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Collaboration enhances conceptual learning with multiple representations. However, learning with mul-
tiple representations also involves perceptual learning processes. These often-overlooked learning proc-
esses are the target of perceptual trainings, which expose students to short nonverbal tasks so that
students can induce visual patterns across representations. Given the focus of perceptual trainings on
nonverbal learning, we investigate the impact of collaboration via gestures without allowing students to
talk. On the one hand, gesture-based collaboration may be effective because a partner’s gestures may
direct students to meaningful visual features. On the other hand, gesture-based collaboration might be
ineffective because gesturing may trigger verbal thought, which has been shown to detract from percep-
tual processing in prior research on the verbal overshadowing effect. We investigated this question in a
quasi-experiment with N = 438 chemistry undergraduate students. Students either worked on a percep-
tual training individually or collaborated using only gestures. Posttest data show an advantage of stu-
dents working individually. Mediation analysis based on log data revealed a positive mechanism of
collaboration enhancing learning gains by reducing students’ errors during the training. Gesture analysis
showed that students used gestures to nonverbally explain their thinking and that representational ges-
tures reduced error rates whereas other types of gestures did not. This might have detracted students
from perceptual processing of the stimuli, creating a “nonverbal overshadowing” effect analogous to the
verbal overshadowing effect. Altogether, our findings identify boundary conditions of the benefits of
collaboration while also revealing possible pathways for future research to explore perceptual learning
in social situations.

Educational Impact and Implications Statement

The study revealed that gesture-based collaboration resulted in lower learning outcomes from a per-
ceptual training compared with individual learning. This finding contributes to research to verbal
overshadowing of perceptual processing, pointing to an analogous nonverbal overshadowing effect.
This finding extends prior theory about collaboration by showing that the well-established benefits
of collaboration do not extend to perceptual learning. It highlights the importance of better under-
standing perceptual learning in social contexts. For instructional practice, the findings suggest that
students should work on perceptual trainings alone.
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Many professional tasks involve the ability to fluently perceive
visual information (Stokes, 2021b). Perceptual fluency describes
the ability to quickly and effortlessly extract relevant information
from visual representations (Gibson, 1969, 2000; Kellman & Mas-
sey, 2013). Although perceptual fluency plays a major role in
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many professions, little research has focused on the role of percep-
tual fluency in education.

Yet, perceptual fluency is an important driver of students’ learn-
ing of content knowledge because most instruction includes visual
representations (NRC, 2006). Visual representations can make con-
tent accessible to students (Ainsworth, 2008). For example, math
students use pie charts and number lines to learn about fractions,
engineering students use phasor graphs and spectrograms to learn
about sinusoids, and chemistry students use wedge-dash structures
and ball-and-stick models (see Figure 1) to learn about molecular
geometry. Further, visual representations play a central role in disci-
plinary discourse (Gilbert, 2005; Kozma & Russell, 2005; Wertsch,
1997). For example, chemists regularly use the visual representa-
tions in Figure 1 to communicate about molecular geometry.

However, students often fail to learn content knowledge from
visual representations (Ainsworth et al., 1998; NRC, 2006; Rau,
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Figure 1

Visual Representations of Chemical Molecules
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(A) Two-dimensional wedge-dash structure. (B) Three-dimensional ball-and-stick

model. See the online article for the color version of this figure.

2017). To address this issue, prior research has focused on sup-
porting students’ conceptual understanding of the visual represen-
tations; that is, students’ ability to map visual features to the
constructs they depict (Ainsworth, 2006; Rau, 2017). For example,
a chemistry student may conceptually understand how the two-
dimensional (2D) wedge-dash structure (Figure 1A) uses wedges
and dashes to denote three-dimensional (3D) information about
whether a bond is oriented toward or away from the viewer, as
shown in the ball-and-stick model (Figure 1B).

However, conceptual understanding of visual representations is
not sufficient; students also need perceptual fluency (Kellman &
Massey, 2013; Rau, 2017). Without perceptual fluency, extracting
information from representations takes considerable cognitive
effort that can detract from students’ learning of content knowl-
edge (Anderson & Bodner, 2008). By contrast, perceptual fluency
frees cognitive resources that students can invest in learning of
content knowledge (Gilbert, 2005; Taber, 2014). For example, a
perceptually fluent student who is presented with a 2D wedge-
dash structure (Figure 1A) can immediately see the 3D structure it
depicts (Figure 1B), without having to conceptually reason about
this relationship. This allows the student to invest cognitive
resources to learn about chemical properties that arise from a par-
ticular molecular geometry.

Students acquire perceptual fluency through perceptual learning
processes that are nonverbal in nature (Kellman & Massey, 2013).
That is, verbal reasoning is not necessary and can even interfere
with perceptual learning processes (Kellman et al., 2008; Rau,
2017). This interference results from verbalization creating an
additional verbally encoded memory trace that impedes people’s
ability to retrieve their memory of the original perceptual stimuli
(Chin & Schooler, 2008; Schooler et al., 1997).

Building on research on perceptual processes, perceptual train-
ings aim to help students acquire perceptual fluency (Kellman
et al., 2010). Perceptual trainings expose students to a series of
simple tasks that present a large variety of visual representations
and ask students to quickly categorize them based on visual fea-
tures. Importantly, perceptual trainings emphasize nonverbal
learning and discourage students from verbally explaining their
thinking.

Given the emphasis on nonverbal learning, research on percep-
tual trainings has focused on individual learning rather than collab-
orative learning (e.g., Kellman et al., 2008; Rau & Wu, 2018).
However, perceptual learning processes naturally occur in social
interactions (e.g., Northedge, 2002), which involve not only verbal

communication but also nonverbal communication via gesturing
(Singer, 2017). This raises the question whether gesture-based col-
laboration enhances the effectiveness of perceptual trainings.
Although we know of no research that has addressed this question,
two lines of prior research yield conflicting predictions.

On the one hand, perceptual fluency can emerge from social
interactions where students induce meaning of visual representa-
tions based on observing others communicate with visual repre-
sentations (e.g., Wertsch & Kazak, 2011). Gestures may play a
crucial role in the acquisition of perceptual fluency in social con-
texts: Gesturing can help students access perceptual-motor infor-
mation (Hostetter & Alibali, 2008). Further, observing a partner’s
gestures can give students access to their partner’s visuospatial
knowledge (e.g., Kita, 2000). Thereby, gestures may help students
induce meaning from representations.

On the other hand, collaboration has been thought to be most
effective for complex tasks (Kirschner et al., 2009a). Given that
perceptual trainings focus on simple tasks, they seem unsuitable
for collaboration. Further, gesturing may be inseparable from
verbal dialogue (e.g., Churchill et al., 2000). Therefore, nonverbal
collaboration via gesturing may interfere with perceptual processes
in a similar way as verbal explanations interfere with perceptual
processes, as described above (see Chin & Schooler, 2008).

The goal of this article is to investigate whether gesture-based
collaboration enhances students’ benefit from a perceptual train-
ing. This goal aligns with Wise and Schwarz’s (2017) call to
investigate “if, when, and for what ends collaboration [is] benefi-
cial” (p. 433). We conduct our research on a perceptual training
for undergraduate chemistry.

Literature Review

In the following, we review theories related to perceptual flu-
ency. Then, we detail the arguments about whether collaboration
might enhance or impede perceptual fluency.

Perceptual Fluency

What Is Perceptual Fluency? Traditional modularity theo-
ries considered cognition and perception as separate, independ-
ent systems (e.g., Fodor, 1985; Pylyshyn, 1999). They proposed
a one-directional flow of information: perception delivers infor-
mation to the cognitive system, but cognition was thought not to
affect perception. Although modularity theories conflict with
more recent empirical findings (Stokes, 2021b), they are worth
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mentioning because they have a lasting effect on theories of
learning with representations. For example, Mayer’s (2005,
2009) Cognitive Theory of Multimedia Learning proposes a
one-directional pathway where information is loaded from sen-
sory memory into working memory. Similarly, Schnotz’s (2005,
2014) Integrated Model of Text and Picture Comprehension
focuses the perception-to-cognition pathway.

In contrast, theories of cognitive penetration of perception posit
that there is a cognition-to-perception pathway, which accounts
for phenomena of rapid perception of conceptually meaningful in-
formation. In other words, what we know affects what we see
(Goldstone & Barsalou, 1998; Stokes, 2021a, 2021c). At the very
least, to perceive facts, one needs relevant concepts (Stokes,
2021c). For example, to visually distinguish an apple from a pear,
one needs the concepts APPLE and PEAR. Once one has learned
that the perceived apple is an APPLE, the concept APPLE is part
of the visual experience: one cannot perceive an apple without
identifying it as an APPLE (Siegel, 2006). Further, seeing the
apple as an APPLE happens quickly and automatically, without in-
ference making or conceptual reasoning (Stokes, 2021c). Simi-
larly, when presented with visual representations of their area of
expertise, experts see meaning at a glance (Chi et al., 1981; Drey-
fus & Dreyfus, 1986; Richman et al., 1996). For example, chem-
ists immediately see that the visual representations in Figure 1
show the same molecule.

We refer to this high level of efficiency and automaticity with
which experts see meaning in visuals as perceptual fluency (Kell-
man & Massey, 2013; Massey et al., 2011; Rau, 2017). Perceptual
fluency is characterized by involuntary, fast use of conceptual
knowledge, which speaks to cognitive effects on a phenomenon
that is perceptual in nature (termed “‘cognitive penetration of per-
ception”"). We define conceptual knowledge as the understanding
of principles and relationships that govern a given domain, which
may include knowledge about what type of fruit apples are and
what varieties exist, or knowledge about how different visual rep-
resentations depict information about molecular geometry and
what inferences can be drawn based on molecular geometry about
chemical behaviors. Conceptual knowledge about objects depicted
in images affects performance on visual identification tasks
(Meyer et al., 2007; Moores et al., 2003). This effect is modulated
by saccadic eye movements at around 200-300ms poststimulus
(Meyer et al., 2007; Moores et al., 2003) and EEG activity at
around 200 ms poststimulus (Telling et al., 2010), which is too
fast for voluntary attention direction and thus suggests that the
effect is involuntary. Similarly, experts need fewer eye movements
and fixate more quickly on relevant visual features than novices
(Vogt & Magnussen, 2007), with short time lags indicative of
involuntary effects (Kundel et al., 2007). This speed of processing
is at least partly explained by holistic processing of visuals (Curby
& Gauthier, 2010; Richler et al., 2011); that is, experts treat the
entire perceived object as a perceptual chunk, as opposed to treat-
ing each visual feature as a separate chunk. Holistic processing is
automatic because experts cannot turn it off: they perform better
than novices on visuals that show whole objects, but no better than
novices if the objects are partially occluded, when parts are pre-
sented sequentially, or spatially distributed (Busey & Vanderkolk,
2005; Curby et al., 2009; Diamond & Carey, 1986; Rossion et al.,
2007). These effects correlate with EEG activity 150-200 ms post-
stimulus, again suggesting an involuntary effect (Rossion et al.,

2002; Scott et al., 2006; Tanaka & Curran, 2001). Thus, perceptual
fluency is characterized by involuntary, fast, holistic, automatic
processing of visuals that is influenced by conceptual knowledge
(Kellman & Garrigan, 2009; Rau, 2017; Stokes, 2021a).

While cognition affects perceptual fluency, perceptual fluency
also benefits cognitive processing of conceptual information. Effi-
ciency and automaticity in visual processing makes cognitive
resources available for conceptual reasoning about complex prob-
lems (Goldstone & Barsalou, 1998; Richman et al., 1996) and
allows experts to think creatively and react adaptively to novel sit-
uations (Dreyfus & Dreyfus, 1986; Gibson, 1969, 2000; Richman
et al., 1996). These impacts of perceptual fluency on cognitive
processing have been demonstrated in many domains, such as
math (Goldstone et al., 2008), chess (Chase & Simon, 1973), and
reading (Baron, 1978).

In the context of education, perceptual fluency has been shown
to enhance learning of content knowledge in STEM (Gilbert,
2005; Taber, 2014), likely by freeing cognitive resources for
higher-order conceptual thinking (Rau, 2017). On the flipside, a
lack of perceptual fluency can impede students’ learning of content
knowledge. For example, Anderson and Bodner (2008) present a
case study of a chemistry student who demonstrated conceptual
knowledge about how visual representations show domain-
relevant concepts but who was not perceptually fluent with the vis-
uals. He was at a considerable disadvantage because he had to
invest considerable cognitive effort in making sense of the visuals,
which slowed his thinking and impeded his ability to learn new
content.

Through Which Processes Is Perceptual Fluency Acquired?
Even though cognition and perception are intertwined, their distinc-
tion is important because they involve qualitatively different learn-
ing processes (Koedinger et al., 2012). Specifically, the learning
processes that lead to conceptual knowledge (i.e., a cognitive mech-
anism) are often willful and conscious because they involve
explicit, verbal reasoning and explanations (Rau, 2017). In contrast,
the learning processes that lead to perceptual fluency (i.e., a percep-
tual mechanism) tend to be inductive and nonverbal (Gibson, 1969,
2000; Kellman & Massey, 2013). Induction of perceptual patterns
occurs as the emerging expert encounters a large variety of visual
representations (Kellman & Garrigan, 2009). Based on this experi-
ence, she starts to recognize recurring perceptual patterns that carry
conceptually meaningful information (Kellman & Garrigan, 2009).
The perceptual encapsulation of meaningful visual patterns occurs
unintentionally and often unconsciously (Rau, 2017).

Perceptual learning processes are characterized as nonverbal
because research suggests that they do not require verbal explana-
tions (Koedinger et al., 2012; Rau, 2017) and that verbal explana-
tions interfere with the induction of perceptual patterns (Chin &
Schooler, 2008; Schooler et al., 1997). Research on this “verbal
overshadowing” effect has been conducted on many types of tasks,
including facial recognition, wine tasting, and music classification
(for an overview, see Chin & Schooler, 2008). Methodologically,
typical studies on the verbal overshadowing effect prompt

! This idea and the following findings conflict with modularity theories,
which interpreted perceptual fluency as a cognitive effect where experts’
conceptual knowledge allows them to voluntarily direct their visual
attention to conceptually relevant visual features (Fodor, 1985; Pylyshyn,
1999).
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participants to verbally describe aspects of a perceptual stimulus at
the time of its encoding (e.g., when a picture is presented, describe
what a person in the picture looks like in as much detail as possi-
ble). Compared with participants who are not prompted to describe
the stimulus, prompted participants tend to perform more poorly
on later tasks related to the perceptual stimulus (see Chin &
Schooler, 2008). The verbal overshadowing effect has been
explained by people’s tendency to rely on verbal information
when it is available at the expense of the original perceptual infor-
mation (Chin & Schooler, 2008; Schooler & Engstler-Schooler,
1990). Specifically, verbalization creates a verbally encoded mem-
ory trace of the stimulus that exists alongside the original percep-
tual memory. When people attempt to recall the stimulus, they
default to retrieving the verbal memory and fail to retrieve the
original perceptual memory. Because perceptual information is
difficult to describe, the verbally encoded memory is often
inaccurate.

How Is Perceptual Fluency Supported? Owing to the induc-
tive and nonverbal nature of perceptual fluency, instructional inter-
ventions that aim to help students acquire perceptual fluency
emphasize the importance of nonverbal learning (Kellman & Mas-
sey, 2013; Rau, 2017). Perceptual trainings are a type of com-
puter-based instructional intervention that build on several
principles based on extant research on perceptual learning proc-
esses (Kellman & Massey, 2013; Rau, 2017). First, perceptual
trainings expose students to a large variety of visual representa-
tions that are commonly used in the given domain (Kellman &
Garrigan, 2009; Kellman et al., 2008). Because they focus on
quick perceptual processing, perceptual training tasks are simple
and usually ask students to categorize or classify visual representa-
tions. For example, chemistry students might be exposed to several
tasks that ask them to quickly identify one of several ball-and-stick
models (Figure 1B) that shows the same molecule as the one
shown by a wedge-dash structure (Figure 1A). These tasks are typ-
ically very short (e.g., students may complete about 20 short tasks
in about 5 minutes). Second, the visual representations present
contrasting cases (Chase et al., 2010) so that they repeat visual fea-
tures that carry meaningful information and vary conceptually
irrelevant visual features. For example, if the number of black
spheres is a meaningful visual feature in a ball-and-stick model
(Figure 1B), then students should encounter ball-and-stick models
with an incorrect number of black spheres so that they learn to
extract information from the visual representation based on this
feature. Third, students are discouraged from verbalizing or
explaining their thinking. For example, students may be prompted
to solve the tasks quickly and to rely on their perceptual intuitions.
Finally, students receive immediate feedback on their use of visual
information, but this feedback does not provide verbal explana-
tions so as not to disrupt perceptual processing. For example, stu-
dents may see color highlights that signal whether their response
was correct.

In line with the notion that perception and cognition are inter-
twined, perceptual trainings are typically offered after students
have acquired conceptual knowledge about how the visual repre-
sentations show domain-relevant information (Kellman & Garri-
gan, 2009; Kellman et al., 2008). Indeed, prior experimental
research shows that perceptual trainings are most effective when
students have acquired conceptual knowledge about the represen-
tations (Rau, 2018; Rau et al., 2017a) and may even be ineffective

for students who lack conceptual knowledge (Rau et al., 2017b;
Rau & Wu, 2018). Research suggests that conceptual knowledge
enables students to attend to meaningful visual features, which
enhances their benefit from perceptual trainings (Rau, 2018).

Further, the goal of perceptual trainings is usually not the acqui-
sition of perceptual fluency alone but rather to enable students to
efficiently use representations to solve domain-relevant tasks
(Kellman & Garrigan, 2009; Kellman et al., 2008). Therefore,
studies on perceptual trainings usually assesses students’ perform-
ance on domain-relevant tasks that provide disciplinary informa-
tion through visual representations, for example in math (Kellman
& Garrigan, 2009; Rau et al., 2017b) or chemistry (Rau & Wu,
2018; Wise et al., 2000). Indeed, these studies show that percep-
tual trainings enhance students’ performance on such tasks.

Collaborative Learning With Visual Representations

Although extant research shows that collaboration can enhance
students’ conceptual knowledge about visual representations (e.g.,
Rau et al., 2017; Schwartz, 1995; Strickland et al., 2010), we
know of no studies that have tested how collaboration affects the
acquisition of perceptual fluency. Yet, two lines of research sug-
gest competing predictions about this question.

Collaboration May Enhance Perceptual Fluency via
Nonverbal Gesturing. Sociocultural perspectives on learning
view visual representations as a tool that supports social interac-
tions (Hakkarainen et al., 2013; Rau, 2017). Hence, visual repre-
sentations are viewed as socially constructed cultural tools that
enable communication and problem-solving practices within the
disciplinary community (Wertsch, 1997). Specifically, members of
the disciplinary community express themselves through visual rep-
resentations and use them as thinking tools (Airey & Linder, 2009;
Braden & Hortin, 1982; Schonborn & Anderson, 2006). Different
disciplines have different practices in using visual representations,
which involve the ability to “quickly register perceptual features
that are relevant to their particular practice, features invisible at a
glance to nonexperts” (Stevens & Hall, 1998, p. 109).

From this perspective, the purpose of acquiring perceptual flu-
ency is fundamentally social as well (Rau, 2017). Participating in
disciplinary practices necessarily involves becoming fluent in
using visual representations (Northedge, 2002; Postman & Wien-
gartner, 1971). Students’ visual communication needs to be so flu-
ent that their use of visual representations is ‘“unproblematic,
almost second nature” (Airey & Linder, 2009). Otherwise the task
of interpreting representations during disciplinary discourse may
overwhelm students (Taber, 2002). Indeed, the sociocultural litera-
ture describes the ability to fluently use visual representations as
an important instructional goal (Goodwin, 1994; Kozma & Rus-
sell, 2005; Wertsch & Kazak, 2011).

Moreover, the process through which students acquire percep-
tual fluency is inherently social (Rau, 2017). Students acquire dis-
ciplinary representational practices by participating in community
practices (Greeno & Hall, 1997; Northedge, 2002, 2003; Roth,
2014; Roth & McGinn, 1997). Participation in community prac-
tices allows students to inductively learn disciplinary ways of
knowing and communicating as well as ways of seeing and per-
ceiving (Braden & Hortin, 1982; Goodwin, 1994). Such inductive
learning processes unfold as students come to appropriate commu-
nication and perception practices that happen at the “intermental
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plane” (i.e., between persons) until they appear at the “intramental
plane” (i.e., within a person; Vygotsky, 1962; Wertsch & Kazak,
2011). Hence, it is possible and even desirable for students to par-
ticipate in representational social interactions before they fully
understand the meaning of the representations (diSessa, 1993;
Wertsch & Kazak, 2011). During participatory interactions, a
more knowledgeable member of the community “disciplines” the
student’s perception by nudging them toward normative use of
representations (Stevens & Hall, 1998). Notably, in describing the
emergence of perceptual fluency from social interactions, this liter-
ature documents how students incrementally induce meaning as
they observe and imitate others while they use representations in
ways that do not necessarily involve verbal communication (Airey
& Linder, 2009; Wertsch & Kazak, 2011). Thus, the observation
that perceptual learning processes can occur in social contexts does
not necessarily conflict with the notion that they are nonverbal.

Although sociocultural research typically does not seek to iso-
late which specific components of discourse affect specific types
of learning outcomes, it documents the critical role of gestures in
the acquisition of perceptual fluency in social contexts (Stevens &
Hall, 1998). Indeed, gesturing has been shown to facilitate induc-
tive processes while students participate in social practices (e.g.,
Carraher & Schliemann, 2002; Roschelle, 1992). The role of ges-
tures in social interactions has been widely studied in the cognitive
and sociocultural literatures (e.g., Cook & Fenn, 2017; Nathan
et al., 2007; Singer, 2017). Although much of this research has
focused on how gesturing enhances conceptual learning processes
(e.g., Alibali & Nathan, 2007; Alibali et al., 2014; Singer, 2017),
research suggests two mechanisms through which gestures may
enhance perceptual learning processes.

First, gesturing may help the student who is performing the ges-
ture to engage in perceptual learning processes. Evidence for this
claim comes from studies showing that prohibiting students from
gesturing results in disfluencies in speech (Graham & Heywood,
1975), particularly in conveying spatial information (Rauscher
et al., 1996) and in including imagery references in speech (Rimé
et al., 1984). Indeed, gestures occur frequently when speakers
access perceptual-motor information (Hostetter & Alibali, 2008).
Further, gestures seem to play a particularly important role in con-
texts where the goal is for students to engage in perceptual learning
processes (Cope et al., 2015). Also, students who spontaneously
gesture (Chu & Kita, 2008) or who are instructed to gesture (Broad-
ers et al., 2007; Cook et al., 2008) demonstrate higher learning out-
comes from visuospatial instructional activities. These effects may
be partially moderated by spatial skills: Students with high spatial
skills tend to gesture more often than students with low spatial skills
(Hostetter & Alibali, 2007).

Second, watching a partner’s gestures may help students engage
in perceptual learning processes. Gesture research generally distin-
guishes representational gestures (i.e., gestures that resemble the
referent, such as hand shapes that resemble object shapes) and dei-
ctic gestures (i.e., movements that indicate a concrete referent in
the environment, such as pointing at an object; McNeill, 1992;
Stephens, 1983). Representational gestures convey a speaker’s in-
ternal representations (Cienki, 2005; Hostetter & Boncoddo, 2017;
Nathan, 2008). They can encode implicit knowledge and spatial
information that the speaker may not be able to express verbally
(Broaders et al., 2007; Goldin-Meadow & Alibali, 2013; Kita,
2000; Schwartz & Black, 1996; Zhen et al., 2019). Getting insights

into a partner’s internal representation and implicit visuospatial
knowledge may thus help students induce meaning from external
representations. Further, deictic gestures (i.e., pointing at some-
thing) play an important role in directing a partner’s attention to
features of the environment (Fussell et al., 2000, 2004). Deictic
gestures have been documented in sociocultural research on the
acquisition of perceptual fluency in social contexts where a more
knowledgeable person points at parts of a visual representation to
direct the student’s attention to relevant features (Stevens & Hall,
1998). Collaborative interactions in which students help each other
attend to specific visual features have been shown to enhance stu-
dents’ ability to extract accurate information from visual represen-
tations (Wu et al, 2019). Indeed, deictic gestures play an
important role in helping students induce meaning from visual rep-
resentations (Rau & Patel, 2018; Stevens & Hall, 1998).

Collaboration May Impede Perceptual Fluency via Explanation-
Based Processes. Sociocognitive research, in contrast, suggests
that collaboration might interfere with the acquisition of perceptual
fluency. One argument draws on the Knowledge, Learning, and
Instruction framework (KLI; Koedinger et al., 2012), which distin-
guishes knowledge types based on the complexity of the involved
knowledge structures. KLI characterizes perceptual fluency as a
“simple” type of knowledge because it relies on pattern recognition
that involves mapping a single visual pattern to a single construct
(e.g., an image of a chemical molecule can be mapped to only one
molecule). In contrast, “complex” types of knowledge involve
learning of rules and schemas that have many application contexts
and many possible solutions (e.g., how chemical bonding works
may be applied to numerous chemical structures and can be
explained in multiple ways). According to KLI, instruction is effec-
tive if it engages students in interactions that match the complexity
of the to-be-learned knowledge (Koedinger et al., 2012).

The learning processes fostered by collaboration are arguably
complex. When students collaborate, they may build on each other’s
contributions, explaining their ideas, defending and challenging each
other’s positions, thereby prompting each other to explain their think-
ing (Chi, 2009). Students engaged in such collaborative exchanges
are more actively engaged in explanation-based learning processes
than students who work alone (Chi, 2009). The benefits of these col-
laborative exchanges outweigh any so-called “process losses™ that
result from group members having to coordinate and communicate
with each other (Kirschner et al., 2009a). Therefore, the overall effect
of collaboration is positive for learning from complex tasks (Kirsch-
ner et al., 2010; Nokes-Malach et al., 2012).

By contrast, when students learn simple types of knowledge,
there is nothing to explain (Koedinger et al., 2012). Consequently,
collaboration may not offer a benefit (Koedinger et al., 2012;
Nokes-Malach et al., 2012; Wylie et al., 2009). If a task can be
completed by an individual alone, the costs associated with process
loss outweigh any benefit of collaboration, resulting in an overall
negative effect: Collaborating increases cognitive effort and time
that students must invest in coordinating and communicating with
each other compared with students working individually (Ciborra &
Olson, 1988; Clark & Brennan, 1991; Kirschner et al., 2009b;
Yamane, 1996). Indeed, research on simple verbal recall tasks
shows that collaborative learning is less effective than individual
learning because the cognitive effort invested in coordination and
communication does not pay off (Clark & Brennan, 1991; Kirsch-
ner et al., 2009b). By the same argument, collaboration may reduce



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

272 RAU AND BEIER

the efficiency of perceptual trainings by increasing time and effort
without offering a benefit. Yet, this research has not empirically
examined perceptual trainings.

A second argument emerges from the finding that verbalization
interferes with perceptual processing (Chin & Schooler, 2008;
Schooler et al., 1997). Benefits of collaboration have largely been
attributed to verbally mediated coconstruction of knowledge as
students explain ideas to each other (Chi, 2009; Dillenbourg et al.,
1996). As detailed above, the verbal overshadowing effect sug-
gests that verbalization interferes with perceptual processing
because the availability of verbal information detracts from per-
ceptual information (Chin & Schooler, 2008; Schooler & Engstler-
Schooler, 1990). Thus, ordinary collaboration that involves verbal
communication seems inappropriate for perceptual trainings.

What about collaboration that involves only nonverbal commu-
nication via gesturing? To our knowledge, prior sociocognitive
research has focused only on verbally mediated collaboration and
has not tested whether nonverbal collaboration via gestures could
enhance learning of simple types of knowledge. However, prior
research on gesturing provides two related arguments suggesting
that gesturing may interfere with perceptual fluency.

First, gesturing might trigger internal verbalization. Indeed, sev-
eral gesture theories propose that gesture and speech are part of the
same system that cannot be separated (Goldin-Meadow, 2003; Hos-
tetter & Alibali, 2008; McNeill, 1992) and that gesturing facilitates
speech production (Krauss et al., 2000). Similarly, research on arti-
fact-centered discourse and anchored discourse considers gesturing
an integral part of dialogue (Churchill et al., 2000; Guzdial, 1997;
Suthers & Xu, 2002). Dialogue not only involves speech but also
nonverbal communication devices such as gestures (Cassell et al.,
2000). If gestures are linked to speech production and inseparable
from verbal dialogue, then gesturing may trigger verbal thought
even when speech is prohibited. For example, gesturing about the
orientation of a molecule representation may trigger internal verbal-
ization such as “the molecule is rotated.” As argued above, such
verbalization may create a verbally encoded memory trace that
interferes with retrieval of the original perceptual information.

Second, a slightly more elaborate argument builds on the first
by suggesting gesturing may constitute a complex explanation pro-
cess. For example, Fussell and colleagues (2004) consider gestures
a shortcut to verbal explaining because they provide a quick and
efficient way to communicate about a collaborative task. Specifi-
cally, representational gestures serve to encapsulate complex ideas
(Bekker et al., 1995; Emmorey & Casey, 2001; Tang & Leifer,
1988). Deictic gestures serve to indicate task-relevant referents
(Bauer et al., 1999; Fussell et al., 2000). When not allowed to ges-
ture, these ideas and referents are communicated via verbal
explanations (Bauer et al., 1999; Fussell et al., 2000). Thus,
gesturing may be a nonverbal form of explanation. For example,
suppose a student is presented with a wedge-dash structure and a
ball-and-stick model showing a planar molecule (i.e., all atoms re-
side on the same two-dimensional plane). To make sense of these
representations, the student may use a representational gesture that
positions the thumb and index finger of both hands at 120-degree
angles to each other while silently explaining to herself how this
corresponds to a planar molecule. In this way, the gesture supports
a complex explanation process, which—as argued above—might
interfere with perceptual learning processes. This may hold even if
the student does not verbalize the explanation.

Research Questions and Hypotheses

Our review of prior research reveals a gap in our understanding
of how nonverbal collaboration via gesturing may affect students’
benefit from a perceptual training. Two different lines of research
suggest conflicting arguments about whether gesture-based collab-
oration may enhance or impede perceptual fluency. We note that
both arguments regarding this question are speculative because
they have no direct empirical basis yet. This article addresses this
question in the context of a perceptual training for chemistry stu-
dents. While we examine whether students demonstrate perceptual
fluency in the sense that they become better at solving the percep-
tual tasks in the training, our main outcome of interest is perform-
ance on chemistry tasks that involve visual representations. This
focus is in line with prior research on perceptual trainings, which
have the goal to enhance students’ efficient use of visual represen-
tations when solving domain-relevant tasks (Kellman & Massey,
2013). Hence, we investigate:

Research Question 1: How does nonverbal collaboration via
gesturing affect the effectiveness of a perceptual training with
respect to (a) students’ performance on perceptual tasks during
the perceptual training and (b) their performance on chemistry
tasks after the perceptual training?

Hypothesis 1.1 emerges from sociocultural research and pre-
dicts that gesture-based collaboration enhances the effectiveness
of the perceptual training, whereas Hypothesis 1.2 emerges from
sociocognitive research and predicts that gesture-based collabora-
tion decreases its effectiveness.

In addition, we seek to understand the mechanisms underlying
potential effects. To this end, we investigate how gesture-based
collaboration changes students’ interactions with the perceptual
training compared with students who work individually on the per-
ceptual training, and whether this accounts for potential effects on
the effectiveness of the perceptual training. We focus on interac-
tions that can be gleaned from the log data from the perceptual
training (i.e., training time, error rates). Specifically, we ask:

Research Question 2: Are students’ interactions with the per-
ceptual training (a) affected by gesture-based collaboration, and
(b) do they mediate potential effects of gesture-based collabora-
tion on students’ benefit from the perceptual training?

Finally, to get a better understanding of how students use ges-
tures in their nonverbal communication when collaborating on the
perceptual training, we qualitatively explore:

Research Question 3: How do students use gestures during the
perceptual training?

Method

Transparency and Openness

In the following sections, we describe in detail the methods we
used to obtain the reported data, how we determined our sample
size, and any data exclusion criteria. Data were analyzed using
IBM SPSS Statistics Version 27 and Tetrad Version 6.8.1. This
study’s design and its analysis were not preregistered.
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Participants

Participants were N = 527 first-year undergraduate students in a
semester-long introductory general chemistry course at a large
Midwestern university in Fall 2019. The course was designed for
students who intend to major in a STEM subject. Prerequisites for
the course included at least one year of high-school chemistry and
demonstration of high mathematics achievement, for instance, by
qualifying for an advanced mathematics course. Students enrolled
in this course had an average GPA of 3.20 (on a scale from 0-4).

All students who were enrolled in the course participated in the
experiment activities; however, their data were used for analysis
only if they provided informed consent to their data being used for
research purposes. This procedure was approved by our institu-
tion’s ethical internal review board.

Although we were unable to assess demographics of study partici-
pants owing to restrictions placed by our internal review board, we
report demographics of undergraduate students majoring in chemis-
try at the university: 43.79% of these students are female; 68.38%
are Caucasian, 1.80% are African American, 3.60% are Hispanic,
5.70% are Asian, 18.71% are International, and 1.80% are unknown;
59.96% are state residents, and 43.04% nonresidents.

Our experiment was conducted at the end of a 3-hour lab ses-
sion in Week 5 of the chemistry course. The course involved two
weekly 50-minute lectures, a weekly 3-hour lab session, and two
weekly 50-minute discussion sessions. The lecture was taught by
three professors, and each student was assigned to the lecture of
one of the professors. Lab and discussion sessions were held in
smaller groups; namely 32 sections of about 18 students. Lab and
discussion sessions were led by 18 teaching assistants (TAs). The
professor was present in discussion sessions, but not in lab ses-
sions. Throughout the semester, students worked collaboratively
in small groups during both discussion and lab sessions with a
partner (or, in rare cases, two partners, if an uneven number of stu-
dents was enrolled in the section) who was assigned for the dura-
tion of the semester.

Experimental Design

Using a quasi-experimental design, we assigned 15 sections of
the course to the individual condition (n = 253 students) and 17 sec-
tions to the collaborative condition (n = 270 students). Students
selected a course section at the beginning of the semester. They tend
to select sections so that they fit well into their class schedule. We
have no reason to believe that systematic differences exist between
sections. In addition, we took the following steps to ensure equiva-
lency of the conditions. To counterbalance potential effects of time
of day, we assigned the same number of early and late morning,
early and late afternoon, and evening sections to each condition. Fur-
ther, to counterbalance potential effects of TA, each TA led one ses-
sion for the individual and one for the collaborative condition, with
one exception owing to scheduling constraints, which led to the
slightly unequal assignment of 15 versus 17 sections to the condi-
tions. In addition, to counterbalance potential effects of the lecturing
professors, we ensured that students who attended each professor’s
lecture were equally distributed across the two conditions.

Students in the individual condition worked individually on the
perceptual training (detailed below). Students accessed the perceptual
training on their personal laptop. Students in the collaborative

condition worked in small groups (i.e., dyads, or in very few cases in
groups of three, if there was an uneven number of students in the
given section) on the perceptual training (detailed below). They used
the laptop of one of the students in their small group. Students
worked in the small groups they were assigned to for the duration of
the semester. If the partner was absent from the class, the TA
assigned them to an alternative small group, never exceeding three
students per group.

Materials
Prior Class Activities

In keeping with the common use of perceptual trainings after
conceptual instruction, students received the perceptual training
after working on conceptually focused class activities that regu-
larly occur in the given week of the chemistry lab session. These
class activities focused on conceptual understanding of how to
translate between 3D ball-and-stick models and 2D wedge-dash
drawings (see Figure 1). The regular class activities took up most
of the class period. Our experimental manipulation took place after
these activities.

Perceptual Training

Our experimental manipulation regarded the perceptual training,
to which the last 15 minutes of the chemistry lab session was dedi-
cated (the perceptual training took about 5 minutes).

In consultation with the chemistry course instructors, we specifi-
cally created the perceptual training to align with the content cov-
ered in the regular class activities relating to translating between
ball-and-stick models and wedge-dash structures. Hence, the train-
ing aimed at helping students become perceptually fluent at translat-
ing between these visual representations. The visual representations
depicted molecules that are common examples of stereoisomerism
and included molecules that students had and had not encountered
during the class activities.

The perceptual training was designed based on the principles
described above. To encourage students to rely on nonverbal, induc-
tive processes, students were asked to solve the perceptual tasks “fast
and intuitively without overthinking it.” Students received 20 short
tasks that provided one visual representation (e.g., a ball-and-stick
model) and asked students to select one of four visual representations
(e.g., a wedge-dash drawing) that showed the same molecule. The
choice options varied a range of visual features that are relevant to
isomerism (e.g., different bonding arrangements) and irrelevant fea-
tures (e.g., rotations around single bonds) so that students would
learn to attend to the relevant features.

Individual Version of the Perceptual Training. Before stu-
dents in the individual condition started working on the individual
version of the perceptual training, they watched a short video. The
video explained the purpose of the perceptual training and the im-
portance of following one’s own perceptual intuitions and of solv-
ing the tasks quickly without overthinking them. The video ended
with an example of an individual student solving perceptual tasks.
Further, each perceptual task included a text prompt to solve the
task fast and intuitively (see Figure 2).

Collaborative Version of the Perceptual Training. Before
students in the collaborative condition started working on the
collaborative version of the perceptual training (see Figure 3),
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Figure 2
Individual Version of the Perceptual Training
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Here's a ball-and-stick model. Which wedge-dash structure
shows the same molecule?

Solve this task fast and intuitively.
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Students individually
work on simple, intuitive
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again by clicking on a new
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Note. See the online article for the color version of this figure.

they watched a brief video that was equal in length to the video
provided along with the individual version. The video explained
the purpose of the perceptual training as engaging students in in-
ductive, nonverbal processes involved in perceptual pattern rec-
ognition. It also explained that verbalization can impede the
acquisition of perceptual fluency as well as why perceptual flu-
ency is important for chemistry. Students were told that they
should collaborate using only gestures to communicate and that

Figure 3
Collaborative Version of the Perceptual Training
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they should not talk to each other. Students were instructed that
one of them would operate the mouse but that they would have
to reach consensus on the answer choice before clicking. As
illustrated in Figure 4, the video ended with an example of a
dyad who used gestures to collaborate, hence serving as a model
of nonverbal collaboration.

Further, each of the perceptual tasks included a text prompt for
students to solve the tasks fast and intuitively and to agree with
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simple perceptual tasks.
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Figure 4

Collaborating Students Were Shown an Example of a Dyad Using Gestures to Collaborate on the

Perceptual Training

Which ball-and-stick model shows
the same molecule?

Note.

their partner to gesture before clicking on an answer (see Figure 3).
Once students had reached an agreement, they could submit the an-
swer. If their answer was wrong, the script prompted students to
agree on a new answer using gestures only (see Figure 3).

We conducted two pilot tests of the collaborative version of the
perceptual training. In the first pilot study (Rau & Patel, 2018), 20
undergraduate students (10 dyads) were recruited from an intro-
ductory chemistry course to take the perceptual training in a
research laboratory. We evaluated whether students used gestures
indicating features of visual representations that corresponded to
the learning goals of the perceptual training. Results showed that
students’ gestures exclusively corresponded to features that carried
meaningful information (e.g., the number of atoms or bonds), thus
matching the learning goals of the perceptual training. Further, we
interviewed students about their experiences with nonverbal, ges-
ture-based collaboration. Students reported that it felt strange at
first to not be allowed to talk but that they quickly became com-
fortable with the procedure. They also reported that they found
their partner’s gestures useful because they helped them attend to
visual features they would have otherwise missed, because they
increased their confidence in their own perceptions, and because
they aligned with the use of nonverbal communication in their
chemistry courses. Finally, we compared how students’ error rates
on the perceptual tasks decreased over time and compared the
error rates to data from 28 undergraduate chemistry students who
had worked individually on the same perceptual training. Results
showed that students’ error rates decreased across the 20 percep-
tual tasks, indicating that students became perceptually fluent. Stu-
dents who worked collaboratively on the perceptual training also
showed significantly lower error rates than students who worked
individually. This pilot study showed that nonverbal, gesture-
based collaboration in the context of a perceptual training is feasi-
ble, that students engage in the desired form of collaboration, and
that doing so results in perceptual fluency. A limitation of this pilot

See the online article for the color version of this figure.

study is that it was conducted in the controlled context of a
research laboratory.

Therefore, the second pilot study tested whether nonverbal, ges-
ture-based collaboration on the perceptual training works in the
context of a chemistry course, especially when students are used
to collaborating verbally. Participants were 22 undergraduate stu-
dents in a small elective chemistry course. The pilot-study took
place in Week 14 of the semester. Students worked on the percep-
tual training at the end of the course session and had collaborated
verbally on a related chemistry task before. We observed that all
students complied with the instructions not to talk and relied on
gestures to communicate with their partner. They demonstrated
the desired form of collaboration by agreeing with their partner
before making a choice while equally contributing gestures to the
communicative exchange. Further, we observed that error rates
decreased over the course of the 20 perceptual tasks, indicating
that they became perceptually fluent. This pilot-test shows the fea-
sibility of nonverbal, gesture-based collaboration in the context of
a chemistry class.

Assessments

Performance on Perceptual Tasks. To assess whether collab-
oration affects students’ performance on perceptual tasks (Research
Question la), we examined their learning curves (Koedinger &
Mathan, 2004; Stamper et al., 2013). The learning curves depict
how students” performance on the perceptual tasks changes over
time. Specifically, we considered how the proportion of errors
made on the first attempt at solving each perceptual task declines
across the 20 tasks of the perceptual training. We consider a decline
in error rates an indicator of perceptual fluency gains. This assess-
ment was obtained at the level of the small group for the collabora-
tive condition and at the level of the individual student for the
individual condition.
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Performance on Chemistry Tasks. To assess whether col-
laboration affects students’ performance on chemistry tasks
(Research Question 1b), we created a chemistry test that involved
the visual representations targeted in the chemistry lab session.
The test included visual representations that were not part of the
perceptual training. Because the goal of perceptual trainings is to
enhance students’ efficient use of visual representations to solve
domain-relevant tasks (Kellman & Massey, 2013), this was our
main outcome of interest. The test contained 19 items, 17 of which
were multiple-choice questions and two of which were short an-
swer questions. The items covered a range of difficulty levels,
including the ability to recall and understand information about
chemical isomers and the ability to apply and analyze knowledge
about isomers. We created two versions of the test and counterbal-
anced which version students received as the pretest and the postt-
est. The test had high reliability with Cronbach’s o = .81.

To get additional insights into students’ ease of solving the
chemistry tasks, we asked them to rate their cognitive load on a 9-
point scale, using an instrument from prior research (Kirschner
et al., 2010; Paas & Van Merrienboér, 1994). Because the measure
contained only one item, its reliability cannot be quantified. We
also assessed the time students took to solve the tasks based on log
files. These assessments were obtained at the level of the individ-
ual student.

Interactions With the Perceptual Training. To assess how
students interacted with the perceptual training (Research Ques-
tion 2), we used the log data generated by the perceptual training.
Specifically, we computed students’ error rates as the proportion
of perceptual tasks on which students made a mistake on the first
attempt at solving the task. Further, we computed training time as
the amount of time between students’ start and finish of the per-
ceptual training. These metrics were obtained at the level of the
small group for the collaborative condition, and at the level of the
individual student for the individual condition.

Gesturing. To assess how students used gestures during the
perceptual training (Research Question 3), we videotaped 12 small
groups, randomly selected from different sections. We then com-
bined a top-down approach with a bottom-up, grounded theory
approach (Muller, 2014) to develop a coding scheme. Specifically,
the only theory-driven, top-down aspect of our approach was to dis-
tinguish deictic and representational gestures. Following McNeill
(1992), we defined deictic gestures as those gestures that indicate a
concrete referent in the environment. In our videos, these were exclu-
sively gestures where students pointed at an object on the screen. We
defined representational gestures as gestures that resembled the refer-
ent or indicated a movement. In our videos, representational gestures
were gestures where students used their hand(s) to form a shape or
indicated an angle between fingers, or where they used one hand to
indicate a rotational movement or a flip.

The bottom-up, grounded theory aspect of our approach
involved viewing the videos and identifying patterns of students’
use of deictic and representational gestures that recurred across
multiple student groups. We then formalized these patterns into a
coding scheme. Next, we segmented the video data into attempts
at solving the perceptual training tasks (e.g., if students made one
mistake while solving a perceptual task and tried again, this
yielded two segments; if they made two mistakes and tried again

after each mistake, this yielded three segments). Finally, the cod-
ing scheme was applied to the resulting 303 segments.

The resulting coding scheme differentiated whether students’
gestures occurred in response to disagreement or hesitation, after
students made an error, after students submitted a correct answer,
or spontaneously. We operationalized disagreement as students
shaking their head or the hand; hesitation as pauses of 1 second or
longer, as tilting the top of the head from side to side, or as slowly
raising the hand and holding it up; errors and correct answers as
steps that were highlighted as incorrect or correct by the perceptual
training, respectively; and spontaneous gestures as gestures that
occurred in the absence of the instances just described.

Further, the coding scheme distinguished deictic-holistic gestures
(i.e., a student points at a whole answer choice, such as the top-right
choice in Figure 3; usually this involved pointing at only one an-
swer choice), deictic-feature gestures (i.e., a student points at visual
features, such as the green sphere in Figure 3; usually this involved
pointing at a few features sequentially), and representational ges-
tures (i.e., a student made a hand movement or a hand shape that
resembled the referent, such as flipping two fingers to indicate that
the molecule is flipped or holding the fingers at an angle to indicate
an angle between two or more bonds). These codes were mutually
exclusive. In addition, for cases where students only made deictic-
holistic gestures (i.e., pointing at an answer choice), the coding
scheme differentiated common interaction patterns such as whether
all group members pointed or only one of them pointed. Finally, the
coding scheme noted cases where no gesturing occurred. The codes
were mostly treated as mutually exclusive (i.e., each segment was
assigned only one code), except if there was a visible shift in inter-
action patterns (e.g., one student pointed at an answer choice that
the other student disagreed with and ruled out as the potential an-
swer, and then showed hesitation about the remaining choices), or
if gesturing occurred after students had submitted the correct an-
swer. Table 1 shows the resulting coding scheme.

Interrater reliability was established on 16% of the data by two
independent coders. Interrater reliability on distinguishing deictic-
holistic, deictic-feature, and representational gestures was high
with k¥ = .92. Interrater reliability for applying the coding scheme
as a whole was high with ¥ = .90.

Spatial Skills. Spatial skills are a predictor of students’ ges-
turing (Hostetter & Alibali, 2007), as well as of students’ learning
with visual representations (NRC, 2006), particularly in chemistry
(Stieff, 2013; Wu & Shah, 2004). Therefore, we assessed students’
spatial skills with the Vandenberg & Kuse test (Peters et al.,
1995), which measures students’ ability to mentally rotate objects;
a type of spatial skills necessary for translating between 2D and
3D representations. This test has been used in prior research on the
role of spatial skills for chemistry learning (e.g., Stieff, 2007). The
test had acceptable reliability with Cronbach’s o = .66. This
assessment was obtained at the level of the individual student.

Procedure

Students completed the pretest and the spatial skills test prior to
the chemistry lab session. They were given access to the tests 24 h
before the class via their online course management system. Dur-
ing the lab session, they first worked on the regular class activities.
The last 15 minutes of the lab session were dedicated to the per-
ceptual training, which students completed according to their
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Table 1
Gesture Codes With Definitions

Gesture code

Definition

Deictic-holistic gestures only
D_Both-point
D_One-points-and-clicks
D_One-points-other-clicks
D_One-points-alone:

Spontaneous gesturing
D_Spontaneous-deicticFeature
R_Spontaneous-representational
DR_Spontaneous-deicticFeature-representational

Disagreement
D_Disagreement-deicticFeature
D_Disagreement-deicticFeature-representational
N_Disagreement-noGestures

Hesitation
D_Hesitation-deicticHolistic
D_Hesitation-deicticFeature
R_Hesitation-representational
DR_Hesitation-deicticFeature-representational

After an error
D_Error-deicticFeature
DR_Error-deicticFeature-representational
Error-noGestures:

After submitting the correct answer
D_ After-deicticFeature
R_After-representational

No gesturing

All students point at an answer, one of them clicks.
One student points, the other nods, the first clicks.
One student points, the other one clicks.

One student points, the other does not contribute.

A student spontaneously uses deictic-feature gestures to explain choice.
A student spontaneously uses representational gestures to explain choice.
A student spontaneously uses deictic-feature and representational gestures to explain choice.

Students use deictic-feature gestures to resolve a disagreement.
Students use deictic-feature and representational gestures to resolve a disagreement.
Students have a disagreement but do not use any gestures to resolve it.

One student hesitates, then at least one of them then makes deictic-holistic gestures.
One student hesitates, then at least one of them uses deictic-feature gestures.

One student hesitates, then at least one of them uses representational gestures.

One student hesitates, then they use deictic-feature and representational gestures.

Students make an error and then at least one of them uses deictic-feature gestures.
Students make an error and then use deictic-feature and representational gestures to figure it out.
Students make an error and do not gesture to resolve it but simply try again.

After submitting the right answer, a student uses deictic-feature gestures.
After submitting the right answer, a student uses representational gestures.

N_nodding No gesturing, but one student nods.
N_none No gesturing occurred.
Note. Gesture codes preceded by “D” indicate deictic gestures; gesture codes preceded by “R” indicate representational gestures; gesture codes preceded

by “N” indicate no gesturing.

experimental condition. If students had finished the regular class
activities earlier, they were permitted to complete the perceptual
training right away and were free to leave the class when they
were finished. Finally, students were given access to the content
posttest immediately after the lab session and had to complete it
within 24 h.

Analyses
Effects on Performance on Perceptual Tasks

To address Research Question la (how collaboration affects stu-
dents’ performance on perceptual tasks), we fitted an Additive
Factor model logistic regression (Cen et al., 2007) to the error
rates by task for each condition. This yields a slope for each condi-
tion that describes how quickly students’ error rates decline over
the course of the 20 tasks. We then compared these slopes.

Effects on Posttest Measures

To examine effects of condition on the posttest measures, we
modeled the effect of condition on students’ posttest scores. In cre-
ating a statistical model, we first examined whether a hierarchical
linear model (HLM; Raudenbush & Bryk, 2002) would be appro-
priate for our analyses. An HLM could account for potential
nested sources of variance owing to students being nested in small
groups, section, TA, or lecturing professor had an effect on stu-
dents’ test scores. To this end, we used an HLM with scores on the
posttests as dependent measure. Level 1 modeled student

characteristics (spatial skills, pretest scores both as continuous var-
iables). Level 2 modeled student-group variables (condition as cat-
egorical variable). To test whether an adjustment was needed to
account for students being nested in small groups, section, TA, or
professor, we calculated intraclass correlations (ICCs) to estimate
the degree of clustering due to these factors. The ICCs for our pri-
mary outcome variable of interest (i.e., the content knowledge
posttest) were so small (ICCs < .10) that adjustments for noninde-
pendence were not needed (Cress, 2008). Consequently, we con-
ducted analyses of covariance (ANCOVAs).

Second, we tested whether spatial skills should be included as a
moderator in the ANCOVA model. To this end, we used an
ANCOVA with students’ posttest scores as the dependent mea-
sure, their pretest scores and spatial skills as the covariate, and
condition as the independent variable. We then added an interac-
tion between the continuous spatial skills variable and the categor-
ical condition variable to test for aptitude-treatment interactions
(Park & Lee, 2003) that would indicate a moderation effect. We
found no aptitude-treatment interaction between spatial skills and
condition (F < 1). However, when removing the aptitude-treatment
interaction, spatial skills remained a significant predictor (p =
.002). Thus, we addressed Research Question 1b (how collabora-
tion affects the effectiveness of the perceptual training with
respect to performance on chemistry tasks) using the ANCOVA
model with spatial skills as a covariate but without the aptitude-
treatment interaction. Further, we used the same ANCOVA
model to test effects on cognitive load and on time spent on the
posttest, except that cognitive load / time spent on the posttest
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was the respective dependent measure and cognitive load/time
spent on the pretest was added as a covariate. We checked for
interactions between cognitive load or time spent with condition,
but found no such effects (Fs < 1) and hence did not include
such interactions in our ANCOVA model.

To address Research Question 2a (whether students’ interac-
tions with the perceptual training are affected by collaboration),
we used a multivariate ANCOVA with error rates and training
time as the dependent measures, students’ pretest scores and spa-
tial skills as covariates, and condition as the independent variable.

Mediation Effects

We investigated Research Question 2b (whether students’ inter-
actions with the perceptual tasks mediate potential effects of col-
laboration on students’ benefit from the perceptual training) for
those interaction metrics where the ANCOVA model revealed a
significant condition effect. In that case, we then conducted the
mediation analysis using causal path analysis. In contrast to con-
ventional mediation analysis (e.g., Baron & Kenny, 1986), causal
path analysis provides a unified framework for simultaneously
estimating multiple effects and separating direct from indirect
effects in one coherent statistical model (Spirtes et al., 2000).
Causal path analysis models contain all known effects in the given
data set. In contrast, conventional mediation analyses use a series
of independent regression analyses that do not take all known
effects into account. This can result in unreliable estimates
because it does not accurately describe the data.

To construct the causal path analysis model, we used the Tetrad
6.8.1 program, which allows users to search for models that are
theoretically plausible and consistent with the data. The independ-
ent variable was condition, dependent variables were pretest,
posttest, and spatial skills. As mediators, we considered error rates
and training time, after verifying that these variables were signifi-
cantly affected by condition because this is a prerequisite for a
mediation. Specifically, in Tetrad, the user first specifies assump-
tions that constrain the space of theoretically plausible models.
The assumptions we specified included that pretest and spatial
skills cannot cause condition; that condition cannot cause pretest
or spatial skills; that pretest, spatial skills, and condition can cause
error rates and training time, but not vice versa; and that the pre-
test, spatial skills test, condition, error rates, and training time can
cause the posttest, but not vice versa. Second, the user can select

an algorithm that find the model with the best model fit among
models in the search space (Spirtes et al., 2000). We used the Fast
Greedy Equivalence Search algorithm (FGES).

Exploratory Analyses of Interaction Patterns

We conducted exploratory analyses to shed additional light into
how students’ interactions may affect their learning gains. First,
we were interested in how gesturing affects students’ interactions
with the perceptual-fluency training. To this end, we correlated the
different types of students’ gestures (i.e., deictic-holistic, deictic-
feature, and representational gestures) with error rates and training
time.

Second, we were interested in whether one student in a small
group might have been more dominant than another, and whether
this might have led to one student having higher learning gains.
To address this question, we created three measures that we con-
sider proxies for dominance because they describe the impact one
student had on the collaborative interactions. First, we assessed
the proportion of problems on which each student was the first to
gesture. Second, for problems on which students had a disagree-
ment, we computed the proportion of problems for which each stu-
dent convinced the other student that their answer was correct.
Third, we created a categorical variable that indicated whether or
not the student controlled the mouse and was responsible for click-
ing on the answer while working on the perceptual training. We
computed these measures for the 12 dyads for whom we had video
data. We then correlated these measures with posttest scores.

Owing to the small sample size, we used Kendall’s tau correla-
tions (r,) for the exploratory analyses.

Results

In the following analyses, we report m> (n) and d for effect
sizes. According to Cohen (1988), an effect size m; of .01 or d of
2 corresponds to a small effect, m of .06 or d of .5 to a medium
effect, and "qg of .14 or d of .8 to a large effect. Table 2 shows the
means and standard deviations for all conditions and measures.

Prior Checks

Students were excluded from the analysis if they had failed to
complete the pretest or the posttest, or if they were absent during the

Table 2
Means and Standard Deviations (in Parentheses) for Each Dependent Measure by Condition
Individual Collaborative Average
Measure (n=213) (n=1243) (Total N = 456)
Spatial skills .93 (.09) 93 (.11) 93 (.10)
Content knowledge
Pretest .64 (.14) .65 (.14) .64 (.14)
Posttest 79 (13) 77 (12) 78 (.12)
Cognitive load
Pretest 4.39 (1.38) 4.44 (1.41) 4.42 (1.39)
Posttest 4.15(1.44) 4.22(1.47) 4.19 (1.45)
Duration (in minutes)
Pretest 12.03 (6.19) 11.42 (5.88) 11.7 (6.03)
Posttest 9.58 (6.07) 9.06 (5.00) 9.31(5.52)
Error rates .35 (.16) 22 (.14) .30 (.16)
Training time (in minutes) 4.51 (2.53) 5.29 (1.89) 4.92 (2.25)
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chemistry lab session. Of the 527 students, 45 failed to complete the
pretest. An additional 21 students failed to complete the posttest.
Four students did not attend class, and one student had to leave class
before the perceptual training. Hence, the final sample was N = 456.

We checked for differences prior to the intervention. A multi-
variate ANOVA with pretest scores and spatial skills as dependent
measures showed no differences between conditions on pretest,
F(1,454)=1.77, p = .18 or spatial skills (F < 1). Further, we veri-
fied that there were pretest-to-posttest learning gains. A repeated
measures ANOVA with pretest and posttest as repeated dependent
measures showed significant learning gains, F(1, 455) = 375.16,
p <.001,m; = 45.

Finally, we checked whether students complied with the collab-
oration instructions. Besides our informal observations in the
classroom that confirmed students’ compliance with the collabora-
tion instructions, we examined the video data of the 12 small
groups who had been selected for videotaping. We found that stu-
dents did not talk to each other. Further, in 88.10% of the observed
cases, students agreed with their partner before clicking, either by
both contributing gestures or by nodding agreement. In the 12
small groups we observed, all students within the small groups
contributed to the collaborative task.

Performance on Perceptual Tasks

To address Research Question la (whether collaboration affects
students’ performance on perceptual tasks), we inspected the
learning curves for each condition. Figure 5 shows the learning
curve that was estimated by the Additive Factor Model. The slope
estimates were .03 for the individual condition and .03 for the col-
laborative condition. Hence, students in both conditions showed
improvements in perceptual fluency. Their improvement happened
at virtually the same rate. This finding does not support either Hy-
pothesis 1.1a or 1.2a. However, Figure 5 shows that students in
the individual condition had overall higher error rates (see analy-
ses for Research Question 2).

Performance on Chemistry Tasks

To address Research Question la (whether collaboration affects
students’ performance on chemistry tasks), we examined the con-
dition effects of the ANCOV A model using the content knowledge
posttest as dependent measure. Results showed a significant effect
of condition with a small effect size, F(1, 452) = 4.93, p = .03,
ng = .01, such that students who worked individually on the per-
ceptual training outperformed students who worked collabora-
tively. This finding is in line with Hypothesis 1.2b that was
derived from sociocognitive research. There were no significant
effects of condition on cognitive load or test duration (Fs < 1).

Interactions With Perceptual Tasks

To investigate Research Question 2a (whether students’ interac-
tions with the perceptual training are affected by collaboration),
we inspected the condition effects on students’ error rates and
training time. Results showed significant effect of condition with a
large effect on error rates, F(1, 342) = 73.68, p < .001, ng =.18,
and with a small effect on training time, F(1, 342) = 10.00,
p < .01, né = .03. Students in the collaborative condition made

significantly fewer errors and spent significantly more time on the
perceptual training than students in the individual condition.

To address Research Question 2b (whether students’ interactions
with the perceptual tasks mediate effects of collaboration on stu-
dents’ benefit from the perceptual training), we examined the path
analysis model outputted by the model search described above.
Figure 6 summarizes the best-fitting model the FGES algorithm
found. The model fits the data well x*(6, N = 346) = 4.30, p = .64).>
The model reveals that error rates partially mediated the effect of
condition on the posttest. Specifically, the average student in the col-
laborative condition made .13 fewer errors per perceptual task than
the average student in the individual condition. For each error on the
perceptual tasks, the average student’s performance on the posttest
dropped by .11. Thus, taken together, the impact of the mediated
effect of collaboration on the posttest was an increase of 1.43%
(—.13 X —.11 = .0143). With respect to training time, the causal
path analysis revealed no significant mediation. Additionally, there
was a direct negative effect of collaboration on the posttest with a
strength of —.04, which outweighed the mediated positive effect.
Hence, the model is in line with the overall finding that collaboration
decreased learning outcomes. The net effect is thus a decrease of
2.57% on the posttest due to collaboration (—.04 + .0143 =
—.0257), which corresponds to about a third of a letter grade. Note
that these effects are achieved in the context of a five-minute inter-
vention and control for the effects of pretest and spatial skills.

Use of Gesture During the Perceptual Training

To investigate Research Question 3 (how students use gestures
during the perceptual training), we examined the prevalence of the
codes that emerged from the grounded theory approach described
above. Table 3 shows the frequency of each code. In the follow-
ing, we report patterns that stand out and provide a qualitative
description of representative examples from the video data.

In most cases (n = 129), students pointed holistically at an an-
swer. For example, Keith® and Hakeem viewed the perceptual task
for 3 seconds, and then both pointed at an answer choice at the
same time. Three seconds later, Hakeem clicked on that answer
choice. Their answer was correct, and 1 second later, Hakeem
clicked on the “Done” button to move to the next task.

All partners in a small group were generally involved in the de-
cision to click (n = 127). Involvement in the decision was explicit
if both students pointed (as in Keith and Hakeem’s example) or if
one student nodded agreement. For example, Emma and Seiji
viewed the perceptual task for 6 seconds, then Seiji pointed at an
answer choice. 5 seconds later, Emma nodded in agreement. One
second later, Seiji clicked on the answer choice. Alternatively,

2To clarify the logic of hypothesis testing in causal path analysis: A
nonsignificant p value is desirable. That is, the usual logic of hypothesis
testing is inverted in causal path analysis. The p value reflects the
probability of seeing as much or more deviation between the covariance
matrix implied by the estimated model and the observed covariance matrix,
conditional on the null hypothesis that the model that we estimated was the
true model. Thus, a low p value means the model can be rejected, and a
high p value means it cannot. Conventional thresholds are .05 or .01, but
like other alpha values, this is somewhat arbitrary. The p value should be
higher at low sample sizes and lowered as the sample size increases, but the
rate is a function of several factors, and generally unknown.

3 All names are pseudonyms to protect students’” anonymity.
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Figure 5
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involvement in the decision was implicit if one student pointed
and the other student clicked. For example, Charleen and Isaak
viewed the perceptual task for 5 seconds. Then, Charleen pointed
at the top-right choice. 2 seconds later, Isaak clicked on that
choice, hence implicitly agreeing with Charleen’s contribution.

If gesturing went beyond deictic-holistic pointing at answers,
deictic-feature gestures and representational gestures occurred
equally often per segment (n = 62 for both). For example, Daphne
and Judith used deictic-holistic gestures: They viewed the percep-
tual task for 12 seconds, then Daphne pointed at a specific atom in
the given representation. Two seconds later, both pointed at one of
the answer choices, and Daphne clicked on it 1 second later. As
another example, Mateo and Ben used a representational gesture:
They viewed the perceptual task for 4 seconds, then Mateo pointed
at the top-right choice and made a representational gesture by ori-
enting his finger to indicate the direction of a bond relative to other
bonds. Seven seconds later, Ben clicked on that choice. Informally,

Figure 6

we noticed that students seemed to make more representational ges-
tures when the perceptual tasks were particularly difficult (e.g.,
involving molecules with stereocenters).

Gestures beyond deictic-holistic pointing usually occurred in
response to an event (n = 99), as opposed to spontaneously (n = 38),
as illustrated by Daphne and Judith’s and Mateo and Ben’s examples.
A common event that triggered gesturing was disagreement among
partners (n = 21). For example, Mehren and Daisy viewed the per-
ceptual task for 4 seconds. Mehren pointed at an answer choice, but
Daisy shook her head. For the next 11 seconds, both provided a se-
ries of deictic-feature gestures (e.g., pointing at bonds and atoms)
and representational gestures (e.g., orienting the hand or a finger to
indicate the angle between two bonds). Then, Mehren pointed at a
different answer choice, and Daisy agreed by nodding. One second
later, Mehren clicked the answer choice.

Another event that triggered gesturing, although less common,
was hesitation by a partner (n = 13). For example, Keith and

Causal Path Analysis Found by the FGES Algorithm
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Table 3
Frequency of Gesture Codes
Gesture code Frequency
Deictic-holistic gestures only
D_Both-point 38
D_One-points-and-clicks 15
D_One-points-other-clicks 75
D_One-points-alone 2
Total 129
Spontaneous gesturing
D_Spontaneous-deicticFeature 4
R_Spontaneous-representational 25
DR_Spontaneous-deicticFeature-representational 9
Total 38
Disagreement
D_Disagreement-deicticFeature 6
D_Disagreement-deicticFeature-representational 15
N_Disagreement-noGestures 4
Total 25
Hesitation
D_Hesitation-deicticHolistic 13
D_Hesitation-deicticFeature 4
R_Hesitation-representational 3
DR_Hesitation-deicticFeature-representational 6
Total 26
After an error
D_Error-deicticFeature 7
DR_Error-deicticFeature-representational 3
Error-noGestures 29
Total 39
After submitting the correct answer
D_After-deicticFeature 8
R_After-representational 1
Total
No gesturing
N_nodding 15
N_None 38
Total 53

Hakeem viewed the perceptual task for 4 seconds, then Hakeem
pointed at two answer choices simultaneously, moving his fingers
quickly up and down, as if to indicate that he was undecided
between the two. One second later, Keith pointed at one of those
answer choices and moved his finger to show a curve that matched
the shape of the molecule. Three seconds later, Hakeem nodded
and clicked on that answer choice.

Gesturing in response to errors occurred least often (n = 10).
For example, Daphne and Judith viewed the perceptual task for 6
seconds, then they pointed at different answer choices. Four sec-
onds later, Judith pointed at Daphne’s choice, which she immedi-
ately clicked, but it was incorrect. One second later, Judith pointed
at corresponding atoms in her original choice, the incorrect choice,
and the given representation. One second later, Daphne clicked on
Judith’s original choice, which was correct.

Most often following an error, students clicked again on a dif-
ferent answer without gesturing (n = 29). For example, on a differ-
ent perceptual task, Daphne and Judith’s first attempt was
incorrect. One second later, without further gesturing by either
partner, Daphne clicked on a different choice, which was correct.

Gestures sometimes occurred after a correct response (n =9), in
which case they were mostly deictic-feature gestures (n = 8). For
example, 2 seconds after clicking on the correct choice in the

perceptual task just mentioned, Daphne pointed at distinct atoms
in the given representation and clicked “Done” 3 seconds later.

Exploratory Analyses of Interaction Patterns

First, we computed correlations of the different types of ges-
tures with error rates and training time for the 12 dyads for whom
we had video data. All types of gestures were associated with lon-
ger training time (r. = .36, p = .01 for deictic-holistic gestures;
r. = .50, p < .001 for deictic-feature gestures; r, = .62, p < .001
for representational gestures), but only representational gestures
were associated with a reduction of error rates (r; = —.29, p = .05).

Second, we analyzed whether our proxy measures of student
dominance affected posttest scores. We found no significant corre-
lation between the proportion of problems on which students were
the first to gesture with their posttest scores (r; = .19, p = .29) or
between the proportion of problems with disagreements on which
they convinced their partner that their choice was the right one
(r. = —.04, p = .82). We found no significant effects of controlling
the mouse on posttest scores (F < 1).

Discussion

Summary of Results

The goal of this article was to contrast conflicting predictions
about whether nonverbal collaboration via gesturing enhances stu-
dents’ benefit from a perceptual training, compared with the com-
mon practice of working individually on perceptual trainings.
Thereby, this article follows Wise and Schwarz’s (2017) call to
understand under what conditions collaboration is beneficial. First,
we examined how gesture-based collaboration affects students’
performance on perceptual tasks during the perceptual training
(Research Question 1a). Our results revealed that students learning
individually and collaboratively showed a parallel decrease of
error rates on the perceptual tasks. This suggests that both condi-
tions equally improved their ability to make perceptual mappings
between the visual representations presented during the training.
This supports neither Hypothesis 1.1a or Hypothesis 1.2a.

Second, in line with the goal of perceptual trainings to enhance
students’ efficient use of visual representations when solving do-
main-relevant tasks (Kellman & Massey, 2013), our main focus
was on how gesture-based collaboration affects students’ perform-
ance on chemistry tasks after the perceptual training (Research
Question 1b). Our results revealed an advantage of individual
learning over collaboration. Students who worked on the individ-
ual version of the perceptual training showed higher posttest per-
formance than students who worked collaboratively on the
perceptual training. Yet, they experienced the same levels of cog-
nitive load and spent the same amount of time on the posttest as
collaborating students. Taken together, this finding supports Hy-
pothesis 1.2b, which was derived from prior sociocognitive
research. Although the effect on posttest scores was small, the
effect is sizable if one considers that it represents about a third of a
letter grade resulting from a short intervention of about 5 minutes
on average.

Third, we investigated whether gesture-based collaboration
affects students’ interactions with the perceptual tasks in terms of
error rates and training time (Research Question 2a). Our results
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showed that collaborating students made fewer errors and spent
more time on the perceptual training than students learning indi-
vidually. We then investigated whether these changes in students’
interactions with the perceptual tasks mediated condition effects
on students’ benefit from the perceptual training (Research Ques-
tion 2b). Results from a causal path analysis showed that the
decrease in collaborating students’ error rates was associated with
higher performance on the content knowledge posttest. Hence,
decreased error rates mediated a positive effect of nonverbal
collaboration on students’ benefit from the perceptual training.
However, there was an additional direct negative effect of gesture-
based collaboration that outweighed the mediated positive effect.
Thus, the model revealed a mechanism through which collabora-
tion enhanced students’ benefit from the perceptual training, but
also indicates that there was an additional mechanism through
which gesture-based collaboration impeded students’ benefit from
the perceptual training. The model found no mediating effect of
increased training time.

Finally, we explored how students used gestures during the per-
ceptual training (Research Question 3). Our analysis of video data
from a subset of students showed that most gestures were holistic-
deictic, and usually all partners were involved in the decision to
click on an answer choice. This indicates that students’ behavior
was largely in line with the instructions students received to solve
the perceptual tasks quickly without overthinking them while com-
ing to an agreement with their partner. However, our analyses also
showed that students engaged in a fair amount of deictic-feature
and representational gesturing, in response to a variety of situa-
tions (e.g., disagreement with their partner, hesitation by their part-
ner). Our inspection of these gestures revealed that deictic-feature
and representational gestures were equally frequent and external-
ized students’ thinking, either to convince the partner of a particu-
lar answer choice or to jointly make sense of the perceptual task.
Thus, these kinds of gestures can be interpreted as a nonverbal
form of explaining. Although all types of gestures were associated
with increased training time, only representational gestures were
associated with a reduction in error rates.

Interpretation of Findings

The main finding of the present study was that gesture-based
collaboration during the perceptual training yielded lower out-
comes on the posttest. Our other measures provide nuanced
insights into this effect. It is noteworthy that although we found an
advantage of individual learning on students’ performance on do-
main-relevant tasks after the training, we found a parallel decline
of error rates on the perceptual tasks during the training. The paral-
lel decline suggests that gesture-based collaboration did not
impede students’ learning of the targeted perceptual mappings
themselves. Nevertheless, the results from the posttest suggest that
there were differences in the quality of perceptual-fluency acquisi-
tion: students in the individual condition were better at extracting
meaningful information from visual representations when solving
domain-relevant tasks, which is the ultimate goal of perceptual
trainings.

One explanation of our findings is derived from sociocognitive
research, which suggests that collaboration increases the effort and
time needed for coordinating and communicating (Nokes-Malach
et al., 2015; Kirschner et al., 2009a), and that this extra effort and

time does not pay off for simple tasks (Kirschner et al., 2010). As
mentioned, the perceptual tasks in our perceptual training are a
simple type of task. Our findings indeed revealed that training
time was increased in the collaborative condition. The positive
correlation between gestures and training time indicates that com-
munication with a partner increased training time. The causal path
analysis showed that increased training time did not affect the
effectiveness of the perceptual training. Thus, communicating
with a partner increased training time without paying off, in
essence reducing the time-efficiency of the perceptual training. At
the same time, however, this finding rules out the possibility that
negative effects of gesture-based collaboration might be explained
by the coordination among partners detracting from learning. In
other words, the extra training time itself did not impede students’
benefit from the perceptual training, but neither did it enhance it.

A further explanation builds on theories suggesting that gesture
and speech are inseparable processes (Goldin-Meadow, 2003;
Hostetter & Alibali, 2008; McNeill, 1992). Therefore, gesturing
may trigger verbal thought that could interfere with perceptual
processing. Our gesture analysis revealed insights into this mecha-
nism. We found that collaborating students used a fair amount of
deictic-feature and representational gestures. These types of ges-
tures seemed to allow students to externalize their thinking and to
build on each other’s externalizations, which suggests that they
allowed students to engage in a nonverbal form of explaining.
Thereby, these gestures may have offered a pathway for students
to engage in complex explanations of the perceptual mappings.

Such explanations may have interfered with perceptual fluency
in ways that are analogous to the verbal overshadowing effect.
Recall that the verbal overshadowing effect is explained by verbal-
ization creating a verbally encoded memory trace that is preferably
recalled at the expense of the original perceptual memory, thereby
interfering with perceptual performance after a training situation
(Chin & Schooler, 2008; Schooler & Engstler-Schooler, 1990).
Our finding that both conditions showed parallel declines in stu-
dents’ errors on the perceptual tasks during the training is consist-
ent with this interpretation. The parallel decline suggests that
gesturing may not have been directly detrimental to students’ abil-
ity to create perceptual mappings between the visual representa-
tions they encountered during the training. Rather, gesturing might
have triggered silent explaining that yielded a verbal memory
trace, which students may have preferably retrieved at the expense
of the perceptual mapping when working on the posttest. This may
have caused difficulties in extracting information from visual rep-
resentations when solving domain-relevant tasks on the posttest,
thereby explaining lower posttest scores in the collaborative condi-
tion. The finding that collaborating students did not report higher
cognitive load or spent more time on the posttest suggests that
they may not have noticed these difficulties. If they had noticed
that perceiving relevant visual information is difficult, they likely
would have taken more time to process the representations or
reported higher cognitive load while doing so. Possibly, they had
an illusion of knowing how to perceive information as they had
been exposed to the same number of visual representations as stu-
dents in the individual condition, but they were less accurate at
extracting relevant information from the representations.

Although these aspects of our results support the interpretation
that gesture-based collaboration impeded students’ benefit from
the perceptual training, our results also point to a positive—albeit
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weaker—mechanism through which collaboration enhanced stu-
dents’ benefit from the perceptual training. This aspect of our
results is in line with the view that gesturing is an important com-
municative mechanism that facilitates perceptual learning proc-
esses while students participate in social practices (e.g., Roschelle,
1992; Singer, 2017; Stevens & Hall, 1998). Specifically, we found
a large effect of gesture-based collaboration reducing students’
errors on the perceptual tasks during the perceptual training. The
finding that collaborating students had altogether lower error rates
than students in the individual condition is not necessarily surpris-
ing: It is likely that collaborating students (at least sometimes)
caught and corrected each other’s mistakes before an incorrect an-
swer was submitted, which may explain the lower error rates in
the collaborative condition. The noteworthy finding is that a reduc-
tion of errors was associated with higher outcomes on the posttest.
The overall effect of collaboration on posttest scores is thus a com-
posite of the positive mediated effect and the negative direct
effect. The finding that two opposite effects account for the overall
effect may explain the overall small effect size, which is, however,
as argued above, of practical relevance given that it was achieved
within 5 minutes. Taken together, the finding that a positive medi-
ated effect exists alongside a direct negative effect indicates that
some component of working collaboratively enhanced students’
benefit from the perceptual training compared with students work-
ing individually.

What is this component? It is possible that partner feedback was
more helpful than feedback from the perceptual training because it
might have been more nuanced and dynamic. The feedback pro-
vided by the perceptual training only indicated that students had
made a mistake, but not where the mistake was located. Hence,
individual students had to discover by themselves how to correct
their original response; and this may have been too difficult for
them. In that case, they could have induced an incorrect perceptual
mapping, which may have impeded their benefit from the percep-
tual training, as is a known risk of providing perceptual trainings
to novices (Rau & Wu, 2018). In contrast, for collaborating stu-
dents, the partner’s gestures may have operated like a worked
example of the perceptual task, which may have off-loaded the
cognitive burden of searching for relevant visual information.

The fact that representational gestures correlated with lower
error rates—whereas deictic-feature gestures did not—suggests
that representational gestures offered particularly helpful feed-
back. Whereas deictic-feature gestures draw students’ attention to
static visual features that are visible on the screen (e.g., the loca-
tion of a double bond or a carbon atom), representational gestures
are more dynamic and use movement to indicate spatial operations
such as rotation, flipping, or the shape of a molecule. The finding
that deictic-feature gestures did not correlate with lower error rates
might suggest that individual students were able to induce by
themselves which static features of the visual representations car-
ried important information. This finding stands in contrast to other
research that has found associations between deictic gestures and
learning outcomes (e.g., Cook et al., 2008). Those findings were,
however, obtained in the context of conceptual learning tasks
where explanations were encouraged. Our research therefore does
not contradict those findings but merely suggests that deictic ges-
tures were not particularly helpful in the context of our perceptual
tasks.

In contrast, the correlation between representational gestures
and error rates suggests that the promise of gesture-based collabo-
ration lay in helping students perform spatial operations on the vis-
ual representations. This finding aligns with other studies that
found an association between representational gestures and learn-
ing from spatial tasks (Chu & Kita, 2008). Further, we observed
that representational gestures occurred more often during difficult
parts of the perceptual training. This observation speaks to the
interpretation that students may have used representational ges-
tures to address difficulties when the perceptual tasks required
them to mentally perform spatial operations on the molecules.

Additionally, it is possible that performing the representational
gestures themselves allowed the gesturing student to induce the
correct perceptual mappings. We note that we did not prohibit stu-
dents in the individual condition from gesturing. However, we did
not observe gestures among students who worked individually on
the perceptual training. Thus, the social situation in the collabora-
tive condition may have given rise to representational gestures,
which might have enhanced perceptual-fluency acquisition for
gesturing students. This interpretation is consistent with prior
research showing that students who gesture tend to show higher
learning gains from visuospatial tasks (Chu & Kita, 2008). By per-
forming representational gestures, the student can externalize the
spatial operations needed to perform to perceive mappings among
the visual representations. This may have made the perceptual task
accessible to the gesturing student.

Our interpretation that representational gestures may have
helped prevent errors is consistent with our finding that gestures
rarely occurred after errors: Because gesturing most often occurred
before students submitted an erroneous response, they had already
elaborated on the various options, which often prevented making
an error to begin with. If an error occurred nevertheless, their ges-
tures may have already identified a plausible alternative choice, so
that additional gesturing may not have seemed necessary.

Implications for Research

Our findings expand prior research suggesting that verbal col-
laboration decreases students’ benefit from simple verbal recall
tasks (Clark & Brennan, 1991; Kirschner et al., 2009b) by show-
ing that the same may be true for gesture-based collaboration on
simple perceptual tasks. In contrast to prior research on simple
recall tasks, which had suggested that the increased effort and time
accounts for ineffectiveness of collaborative interventions, our
results point to a different mechanism. Specifically, gesture-based
collaboration may trigger verbal thought and explanation (albeit
silent), which seems to interfere with perceptual fluency. Although
this finding is in line with prior research on the verbal oversha-
dowing effect (Chin & Schooler, 2008; Schooler et al., 1997), our
findings show that even nonverbal gesturing can have a negative
effect on students’ benefit from perceptual training, pointing to a
nonverbal overshadowing effect, so to speak.

In addition, our findings provide insights into the role of ges-
ture-based communication in collaborative learning. Whereas
studies that have compared collaborative to individual learning
have mostly attributed benefits of collaboration to verbal commu-
nication (e.g., Chi, 2009; Dillenbourg et al., 1996), nonverbal
communication via gesturing has a significant role in social inter-
actions (e.g., Singer, 2017). Our results show that even in an
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instructional situation where collaboration resulted in lower postt-
est scores, representational gestures reduced students’ errors on
perceptual tasks. This finding suggests that gestures that illustrate
spatial operations may be a particularly important driver of collab-
orative learning.

Our gesture analysis revealed that representational gestures of-
ten occurred in response to errors, disagreement with a partner, or
a partner’s hesitation. This finding suggests that difficulties in stu-
dents’ collaborative interactions may trigger gestures that may
allow students to navigate a difficult learning situation with the
help of their partner. The fact that difficulties offer opportunities
for learning has been investigated by research on desirable diffi-
culties (e.g., Bjork & Bjork, 2020; de Croock et al., 1998) as well
as by research on productive failure (e.g., Sinha & Kapur, 2021).
Future research may examine the role of representational gestures
in the context of difficulties that occur in collaborative settings.

Furthermore, by revealing the impact of gesture-based collabo-
ration on students’ learning, our research connects to ongoing
research on the role of gestures in learning. For example, recent
findings suggest that students build gestures incrementally and that
the spatial congruency of incrementally built gestures has an
impact on their learning (DeLiema et al., 2021). Further, recent
research shows that dialogic gestures play a role in students devel-
oping a scientific understanding of everyday experiences (Flood,
2018). To date, this research has focused exclusively on concep-
tual learning. Yet, it seems plausible that the acquisition of percep-
tual fluency may also be affected by students’ incremental
building of gestures and by the spatial congruency of such ges-
tures, which could be explored in future research. More broadly,
our research adds to the growing embodied cognition literature,
which documents the educational impact of students’ body move-
ments such as gestures (Nathan et al., 2021).

In addition, the finding that gesture-based collaboration did not
enhance students’ benefit from the perceptual training opens new
questions for future research on social learning situations. Many
learning situations involve conceptual and perceptual learning
processes in conjunction. For example, perceptual learning proc-
esses are centrally involved when surgery students assist an attend-
ing surgeon in the operating room, learning to see meaningful
anatomical structures in the body, where they also listen to the sur-
geon’s conceptual explanation of the operating procedures. Our
findings suggest that more research is needed on perceptual learn-
ing in social situations because we should not take for granted that
students can benefit from the perceptual aspect of such a training
situation. Further, future research should investigate whether max-
imizing opportunities for representational gestures might increase
students’ benefit from perceptual learning in a collaborative con-
text. We emphasize that we do not mean to extrapolate from our
findings to social situations that involve speech but rather to high-
light interesting venues for future research on perceptual learning
in social contexts.

Further, our findings have implications for orchestrating individ-
ual and collaborative activities. Our findings suggest that gesture-
based collaboration facilitates a positive mechanism of reducing
students’ errors on perceptual tasks. Future research should explore
whether this effect could be leveraged by allowing students to col-
laborate initially until they have induced correct perceptual map-
pings and then transition to individual work on the perceptual
training. Future research could also investigate whether such a

combination might enhance students’ acquisition of perceptual flu-
ency when perceptual learning processes occur in a social context.
For example, a surgery student might review a video recording of a
surgery procedure after having participated in the social training sit-
uation in the operating room.

Taken together, our findings highlight the importance of under-
standing boundary conditions of when and why collaboration is
effective and offers new venues for better understanding how collab-
oration affects students’ benefit from perceptual training situations.

Implications for Instruction

Altogether, based on our results, we cannot recommend ges-
ture-based collaboration for perceptual trainings. Nevertheless, our
findings suggest that representational gestures could be important
for perceptual learning processes, although more research is
needed to explore this possibility. Future research pending, stu-
dents themselves may opt to engage in additional individual prac-
tice with perceptual tasks if the only opportunity to practice
efficient processing of visual information is in a social context.

For perceptual trainings, our research suggests that although
they may be more effective when done individually, there is room
for improvement. Specifically, when spatial processing is required
to establish perceptual mappings, students may need more guid-
ance than is commonly offered by perceptual trainings. Perceptual
trainings may need to provide more nuanced guidance and feed-
back in a way that does not trigger elaborative processes. Future
research should establish whether providing a perceptual worked
example enhances the effectiveness of perceptual trainings.

Limitations and Future Directions

Our findings should be interpreted in the context of the follow-
ing limitations. First, collaborating via gestures only without being
allowed to talk was likely unfamiliar to students. Having to learn a
new mode of communication might have affected our results.
Although our first and second pilot studies indicated that students
got used to this mode of communication very quickly and even in
the span of the short duration of the perceptual training, future
research should address this issue. For example, future studies
could repeatedly expose students to collaborative versions of per-
ceptual trainings and trace the outcomes relative to an individual
version of the perceptual training over time.

Second, in order not to disturb perceptual processing, we were
unable to ask students to rate their cognitive load during the per-
ceptual training. However, cognitive load measurements provided
at different times during a study can reveal different effects
(Ayres, 2018). Hence, it is possible that cognitive load during the
perceptual training was higher in the collaborative condition, and
our study was unable to reveal such an effect. Future research
could address this limitation by using alternative cognitive load
measures, such as physiological measures that are unobtrusive and
provide online assessments of cognitive load while students
engage in other tasks (see Ayres, 2018). Doing so could yield
insights into whether the task of coordinating with a partner leads
to increased cognitive load during the training, as suggested by
sociocognitive research (e.g., Kirschner et al., 2010).

Relatedly, the cognitive load measure we used to assess cogni-
tive load during the posttest was a single-item rating that was
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repeatedly presented to students after each test item, following
prior research (Kirschner et al., 2010; Paas & Van Merrienboér,
1994). Although this method is widely used, it may be less reliable
than multiitem measures of cognitive load (Ayres, 2018). Future
research could address this limitation by using more comprehen-
sive cognitive load measures.

Third, it is possible that students in the collaborative condition
were somewhat disadvantaged because they had to work individu-
ally on the posttest. In that respect, the difference between training
and test situation was larger for students in the collaborative condi-
tion than for students in the individual condition. We think provid-
ing an individual test was appropriate because most test situations
involve individual work; and this has not changed since the push
toward more collaborative work in classrooms (e.g., Freeman
et al.,, 2014). Nevertheless, future research should examine
whether there are benefits of collaborative perceptual trainings that
become visible only in collaborative situations. Given that ulti-
mately, the goal of STEM instruction is not to enhance test per-
formance but to enable students to become valuable members of
scientific and professional communities, this is a worthwhile goal
for educational research more broadly.

Further, our study was not designed to separate effects of collab-
orating from effects of gesturing. Future research should compare
effects of gesturing without collaborating or collaborating without
gesturing to individual learning to further disambiguate our find-
ings. Similarly, our methods did not allow us to separate effects of
observing versus performing gestures. As discussed above, we
believe the role of representational gestures in perceptual learning
processes is worth exploring further. Future research could investi-
gate whether representational gestures are effective for the perform-
ing student, the receiving student, or both, by comparing students
who are allowed to perform but not watch, watch but not perform,
or to perform and watch representational gestures.

Likewise, it would be interesting to further investigate why col-
laborating via gesturing was ineffective. For example, it is possible
that gestures triggered verbal thought in a way that interfered with
students’ perceptual learning during the training. Another possibil-
ity is that gesturing itself distracts students from the perceptual ex-
perience, without necessarily triggering verbal thought.

In addition, we note that, because the gesture analysis was per-
formed on a subset of student groups, we cannot use it to establish
causal claims. Rather, we view our findings from the gesture anal-
ysis as providing complementary insights to the quantitative analy-
sis of learning outcome and log data, serving to identify possible
mechanisms that need to be verified by future research. To do so,
future research would need to collect video data on a larger sample
of students and verify, for example, whether representational ges-
tures indeed mediate a positive effect of collaboration on learning
gains, relative to students working individually.

Finally, and related to the previous point, we caution against
overgeneralizing our findings. As any study, ours was conducted
in a specific context and with a specific population. It is possible
that other learning materials, for example those that rely more on
visuospatial processing than ours and involve perception of
dynamic stimuli, would benefit from collaboration. Indeed, our
finding regarding representational gestures suggest that the more
spatial and dynamic a perceptual task is, the more it might benefit
from collaboration. Thus, exploring this venue in future research

could yield new insights into where the boundary conditions are
located that describe whether collaboration is effective.

Conclusion

Overall, the present research advances our understanding of
when and how collaboration is helpful. A quasi-experiment on a
perceptual training in an undergraduate chemistry course showed
that nonverbal collaboration via gesturing yielded lower learning
outcomes than individual learning. However, representational ges-
tures contributed positively to the learning outcomes of collaborat-
ing students. These findings open new questions about the support
of perceptual learning processes when they occur in collaborative
contexts as well as about the role of representational gestures in
such contexts.
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