for each in-

put variable is used in given(. . .) calls, which can be chained. That

is, the inline test being constructed will assign each input value to

the corresponding variable when testing the target statement. Then,

the matching value of the output variable is used in a check_eq(. . .)

construct. That is, the inline test being constructed will check that

the observed value that is computed by the target statement from

the assigned input values is equal to the output variable value that

1 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){

2 if (null != spec) {

3 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

4 for (String field : properties) {

5 try {

6 collectCov(); // cov1

7 collectInputs(field, EQ);

8 final int index = field.indexOf(EQ); // target statement

9 collectOutputs(index);

10 collectCov(); // cov2

11 if (-1 == index) { continue; }

12 ... // add field to gelfMsg

13 } finally { collectCov(); } // cov3

14 }}}

Figure 3: Example showing ExLi’s instrumentation.

was recorded during unit testing. InlineTestConstructor edits

the CUT to insert the constructed inline tests immediately after

the target statement. Moreover, ExLi uses I-Test (an inline testing

framework for Java) to execute each generated inline test. If any of

the executed inline tests fail, ExLi filters it out: the failing inline

test is removed from the CUT. Such failing inline tests are due to

the target statement relying on some global program state (e.g.,

a static variable being used in a method invoked from the target

statement) that is not captured by collected variable values; future

work can explore considering such global program state.

3.3 Coverage-and-Mutation Based Reduction

ExLi-Base generates an inline test for each unique set of values

collected during executing unit tests. However, too many sets of

values could be collected for some target statements (even if we only

keep unique sets of values, which is 12.5% of all sets of values in

our experiments). Using too many sets of values may result in gen-

erating too many inline tests, which (1) could degrade readability,

since inline tests are co-located with code; or (2) cause compila-

tion failure, if adding generated inline tests causes a method to

exceed the maximum allowable size [61]. But, we observe in our

experiments that many sets of collected values are redundant with

respect to one another: they have similar fault-detection capability

and exercise the target statement in the same way. (Recall that, from

a unit testing point of view, the sets of values that ExLi collects are

intermediate values.)

To avoid generating redundant inline tests, ExLi performs a

novel coverage-and-mutation based test reduction process: reducing

the inline tests (or sets of values, if reducing before constructing

inline tests) that have redundant fault-detection capability, using

both code coverage [7, 21] and mutation score [36, 69] as metrics

for fault-detection capability.

3.3.1 Reduction by Code Coverage. ExLi collects code coverage

with the help of JaCoCo [56], a widely-used code coverage tool for

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

Algorithm 1 CovReducer

Global var: tgtStmtToCovered: mapping from target statement to the set

of lines covered by the target statement’s collected values

Inputs: cov1, cov2, cov3: code coverage information for the current set

of values; l0: target statement’s lineno

Outputs: true if the set of values should be kept, false otherwise

1: procedure shouldKeepValues(cov1, cov2, cov3, l0)

2: tgtCovChanged← covChanged(cov1, cov2, l0)

3: ctxCovChanged← covChanged(cov2, cov3, l0)

4: return tgtCovChanged ∨ ctxCovChanged

5: procedure covChanged(cov, cov′ , l0)

6: change← false

7: for l ∈ cov′ .keys() do

8: if l ∉ cov ∨ cov[l] < cov′ [l] then ⊲ line l coverage changed

9: if l ∉ tgtStmtToCovered[l0] then

⊲ line l not covered by l0’s collected values

10: change← true

11: tgtStmtToCovered[l0] ← tgtStmtToCovered[l0] ∪ {l}

12: return change

Java. To fit the inline testing scenario, ExLi considers two kinds of

code coverage: target coverage, the coverage during executing the

target statement; and context coverage, the coverage after executing

the target statement but during executing the context of the target

statement. The context of a target statement is defined the code

between it and the end of its containing basic block. For example,

for the target statement in Figure 1 (line 7), its containing basic

block is the for loop from lines 6 to 13, and its context is the code

from lines 11 to 13. Using context coverage in additional to the

target coverage makes the reduction more accurate, as the target

coverage alone may not provide enough information to distinguish

non-redundant inline tests. For example, the inline tests at line 8 and

line 10 in Figure 1, which have different fault-detection capability,

have the same target coverage, but they have different context

coverage because only the first inline test covers the then branch

of the if statement in the context at line 11.

To collect target coverage and context coverage, Instrumenter

(step 3) also adds code to collect code coverage at three time

points, see the collectCov calls in Figure 3: (1) the instruction-

level coverage just before the target statement (line 6, cov1), (2) the

instruction-level coverage right after the target statement (line 10,

cov2) and (3) the instruction-level coverage at the end of target state-

ment’s containing basic block (line 13, cov3). Then, CovReducer

(step 6) processes each collected set of values and instruction-level

coverage information, and only keeps the set of values (and sends

to InlineTestConstructor) if it increases either target coverage

or context coverage of the corresponding target statement.

The shouldKeepValues procedure in Algorithm 1 describes

when CovReducer keeps the collected set of values, given the

code coverage information cov1, cov2, cov3, and for the given

target statement l0. CovReducer uses a global variable, tgtStmt-

ToCovered, to save the lines of code covered by the collected sets

of values (which is initialized to empty) of each target statement.

shouldKeepValues checks if the target coverage changed (line 2)

and if the context coverage changed (line 3), both using covChanged,

and returns true if either of the two changed. covChanged com-

pares the code coverage at two time points, and checks if the later

one has covered any line not covered by the former one (line 8)

and that line has not been covered by any collected values (line 9);

if so, it updates the tgtStmtToCovered variable and will return

true. Note that the code coverage reported by JaCoCo is a mapping

from line number to the count of instructions on that line being

covered, thus line 8 considers a line’s coverage changed if its count

of instructions changed (usually from zero to non-zero; but maybe

from non-zero to a larger value for lines with ternary operators or

boolean expressions).

3.3.2 Reduction by Mutation Score. Mutation score is an estab-

lished metric of the fault-detection capability of unit tests [36, 69],

which is computed as the number of mutants killed by the unit

tests (i.e., that cause the tests to fail) divided by the total number

of mutants, where mutants are small modifications to the CUT.

ExLi currently supports two popular mutation generators for Java:

universalmutator [25] and Major [37]. ExLi uses all mutation oper-

ators provided in the two generators, but only mutate the target

statements. To do so, we specify line numbers to mutate (for uni-

versalmutator) or filter out mutants that are not for the target

statements (for Major).

MutReducer (step 8) performs the reduction by mutation score,

given the ExLi-Base inline tests without reduction and ExLi-Cov

inline tests after reduction by code coverage. Note that the mutant

generator may fail to generate mutants for some target statements

(9.6% for universalmutator, 8.9% for Major), in which case mutation

score cannot be computed, and MutReducer will directly output

the ExLi-Cov inline tests for those target statements. For all other

target statements, MutReducer further reduces the inline tests by

mutation score, on top of the inline tests reduced by code coverage,

as prior work suggests that mutation score is a more accurate metric

of the fault-detection capability than coverage [73].

Specifically, MutReducer first executes the ExLi-Base and ExLi-

Cov inline tests on the mutants and collects the mapping from

each inline test to the mutants killed by it. Then, MutReducer uses

an existing test-suite minimization algorithm [72] (used in prior

work [73, 75, 77]), given the mapping of ExLi-Cov inline tests to

killed mutants, to reduce ExLi-Cov inline tests that kill the same

mutants; each inline test in the reduced set should kill at least

one unique mutant. Finally, if ExLi-Base inline tests kill any mu-

tant that is not killed by the reduced ExLi-Cov inline tests, which

means reduction by coverage results in a loss in mutation score,

MutReducer adds the ExLi-Base inline tests that killed that mutant

to the reduced inline tests to remedy this loss.

We refer to the final set of inline tests after MutReducer as ExLi-

UM or ExLi-Major, when using universalmutator or Major as the

mutant generator, respectively. This set of inline tests preserve fault-

detection capability, as measured by mutation score, compared to

ExLi-Base inline tests before reduction.

Remark 1. Conceptually, ExLi could directly use test-suite mini-

mization with respect to mutants on the target statement to reduce

the collected sets of values. Instead, we make the design choice to

also use reduction by code coverage for three reasons. First, using

mutants for minimization requires to first generate inline tests for

all the collected sets of values. It is not always possible to do so

due to limits on method sizes [61]. Second, using reduction by code

coverage has the benefit that we can use mutation testing as a sanity

Extracting Inline Tests from Unit Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

Table 1: API used to filter statements.

Type API

Regex Matcher.matches(), Matcher.find(), Matcher.group()

String
String.split(), String.substring(), String.indexOf(),

String.format(), String.replace()

Bit ż, ń, &, |, ˆ, ˜, &=, |=, ˆ=, ż=, ń=

Stream Stream.of(), *.stream()

check of the fault-detection capability of the reduced set of inline

tests. There would be no automated sanity check if mutation testing

is used initially. Lastly, ExLi will need to preserve all inline tests for

target statements in which no mutant is created. So, if ExLi only

uses reduction by mutation score and a frequently covered target

statement has no mutants, then readability may degrade because

too many inline tests are generated.

Remark 2. Implicitly, generating inline tests from unit tests induces

a trade-off space among the competing goals of good readability,

high coverage, and high fault-detection capability. Since inline tests

are co-located with the CUT, fewer inline tests will likely lead to

better readability, but at the cost of possibly lower coverage or lower

fault-detection capability. We design ExLi to have high readability

and high fault-detection capability at the cost of possible loss in the

code coverage of the target statement or its context. Specifically,

reduction by mutation score is not guaranteed to preserve the

code coverage achieved by ExLi-Cov inline tests. We optimize for

code maintenance settings where high readability with high fault-

detection capability is likely preferable to poor readability. ExLi

can be configured to optimize differently along the trade-off space.

Also, now that ExLi can generate many more inline tests than

previously possible, future work can more easily perform user

studies of developers’ trade-off preferences.

4 IMPLEMENTATION

We describe our ExLi implementation, using the same step numbers

as in Section 3 to make our description easier to follow.

1 Find target statements. ExLi currently supports finding the

same four kinds of Java target statements as in our prior work [46]:

regular expressions, string manipulation, bit manipulation, and

stream processing. Given a kind of target statement, TargetStmt-

Finder searches for target statements that use APIs that are com-

monly used in the kinds of statements of interest. Table 1 lists the

APIs that ExLi looks for. Unlike our earlier I-Test prototype that

searches program text, ExLi improves accuracy by parsing the AST

(using JavaParser [35]) to find target statements.

2 Identify variables. VariablesFinder parses the AST of a

given target statement (using JavaParser [35]) to identify its free

variables, i.e., not including the variables whose scope is fully con-

tained by the target statement. For example, in the following target

statement, str and list are free variables, but item is not:

String str = list.stream().map(item -> item.replace("a",

"b")).collect(Collectors.joining(","));

An array indexing expression, e.g., arr[i], is also treated as a

single variable, because inline tests may only need to assign to or

check certain elements of the array.

1 public String[] match(String value) {

2 ...

3 for (int i = 0; i < patterns.length; i++) {

4 try {

5 Matcher matcher = patterns[i].matcher(value);

6 collectCov(); // cov1

7 collectInputs(matcher);

8 if (matcher.matches()) { // target statement

9 collectOutputCond(true);

10 collectCov(); // cov2

11 int count = matcher.groupCount();

12 String[] groups = new String[count];

13 for (int j = 0; j < count; j++)

14 groups[j] = matcher.group(j + 1);

15 return groups;

16 } else { collectOutputCond(false); }

17 } finally { collectCov(); } // cov3

18 }

19 return null; }

Figure 4: Example of a condition with instrumentation.

3 Instrument CUT. Instrumenter is implemented using the

ASM library [6]. ExLi currently supports instrumenting target state-

ments at three syntactic locations:

(1) Condition of an if statement. Figure 4 shows an example from

json-schema-validator [57]. Line 8 is the target statement;

it checks if value matches a pattern. Instrumenter adds code

before the if statement (line 7) to collect input variables, at the

beginning of the then branch (line 9) to collect true as the value

of the output variableÐthe result of evaluating the condition

expression, and at the beginning of the else branch (line 16) to

collect false as the value of the output variable.

(2) Declaration statement. Instrumenter adds code before the tar-

get statement to collect values of right-hand side variables and

after the target statement to collect the values of the left-hand

side variables.

(3) Assignment statement. Instrumenter adds code to collect left-

and right-hand side variable values before the target statement

and to collect left-hand side variable values after the target

statement. Instrumentation of left-hand side values before the

target statement is done to avoid overwriting the left-side input

value in statements like a += 1.

Moreover, Instrumenter handles the following special cases:

• If there is an increment/decrement expression in an array index,

Instrumenter rewrites the array indexing expression such that

the correct element is collected. For example, when adds code

to collect the output variable after the target statement a[i++]

= iż1, Instrumenter uses a[i-1] instead of a[i++].

• Some target statements are in if blocks that have jump (return,

break, continue, throw, etc.) instructions in the then and

else branches. To avoid compilation errors that would occur if

Instrumenter adds code to the end of blocks in those branches

(unreachable code), Instrumenter always wraps the parent

node of the target statement in the AST in a try block. If the

target statement’s parent node is a constructor body whose first

statement is a constructor call (e.g., super() or this()), ExLi

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

1 public CompiledTemplate compile(IdentifiableStringTemplateSource

2 templateSource) throws TemplateException {

3 String id = templateSource.getId().replace('/', ';'); // target statement

4 new Here().given(templateSource, "25.xml")

5 .checkEq(id, ";root;body@;folder;descriptor.txt");

6 String source = templateSource.getSource();

7 StringTemplateSource currentTemplateSource =

8 (StringTemplateSource) templateLoader.findTemplateSource(id);

9 ... }

(a) An inline test with an object saved in an XML file.

1 <org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

2 <id>/root/body@/folder/descriptor.txt</id>

3 <source>${body}</source>

4 </org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

(b) The content in the XML file.

Figure 5: An inline test that saves an object in an XML file.

excludes such constructor calls from the try block to avoid

compilation error (super/this has to be the first statement).

4 Execute unit tests and 5 collect values. Executor runs unit

tests on the instrumented CUT and the Collector stores the values

of input and output variables that are observed during execution.

ExLi is agnostic to the source of unit tests; they can be manually

written or automatically generated. We currently use Randoop

and EvoSuite for automatic unit test generation; future work can

investigate other test generators.

When the variable to collect is of a primitive type, a wrapper type

for a primitive type, a String, or an array of these types, Collector

directly stores the collected values (which will be generated in

code when constructing the inline test). Otherwise, Collector

uses XStream [50] to serialize the values, which will be deserialized

in future executions of the generated inline test. This support for

non-primitive types was not available in our earlier Inline Test

prototype and is added in this work. Figure 5 shows an example

inline test using XStream to support non-primitive types, from

craftercms/core [80]. Line 3 is the target statement; it replaces ł/ž

in templateSource’s id with ł;ž. Line 4 is an inline test that ExLi

generates. The variable being assigned, templateSource, is of a

non-primitive type IdentifiableStringTemplateSource, whose

value is serialized into ł25.xmlž (Figure 5b).

6 Reduce by code coverage. CovReducer reduces redundancy

among collected sets of variable values that cover a target state-

ment in the same way. We set JaCoCo [56], the code coverage

tool used by ExLi, to instrument and collect all classes in the cur-

rent project and dependency libraries, including the Java standard

library. However, some classes in the Java standard library (e.g.,

java.lang.String) are loaded when JaCoCo is initializing and thus

are not instrumented. To avoid missing coverage information in

such classes, especially for string-related and regex-related target

statements, our implementation uses wrapper classes that we write

for java.lang.String and java.util.Matcher so that the method

calls of these classes can be instrumented. It is necessary to wrap

java.util.Matcher because some java.lang.Stringmethods that

are used by our evaluation subjects depend on it.

7 Construct inline tests. InlineTestConstructor constructs

the inline tests at the AST level with the help of JavaParser [35].

8 Reduce by mutation score. MutReducer performs mutation

analysis, using universalmutator [25] and Major [37], and test-suite

Table 2: Projects used in our evaluation.

PID project SHA LOC

P1 AquaticInformatics/aquarius-sdk-java 8f4edb9 21,634
P2 Asana/java-asana 52fef9b 5,572
P3 awslabs/amazon-sqs-java-extended-client-lib 58fed25 1,288
P4 Bernardo-MG/maven-site-fixer 60244c0 1,689
P5 Bernardo-MG/velocity-config-tool 26226f5 358
P6 craftercms/core 4d394a9 10,233
P7 CycloneDX/cyclonedx-core-java d933705 6,011
P8 finos/messageml-utils b4c75c6 21,765
P9 fleipold/jproc b872abf 1,189
P10 hyperledger/fabric-sdk-java da35400 33,677
P11 jenkinsci/email-ext-plugin 699277c 13,190
P12 jkuhnert/ognl 5c30e1e 18,190
P13 jscep/jscep b20e944 6,310
P14 lamarios/sherdog-parser aa6806a 1,546
P15 liquibase/liquibase-oracle 6ab7dea 7,170
P16 maxmind/geoip-api-java 1030316 11,526
P17 medcl/elasticsearch-analysis-pinyin 01dda56 2,169
P18 mojohaus/build-helper-maven-plugin f1fac8c 2,424
P19 mojohaus/properties-maven-plugin 6cf7c2b 891
P20 mp911de/logstash-gelf 66debd8 13,130
P21 mpatric/mp3agic 407f7a9 9,907
P22 netceteragroup/trema-core fa9f76d 3,285
P23 phax/ph-pdf-layout f2d7b98 14,408
P24 ralscha/extclassgenerator 40ad147 6,271
P25 red6/pdfcompare 1259ef2 4,213
P26 restfb/restfb 35a34dd 42,022
P27 steveash/jopenfst 14c4a1d 5,180
P28 TNG/property-loader 928f414 1,860
P29 uwolfer/gerrit-rest-java-client a0bf7cc 14,594
P30 visenze/visearch-sdk-java 0efcda3 7,643
P31 wmixvideo/nfe 1ccdba7 133,698

Total 423,043
Avg 13,646.5

minimization, using an existing implementation [72], to further

reduce the generated inline tests. The test-suite minimization imple-

mentation supports four algorithms: greedy [86], GE, and GRE [9],

as well as HGS [31]. In our experiments, the four algorithms always

result in the same number of inline tests in the reduced set (but

different inline tests are selected), thus we use the greedy algorithm

as the default algorithm.

5 EVALUATION

We answer the following research questions:

RQ1: How many inline tests does ExLi generate before reduction?

RQ2: How many inline tests does ExLi generate after reduction?

RQ3: How effective are the generated inline tests in terms of fault-

detection capability, compared with unit tests?

RQ4: What are the runtime costs of ExLi?

Experimental environment. We run all experiments on a ma-

chine with Intel Core i7-11700K @ 3.60GHz (8 cores, 16 threads)

CPU, 64 GB RAM, Ubuntu 20.04, Java 8, and Maven 3.8.6.

5.1 Curating an Evaluation Dataset

We start with a large set of projects from our recent work on learn-

ing to complete unit tests [58]. That prior work used different exper-

imental requirements than ours to filter projects. So, we start from

our original unfiltered set containing 1,535 Java projects that use

Maven, have no compilation error, and have appropriate licenses.

To simplify our experiments, we select the subset of 1,209 single-

module projects. From these, we select the 128 actively-maintained

projects that have commits after January 1, 2022, to facilitate future

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

ExLi-UM inline tests kills 111 or 3.8% more mutants than ExLi-

Major inline tests. Compared with ExLi-UM inline tests, ExLi-Cov

inline tests miss 299 mutants (9.1% of all killed mutants). Compared

with unit tests, ExLi-UM inline tests miss 216 mutants (6.6% of all

killed mutants). This is because unit tests can check global program

state (e.g., fields) that is modified by the target statement, but inline

tests currently cannot; future extensions of inline tests can lift this

limitation. But, ExLi-UM kills 658 more mutants than unit tests

(20.1% of all killed mutants or 25.1% of mutants killed by unit tests).

We manually inspect surviving mutants that lead to loss of mu-

tation scores when ExLi-Cov is compared with ExLi-Base. So far,

we found two limitations of ExLi that lead to such intermediate

losses. (1) There are multiple clauses in an if condition, but the

mutation operator only modifies one of them. This limitation occurs

because, unlike pytest-inline, I-Test does not yet support testing

individual clauses in a condition. This limitation will go away as

I-Testmatures. (2) Multiple sets of values can kill a mutant but they

all cover the target statement and its context in the same way as a

chosen set of values that cannot kill the mutant. This is a limitation

of coverage-based reduction as we discussed in Section 3.

Observe from Figure 9 that inline tests and unit tests are comple-

mentary in terms of their fault-detection capability, and inline tests

can enhance the fault-detection capability of the unit test suites

from which they are extracted. To understand why some mutants

can be killed by inline tests but not by the unit tests, we manually

inspected 63 randomly sampled mutants from the 658. We found

two reasons: (1) unit tests lack good assertions to kill the mutants,

i.e., the mutant could be killed if we add assertions to the unit tests

(77.8% of cases); (2) the mutant does not change program state that

propagates to unit tests, i.e., it only changes local variables or con-

trol flow but not the return value or global variables, but inline

tests’ łlocalž assertions kill such mutants (22.2% of the cases).

Answer to RQ3. Inline tests complement the fault-

detection capability of unit tests. ExLi-UM and ExLi-Major

generate inline tests with average mutation scores of 87.9%

and 82.9%, respectively, which are higher than the mutation

scores of unit tests written by developers (67.9%), and those

generated by Randoop (31.4%) and EvoSuite (43.8%).

5.4 Measuring ExLi’s Runtime Cost

Generating inline tests with ExLi-UM and ExLi-Major takes, on

average across projects, 1,053.7s and 949.9s, respectively. (We omit

compilation time of the mutants; it is an offline process and is cur-

rently slow because we recompile per mutant. Future work can

optimize this process by compiling in parallel or by using incre-

mental compilation.) The breakdown of the runtime is as follows:

67.0s for running unit tests, 598.2s for recording variable values,

coverage-based reduction, and generating inline tests, and 388.5s

(universalmutator) or 284.7s (Major) for mutation-based reduction.

We are very encouraged by these early results on runtime costs,

especially when compared with our estimated amount of time that

it would take developers to write all 905ś930 inline tests that ExLi

generates. Our prior user study [46] showed that participants spent

around 6.3 minutes (378s) to understand and write inline tests

for each target statement in Python. Assume that the times to

understand target statements and write inline tests is uniformly

distributed and are the same for Java and Python. Then, on average,

participants would have needed 8769.6s to write inline tests for the

23.2 target statements per project used in our study.

Answer to RQ4. Running ExLi-UM/ExLi-Major takes

949.9s to 1,053.7s on average per project, excluding mu-

tant compilation times. Our estimates, based on our prior

user study, suggests that these average times is evidence

that ExLi can reduce manual effort for writing inline tests.

6 DISCUSSION

Usage Modes. The inline tests that ExLi generates can help find

regressions in future versions of the code, and there is need for

future work on co-evolving inline tests with code. But, ExLi can also

help find bugs in the current program versions if developers inspect

the generated tests. By inspecting inline tests in prior work [46],

we found two bugs that have now been fixed by the developers.

Limitations. (1) ExLi uses coverage of the target statement and its

context for initially reducing the set of inline tests. Flaky tests [3,

26, 41, 51, 64, 74] can cause coverage to fluctuate. We do not control

for flaky tests in the unit tests that ExLi uses. (2) Extracted inline

tests may be flaky and fail if the expected output in the oracles that

are generated depend on data that may change, e.g., current date or

device configuration. (3) When potential inputs to cause the target

statement or its context to throw an exception, ExLi does not use

such values to construct inline tests because I-Test [46] does not

yet support using expected exceptions as test oracles. (4) We do

not evaluate the extracted inline tests with developers of the open-

source projects that we evaluate. But, we have initial confidence

from our prior user study, which showed that participants find

inline tests useful. We plan to communicate more with open-source

developers in the future, especially as I-Test [46] matures.

Threats to Validity. Our code to instrument target statements,

collect coverage rates, and perform reduction could contain bugs.

To mitigate this threat, at least two co-authors review the code, and

multiple authors inspect the results. Our findings could be limited to

projects that we evaluate and their unit tests. To mitigate this threat,

we used open-source projects with various characteristics and used

automatically generated more unit tests. The ideas in ExLi are

general but our results may not generalize to other programming

languages. We plan to use our pytest-inline tool [47] as a basis for a

tool that extracts inline tests from Python unit tests.

Future Work. We plan to (1) support generation of inline tests

for target statements in other program locations than the three

that ExLi supports (if conditions, assignment statements, and dec-

larations); (2) support other kinds of target statements than the

four that our inline testing research so far considered; (3) generate

inline tests for other programming languages; and (4) investigate

regression test selection (RTS) for inline tests borrowing from our

work on RTS for unit tests [19, 20, 23, 27, 43, 44, 48, 76, 89].

Extracting Inline Tests from Unit Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

7 RELATED WORK

Single-Statement Bugs. Inline tests are partly motivated by recent

work [38, 39, 42, 67] showing that many bugs are caused by faults in

single statements, and that unit tests miss such bugs. We used inline

tests to find single-statement bugs [46], and ExLi could help find

more in the future. The ManySStuBs4J [39] dataset contains single-

statement bugs that are curated by statically analyzing open-source

Java projects and their version histories. As the ManySStuBs4J

dataset evolves to capture more recent versions of those projects, it

can be a benchmark for evaluating the bug-detection capability of

inline tests. We do not use ManySStuBs4J because (1) the filtering

process that was followed to curate the dataset resulted in many

false positives during our initial search for target statements; (2) the

commits that are used in the dataset are from before 2019-01-28, so

we had trouble running the unit tests in some projects.

Automatic Test Generation. Automatically generation of tests

is a popular research topic and many test generation techniques

have been proposed for Java [2, 8, 16, 18, 22, 59, 62, 71]. But, ExLi

is the first automatic generation technique for inline tests, which

we recently proposed. Elbaum et al.’s technique [14] extracts unit

tests from system tests. ExLi is similar in spiritÐit also extracts

lower granularity tests from higher granularity testsÐbut differs

in the granularity levels that it targets. Also, unlike Elbaum et al.’s

technique, ExLi further reduces generated inline tests.

Test SuiteMinimization/Reduction. Yoo andHarman [86] present

a survey on test suite minimization. Zhang et al. [88] study the effec-

tiveness of test suite minimization techniques. Test Suite Minimiza-

tion techniques include those that use (1) greedy algorithms [10, 79],

(2) heuristics [9, 31], and (3) integer programming [32, 45]. We use

a recent implementation of four algorithms [72] to further reduce

inline tests that ExLi generates.

Shi et al. [73] find that techniques based on statement coverage

reduce test-suite sizes by 62.9% but lose 20.5% in killed mutants.

Conversely, techniques based on killed mutants have no loss in

killed mutants but have test-suites that are 10.9 percentage points

larger than those produced by coverage-based minimization, on

average. Shi et al.’s study gives more confidence in preservation of

fault-detection capability in ExLi reduction based on killed mutants.

Noemmer and Haas [60] recently compare test suite minimiza-

tion techniques on open-source projects and find that, on average,

test suites reduce by 70% while losing 12.5% of the fault-detection

capability. Our results show that traditional test suite minimization

reduces generated inline tests by 31.9% and ExLi’s feedback loop

preserves fault-detection capability.

Using Coverage as Feedback in Automated Testing. Coverage

was used as feedback for test generation [16, 17, 54] and test-suite

reduction [30, 40, 53]. We use a combined change of coverage rate

of target statements and the blocks containing target statements.

Assertion/Invariant Generation. Program assertions/invariants

are useful for checking the correctness of program states. Inline

tests are similar to assert statements: both are co-located with pro-

gram statements and they can be turned off in production. But,

inline tests are different: they allow to provide arbitrary inputs,

expected outputs, and oracles for testing statements. Further, assert

statements only run if they are in code covered by unit tests, but

inline tests run in a different context even if the target statement is

not covered by unit tests. Lastly, existing inline testing frameworks

provide features that are typically not supported in assert state-

ments: parameterized tests, repeating test runs (helpful to see if

inline tests are flaky), grouping tests, and running tests in parallel.

There have been many techniques for automatically generating

assertions and invariants, including those that (1) infer invariants

from runtime information [5, 12, 15]; (2) generate assertions from

comments and documentation [4, 24, 55]; and (3) learn assertions

from code [13, 28, 58, 84, 87]. ExLi is most similar to approaches

in the first category, as it extracts inline tests from runtime infor-

mation. But, ExLi additionally (1) uses the collected information to

construct inputs, expected outputs, and oracles for the generated

inline tests; and (2) reduces the set of generated inline tests.

Jane Street’s łppx inline testsž [78] and the inline tests in this pa-

per [46] share a name and the characteristic that they are co-located

with code. But, a łppx inline testž executes functions and seems

closer to unit tests than tests for checking individual statements.

Xiong et al. [85] propose inner oracles, assertions declared in unit

test code to check internal states in test-input specific ways. Inline

tests target statements in the code, not unit tests.

Mutation testing. Mutation testing is a technique for evaluating

the effectiveness of test suites [29, 63, 66]. Popular mutation testing

tools include PIT [82], MuJava [52], Major [81] and universalmuta-

tor [25]. We use universalmutator because it uses source code level

replacement of operators and is easy to specify mutated line num-

bers. Also, the default mutation operators generated by PIT, Major,

and universalmutator are similar. But, future work can explore the

use of other mutation testing tools.

8 CONCLUSION

In this paper, we presented ExLi, a technique for automatically

generating inline tests with coverage-and-mutation based test re-

duction. The coverage-based reduction is based on context-aware

coverage feedback, and the mutation-based reduction is based on

killed mutants. We evaluate ExLi on 31 open-source Java projects

and find that ExLi generates between 905 inline tests (when using

universalmutator to reduce tests) and 930 inline tests (when using

Major to reduce tests) inline tests for 718 target statements. ExLi

reduces initially generated inline tests by 94.8%ś94.6%. ExLi enables

developers to enhance the fault-detection capability of their test

suites by easily obtaining and adding inline tests.

ACKNOWLEDGMENTS

We thank Fred Schneider, August Shi, Ayaka Yorihiro, Zhiqiang

Zang, and the anonymous reviewers for their comments and feed-

back. Some of this research was sponsored by the Army Research

Office and was accomplished under Cooperative Agreement Num-

ber W911NF-19-2-0333. The views and conclusions contained in

this document are those of the authors and should not be inter-

preted as representing the official policies, either expressed or im-

plied, of the Army Research Office or the U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

herein. This work is also partially supported by a Google Faculty Re-

search Award and the US National Science Foundation under Grant

Nos. CCF-1652517, CCF-2019277, CCF-2045596, CCF-2107291, and

CCF-2217696.

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen

REFERENCES
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In ICSE-SEIP. 263ś272.

[2] Andrea Arcuri and Gordon Fraser. 2016. Java Enterprise Edition support in
search-based JUnit test generation. In SSBSE. 3ś17.

[3] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and
Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In ICSE.
433ś444.

[4] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In ISSTA. 242ś253.

[5] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. 2006. From Daikon
to Agitator: lessons and challenges in building a commercial tool for developer
testing. In ISSTA. 169ś180.

[6] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A Code
Manipulation Tool to Implement Adaptable Systems. Adaptable and Extensible
Component Systems 30, 19 (2002).

[7] Xia Cai and Michael R Lyu. 2005. The effect of code coverage on fault detection
under different testing profiles. In A-MOST. 1ś7.

[8] Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric. 2017. Bounded
exhaustive test-input generation on GPUs. PACMPL 1, OOPSLA (2017), 1ś25.

[9] Tsong Yueh Chen and Man Fai Lau. 1970. Heuristics towards the optimization
of the size of a test suite. WIT Transactions on Information and Communication
Technologies 14 (1970).

[10] Tsong Yueh Chen and Man Fai Lau. 1998. A simulation study on some heuristics
for test suite reduction. IST 40, 13 (1998), 777ś787.

[11] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,
Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In ASE. 237ś249.

[12] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic symbolic execution for invariant inference. In ICSE. 281ś290.

[13] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K Lahiri. 2022.
TOGA: a neural method for test oracle generation. In ICSE. 2130ś2141.

[14] Sebastian Elbaum, Hui Nee Chin, Matthew B Dwyer, and Jonathan Dokulil. 2006.
Carving differential unit test cases from system test cases. In FSE. 253ś264.

[15] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. SCP 69, 1-3 (2007), 35ś45.

[16] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In FSE. 416ś419.

[17] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. TSE 39, 2
(2012), 276ś291.

[18] Indradeep Ghosh, Nastaran Shafiei, Guodong Li, and Wei-Fan Chiang. 2013. JST:
An automatic test generation tool for industrial Java applications with strings.
ICSE, 992ś1001.

[19] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In ICSE-Demo. 713ś716.

[20] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression
test selection with dynamic file dependencies. In ISSTA. 211ś222.

[21] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin
Alipour, and Darko Marinov. 2013. Comparing non-adequate test suites using
coverage criteria. In ISSTA. 302ś313.

[22] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. 2010. Test generation through programming in UDITA. In
ICSE. 225ś234.

[23] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
empirical evaluation and comparison of manual and automated test selection. In
ASE. 361ś372.

[24] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In ISSTA. 213ś224.

[25] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An extensible, regular-expression-based tool for multi-language mutant
generation. In ICSE-Demo. 25ś28.

[26] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In ICST. 993ś997.

[27] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluat-
ing regression test selection opportunities in a very large open-source ecosystem.
In ISSRE. 112ś122.

[28] Long H. Pham, Ly Ly Tran Thi, and Jun Sun. 2017. Assertion generation through
active learning. In ICFEM. Springer, 174ś191.

[29] Farah Hariri, August Shi, Owolabi Legunsen, Milos Gligoric, Sarfraz Khurshid,
and Sasa Misailovic. 2018. Approximate transformations as mutation operators.
In ICST. 285ś296.

[30] Preethi Harris and Raju Nedunchezhian. 2015. A greedy approach for coverage-
based test suite reduction. IAJIT 12 (2015), 17ś23.

[31] M Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A methodology for
controlling the size of a test suite. TOSEM 2, 3 (1993), 270ś285.

[32] Joshua Hartmann and Dave J Robson. 1989. Revalidation during the software
maintenance phase. In ICSM. 70ś80.

[33] Inline Testing Team 2023. pytest-inline GitHub Page. https://github.com/pytest-
dev/pytest-inline.

[34] Inline Testing Team 2023. pytest-inline on PyPi. https://pypi.org/project/pytest-
inline.

[35] JavaParser Team. 2023. JavaParser. https://github.com/javaparser/javaparser.
[36] Dennis Jeffrey and Neelam Gupta. 2007. Improving fault detection capability

by selectively retaining test cases during test suite reduction. TSE 33, 2 (2007),
108ś123.

[37] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA-Demo. 433ś436.

[38] Arthur V Kamienski, Luisa Palechor, Cor-Paul Bezemer, and Abram Hindle. 2021.
PySStuBs: Characterizing single-statement bugs in popular open-source Python
projects. In MSR. 520ś524.

[39] Rafael-Michael Karampatsis and Charles Sutton. 2020. How often do single-
statement bugs occur? The ManySStuBs4J dataset. In MSR. 573ś577.

[40] Saif Ur Rehman Khan, Sai Peck Lee, Reza Meimandi Parizi, and Manzoor Elahi.
2014. A code coverage-based test suite reduction and prioritization framework.
WICT, 229ś234.

[41] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. ICST, 312ś322.

[42] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias Costa, and Emad Shihab.
2021. How effective is continuous integration in indicating single-statement
bugs?. In MSR. 500ś504.

[43] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An extensive study of static regression test selection in
modern software evolution. In FSE. 583ś594.

[44] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In ASE-Demo. 949ś954.

[45] Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek. 2018. Nemo:
Multi-criteria test-suite minimization with integer nonlinear programming. In
ICSE. 1039ś1049.

[46] Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. 2022. Inline tests. In
ASE. 1ś13.

[47] Yu Liu, Zachary Thurston, Alan Han, Pengyu Nie, Milos Gligoric, and Owolabi
Legunsen. 2023. pytest-inline: An inline testing tool for Python. In ICSE-Demo.
to appear.

[48] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023.
More Precise Regression Test Selection via Reasoning about Semantics-Modifying
Changes. In ISSTA. tośappear.

[49] LogstashGelf 2022. Mp911de Logstash Gelf. https://github.com/mp911de/
logstash-gelf.git.

[50] LogstashGelf 2022. XStream developer. https://x-stream.github.io/index.html.
[51] Qingzhou Luo, Lamyaa Eloussi, Farah Hariri, and Darko Marinov. 2014. An

empirical analysis of flaky tests. FSE, 643ś653.
[52] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: An automated class

mutation system. STVR 15, 2 (2005), 97ś133.
[53] Alessandro Marchetto, Giuseppe Scanniello, and Angelo Susi. 2019. Combining

code and requirements coverage with execution cost for test suite reduction. TSE
45 (2019), 363ś390.

[54] Phil McMinn. 2004. Search-based software test data generation: a survey. STVR
14, 2 (2004), 105ś156.

[55] Manish Motwani and Yuriy Brun. 2019. Automatically generating precise oracles
from structured natural language specifications. In ICSE. 188ś199.

[56] Mountainminds GmbH & Co. KG and Contributors. 2023. JaCoCo - Java Code
Coverage Library. https://www.jacoco.org/jacoco.

[57] Networknt 2022. JSON Schema Validator. https://github.com/networknt/json-
schema-validator.

[58] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. 2023. Learning deep semantics for test completion. In ICSE. 1ś12.

[59] Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar
Milicevic, and Milos Gligoric. 2020. Unifying execution of imperative generators
and declarative specifications. PACMPL 4, OOPSLA (2020).

[60] Raphael Noemmer and Roman Haas. 2019. An evaluation of test suite minimiza-
tion techniques. In SWQD. 51ś66.

[61] Oracle. 2022. Chapter 4. The class file format. https://docs.oracle.com/javase/
specs/jvms/se8/html/jvms-4.html#jvms-4.7.3.

[62] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In OOPSLA. 815ś816.

[63] Mike Papadakis, Marinos Kintis, Jie M. Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Chapter six - mutation testing advances: An analysis and survey.
ADV Computers 112 (2019), 275ś378.

[64] Owain Parry, Gregory M. Kapfhammer, Michael C Hilton, and Phil McMinn.
2022. A survey of flaky tests. TOSEM 31 (2022), 17:1ś17:74.

Extracting Inline Tests from Unit Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

[65] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from Google. TSE 48, 10 (2021), 3900ś3912.

[66] Goran R. Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices? ICSE, 910ś921.

[67] Cedric Richter and Heike Wehrheim. 2022. TSSB-3M: Mining single statement
bugs at massive scale. In MSR. 418ś422.

[68] Brian Robinson, Michael D Ernst, Jeff H Perkins, Vinay Augustine, and Nuo Li.
2011. Scaling up automated test generation: Automatically generating maintain-
able regression unit tests for programs. In ASE. 23ś32.

[69] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An
empirical study of the effects of minimization on the fault detection capabilities
of test suites. In ICSM. 34ś43.

[70] Sebastian Schweikl, Gordon Fraser, and Andrea Arcuri. 2022. EvoSuite at the
SBST 2022 Tool Competition. In SBST. 33ś34.

[71] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults? an
empirical study of effectiveness and challenges (t). In ASE. 201ś211.

[72] August Shi. 2023. Collection of scripts to conduct test-suite reduction. https:
//github.com/august782/testsuite-reduction.

[73] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing trade-offs in test-suite reduction. In FSE. 246ś256.

[74] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
Assumptions on Deterministic Implementations of Non-deterministic Specifica-
tions. In ICST. 80ś90.

[75] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating test-suite reduction in real software evolution. In ISSTA. 84ś94.

[76] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Reflection-Aware Static Regression Test Selection. In OOPSLA.

187:1ś187:29.
[77] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and

combining test-suite reduction and regression test selection. In FSE. 237ś247.
[78] Jane Street. 2023. Inline tests. https://github.com/janestreet/ppx_inline_test.git.
[79] Sriraman Tallam and Neelam Gupta. 2005. A concept analysis inspired greedy

algorithm for test suite minimization. ACM SIGSOFT Software Engineering Notes
31, 1 (2005), 35ś42.

[80] Crafter Core Team. 2023. Crafter CMS Core. https://github.com/craftercms/core.
[81] Major Team. 2023. Major mutation framework. https://mutation-testing.org/.
[82] Pitest Team. 2022. PIT - Mutation Testing for Java. https://pitest.org/.
[83] Randoop Team. 2023. Randoop Manual. https://randoop.github.io/randoop/

manual/.
[84] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-

vanyk. 2020. On learning meaningful assert statements for unit test cases. In
ICSE. 1398ś1409.

[85] Yingfei Xiong, Dan Hao, Lu Zhang, Tao Zhu, Muyao Zhu, and Tian Lan. 2015.
Inner Oracles: Input-Specific Assertions on Internal States. In FSE. 902ś905.

[86] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. STVR 22, 2 (2012), 67ś120.

[87] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and
Qianxiang Wang. 2022. Automated assertion generation via information retrieval
and its integration with deep learning. In ICSE. 163ś174.

[88] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An
empirical study of JUnit test-suite reduction. In ISSRE. 170ś179.

[89] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
framework for checking regression test selection tools. In ICSE. 430ś441.

	Abstract
	1 Introduction
	2 Example
	3 Technique
	3.1 Finding and Analyzing Target Statements
	3.2 Generating Inline Tests
	3.3 Coverage-and-Mutation Based Reduction

	4 Implementation
	5 Evaluation
	5.1 Curating an Evaluation Dataset
	5.2 Extracting Inline Tests
	5.3 Performing Mutation Analysis
	5.4 Measuring ExLi's Runtime Cost

	6 Discussion
	7 Related Work
	8 Conclusion
	References

