
More Precise Regression Test Selection
via Reasoning about Semantics-Modifying Changes

Yu Liu★, Jiyang Zhang★, Pengyu Nie★, Milos Gligoric★, Owolabi Legunsen†
★The University of Texas at Austin; †Cornell University

USA
{yuki.liu,jiyang.zhang,pynie,gligoric}@utexas.edu,legunsen@cornell.edu

ABSTRACT

Regression test selection (RTS) speeds up regression testing by only

re-running tests that might be affected by code changes. Ideal RTS

safely selects all affected tests and precisely selects only affected

tests. But, aiming for this ideal is often slower than re-running

all tests. So, recent RTS techniques use program analysis to trade

precision for speed, i.e., lower regression testing time, or even use

machine learning to trade safety for speed. We seek to make recent

analysis-based RTS techniques more precise, to further speed up re-

gression testing. Independent studies suggest that these techniques

reached a łperformance wallž in the speed-ups that they provide.

We manually inspect code changes to discover those that do not

require re-running tests that are only affected by such changes.

We categorize 29 kinds of changes that we find from five projects

into 13 findings, 11 of which are semantics-modifying. We enhance

two RTS techniquesÐEkstazi and STARTSÐto reason about our

findings. Using 1,150 versions of 23 projects, we evaluate the impact

on safety and precision of leveraging such changes.We also evaluate

if our findings from a few projects can speed up regression testing in

other projects. The results show that our enhancements are effective

and they can generalize. On average, they result in selecting 41.7%

and 31.8% fewer tests, and take 33.7% and 28.7% less time than

Ekstazi and STARTS, respectively, with no loss in safety.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; Software evolution.

KEYWORDS

Regression test selection, regression testing, semantics-modifying

changes, change-impact analysis

ACM Reference Format:

Yu Liu★, Jiyang Zhang★, Pengyu Nie★, Milos Gligoric★, Owolabi Legunsen†.

2023. More Precise Regression Test Selection via Reasoning about Semantics-

Modifying Changes. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’23), July 17ś21, 2023,

Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3597926.3598086

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598086

1 INTRODUCTION

Regression testing is the dominant quality assurance approach

today; it commonly re-runs all tests (RetestAll) to check that code

changes do not introduce bugs. But, RetestAll costs are growing

rapidly with increasing rates of updates and growth in code size [31,

70]. So, without cost-reducing automated techniques, developers

may test less, or use manual ad hoc approaches that miss bugs [29].

Regression test selection (RTS) reduces regression testing costs

by only re-running tests that are affected by changes. Affected tests

are computed as those that transitively depend on changed code.

Researchers studied RTS for decades [10, 11, 14, 17, 18, 21, 22, 27,

28, 30, 32ś34, 37, 39, 41, 42, 50, 54ś58, 60ś62, 64, 65, 68, 69, 74] and

recent techniques [5, 8, 9, 19, 26, 40, 53, 66] are being adopted.

Ideally, RTS would safely select all affected tests and precisely

select only affected tests. But, RTS techniques that aim for safety

and precision are often slower than RetestAll [25, 27, 50].

Recent RTS techniques that are being adopted make two kinds

of trade-offs. First, some techniques based on program analysis

trade precision for speed, i.e., lower end-to-end regression testing

time, when selecting affected tests. The rationale is that developers

likely prefer safe but imprecise RTS that is faster than RetestAll to

unsafe RTS, or safe and precise RTS that is slower than RetestAll.

Second, some techniques trade safety for speed, typically by training

machine learning (ML) models to only select tests that may fail (i.e.,

not all affected tests) after a change [7, 44, 45]. The rationale is that

a failing test suffices to initiate debugging.

We seek to speed up recent analysis-based RTS techniques be-

cause they seem to have reached a łperformance wallžÐa limit

on how much they can speed up regression testing. Independent

studies showed similar average ratios of selected tests and aver-

age time reduction on different projects and sets of project revi-

sions [10, 39, 63, 67, 73]. So, the next generation of RTS techniques

should break this performance wall to improve on the gains of

the existing ones. Sections 7 and 8 position our work relative to

ML-based RTS. There, we show that our improved analysis-based

RTS performs better than the state-of-the-art ML-based RTS.

The technical challenge that we address in this paper is how to

speed up regression testing by making analysis-based RTS more

precise without sacrificing safety. We do so based on the idea that

some semantics-modifying code changes do not require re-running

all tests that analysis-based RTS selects. For example, suppose

that the only change to a Java class that has no ancestors (except

java.lang.Object) or descendants is the deletion of a method.

If the resulting code compiles, then a class-level RTS technique

need not re-run test classes that are only affected by this deletion.

Our approach therefore generalizes related work like Reks [67],

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

1 public class Base64Test {

2 - private static final String [] BASE64_IMPOSSIBLE_CASES = {

3 + static final String [] BASE64_IMPOSSIBLE_CASES = {

4 "ZE==", "ZmC=", "Zm9vYE ==", "Zm9vYmC=", "AB", };

Figure 3: Changing a field’s access modifier.

1 public class Percentile extends AbstractUnivariateStatistic ...

2 - public Percentile(final double quantile) throws

3 - MathIllegalArgumentException {

4 + public Percentile(final double quantile) {

Figure 4: Removing throws clause from method signature.

1 public abstract class Email

2 + public String getHeader(final String header)

3 + { return headers.get(header); }

Figure 5: Adding a method to a class.

version in green). Figure 2 shows the dependency graphs that Ek-

stazi and STARTS compute and the tests that they select. STARTS

is unsafe as it does not detect that T3 depends on the changed class

A because C.m uses reflection to invoke A.m. STARTS can also be less

precise due to dynamic dispatch. Legunsen et al. [39, 60] found that

Ekstazi and STARTS have similar end-to-end times and reflection

rarely makes STARTS unsafe in practice.

Some kinds of change that we use. We give several examples

of semantics-modifying changes for which Ekstazi and STARTS

re-run affected tests, and illustrate why it is safe to not re-run tests

that are only affected by such changes. The examples are simplified

from changes in open-source projects; we show only relevant code.

The change in Figure 3 (from the Apache codec project [1], revi-

sion a6b2f1) removes the private access modifier on a static field

and the project’s code still compiles. Ekstazi and STARTS re-run

Base64Test (it depends on itself), but doing so is needless: other

classes that access the field must use reflection to do so, but reflec-

tion is not used here. So, if the only changes are to access modifiers,

code still compiles, and the project does not use reflection to access

the changed fields, then it is safe to not re-run tests that are only

affected by such changes.

The change in Figure 4 (from the Apache math project [3], revi-

sion 802058f) only deletes a throws clause. Ekstazi and STARTS

needlessly re-run 15 and 22 test classes. No class uses reflection

to check method signatures, so tests that are only affected by this

change will behave the same before and after the change. It is safe

to not re-run such tests.

As a final example, in Figure 5 (from the Apache email project [2],

revision 78b9fdf) a new method is added. Ekstazi and STARTS

re-run eight and nine test classes unnecessarily, together with a test

class that was changed to depend on the new method. It is safe to

not re-run those eight and nine test classes: they do not transitively

depend on the new method.

Our goal is to study how to find these kinds of changes and

enhance analysis-based RTS to reason about them, to improve

RTS precision. Section 3 describes our process for finding kinds of

changes that can be used, and Section 4 explains how we enhance

Ekstazi and STARTS to reason about these kinds of changes.

3 MANUAL ANALYSIS OF CHANGES

We describe how we manually find and categorize the kinds of

changes that we use, and discuss how many of these kinds of

changes the RTS tools in this paper use. To re-emphasize, we do not

claim that the kinds of changes that we find are exhaustive. We only

show that it is feasible to find these kinds of changes and to improve

RTS precision (and speed up regression testing) by reasoning about

them. Future work could find more kinds of changes.

3.1 Manual Analysis Process

We manually analyze the nature of changes in 50 revisions per

project in 5 projects that are shown in Table 1 with the revisions

that we start from. We follow four steps:

(1) Choosing revisions. Per project, we randomly choose a revi-

sion from 2019 and 50 contiguous subsequent revisions. Our ratio-

nale for choosing these projects and revisions is in Section 5.1.

Table 1: Manually

inspected projects

Name SHA

beanutils 50a9457

codec 6cf3482

compress 80a388e

pool 41c4df1

fastjson 6b1ed5f

(2) Inspection. We manually inspect

all changes to Java files in all 250 revi-

sions and record the changed program

elements (e.g., class, method) and our de-

cisions on if each change, by itself, is

safe for RTS to ignore. Three co-authors

performed the inspection; one of them

did initial inspection and then met with

the other two to discuss and find agreement over a period of 2

months. Some decisions are challenging and depend on context.

For example, if an instance method is added, whether tests that are

only affected by that change can be ignored depends on if a call to a

method with the same signature exists in the same class hierarchy

as the new method.

(3) Categorization. We organize our findings on the kinds of

changes, and aggregate the number of Java files, revisions, and

projects related to each kind of code change.

(4) Checking RTS behavior. For each kind of change, we confirm

that Ekstazi or STARTS selects at least one test, as a sanity check

on our decisions, and to provide initial data for evaluating our

enhanced RTS techniques.

3.2 Findings from Manual Analysis

In Table 2, we organize the 29 kinds of changes that we observe

during manual analysis into 13 findings that can be used to improve

RTS precision. We group kinds of changes that are similar or that

modify similar program elements, if they are likely to induce the

same test-selection behavior in our enhanced RTS techniques. ID

in Table 2 is a label that we use to refer to each finding; the caption

in that table describes other columns.

Here, we discuss the Kind of Change rows in Table 2 that are

not self-explanatory. Sorting fields or methods (F3) is a refactoring;

RTS should not re-run tests. Reks [67] is the only refactoring-aware

RTS technique that we know, and it does not handle this refactoring.

Yet, F3 applies to many files that we analyze.

We explain some other semantics-modifying kinds of changes.

(1) łImport method from different packagež (F7): the package from

which a method is imported has changed.

(2) łImport field type from different packagež (F7): the package

from which a field’s type is imported has changed.

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Table 2: Findings from our formative study. Kind of Change: description; #F no. of source files with each kind of code change;

#S: no. of revisions with each kind of change; #P: no. of inspected projects (out of 5) with each kind of change; Reasoning: why

the kind of change can be used to improve RTS precision.

ID Kind of Change #F #S #P Reasoning

F1 a Add class 133 39 5 Evaluated RTS techniques already handle these properly.

F2

a Add instance method 58 43 5

If no method with same signature is invoked on instances of the modified class,

then tests that are only affected by such change can be safely skipped.

b Remove instance method 1 1 1

c Remove static method 1 1 1

d Add constructor 1 1 1

e Add static method 5 5 3

F3 a Sort members 42 5 3 This is a refactoring for which tests need not be re-run.

F4

a Add field 18 13 3

Tests that do not create instances of modified class will not change behavior.b Remove field 3 3 2

c Add static initializer block 1 1 1

F5 a Change anonymous class to lambda 18 2 2 If these are the only changes, affected tests do not need to be rerun.

F6

a Rename class 9 3 2
Refactorings for which no tests do not need to be re-run. The compiler will

catch improper renamings.
b Rename instance method 4 4 3

c Rename static method 1 1 1

F7

a Import field type from different package 1 1 1

Affected tests can be re-run based on method-level reasoning.b Modify field initialization 9 5 3

c Import method from different package 1 1 1

F8

a Add exception to method 6 4 3
If these are the only changes, affected tests do not need to be re-run if no test

dependency uses reflection.
b Modify throws clause 1 1 1

c Modify method parameter 2 2 1

F9

a Modify class access modifier 3 2 2
If these are the only changes, affected tests do not need to be re-run if no test

dependency uses reflection.
b Make field final 2 2 1

c Modify field access modifier 2 2 2

F10 a Modify a constructor 5 3 2 Affected tests can be re-run based on method-level reasoning.

F11
a Specialize parameter type 3 2 2 No need to re-run tests if these are the only changes because bytecode of

affected (dependent) class has changed.b Add/Change base class to hierarchy 1 1 1

F12

There is no need to re-run tests if there is no reflection (no runtime annotation).

Affected tests can be re-run based on method-level reasoning if there is reflection,

and annotation is method annotation, parameter annotation, or field annotation.

a Add runtime annotation 3 3 1

F13
a Replace parameter with lambda expression 1 1 1

Affected tests can be re-run based on method-level reasoning.
b Compiler modifies bytecode structure 12 6 3

(3) łReplace parameter with lambda expressionž (F13): a lambda

expression is passed as a parameter to a changed API.

(4) łCompiler modifies bytecode structurež (F13): compiler opti-

mizations change bytecode structure but not functionality, e.g.,

constant propagation or synthetic method introduction.

Table 2 is based only on the file-level diffs that we analyze. If a file

contains more than one kind of change in one diff, we increment

the count of each kind by one. The kinds of changes in Table 2 are

only from 95 unique revisions; the remaining (155) revisions merely

modify bytecode metadata, or re-format code. Also, the kinds of

changes that we identify are from 332 unique files.

Findings that RTS techniques handle. Table 3 shows which

findings are supported by recent RTS techniques and the enhanced

techniques that we introduce in this paper. There,✓ or ✗means that

a tool uses or does not use a finding, respectively. Our enhanced

techniques are marked with ★. Of 13 findings, 11 are semantics-

modifying changes and they are marked with †. Table 3 also shows

that we do not yet use some findings from our manual analysis: F5,

F12, and F13. Non-trivial compiler support is needed to leverage

F5 and F13. F12 has no effect unless reflection is used; we do not

implement it since reflection is rare in our evaluated subjects.

Table 3: Findings that RTS techniques support.

ID E
k
st
a
zi

S
T
A
R
T
S

R
e
k
s

★
F
in
e
E
k
st
a
zi

★
F
in
e
S
T
A
R
T
S

F1 † ✓ ✓ ✓ ✓ ✓

F2 † ✗ ✗ ✗ ✓ ✓

F3 ✗ ✗ ✗ ✓ ✓

F4 † ✗ ✗ ✗ ✓ ✓

F5 † ✗ ✗ ✗ ✗ ✗

F6 ✗ ✗ ✓ ✓ ✓

F7 † ✗ ✗ ✗ ✓ ✓

F8 † ✗ ✗ ✗ ✓ ✓

F9 † ✗ ✗ ✗ ✓ ✓

F10 † ✗ ✗ ✗ ✓ ✓

F11 † ✗ ✗ ✗ ✓ ✓

F12 † ✗ ✗ ✗ ✗ ✗

F13 † ✗ ✗ ✗ ✗ ✗

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Algorithm 1 getAffectedTests for FineEkstazi and FineSTARTS

Inputs:𝑇 : the set of test classes in the new revision,𝑀 : 𝑡 → 𝐷

⊲ Section 4.1 describes 𝐷

Outputs:𝑇𝑎 ⊆ 𝑇 : affected test classes

1: procedure getAffectedTests(𝑇 ,𝑀)

2: 𝑇𝑎 ← {}

3: for all test in𝑇 do

4: if test ∉ 𝑀 then ⊲ test is a newly added test class

5: 𝑇𝑎 ← 𝑇𝑎 ∪ {test}; continue

6: for all𝐶 in𝑀 [test] .keys() do

7: if getModified(test,𝐶,𝑀) then ⊲ test should be re-run

8: 𝑇𝑎 ← 𝑇𝑎 ∪ {test}; break

9: return𝑇𝑎

10:

11: procedure getModified(test,𝐶,𝑀)

12: 𝐼new ← getNewMetaData(𝐶)

13: if 𝑀 [test] [𝐶] = 𝐼new then return false ⊲ C did not change

14: else ⊲ did fields, constructors, initializers, or methods in C change?

15: for all 𝑓 in getFieldData(𝑀 [test] [𝐶]) do

16: if fldChanged(𝑀 [test] [𝐶] [𝑓], 𝐼new [𝑓]) then return true

17: for all 𝑛 in getConstructorAndInitData(𝑀 [test] [𝐶]) do

18: if conChanged(𝑀 [test] [𝐶] [𝑛], 𝐼new [𝑛]) then return true

19: for all𝑚 in getMethodData(𝑀 [test] [𝐶]) do

20: if mtdChanged(𝑀 [test] [𝐶] [𝑚], 𝐼new [𝑚],𝐶) then return true

21: return false

22:

23: procedure fldChanged(f, fnew)

24: return ¬(f \ fnew = ∅ ∨ fnew \ f = ∅) ⊲ true if field info changed

25:

26: procedure conChanged(n, nnew)

27: return n ≠ nnew ⊲ true if constructor or static initializer changed

28:

29: procedure mtdChanged(m,mnew,𝐶)

30: for all sig in (m.keys() ∪mnew .keys()).copy() do

⊲ old and new signatures

31: if sig ∈ m and sig ∈ mnew then ⊲ unchanged signatures

32: if m[sig] = mnew [sig] then

⊲ same bytecode; ignore the change

33: mnew ← mnew \ { (sig,mnew [sig]) }; m← m \ { (sig,m[sig]) }

34: else return true ⊲ change: same signature, different bytecode

35: else if mnew [sig] ∈ m.values() or m[sig] ∈ mnew .values() then

⊲ found old bytecode with new signature; ignore the change

36: m← m \ { (sig,mnew [sig]) }; mnew ← mnew \ { (sig,m[sig]) }

37: cHasHrchy← hasHrchy(𝐶) or hadHrchy(𝐶)

38: if !cHasHrchy and (m = ∅ or mnew
= ∅) then

⊲ one empty map: method added or deleted without affecting hierarchy

39: return false

40: else if 𝐶 ∈ 𝑇 and mnew
= ∅ then

⊲ deleted a method from a test class

41: return false

42: return true

Finally,mtdChanged performsmethod-level reasoning. The union

of (signature, bytecode) pairs for all methods in the old and new

revisions is iterated over to check for changes. If the pair for method

𝑚𝑖 is the same in the old and new revisions,𝑚𝑖 did not change and

mtdChanged proceeds with the next method,𝑚𝑖+1 (line 32). If the

signatures are the same but the bytecode differ, then the method

changed and line 34 returns true. On line 35, if the signatures differ

Algorithm 2 Embedding mRTS in FineEkstazi

Inputs: Test class 𝑡 , Ekstazi metadata .𝑒𝑘𝑠𝑡𝑎𝑧𝑖 , mRTS metadata .𝑚𝑟𝑡𝑠

Outputs: true if the test should run; false otherwise

1: procedure Affected(𝑡, .𝑒𝑘𝑠𝑡𝑎𝑧𝑖, .𝑚𝑟𝑡𝑠)

2: 𝑐𝑔← FineEkstazi.𝑔𝑒𝑡𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (𝑡, .𝑒𝑘𝑠𝑡𝑎𝑧𝑖)

3: if 𝑐𝑔 = ∅ then ⊲ Nothing is modified

4: return 𝑓 𝑎𝑙𝑠𝑒

5: 𝑚𝑔←𝑚𝑅𝑇𝑆.𝑔𝑒𝑡𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (𝑡, .𝑚𝑟𝑡𝑠)

6: if 𝑐𝑔 ⊊𝑚𝑔 then ⊲ Reflection or third-party class

7: return 𝑡𝑟𝑢𝑒

8: for 𝑐𝑙𝑧 : 𝑐𝑔 do

9: if𝑚𝑅𝑇𝑆.𝑖𝑠𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 (𝑡, 𝑐𝑙𝑧, .𝑚𝑟𝑡𝑠) then

10: return 𝑡𝑟𝑢𝑒

11: return 𝑓 𝑎𝑙𝑠𝑒

but the bytecode is the same,𝑚𝑖 was refactoredÐno test should be

selectedÐand mtdChanged proceeds with𝑚𝑖+1.

On line 38, if exactly one revision’s map is empty then a method

must have been added to or deleted from a class 𝐶 . If 𝐶 is not

part of a class hierarchy, and assuming the code compiles, then

no test that only depends on 𝐶 should be selected, so mtdChanged

returns false. Line 40 deals with a special case: if a test method is

added/revised, it is considered as changed. Speedups result when

the only change is to delete a method in a test classÐthe remaining

tests cannot be affected by the deleted test if the code still compiles.

4.3 Embedding Method-Level Reasoning

Using several findings in Section 3, e.g., F10, to improve RTS pre-

cision requires method-level reasoning. So, we develop a static

method-level analysis (mRTS) that can be combined with class-

level analyses to improve their precision without making them less

safe. Algorithm 2 shows how we integrate mRTS analysis into Fi-

neEkstazi; its inputs are a test class, Ekstazimetadata (.ekstazi),

and mRTS metadata (.mrts). It outputs true if the test should be

selected and false otherwise. The analogous algorithm for embed-

ding mRTS into FineSTARTS works in a similar way.

Line 2 obtains a set of modified classes (𝑐𝑔) for test 𝑡 (as identified

by FineEkstazi). If the set is empty (line 3), false is returnedÐ𝑡

is not affected. If the set is not empty, mRTS is called to obtain

the set of modified classes 𝑚𝑔. If 𝑐𝑔 ⊄ 𝑚𝑔, then 𝑡 is affected for

one of two reasons (1) a third-party class is modified (which is not

tracked by mRTS), or (2) reflection is used to access some classes

(which are not captured by mRTS). If 𝑐𝑔 ⊂ 𝑚𝑔, lines 8-10 iterate

over 𝑐𝑔. For each 𝐶 ∈ 𝑐𝑔 line 9 invokes mRTS and returns true if

the mRTS finds that 𝑡 is affected. If mRTS analysis returns false

for all changed classes, then 𝑡 is not affected (line 11).

5 EVALUATION

We evaluate the effectiveness of using our manual analysis findings

for improving RTS precision. We address these research questions:

• RQ1: How much does using the kinds of changes in our manual

analysis reduce the tests selected by Ekstazi and STARTS?

• RQ2: How much does using the kinds of changes in our manual

analysis reduce the end-to-end time of Ekstazi and STARTS?

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

• RQ3: What is the impact of using the kinds of changes in our

manual analysis on the safety of Ekstazi and STARTS?

• RQ4: To what extent do the findings from our manual analysis

re-occur in other projects and revisions that we did not analyze?

5.1 Experimental Setup

Evaluation subjects and revisions: Table 4 shows the 23 projects

that we evaluate (sorted by average test time), plus some character-

istics. Projects in our manual analysis are highlighted in gray. We

choose 18 of the projects in Table 4 because they are widely used

in RTS research, and prior work [39, 40, 60] showed that Ekstazi

and STARTS work well on many of their revisions. We omit four

projects from prior RTS research where average test time is less

than 10 seconds. We added another five projects that we are familiar

with and whose tests run longer than 10 seconds.

To find revisions, for each project, we run git diff on its revi-

sion history until we found 50 revisions where at least one Java file

was modified, and the project compiles. For projects in our manual

analysis, we used different sets of 50 revisions in our evaluation.

Doing so reduces the chance that FineEkstazi and FineSTARTS

are tuned to the projects and versions from which we obtained our

findings. In a sense, we aim to not łoverfitž the data.

Running experiments: We run RetestAll, Ekstazi, FineEkstazi𝐹 ,

FineEkstazi, STARTS, FineSTARTS𝐹 , FineSTARTS, and HyRTS

on each of the 50 revisions in the 23 projects. FineEkstazi𝐹 and

FineSTARTS𝐹 do not use mRTS.

We record the number of test classes selected and the end-to-end

RTS time. We run separate experiments to collect the analysis (A),

test execution (E), and collection (C) times. Measuring A, E, and C

times enables us to analyze the time costs of reasoning about these

kinds of changes during RTS. We run all experiments on a 3.20 GHz

Intel® Core™ machine with 64GB of RAM, running Ubuntu Linux

18.04 and Oracle Java 64-Bit Server version 1.8.0_241.

5.2 RQ1: Impact on RTS Selection Rates

We evaluate whether and by howmuch FineEkstazi𝐹 , FineEkstazi,

FineSTARTS𝐹 , and FineSTARTS select fewer tests than Ekstazi

and STARTS. We also compare with HyRTS. Figure 7 shows the

percentage of all tests selected by these techniques per project. Note

that HyRTS crashed on P13, P17, and P18; we mark them as N/A

and exclude them when comparing with other tools. Exact numbers

of tests are shown in the appendix in our data package [4].

Reasoning about findings from our manual analysis reduces

selection rates, compared with Ekstazi and STARTS, in every eval-

uation subject. Also, combining with method-level analysis (mRTS)

further reduced selection rates. Reasoning about those findings

without mRTS yields up to 46.5% (average: 17.8%) reduction in tests

selected by Ekstazi, and up to 50.4% (average: 16.0%) reduction

for STARTS. If the code-change information and mRTS are used

together, these reductions grow to 80.8% (average: 41.7%) and 71.2%

(average: 31.8%), respectively. The selection rates of FineEkstazi

are on par with those of HyRTS: FineEkstazi selects fewer tests

in 7 of 20 projects (HyRTS fails on 3 projects). Both use dynamic

cross-granularity analysis; FineEkstazi uses field-, method-, and

Table 4: Projects in our study.

PID Name SHA KLOC #Test
Test

Time (s)

P1 imaging 70dd698 39.3 115.2 15.6

P2 lang bff7521 78.1 148.8 16.6

P3 collections 954c29f 63.7 170.4 17.6

P4 asterisk-Java aca95a7 60.1 46.0 20.1

P5 codec 35e9cf2 23.9 60.7 22.4

P6 configuration 7e4b3fa 51.6 169.0 25.2

P7 compress 8a65cc9 50.2 142.6 28.9

P8 gerrit-events 6585777 8.1 24.0 30.1

P9 tabula-java 5f43a93 6.8 15.3 46.2

P10 fastjson 3ea25de 178.2 2297.0 47.8

P11 math dff1a09 149.7 467.6 50.3

P12 net 48e0662 28.3 44.0 62.3

P13 beanutils 85b8cc9 33.5 102.6 74.6

P14 rxjava-extras 62fb6a3 13.9 48.3 89.4

P15 dbcp 64a3b97 31.4 42.6 92.9

P16 io fc418a7 34.4 112.9 113.1

P17 b.HikariCP acc9ac7 11.9 39.3 157.2

P18 sdk-rest 1617bb1 65.2 24.0 169.8

P19 email-ext-plugin 8761c27 12.9 38.3 231.7

P20 pool be87cfc 14.6 22.0 333.8

P21 LogicNG 1bcead7 49.6 120.0 336.9

P22 finmath-lib 03befd8 76.6 100.6 1185.9

P23 lmdbjava 680e0a8 5.6 14.3 1308.6

class-level analyses, while HyRTS uses only method- and class-

level analyses. Future work could enhance HyRTS precision by

enhancing it to reason about our findings.

5.3 RQ2: Impact on End-to-End Testing Times

We measure how reduced selection rates (Section 5.2) translate

to reductions in end-to-end regression testing times. Recall that

end-to-end time with RTS includes analysis time (to reason about

changes and find affected tests), execution time (to run selected

tests), and collection time (to create metadata for performing RTS

on the next revision). Figure 8 shows the percentage of end-to-end

time of the RTS tools compared to RetestAll time. This percentage

can be greater than 100% if RTS incurs significant overhead (analysis

and collection times). Exact end-to-end times, and breakdown of A,

E, and C times are in the appendix in our data package [4].

Compared to Ekstazi and STARTS, FineEkstazi and FineS-

TARTS reduce end-to-end times by up to 44.6% (average: 13.7%) and

42.9% (average: 12.5%), respectively, without mRTS. These reduc-

tions are up to 74.0% (average: 33.7%) and 68.0% (average: 28.7%),

respectively, when also using mRTS. But, reasoning about our find-

ings increases RTS analysis time, leading to an increase (rather

than a decrease) in the end-to-end times with FineEkstazi and

FineSTARTS in some cases. FineEkstazi is faster than HyRTS in

15 out of 20 projects. In a few cases, HyRTS takes longer time than

RetestAll (up to 199.4% of RetestAll time), showing that it can incur

high analysis and collection times to obtain its high precision.

Concerning the analysis, execution, and collection parts of end-

to-end time, we find that FineEkstazi and FineSTARTS trade a

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

Table 6: Applicabilty of manual analysis findings to other

projects and versions. #F : no. of source files with each kind

of code change; #S: no. of revisions with each kind of change.

ID Kind of Change #F #S

F1 a Add class 4052 190

F2

a Add instance method 688 285
b Remove instance method 322 96
c Remove static method 55 32
d Add constructor 0 0
e Add static method 218 101

F4
a Add field 273 156
b Remove field 74 41
c Add static initialized block 0 0

F8

Change signature 125 57
a Add exception to method / /
b Modify throws clause / /
c Modify method parameter / /

F10 a Modify a constructor 749 233

F11
a Specialize parameter type 0 0
b Add/Modify base class to hierarchy 59 24

No change 3204 75
F3 a Sort members / /

F6
b Rename instance method / /
c Rename static method / /

F7
a Modify field holding version / /
b Change field initialization / /
c Modify utilized API interfaces / /

F9
a Modify class access modifier / /
b Make field final / /
c Modify field access modifier / /

Method 3801 540
Summary 13845 721

detecting changes to non-Java files; (2) STARTS missing static de-

pendencies between Suite (JUnit3 style) and tests. R3 violations

(selecting all tests in all versions) are because the programs gener-

ated by AutoEP have only a couple of tests, and safe RTS tools may

have to select all tests in some programs. Our techniques have less

R3 violations than existing RTS tools, which means that our tech-

niques improve the precision. The R6 violation (selecting a different

number of tests than RetestAll in the first version) from STARTS

is caused by incompatibility with a third-party library version. R7

violations (selecting more failed tests than RetestAll) from Ekstazi

are caused by (1) unexpectedly triggering JUnit4 annotations with

JUnit3; (2) improper support for a third-party library’s annotations.

5.5 RQ4: Spread of Manual Analysis Findings

Table 6 shows the frequency of the kinds of change in our manual

analysis in revisions and projects that we did not analyze. Table 6

omits findings that we do not support (Section 3.2). The łMethodž

row sums all kinds of changes that occurred at the method-level;

the łSummaryž row sums all kinds of changes. We automate the cat-

egorization of these changes. We count the three kinds of changes

in F8 together as łChange signaturež. Also, F3, F6, F7, F9 are hard

to automatically count separately, so we count them together as

shown in the łNo changež row. They apply to the same branch

(łreturn falsež on line 21 in Algorithm 1) after comparing methods,

fields, and constructors, and we do not insert more branches to

distinguish these four findings to save analysis cost. For example,

F3 only changes the constant pool of the class, but does not change

the bytecode of methods, fields, and constructors.

Many changes are at the method-level: 3801/13845 of files and

540/721 of revisions. Our results (Section 3.2) show that reasoning

about our manual analysis findings complements combining class-

and method-level analyses. We show that (1) by itself, reasoning

about our findings improves RTS precision; and (2) using our find-

ings together with method-level reasoning further improves RTS

precision. Zhang [73] proposed using method-level analysis to im-

prove RTS precision. But, we are the first to find and reason about

semantics-modifying changes, and to use a two-tiered approach

based on both our findings and mixed-granularity reasoning.

6 DISCUSSION

We discuss the manual effort involved in our approach, experimen-

tal comparison with ML-based RTS, and future work.

On manual effort. The manual effort to find the kinds of changes

that we use can be non-trivial. But, we do not expect RTS tool

users to spend this manual effort. Rather, it is researchers and RTS

tool developers who may invest in finding these kinds of changes.

Also, note that finding the kinds of changes and enhancing RTS

techniques to leverage them is a one-time cost, unlike ML models

that may need to be trained per project and across revisions. The

manual effort that RTS tool developers invest is expected to result in

a pay-offs for the tool users: increased productivity (shorter testing

time), reduced impact on climate (less energy expended on testing),

and higher-quality code (tests are run more frequently).

Comparison with ML-based RTS. This paper improves analysis-

based RTS precision. But readers may wonder if ML-based RTS

could perform better. Here, we give some arguments to the contrary,

and show some experimental results which support our arguments.

Breaking the łperformance wallž that we discussed in Section 1

is driving unsafe ML-based RTS, which is also being adopted, e.g.,

at Facebook [45] and Gradle Enterprise [7]. These early ML-based

RTS adopters have access to a lot of data about code changes and

test failures for training models. But, ML is out of the reach for the

vast majority of individual open-source projects because (1) they

have limited histories that contain insufficient usable data for train-

ing [72]; (2) their developers may not have ML expertise; (3) sub-

scriptions to ML-based RTS services like Gradle Enterprise may

cost more money than developers can afford (pricing for Gradle

Enterprise is not public at the time of writing [6]); and (4) there are

use cases in which safe RTS is critical, e.g., during debugging [29].

Next, we discuss our preliminary experiments to apply ML-based

RTS on open-source projects; the results support our arguments

about the lack of fit of ML-based RTS for these kinds of projects.

Models used. Trained models for ML-based RTS [7, 45] are not

available publicly. So, we use publicly-available models that we

previously trained for using ML-based RTS to improve analysis-

based RTS [72]. That training required historical test failures, which

are hard to find, so we used mutation testing to simulate failures.

Evaluation procedure. We use the 10 projects and revisions from

our prior evaluation. The IDs, names, and numbers of revisions of

the projects are in Table 7. We use the best model, FailBasic, the

best baseline, BM25, and the selection rates that found the most

failing tests. Overall, we use four models: FailBasic𝐸 , FailBasic𝑆 ,

BM25𝐸 , and BM25𝑆 (E: Ekstazi, S: STARTS).

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

Improving RTS. As RTS grows in maturity and tool adoption,

researchers must now start paying more attention to RTS quality

improvement. We took a step in this direction with our RTSCheck

methodology for testing RTS tools [75], which we now use to test Fi-

neEkstazi and FineSTARTS. We developed Reks, which improves

RTS precision by not re-running tests affected by only semantics-

preserving changes, i.e., refactoring [67]. This paper generalizes

Reks and leverages semantics-modifying code changes that do not

require re-running all tests.

Other than Reks, other work on improving RTS precision did not

leverage kinds of code changes as we do. Zhang’s HyRTS [73] com-

bines method- and class-level analyses to improve RTS precision;

we compared FineEkstaziwith HyRTS in our evaluation. Palmskog

et al. [51] formally conducted a structural hierarchical impact anal-

ysis, including coarse-grained and fine-grained components. We

adopted a similar three-level hierarchy including both content and

structure. Orso et al.’s DejaVOO [50] improves RTS precision with

a two-phase approach: computing a class firewall [38] as an upper-

bound of the set of classes affected by changed code, then using an

edge-level control-flow analysis to improve the precision of the first

phase. Our approach exhibits a similar refinement process: we first

collect class-level RTS’s selected tests, and then refine the results

by integrating a method-level and field-level RTS, but we addition-

ally incorporate the knowledge of the nature of changes in our

techniques. TLDR [71] is a static method-level RTS tool and saves

end-to-end time by analyzing the method-level dependency graph

in parallel. TLDR is orthogonal to our work, and both approaches

can be combined in the future.

Recently, companies including Meta [45] and Gradle [7] report

using ML-based RTS. Researchers also studied applying ML models

for RTS on open-source projects [13, 20, 44, 52, 72]. We discussed

in Section 7 that ML-based RTS is not as effective for open-source

projects as our enhanced analysis-based RTS.

Leveraging code changes. Bell et al.’s DeFlaker [12] leveraged

code change semantics to detect flaky tests (failing tests due to

non-determinism) with lower cost. DeFlaker monitors the cover-

age of the latest code changes, using a hybrid of class-level and

statement-level dependency analysis, and marks as flaky newly

failing tests that do not execute any of the changes. DeFlaker can

potentially detect more flaky tests (in the same number of test runs)

by leveraging our findings.

Prior work on defect prediction has studied utilizing various

aspects of code change semantics such as code churn [47, 48], com-

plexity of changes [35], and fine-grained code changes [24]. Giger

et al.’s work [24] empirically studied the correlation between bugs

and code change types and found that leveraging semantics of code

changes can improve defect prediction models. Our work is simi-

lar, but we focus on arbitrary code changes, and our goal was to

improve precision of RTS techniques.

Saha et al. [59] developed REPiR, an information-retrieval-based

test-case prioritization technique that leverages code-change infor-

mation. REPiR uses code changes as queries to search for relevant

tests to be prioritized, which can be more computationally efficient

and performs better than techniques based on program analysis.

Binkley [15, 16] used slicing to find a reduced program on which

selected tests should be run and then selected only tests that exer-

cised some statements in the reduced program, which is different

but related to RTS. They focus on using operation semantics to find

changed lines, but we focus on the semantics of code changes in

terms of transitive dependencies between changes and tests.

Studies of code changes. Prior work has studied alternative ways

to identify and categorize code changes in different contexts. Fluri

et al. [23] extracted code changes as diffs of abstract syntax tree

and identified popular code change types in open source projects.

Nguyen et al. [49] studied popular and repetitive code change types

on a large corpus of open source projects, in both within-project

and cross-project settings. Martinez and Monperrus [46] mined

popular code change patterns for program repair. In our work, we

focus on identifying and leveraging kinds of code changes that can

be used to improve RTS precision.

Ren et al. [54] developed Chianti that uses change impact anal-

ysis to determine affected tests whose execution behavior may

have been modified by the change. Chianti defined a set of inter-

dependent atomic changes responsible for the modified behavior

of test; in contrast, we define a set of dependent atomic changes

that will not result in the change of test execution behavior. We

have applied our technique to improve both a dynamic and a static

analysis-based RTS tool.

9 CONCLUSION

We use knowledge distilled frommanual inspection of code changes

to improve the precision of analysis-based RTS techniques and

speed up regression testing, without using ML and without sac-

rificing safety. We report 13 findings from identifying changes,

mostly semantic-modifying ones, in revision histories of open-

source projects, and use them to enhance Ekstazi and STARTS.

We implement our enhanced RTS techniques, FineEkstazi and

FineSTARTS, and find that they are more precise, and that the en-

hancements generalize to projects that we did not manually analyze.

We believe that the work presented in this paper can be a first step

in a new line of work that uses semantics-modifying code changes

for speeding up RTS. Doing so could help to further increase the

adoption of RTS in industry.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Fred Schneider, August Shi, Aditya Thim-

maiah, Zhiqiang Zang and the anonymous reviewers for their com-

ments and feedback. Some of this research was sponsored by the

Army Research Office and was accomplished under Cooperative

Agreement NumberW911NF-19-2-0333. The views and conclusions

contained in this document are those of the authors and should not

be interpreted as representing the official policies, either expressed

or implied, of the Army Research Office or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright

notation herein. This work is also partially supported by a Google

Faculty Research Award and the US National Science Foundation

under Grant Nos. CCF-1652517, CCF-2019277, CCF-2045596, CCF-

2107291, and CCF-2217696.

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

REFERENCES
[1] 2023. Apache Commons Codec. https://github.com/apache/commons-codec.
[2] 2023. Apache Commons Email. https://github.com/apache/commons-email.
[3] 2023. Apache Commons Math. https://github.com/apache/commons-math.
[4] 2023. Data package for this paper. https://github.com/EngineeringSoftware/

FineRTS.
[5] 2023. Ekstazi. http://ekstazi.org/.
[6] 2023. Gradle Enterprise Pricing. https://gradle.com/pricing/.
[7] 2023. Gradle predictive test selection. https://gradle.com/gradle-enterprise-

solutions/predictive-test-selection/.
[8] 2023. HyRTS. http://hyrts.org.
[9] 2023. STARTSÐA tool for STAtic Regression Test Selection. https://github.com/

TestingResearchIllinois/starts.
[10] Mohammed Nayef Al-Refai. 2019. Towards Model-Based Regression Test Selection.

Ph. D. Dissertation. Colorado State University, USA.
[11] Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test

Selection. In International Symposium on Software Testing and Analysis. 134ś142.
[12] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and

Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In Interna-
tional Conference on Software Engineering. 433ś444.

[13] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In International Conference on
Software Engineering. 1ś12.

[14] John Bible, Gregg Rothermel, and David S. Rosenblum. 2001. A Comparative
Study of Coarse- and Fine-Grained Safe Regression Test-Selection Techniques.
ACM Transactions on Software Engineering Methodology 10, 2 (2001), 149ś183.

[15] David Binkley. 1997. Semantics Guided Regression Test Cost Reduction. IEEE
Transactions on Software Engineering 23, 8 (1997), 498ś516.

[16] David W Binkley. 1992. Using Semantic Differencing to Reduce the Cost of
Regression Testing. In International Conference on Software Maintenance. 41ś50.

[17] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica 35, 3 (2011),
289ś321.

[18] Lionel Briand, Yvan Labiche, and Siyuan He. 2009. Automating Regression Test
Selection Based on UML Designs. Journal of Information and Software Technology
51, 1 (2009), 16ś30.

[19] Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test Selection
for TizenRT. In International Symposium on Foundations of Software Engineering.
845ś850.

[20] Daniel Elsner, FlorianHauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In International Symposium on Software Testing and
Analysis. 491ś504.

[21] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14ś30.

[22] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical Evaluations
of Regression Test Selection Techniques: A Systematic Review. In International
Symposium on Empirical Software Engineering and Measurement. 22ś31.

[23] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
Distilling: Tree Differencing For Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725ś743.

[24] Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing Fine-
Grained Source Code Changes and Code Churn for Bug Prediction. In Mining
Software Repositories. 83ś92.

[25] Milos Gligoric. 2015. Regression Test Selection: Theory and Practice. Ph. D. Disser-
tation. University of Illinois at Urbana-Champaign, USA.

[26] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In International Conference on Software Engineering (Tool Demon-
strations Track). 713ś716.

[27] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211ś222.

[28] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko
Marinov. 2014. Regression Test Selection for Distributed Software Histories. In
International Conference on Computer Aided Verification. 293ś309.

[29] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In International Conference on Automated Software Engineering. 361ś372.

[30] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. 1998. An Empirical Study of Regression Test Selection Techniques.
In International Conference on Software Engineering. 188ś197.

[31] Pooja Gupta, Mark Ivey, and John Penix. 2011. Testing at the speed and scale
of Google. http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-
scale-of-google.html.

[32] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Eval-
uating Regression Test Selection Opportunities in a Very Large Open-Source
Ecosystem. In International Symposium on Software Reliability Engineering. 112ś
122.

[33] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression Test Selection for Java Software. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 312ś326.

[34] Jean Hartmann. 2012. 30 Years of Regression Testing: Past, Present and Future.
In Pacific Northwest Software Quality Conference. 119ś126.

[35] Ahmed E. Hassan. 2009. Predicting Faults using the Complexity of Code Changes.
In International Conference on Software Engineering. 78ś88.

[36] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
International Symposium on Software Testing and Analysis. 437ś440.

[37] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. 1994. Change
Impact Identification in Object Oriented Software Maintenance. In International
Conference on Software Maintenance. 202ś211.

[38] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51ś65.

[39] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583ś594.

[40] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In International Conference on Automated Software
Engineering. 949ś954.

[41] Hareton KN Leung and Lee White. 1989. Insights into Regression Testing. In
International Conference on Software Maintenance. 60ś69.

[42] Hareton KN Leung and Lee White. 1991. A Cost Model to Compare Regression
Test Strategies. In International Conference on Software Maintenance. 201ś208.

[43] Benjamin Livshits, John Whaley, and Monica S Lam. 2005. Reflection Analysis
for Java. In Asian Symposium on Programming Languages and Systems. 139ś160.

[44] Erik Lundsten. 2019. EALRTS: A Predictive Regression Test Selection Tool. Master’s
thesis. KTH Royal Institute of Technology, Sweden.

[45] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In International Conference on Software Engineering
(Software Engineering in Practice). 91ś100.

[46] Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models
for Reasoning on the Search Space of Automated Program Fixing. Empirical
Software Engineering Journal 20, 1 (2015), 176ś205.

[47] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In International Conference on Software Engineering. 181ś190.

[48] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Mea-
sures to Predict System Defect Density. In International Conference on Software
Engineering. 284ś292.

[49] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Software
Evolution. In International Conference on Automated Software Engineering. 180ś
190.

[50] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations of
Software Engineering. 241ś251.

[51] Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2020. Practical Machine-
Checked Formalization of Change-Impact Analysis. In Tools and Algorithms
for the Construction and Analysis of Systems. 137ś157.

[52] Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022.
Test Case Selection and Prioritization using Machine Learning: A Systematic
Literature Review. Empirical Software Engineering 27, 2 (2022), 1ś43.

[53] Marek Parfianowicz. 2017. Open Clover. https://openclover.org.
[54] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, Ophelia Chesley, and Julian

Dolby. 2003. Chianti: A Prototype Change Impact Analysis Tool for Java. Technical
Report DCS-TR-533. Rutgers University CS Dept.

[55] Gregg Rothermel and Mary Jean Harrold. 1993. A Safe, Efficient Algorithm for
Regression Test Selection. In International Conference on Software Maintenance.
358ś367.

[56] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. IEEE Transactions on Software Engineering 22, 8 (1996),
529ś551.

[57] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient Regression Test
Selection Technique. ACM Transactions on Software Engineering Methodology 6,
2 (1997), 173ś210.

[58] Gregg Rothermel and Mary Jean Harrold. 1998. Empirical Studies of a Safe
Regression Test Selection Technique. ACM Transactions on Software Engineering
Methodology 24, 6 (1998), 401ś419.

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

[59] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In International Conference on Software Engineering. 268ś279.

[60] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Reflection-Aware Static Regression Test Selection. In Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 187:1ś
187:29.

[61] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing
and Combining Test-Suite Reduction and Regression Test Selection. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 237ś247.

[62] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In International
Symposium on Software Reliability Engineering. 228ś238.

[63] Min Kyung Shin, Sudipto Ghosh, and Leo R Vijayasarathy. 2022. An Empirical
Comparison of Four Java-based Regression Test Selection Techniques. Journal of
Systems and Software 186 (2022), 111174.

[64] Mats Skoglund and Per Runeson. 2005. A Case Study of the Class Firewall Re-
gression Test Selection Technique on a Large Scale Distributed Software System.
In International Symposium on Empirical Software Engineering and Measurement.
74ś83.

[65] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal on Software
Engineering and Knowledge Engineering 17, 3 (2007), 359ś378.

[66] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-Level vs. Module-Level Regression Test Selection for .NET. In International
Symposium on Foundations of Software Engineering. 848ś853.

[67] Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and
Milos Gligoric. 2018. Towards Refactoring-Aware Regression Test Selection. In
International Conference on Software Engineering. 233ś244.

[68] David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection
Technique for Database Driven Applications. In International Conference on
Software Maintenance. 421ś430.

[69] Guoqing Xu and Atanas Rountev. 2007. Regression Test Selection for AspectJ
Software. In International Conference on Software Engineering. 65ś74.

[70] Nathan York. 2011. Tools for Continuous Integration at Google Scale. https:
//www.youtube.com/watch?v=b52aXZ2yi08.

[71] Maruf Hasan Zaber. 2021. Towards Parallelization of Regression Test Selection.
Master’s thesis. University of California, Irvine, USA.

[72] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.
Comparing and Combining Analysis-based and Learning-based Regression Test
Selection. In ICSE Workshop on Automation of Software Test.

[73] Lingming Zhang. 2018. Hybrid Regression Test Selection. In International Con-
ference on Software Engineering. 199ś209.

[74] Jianjun Zhao, Tao Xie, and Nan Li. 2006. Towards Regression Test Selection for
AspectJ Programs. In Workshop on Testing Aspect-Oriented Programs. 21ś26.

[75] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
Framework for Checking Regression Test Selection Tools. In International Con-
ference on Software Engineering. 430ś441.

	Abstract
	1 Introduction
	2 Background and Examples
	3 Manual Analysis of Changes
	3.1 Manual Analysis Process
	3.2 Findings from Manual Analysis

	4 Technique
	4.1 Overview of Original vs. Enhanced RTS
	4.2 How FineEkstazi and FineSTARTS work
	4.3 Embedding Method-Level Reasoning

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Impact on RTS Selection Rates
	5.3 RQ2: Impact on End-to-End Testing Times
	5.4 RQ3: Impact on Safety
	5.5 RQ4: Spread of Manual Analysis Findings

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

