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Abstract

This paper presents an efficient parallel radiative transfer-based inverse-problem solver for time-domain optical tomogra-
phy. The radiative transfer equation provides a physically accurate model for the transport of photons in biological tissue,
but the high computational cost associated with its solution has hindered its use in time-domain optical-tomography
and other areas. In this paper this problem is tackled by means of a number of computational and modeling innovations,
including 1) A spatial parallel-decomposition strategy with perfect parallel scaling for the forward and inverse problems
of optical tomography on parallel computer systems; and, 2) A Multiple Staggered Source method (MSS) that solves
the inverse transport problem at a computational cost that is independent of the number of sources employed, and which
significantly accelerates the reconstruction of the optical parameters: a six-fold MSS acceleration factor is demonstrated
in this paper. Finally, this contribution presents 3) An intuitive derivation of the adjoint-based formulation for eval-
uation of functional gradients, including the highly-relevant general Fresnel boundary conditions—thus, in particular,
generalizing results previously available for vacuum boundary conditions. Solutions of large and realistic 2D inverse
problems are presented in this paper, which were produced on a 256-core computer system. The combined parallel/MSS
acceleration approach reduced the required computing times by several orders of magnitude, from months to a few hours.

1. Introduction

This paper presents an efficient parallel inverse-problem
solver, based on the radiative transfer equation (RTE), for
time-domain optical tomography. As is well known, the
RTE provides a physically accurate model for the trans-
port of photons in biological tissue [1, 2], but its appli-
cability in the context of inverse problems has been hin-
dered by the high computational cost required for its so-
lution. In this paper this difficulty is addressed by means
of a combination of three main strategies, namely, (i) Use
of the spectral FC-DOM approach [3] for the solution of
the RTE equations; (ii) An effective parallel implementa-
tion of the FC-DOM method based on a spatial domain-
decomposition strategy; and (iii) A Multiple Staggered
Source (MSS) setup, which utilizes certain combinations of
sources operating simultaneously instead of the sequences
of single sources used in previous approaches. When imple-
mented on a 256-core computer cluster the overall paral-
lel/MSS approach results in computing-time acceleration
by several orders of magnitude—thus making it possible
to solve large 2D inverse problems, such as the problem of
imaging within a neck model considered in Section 7.

The proposed direct parallel solvers provide a num-
ber of advantages. In contrast to other algorithms, for

Email address: egaggioli@iafe.uba.ar (E. L. Gaggioli)

example, the approach presented in this contribution is
highly efficient independently of the number of sources
employed (cf. [4]). Alternative parallel strategies based
on GPU architectures [5] might be appropriate for optical
tomography based on the diffusion approximation. But,
unfortunately, the diffusion approximation is not accurate
for many applications, and, in view of the high storage
required by the RTE-based time-domain inverse problem,
a GPU-based RTE solver may not be viable. In the re-
view [6] of parallelization strategies for this problem, for
strong scaling tests, all parallelization strategies show an
efficiency scaling significantly below the ideal. Ref. [7]
presents the only parallel strategy known to the authors
which reports a perfect parallel efficiency, but the applica-
bility of the method is restricted by a fundamental limita-
tion to non-absorbing and non-scattering media. In con-
trast, the parallel algorithm presented in this paper enjoys
perfect parallel efficiency for general problems, including
arbitrarily prescribed scattering and absorption, and finds
no restrictions regarding the transport regime, the number
of sources, or the number of discrete ordinates employed.
A parallel efficiency of 136.7% with up to 256 cores for
the benchmark presented in this work has been obtained
by means of the proposed parallelization for the FC-DOM
algorithm (see sec. 4.3 Figure 4 and its caption). For com-
parison, reference [8, p. 153] reports a computing time
of 44.3 hours for a single 2D forward time solution of the
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RTE, which, running on 64 cores, the algorithms presented
in this paper obtain in less than thirty minutes.

As mentioned above, an additional significant reduc-
tion in the computing time required for the solution of
the inverse problem is achieved by exploiting the proposed
MSS method—which, combining multiple sources in each
RTE solution, reduces the number of time-domain direct
and adjoint RTE solutions required. MSS acceleration by
a factor of six is demonstrated in this paper, without any
degradation in the accuracy of the inverse problem recon-
struction, relative to the time required by the Transport
Sweep method [9, 10] (TS) ubiquitously encountered in
optical tomography.

The rest of this paper is organized as follows. Sec-
tion 2 presents the classical optical-tomography forward
problem. Section 3 then presents a derivation of the ad-
joint gradient formalism under the highly relevant general
Fresnel boundary conditions (thus generalizing results pre-
viously available for vacuum boundary conditions) which,
in particular, incorporates a class of generalized sources
inherent in the MSS method in addition to the classical
source types inherent in the TS method. A direct compar-
ison, presented in Section 3.6, between gradients for the
objective function obtained by finite differences and the
adjoint method demonstrate the validity and accuracy of
the proposed adjoint approach. Section 4, in turn, presents
the numerical methods employed for the numerical solu-
tion of the RTE, as well as the spatial domain decom-
position strategy utilized for their efficient parallelization.
Section 5 demonstrates the high-order convergence of the
overall RTE parallel solver for smooth solutions, and it
presents a demonstration for a photon density of a type
used in laboratory settings. Section 7 presents results of a
number of reconstructions obtained by the proposed meth-
ods, including large 2D inverse problems, such as the prob-
lem of imaging within a head model and an MRI-based
neck model.

2. Preliminaries

Defining the transport operator

T [u] =
1

c

∂u(x, θ, t)

∂t
+ θ̂ · ∇u(x, θ, t) + a(x)u(x, θ, t)

+ b(x)

[
u(x, θ, t)−

∫
S1

η(θ̂ · θ̂′)u(x, θ′, t)dθ′
]
, (1)

we consider the initial and boundary-value radiative trans-
fer problem

T
[
u
]

= 0, (x, θ) ∈ Ω× [0, 2π)

u(x, θ, t = 0) = 0, (x, θ) ∈ Ω× [0, 2π)

u(x, θ, t) = f(θ̂ · ν̂)u(x, θr, t) + q(x, θ, t), (x, θ) ∈ Γ−

(2)

for the amount of energy u = u(x, θ, t) irradiated at a

point x, propagating with direction θ̂ ∈ S1, at a time t,
over the two-dimensional spatial domain Ω and for 0 ≤

t ≤ T (T > 0), where θ̂ = (cos(θ), sin(θ)) (0 ≤ θ ≤ 2π),

θ̂′ = (cos(θ′), sin(θ′)) (0 ≤ θ′ ≤ 2π), and where S1, c,
a(x) and b(x) denote the unit circle, the average speed of
light in the medium, and the absorption and scattering
coefficients, respectively. Further, ν̂ denotes the outward
unit vector normal to the boundary ∂Ω of the domain Ω,
Γ± = {(x, θ) ∈ ∂Ω × [0, 2π),±ν̂ · θ̂ > 0}—with subindex
− (resp. +) denoting the set of incoming (resp. outgo-
ing) directions—and q(x, θ, t) denotes a given source func-
tion, which can be used to model illuminating lasers that
inject radiation over some portion of Γ−. Additionally,
the function f(θ̂ · ν̂) = f(cos(θ − θν)) denotes the Fres-
nel coefficient, according to which radiation is reflected
into Ω and transmitted away from Ω in the directions
θ̂r = (cos(θr), sin(θr)) and θ̂tr = α̂(θ̂) respectively, where,
in accordance with Snells’ law for the refractive indexes
nΩ and n0 within and outside Ω, θr = R(θ) = 2θν − θ+ π

(mod 2π) and α̂(θ̂) denote a reflection function and the
transmission angle, respectively. And, finally

η(θ̂ · θ̂′) =
1

2π

1− g2

(1 + g2 − 2g θ̂ · θ̂′)3/2
(3)

denotes the widely used Henyey–Greeinstein phase func-
tion [11] which models the angle dependent redistribu-
tion probability after a photon collision event. The in-
dex g ∈ [−1, 1] characterizes the scattering anisotropy:
pure forward scattering (resp. pure backward scattering),
wherein all photons emerge in the forward (resp. back-
ward) direction after a collision event, corresponds to a
value of g = 1 (resp. g = −1). Isotropic scattering, in
turn, where a photon emerges with equal probability in
any given direction after collision corresponds to the value
g = 0. The total density of photons at a particular point x
at a time t, which is considered in particular in the context
of the photon diffusion approximation, is quantified by the
scalar flux

Φ(x, t) =

∫
S1

u(x, θ, t)dθ. (4)

To conclude this section we mention the window func-
tion [12]

w(v) =


1 for v = 0,

exp
(

2e−1/|v|

|v|−1

)
for 0 < |v| < 1,

0 for |v| ≥ 1.

(5)

of the real variable v, which vanishes for |v| ≥ 1 and
smoothly transitions to one in the interval −1 < v < 1.
This function is used in multiple roles in what follows—
including modeling of both the temporal profile and the
collimated irradiation of the laser beam, as well as the
spatial dependence of the sensitivity of the detectors.

3. Inverse problem and adjoint gradient formalism

3.1. Objective functions

This section introduces the general form of the objec-
tive functions whose minima yield the solutions of the TS
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and MSS inverse transport problems we consider, as well
as the adjoint formalism we use for the efficient evalua-
tion of the corresponding objective-function gradients un-
der general Fresnel boundary conditions—that is, using
a possibly non-vanishing Fresnel coefficient f in the last
line in equation (2). For f(θ̂ · ν̂) ≡ 0 the gradient ex-
pression we obtain coincides with the well-known result
for homogeneous boundary conditions that are relevant in
neutron transport [13] (vacuum boundary conditions) and
that are also often assumed in the context of optical to-
mography [9, 10, 14].

The TS and MSS objective functions are based on use
of sources of two different types, both of which can ex-
pressed in the form

q = qi(x, θ, t) =

Ns∑
k=1

sk,i(x, θ, t), i = 1, 2, . . . , Nq (6)

for certain integer values of Nq and Ns. Here, using the
window function (5), we define

sk,i(x, θ, t) = exp(−|x−xk,i|2/2σ2
x)w(δk,i)T (t−τk,i), (7)

for given laser-beam positions xk,i ∈ ∂Ω, beam diameter
σx, time delays τk,i ≥ 0, and angular departures δk,i =
|θ − θk,i|/σθ, where θk,i (0 ≤ θk,i < 2π) and σθ model
the center and the angular spread of the nearly collimated
irradiation from the (k, i)-th laser beam. Note that, for
both the TS and MSS configurations a total of

Nb = NqNs (8)

laser beams are utilized.
For the TS-type sources we set Ns = 1 and, gener-

ally, Nq > 1 (that is to say, a sequence of Nq > 1 single-
laser sources is used, requiring the solution of Nq pairs of
forward/adjoint problems per gradient-descent iteration),
while in the proposed MSS-type sources we let Ns > 1 and
Nq = 1 (so that Ns > 1 laser beams are combined in a sin-
gle “generalized” source, thus requiring the solution of only
one forward/adjoint problem pair per gradient-descent it-
eration). In each “sweep” of the TS method each one of
the Nq > 1 sources is applied independently of all oth-
ers, with delays τ1,i = 0 (1 ≤ i ≤ Nq), and readings are
recorded at all of the detectors used [9, 10]. In the pro-
posed MSS method, instead, the single generalized source
(Nq = 1) is used which incorporates time-staggered con-
tributions from Ns > 1 laser beams along ∂Ω, with time
delays τk,1 ≥ 0. In view of the time delays it utilizes, the
single forward/adjoint solve used in the MSS method re-
quires longer computing time than each one of the Nq > 1
forward/adjoint solves required by the TS method. In all,
as illustrated in Section 7, the combined-source strategy
inherent in the MSS approach leads to significant gains in
the overall inversion process without detriment in recon-
struction accuracy.

Both the TS and MSS approaches rely on use of a
number Nd ≥ 1 of detectors, where the j-th detector

(1 ≤ j ≤ Nd), which is placed at the point xj ∈ ∂Ω,
is characterized by a measurement operator Gj = Gj [u](t)
defined by

Gj [u] =

∮
∂Ω

∫
θ̂·ν̂>0

[1− f(θ̂ · ν̂)]θ̂ · ν̂

× w
(
|x− xj |
σd

)
u(x, θ, t)dθdS

(9)

for any given function u = u(x, θ, t) defined for (x, θ, t) ∈
Ω × [0, 2π) × [0, T ]. Here, using equation (5) and letting
σd > 0 denote the effective area of the detectors, the factor
w(|x − xj |/σd) characterizes the spatial sensitivity of the
j-th detector and dS denotes the element of area on ∂Ω.
Clearly, the operator Gj quantifies the flux of transmitted
photons over the surface of the detector. For each gener-
alized source qi we have a set of Nd time resolved detector
readings. The position and number of detectors remain
fixed throughout the inversion process.

3.2. Inverse problem

The reconstruction of the absorption properties in tis-
sue enables the identification of tumors [15, 16, 17], func-
tional imaging of the brain [18, 19, 20], and characteriza-
tion of different tissue constituents in medical imaging.
In this work we focus in the reconstruction of the ab-
sorption coefficient only, although the proposed approach
can be easily extended to other reconstruction problems,
such as, e.g., the problem of determining the RTE sources,
with application in the related discipline of fluorescence
optical tomography and bioluminescence tomography [1,
14, 21]. Prior information on the scattering coefficient
b(x), which can be obtained from high resolution imag-
ing modalities, is generally assumed for cancer diagnosis
and treatment monitoring [22, 23]. Such prior knowledge
additionally provides (limited) information on the parame-
ter a(x), namely, the known absorption coefficient of, say,
bone and air, on one hand, as well as upper and lower
bounds on the absorption coefficient of soft tissue, which
can be used to constrain the space of functions where the
minimizer is sought. In view of these considerations, in
what follows we make explicit the dependence of the trans-
port operator T and the solution u in eq. (1) on the ab-
sorption coefficient a = a(x) by denoting

T [u] = T [u, a] = T [u, a](x, θ, t) (10)

and
u = u[a] = u[a](x, θ, t), (11)

respectively.
We express our inversion problem for the optical pa-

rameter a(x) in terms of the problem of minimization of
the objective function

Λ[a] =

Nq∑
i=1

gi[ui], (12)
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where, for a given absorption coefficient a,

ui = ui[a] = ui[a](x, θ, t) (13)

denotes the solution u = ui of equation (2) with q = qi
(increasingly added detail is included in eq. (12) from left
to right concerning the dependence of ui on a and the
spatial, angular and temporal variables), and where, for

a given number Nq × Nd of detector measurements G̃j,i
(Nd detector readings G̃j,i for each of the Nq generalized
sources qi) and using eq. (9) gi, denotes the functional

gi[u] =
1

2

Nd∑
j=1

∫ T

0

(Gj [u]− G̃j,i)2dt. (14)

3.3. Functional derivatives

To minimize the objective function eq. (12) we rely on
a gradient descent algorithm based on use of the func-
tional derivative dΛ

da [a; δa] with respect to the absorption
coefficient function a = a(x) in the direction δa. Here
d
da denotes Gateaux differentiation [24]: for a given func-
tion a = a(x) and a given perturbation δa = δa(x), the
Gateaux derivative of a given functional h = h[a] in the
direction δa is defined by

dh

da
[a; δa] = lim

ε→0

h[a+ εδa]− h[a]

ε
. (15)

A similar definition can be given for partial Gateaux deriva-
tives for an operator w = w[a](x, θ, t) (such as, e.g., the
operator (1), the solution u = u[a] = u[a](x, θ, t) of equa-
tion (2), etc.):

∂w

∂a
[a; δa](x, θ, t) = lim

ε→0

w[a+ εδa](x, θ, t)− w[a](x, θ, t)

ε
.

(16)
In what follows we utilize Gateaux derivatives of com-

position of functionals and operators, for which the chain
rule is satisfied. For example, for the composition h ◦
w[a] = h

[
w[a]

]
we have the chain-rule identity

d(h ◦ w)

da

[
a; δa

]
=
dh

dw

[
w[a];

∂w

∂a

[
a; δa

]]
. (17)

In our context we may illustrate this relationship as fol-
lows. As a variation equal to a real number ε times a func-
tion δa = δa(x) is added to the function a, a perturbed
function (a+εδa) is obtained and, thus, a perturbed oper-
ator value w[a+εδa]. (In our case, the perturbed operator
value could be e.g. the solution u[a+ εδa] of equation (2)
with absorption coefficient (a+εδa); cf. eq. (11).) In view
of the Gateaux-derivative definition (16) we obtain

w[a+ εδa] = w[a] + ε
∂w

∂a
[a; δa] + o(ε)

where o(ε)
ε → 0 as ε → 0. In other words, the error in

the approximation w[a+ εδa] ≈ w[a] + ε∂w∂a [a; δa] is much
smaller than ε. We may thus utilize the approximation

h
[
w[a+ εδa]

]
≈ h

[
w[a] + ε

∂w

∂a
[a; δa]

]

in the quotient of increments, of the form (16), for the
derivative of the composite function h

[
w[a]

]
, which yields

lim
ε→0

h
[
w[a+ εδa]

]
− h
[
w[a]

]
ε

=

lim
ε→0

h
[
w[a] + ε∂w∂a [a; δa]

]
− h
[
w[a]

]
ε

,

and, thus, clearly, the right-hand side of (17), as desired.
The needed functional derivative of the objective func-

tion (12) is given by

dΛ

da
=

Nq∑
i=1

d(gi ◦ ui)
da

[a; δa]. (18)

In order to obtain the derivatives in the sum on the right-
hand side of this equation we apply the chain rule iden-
tity (17), which yields

d(gi ◦ ui)
da

[a; δa] =
dgi
du

[
ui[a];

∂ui
∂a

[
a; δa

]]
, (19)

or, using (9) and (14), d(gi◦ui)
da [a; δa] = G[a; δa] where

G[a; δa] :=∫ T

0

∮
∂Ω

∫
θ̂·ν̂>0

Nd∑
j=1

(
Gj
[
ui[a]

]
− G̃j,i

)
[1− f(θ̂ · ν̂)]

× θ̂ · ν̂w
(
|x− xj |
σd

)
∂ui
∂a

[a; δa](x, θ, t)dθdSdt.

(20)

Clearly, in view of eq. (20), the gradients (18) required
by the gradient descent strategy in a fully discrete context
could be produced by evaluating and substituting in this
equation the derivative ∂ui

∂a [a; δa], for each (discretized)
absorption coefficient a in the gradient descent process,
and for all (discretized) directions δa. But, the evalua-
tion of these partial derivatives, say, by means of a simple
finite difference scheme, requires evaluation of one fully
spatio-temporal solution of the transport eq. (2) for each
direction δa, which clearly entails an extremely high, crip-
pling, computational burden. To avoid this computational
expense we rely on the adjoint-method strategy, which is
described in what follows.

3.4. Fast gradient evaluation via the adjoint method

To evaluate the derivative displayed in eq. (20) we seek
to eliminate the quantity ∂ui

∂a [a; δa] from the right-hand
side of this equation. As indicated in what follows, this
can be achieved by considering the initial and boundary
problem that is obtained by differentiation, for the given a
and in the direction δa, of each one of the three equations
in the initial and boundary problem (2). From the first
line in (2), in particular, we obtain

0 =
dT
da

[
ui[a], a; δa

]
=
∂T
∂u

[
ui[a], a;

∂ui
∂a

[
a; δa

]]
+
∂T
∂a

[
ui[a], a; δa

]
.

(21)
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But, by linearity of T we have

∂T
∂u

[
ui[a], a;

∂ui
∂a

[
a; δa

]]
= T

[
∂ui
∂a

[
a; δa

]
, a

]
, (22)

and, thus, in view of (2), the relation

∂T
∂a

[
ui[a], a; δa

]
+ T

[
∂ui
∂a

[
a; δa

]
, a

]
= 0 (23)

results. This relation provides, for each relevant triple
(x, θ, t), one linear equation for the two unknowns ui[a]
and ∂ui

∂a

[
a; δa

]
.

In order to eliminate ∂ui

∂a [a; δa] from the right-hand side
of (20) we subtract from from both sides of this identity
a “linear combination with suitable coefficients” λ of the
relation (23)—or, more precisely, an integral of the prod-
uct of this relation times a suitable function λ(x, θ, t) over
(x, θ, t) ∈ Ω× [0, 2π)× [0, T ]. (Below we incorporate addi-
tional equations related to the initial and boundary con-
ditions in (2) as well.) For notational compactness we
express such integrals in terms of the scalar product nota-
tion

〈v, w〉 =

∫ T

0

∫
Ω

∫
S1

v(x, θ, t)w(x, θ, t)dθdxdt (24)

for any two functions v and w of the variables (x, θ, t).
Thus, for a given function λi = λi[a](x, θ, t) we obtain
from (23) the equation〈

λi,
∂T
∂a

[ui, a; δa]

〉
+

〈
λi, T

[
∂ui
∂a

[
a; δa

]
, a

]〉
= 0, (25)

which, for a suitably selected function λi we intend to sub-
tract from (20) to achieve the cancellation of the challeng-
ing derivative term.

To select the function λi that attains such cancellation
we rely on an integration-by-parts calculation to express
the second summand in (25) as an integral of a product
of two functions, one of which is precisely ∂ui

∂a . Integra-
tion by parts of that second summand leads to a sum
of a “volumetric” integral A (namely, an integral over
Ω × [0, 2π) × [0, T ]) plus a sum B + C of integrals over
various portions of the boundary of this domain:〈

λi, T
[
∂ui
∂a

[
a; δa

]
, a

]〉
= A+ B + C (26)

where

A[a; δa] :=

∫ T

0

∫
Ω

∫
S1

∂ui
∂a

[a; δa]

[
− 1

c

∂λi
∂t

(27)

− θ̂ · ∇λi + (a+ b)λi − b
∫
S1

η(θ̂ · θ̂′)λidθ′
]
dθdxdt,

B[a; δa] :=

∫
Ω

∫
S1

[
∂ui
∂a

[a; δa]λi

]T
0

dθdx, (28)

and

C[a; δa] :=

∫ T

0

∮
∂Ω

∫
S1

θ̂ · ν̂λi
∂ui
∂a

[a; δa]dθdSdt. (29)

Subtracting the linear combination (25) from (20) and us-
ing (26)-(29) we obtain

d(gi ◦ ui)
da

[a; δa] =G − A− B − C

−
〈
λi,

∂T
∂a

[ui, a; δa]

〉
.

(30)

Clearly, the quantity ∂ui

∂a in (30) will be eliminated, as
desired, if and only if

A+ B + C = G, (31)

since the last term on the right-hand side of (30) does no
contain ∂ui

∂a . Once we select λi such that (31) is satisfied,
and using the Gateaux derivative relation

∂T
∂a

[ui, a; δa] = δa(x)ui[a](x, θ, t), (32)

the expression

d(gi ◦ ui)
da

[a; δa] = −〈λi[a], δaui[a]〉 (33)

for the functional derivative, which does not contain the
challenging term ∂ui

∂a , results from (30).
To obtain the solution λi = λi[a](x, θ, t) of eq. (31) we

note that, in view of the spatial integration domains in
eqs. (20) and (27)-(29), eq. (31) is satisfied if and only if
(i) A = 0, (ii) B = 0 and (iii) C − G = 0. Equation (i) is
satisfied provided the term in brackets in the integrand
of (27), which will be denoted by T ∗

[
λi[a], a

]
in what

follows, equals zero. Relation (ii) is satisfied by impos-
ing the appropriate “final”condition λi(x, θ, t = T ) = 0,
since, in view of (2), we have ∂ui

∂a = 0 for t = 0. In
order to fulfill point (iii), finally, we decompose the inte-
gral (29) into two integrals, C+ and C−, where integra-
tion ranges in the θ variable are restricted to angular do-
mains θ̂ · ν̂ > 0 and θ̂ · ν̂ < 0, respectively. The inte-
grand in the difference C+ − G, which is only integrated
over the angular domain θ̂ · ν̂ > 0, equals the product
of the common factor F = ∂ui

∂a θ̂ · ν̂ and the difference

P = λi−
∑Nd

j=1

(
Gj [ui]−G̃j,i

)
×[1−f(θ̂·ν̂)]w

(
|x−xj |
σd

)
. To

incorporate the summand C− under the same θ̂ ·ν̂ > 0 inte-
gration range, in turn, we first utilize the Fresnel boundary
condition ∂ui

∂a (x, θ, t) = f(θ̂ · ν̂)∂ui

∂a (x, θr, t) ((x, θ) ∈ Γ−)
that results from differentiation of the boundary condition
in eq. (2), and we thus obtain

C−[a; δa] :=

∫ T

0

∮
∂Ω

∫
θ̂·ν̂<0

θ̂ · ν̂λi(x, θ, t)f(θ̂ · ν̂)

× ∂ui
∂a

[a; δa](x, θr, t)dθdSdt.
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Then, incorporating the change of variables θ = 2θν−θr+
π, so that θ̂ · ν̂ = cos(θ− θν) = − cos(θr − θν) = −θ̂r · ν̂ we
obtain

C−[a; δa] :=−
∫ T

0

∮
∂Ω

∫
θ̂r·ν̂>0

θ̂r · ν̂λi(x, 2θν − θr + π, t)

× f(θ̂r · ν̂)
∂ui
∂a

[a; δa](x, θr, t)dθrdSdt.

Substituting the dummy variable θr by θ in this equation,
the angular argument in λi becomes 2θν − θ + π which
coincides with θr, and, thus, calling Q(x, θr, t) = f(θ̂ ·
ν̂)λi(x, θr, t) we obtain

C−[a; δa] :=−
∫ T

0

∮
∂Ω

∫
θ̂·ν̂>0

θ̂ · ν̂Q(x, θr, t)

× ∂ui
∂a

[a; δa](x, θ, t)dθdSdt.

Combining this result with the term C+ − G we obtain

(C − G)[a; δa] :=

∫ T

0

∮
∂Ω

∫
θ̂·ν̂>0

F × [P (x, θ, t)

−Q(x, θr, t)]dθdSdt,

and, thus, (iii) is satisfied provided P −Q = 0.

In summary, denoting T ∗
[
λi[a], a

]
= − 1

c
∂λi

∂t − θ̂ ·∇λi+
(a+ b)λi− b

∫
S1 η(θ̂ · θ̂′)λidθ′, we have shown that the con-

ditions (i), (ii) and (iii) are satisfied provided the corre-
sponding “adjoint” problem

T ∗
[
λi[a], a

]
= 0, (x, θ) ∈ Ω× [0, 2π)

λi(x, θ, t = T ) = 0, (x, θ) ∈ Ω× [0, 2π), and

λi(x, θ, t) = f(θ̂ · ν̂)λi(x, θr, t) +

Nd∑
j=1

(
Gj [ui]

− G̃j,i
)
× [1− f(θ̂ · ν̂)]w

(
|x− xj |
σd

)
, (x, θ) ∈ Γ+

(34)

hold. Thus, the function λi(x, θ, t) needed in eq. (33) can
be obtained by solving the adjoint back transport prob-
lem (34) in the time interval T ≥ t ≥ 0 with homoge-
neous final data at time t = T > 0. Once the function λi
has been obtained the component of the functional gradi-
ent (33) in the direction δa can inexpensively be obtained
by integration, which, in view of (24), may be expressed
in the form

d(g ◦ u)

da
[a; δa] = −

∫ T

0

∫
Ω

∫
S1

λuδadθdxdt. (35)

The correctness and accuracy of the proposed approach
for gradient evaluation are demonstrated in the following
section via comparisons with direct finite-difference gradi-
ent computations.

3.5. Verification and accuracy assessment of the functional-
derivative expression (33)

In this section we present numerical verifications and
accuracy assessments for the functional derivative expres-
sion (35), with λi given as the solution of the adjoint
problem (34). To do this we consider a problem of the
type (2) with Fresnel boundary conditions, described in
what follows—so as to illustrate, in particular, the abil-
ity of the functional-derivative expression to produce cor-
rect gradients in this case, for which corresponding adjoint
treatments were not previously available. As a basis for
comparison we obtain numerical gradients produced by di-
rect use of the finite-difference approximation

d(g ◦ u)

da
[a; δa]FD ∼

g
[
u[a+ εδa]

]
− g
[
u[a]

]
ε

(36)

for a given direction δa(x) and a suitable small value of ε.
The index of refraction nΩ = 1.4 is assumed in the spa-
tial domain Ω = [xmin, xmax]× [ymin, ymax] = [0, 3]× [0, 3]
and with n0 = 1 outside Ω. For simplicity we use δa = 1,
with given spatially constant values a(x) = a and b(x) = b
of the absorption and scattering coefficients, and, without
loss of generality, we consider a single generalized source
q1 = q for both a TS source case (a single laser incident
beam located at xs = (1.5, 0.0)) and an MSS source case
(assumed to consist of the combination of four laser inci-
dent beams, one located at the center of each one of the
sides of the square domain Ω). (Further details on the
modeling of sources can be found at the end of sec. 5,
and eq. (48).) For these tests we employ a single detector
placed at xd = (0.0, 0.75). The time delays required by the
MSS method are selected for these examples by enforcing
a 50ps time-shift between successive laser start times. A
total duration of 60ps was used for each single pulse, and
the system was evolved for both TS and MSS cases up to a
final time of 600ps. A mesh with Nx = Ny = 200, M = 32
discrete directions and T = 60000 time steps was used for
the solution of the RTE and its adjoint. The relative error

e =

∣∣∣d(g◦u)
da [a; δa]Adj − d(g◦u)

da [a; δa]FD
∣∣∣

|d(g◦u)
da [a; δa]Adj|

, (37)

was used to quantify the quality provided by the pro-

posed adjoint gradient expression, where d(g◦u)
da [a; δa]Adj

and d(g◦u)
da [a; δa]FD denote the adjoint and finite difference

derivatives, respectively; the value ε = 0.0001 was used to
produce the finite difference approximation (36).

Table (1) demonstrates the agreement observed be-
tween the values of the functional derivative produced by
the finite-difference and adjoint methods under various
transport regimes, including several values of the scatter-
ing coefficient b and anisotropy coefficient g, and under
both the TS and the MSS configurations; errors of sim-
ilar magnitudes were obtained for a wide range of val-
ues of the parameters a, b and g. The excellent agree-
ment observed in all cases suggests that the very large
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Table 1: Functional derivative differences

a[1/cm] b[1/cm] g eTS eMSS

0.35 80 0.9 0.00008 0.00009
0.35 20 0.0 0.00008 0.00097
0.35 8.0 0.0 0.00027 0.00016
0.35 0.1 0.0 0.00009 0.00026

improvements in computational speed provided by the ad-
joint method, which would amount to a factor of the order
of (Nx + 1)× (Ny + 1) ' 40, 000 for the evaluation of the
full gradient in the present example, do not impact upon
the accuracy in the gradient determination.

3.6. Numerical functional gradient calculation

All of the numerical gradients utilized in this paper
were obtained by solving forward and the adjoint prob-
lems, followed by use of a discrete version of eq. (35) for a
number of perturbation functions δa—each one of which
is selected to provide a variation of the absorption coeffi-
cient at and around one of the discretized spatial coordi-
nate points x`1,`2 ∈ Ω in the discretization x`1,`2 = (xmin+
[`1 − 1]∆x)x̂ + (ymin + [`2 − 1]∆y)ŷ, `1 = 1, . . . , Nx + 1,
`2 = 1, . . . , Ny + 1 of the domain Ω. The perturbation δa
is selected as a pyramid-shaped function which equals one
at a point x`1,`2 ∈ Ω, and becomes zero at and beyond
the first neighbors in the discrete grid. At the discrete
level, each pyramid-shaped function is approximated by a
product of Kronecker delta functions δa`1,`2 = δr,`1×δs,`2 .
Thus, denoting by ∇ag(x`1,`2) the value of the functional
gradient in the direction δa`1,`2 , the discrete version of
eq. (35) is given by

∇ag(x`1,`2) ∼ −
∑
m,j

λ`1,`2,m,ju`1,`2,m,j∆θ∆x∆y∆t, (38)

where λ`1,`2,m,j ∼ λ(x`1,`2 , θm, tj) and where u`1,`2,m,j ∼
u(x`1,`2 , θm, tj). Note that eq. (38) represents the func-
tional derivative for a single direction δa`1,`2 , correspond-
ing to the (`1, `2) component of the functional gradient. As
a result of the adjoint method, the evaluation of eq. (38)
for all (`1, `2) requires only one forward and one adjoint
transport simulation for each generalized source q = qi—a
calculation which, if performed by direct use of eq. (36)
requires a much larger number (Nx + 1)× (Ny + 1) of for-
ward transport simulations and associated overwhelming
computational cost. It must be noted, however, that the
adjoint method requires storage in memory of full forward
and adjoint transport solutions. The solver algorithm pro-
posed in Section 4 is well suited for parallel distributed sys-
tems, as it simultaneously provides computational speed
and distributed memory availability.

As an illustration, Figure 1 displays the full spatial
gradient ∇ag(x`1,`2) for 1 ≤ `1 ≤ (Nx + 1) and 1 ≤ `2 ≤
(Ny + 1), for certain assumed values G̃j,i, with a single
source and a single detector placed at xs = (1.5, 0) and
xd = (1.0, 0) respectively.

Figure 1: (Color online). Full spatial gradient eq. (38) (in arbitrary
units) for a single source-detector pair, located at xs = (1.5, 0) and

xd = (0, 1.0) respectively, for selected data values G̃1,1 (one source
and one detector).

4. Parallel FC–DOM numerical implementation for
the Radiative Transfer Equation

The numerical treatment of the time dependent RTE
requires a discretization of all variables in phase space,
namely, the spatial, directional and temporal variables. In
this section we present a parallel algorithm for the numer-
ical solution of the RTE on the basis of such a discrete
grid in phase space. As evidenced by the approach used,
and demonstrated by means of numerical experiments in
Sections 4.4 and 5, the proposed algorithm enjoys high or-
der accuracy for smooth solutions as well as high parallel
efficiency.

4.1. Velocity-domain discretization

We discretize the RTE with respect to the velocity
variable v = cθ̂ by means of the discrete ordinates me-
thod. To do this a set of M discrete directions θ̂(θm) =

θ̂m = (ξm, ηm) (1 ≤ m ≤ M) is utilized where the di-

rection cosines are given by ξm = x̂ · θ̂m = cos(θm) and

ηm = ŷ · θ̂m = sin(θm) in terms of the Cartesian unit
vectors x̂ and ŷ, where

θm =
2π(m− 1)

M
, m = 1, 2, . . . ,M. (39)

The necessary angular integrations are produced by means
of the trapezoidal rule using the associated quadrature
weights wm = 2π/M . Given that the specific intensity
u is 2π-periodic in the angular variable θ, and provided
the transport solution is sufficiently smooth, the use of
the trapezoidal rule gives spectral accuracy for integration
with respect to this variable, as illustrated in Figure 5.

Letting um = u(x, θm, t), the semidiscrete version of
the differential equation in (2) translates into the system
of equations

1

c

∂um
∂t

+ θ̂m · ∇um + (a+ b)um

−b
M∑

m′=1

wm′pm,m′ um′ = 0, m = 1, 2, . . . ,M.
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To ensure energy conservation, and thus enable the stabil-
ity of the numerical scheme, the phase function eq. (3) is
normalized in such a way that its numerical integral, as
produced, in our case, by means of the trapezoidal rule,
equals one [25, 26].

4.2. Time propagation

To evolve the RTE solution in time with high order
accuracy, we employ the fourth order Adams–Bashforth
time-stepping method [27], which, in the present context,
offers a reasonable compromise between accuracy and sta-
bility. Calling

ukm = ukm(x, y) = u(x, θm, t
k), tk = (k − 1)∆t, (40)

the time dependent RTE equation is evolved from the ini-
tial condition via the relations

uk+1
m = ukm + c∆t

3∑
`=0

χ`L(uk−`m ) (41)

where

L(ukm) = b

M∑
m′=1

wm′pm,m′u
k
m′ − (b+ a)ukm − θ̂m · ∇ukm,

with fourth order Adams–Bashforth coefficients given by
χ0 = 55/44, χ1 = −59/24, χ2 = 37/24 and χ4 = −3/8.
Throughout this work the four initial time-steps were set
to vanish, as befits incident fields that smoothly ramp-
up from zero. This arrangement corresponds to the actual
experimental setup in time-dependent optical tomography.
But we note that arbitrary initial conditions can be treated
within our context, by proceeding e.g. as recommended in
Section 5 of ref. [28] in a related context.

4.3. Discretization over the spatial domain: the FC–DOM
method

For simplicity, in this work we consider a square spatial
domain

Ω = {x = (x, y) ∈ [xmin, xmax]× [ymin, ymax]}, (42)

although general curvilinear domains can be treated sim-
ilarly; cf. e.g. [28, 29, 30]. We discretize the spatial do-
main by means of a uniform grid with grid-sizes ∆x and
∆y along the x and y directions, respectively; through-
out this paper we have used ∆x = ∆y. We denote by
D denote the discretized version of the spatial domain Ω:
D = {(xi, yj) | i = 1, . . . , Nx+1 and j = 1, . . . , Ny+1}. In
what follows we describe the method used for evaluation
of spatial derivatives in the x direction, for which we use
the grid

xi = xmin + (i− 1)∆x, with

∆x =
xmax − xmin

Nx
=
xNx+1 − x1

Nx
;

the y derivatives are, of course, handled similarly.
We produce the necessary spatial derivatives by means

of the Fourier Continuation method (FC) [31], that pro-
vides low-dispersion approximations with high-order accu-
racy on the basis of Fourier expansions for general (non pe-
riodic) functions. For a function defined on an interval in
the real line, the FC method utilizes a smooth and periodic
extension of the given function into an extended interval,
for which a regular Fourier series is then obtained, which
accurately approximates the extended periodic function,
and, thus, in particular, the given function in the original
interval. The FC method has extensively been studied and
utilized; see e.g. [32, 29, 30, 3, 33] and references therein.
In what follows we briefly review this method in the con-
text of the RTE considered in the present contribution.

In order to produce the Fourier Continuation of a given
function, such as e.g. g(x) = ukm(x, yj) for a given yj in
the y-discretization mesh, we consider the discrete vector
g = [g1, . . . , g(xi), . . . , gNx+1]T of values of the function
g. Utilizing a few of the leftmost and rightmost entries of
g, called the “matching values” in what follows, the algo-
rithm produces a continuation vector gc that corresponds
to the discrete function values of the desired continuation
function gc—which, once the vector gc is available, can be
obtained by an application of the Fast Fourier Transform
(FFT) algorithm. To obtain the vector gc the algorithm at
first smoothly extends the aforementioned matching values
to zero, towards the left and right, respectively, as illus-
trated in Figure 2. To achieve the desired extensions to
zero, certain “projections” are used (which project the first
dl function values (g1, g2, . . . , gdl) and the last dr function
values (gNx+2−dr , . . . , gNx+1) onto polynomial bases), and
then, precomputed continuations to zero are utilized for
each polynomial in the bases. Here dl and dr denote small
integers; throughout this paper we have used dl = dr = 5.

In detail, the continuation procedure can be summa-
rized in the following four steps [29]:

1. The dl and dr matching values g1, g2, . . . , gdl and
gNx+2−dr , gN−dr , . . . , gNx+1 are projected on Gram
polynomial bases.

2. Smooth continuations to zero g̃l and g̃r are produced
on the basis of accurately precomputed extensions
to zero [32, 29] of each one of the polynomials in the
Gram basis.

3. Two new vectors gl and gr are generated which ex-
pand the dimension of g̃l and g̃r to C+E by merely
adding zero entries to the vector, where E is a num-
ber of extra zeroes used. This expansion is used to
obtain vectors whose dimension can be factored into
small primes, leading to efficient FFT evaluation.

4. The discrete continued vector gc containing Np =
Nx + 1 + C + E components is given by

gc =

[
g

gl + gr

]
,

and the continued function gc is obtained from gc
via the FFT.
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Figure 2 illustrates the FC method and the result-
ing continuation function gc for the non periodic function
g(x) = 12 + x2 − ex/3 in the interval [0, 6] using N = 60
points in the grid, C = 25 continuation points (dotted
line), dl = dr = 5 matching points (shown with diamonds)
and E = 4 extra points. The continuation vector gc con-
tains Np = Nx + 1 + C + E = 90 entries, which can be
factored into small prime numbers, Np = 2× 3× 3× 5. As
suggested above, the number E of extra points is selected
so as to ensure that Np equals the product of small prime
factors; in practice we enforce that the prime factors in the
factorization Np =

∏F
j=1 pj satisfy p1 ≤ p2 ≤ . . . ≤ pF ≤

5—leading to a efficient evaluation of Fourier coefficients
via the FFT.

0 2 4 6 8 10 12 14
x

0
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20

30

40

g(x)
g
c
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g
r
(x)

g
l
(x)

Figure 2: Fourier Continuation of the function g(x) = 12+x2−ex/3.
For this example, the original function is defined for x ∈ [0, 6], and
a copy of it, displaced to the interval [9, 15], is also included. The
continuations to zero, gl(x) and gr(x), are shown in circles. The
dotted line is the periodic continuation obtained. The diamonds are
the matching points, with dl = dr = 5, and the triangles are the
E = 4 extra points used in this example.

Using the Fourier coefficients obtained by means of the
FFT, as indicated above, the continuation gc is given by

gc(x) =

Np/2∑
k=−Np/2

ak exp

(
2πik

(x− xmin)

b

)
(43)

(where i denotes the imaginary unit, and where b = [Np−
1]∆x denotes the period of the continued function). We
additionally employ an exponential filter which, without
deterioration in the accuracy [32], ensures the stability
and robustness of the method. The filtered coefficients
are given by

âk = exp

(
−α

∣∣∣∣ 2k

Np

∣∣∣∣2β
)
ak (44)

for adequately selected values of α and β; following [32]
throughout this paper we use the values α = 2 and β =
55 in conjunction with the fourth order Adams–Bashforth
method. The necessary derivatives of the function g are
obtained by direct differentiation of the filtered version of

the continuation function (which, for notational simplicity,
will also be called gc):

dg(x)

dx
∼ dgc(x)

dx
=

Np/2∑
k=−Np/2

2πik

b
âk e

2πik
(x−xmin)

b . (45)

4.4. Domain decomposition and parallel implementation

In order to solve the RTE on parallel systems we de-
compose the discrete domain D introduced in Section (4.3)
as a union D = ∪Nc

s=1Ds of a number Nc of overlapping
subdomains Ds (1 ≤ s ≤ Nc), with corresponding interior

(non-overlapping) regions D̃s, as illustrated in panels (a),
(b) and (c) in Figure 3. The overlapping domains Ds equal

the union of corresponding sets D̃s (shown as sets of black
points partitioned along red dashed lines in panel (a)),
and a set of “fringe points” (shown in gray in panels (b)
and (c)).

Figure 3: (Color online). (a) The domain D is decomposed as a union

non-overlapping subdomains D̃s. (b) Each subdomain D̃s extended
by two “fringe points” in the x and y directions (gray circles), re-
sulting in the overlapping subdomains Ds. (Subdomains adjacent to
the physical boundary Γ are only extended toward the interior of D.)
(c) The fringe points are used to enable exchange of information be-
tween neighboring subdomains Ds and Ds′ : in the one-dimensional
cartoon, process s sends to its neighbor s′ the u value at the third
and fourth points and it receives from s′ the u value at the first two
points on the s grid.

Each one of the subdomains Ds, which contains Nx,s
and Ny,s points along the x and y directions, respectively,
is assigned to one processing core—so that, in particu-
lar, Nc equals the number of processing cores used. Note
from Figure 3 (b) (and the one-dimensional cartoon Fig-
ure 3 (c)) that neighboring subdomains Ds overlap by four
grid points along the x and y directions. In spite of the
depiction in Figure 3, which only includes square subdo-
mains, in general, rectangular subdomains need to be used
for certain values of Nc.

The subdomain Ds = [xmin,s, xmax,s] × [ymin,s, ymax,s]
contains grid points of x- and y-coordinates xi = xmin,s +
(i−1)∆x and yj = ys(j) = ymin,s+(j−1)∆y, respectively.
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The algorithm proceeds by time stepping the quantities
ukm(xi, yj) (cf. (40)) in parallel on each subdomain Ds.
At the end of each time step, a boundary exchange of
four points is performed between neighboring subdomains
as indicated in the caption of Figure 3. The proposed
algorithm for the evolution of the time dependent RTE in
parallel is summarized in Algorithm 1.

Algorithm 1 FC–DOM Parallel Algorithm

1: Generate the domain decomposition.
2: Assign one subdomain Ds per process.
3: for each Ds do in parallel
4: Assign Adams–Bashforth initial values.
5: for each time–step k do
6: for each direction θ̂m do
7: for each yj do along x
8: Apply Fourier Continuation to ukm(xi, yj).
9: Evaluate ∂ukm(xi, yj)/∂x using (45).

10: end for
11: for each xi do along y
12: Apply Fourier Continuation to ukm,i(xi, yj).

13: Evaluate ∂ukm(xi, y)/∂y using (45).
14: end for
15: Evaluate the right hand side of equation (41).
16: Impose boundary conditions.
17: Exchange non-physical boundaries with neighboring

subdomains.
18: end for
19: end for
20: end for

5. Numerical Results I: Direct RTE problem

A Fortran 90 parallel implementation of the proposed
algorithm for the RTE problem (2), parallelized with MPI
and compiled with the intel Fortran compiler, was used
to produce all of the numerical results presented in this
paper. In all cases the parallel code was run on various
numbers of nodes on a 16-node cluster, wherein each node
contains an Intel Xeon E5-2630 v3 at 2.40GHz CPU with
24 physical cores and 128Gb of RAM per node. For geo-
metrical simplicity, only sixteen cores per node were used,
to match a square geometry containing multiples of 4 × 4
subdomains.

Three main examples are presented in this section, con-
cerning parallel scaling, accuracy and a demonstration of
a laboratory-type simulation.

Our first test concerns computational cost. Figure 4
presents the computational times required by the proposed
algorithm for a fixed model problem run on various num-
ber of processing cores—a type of test known in the lit-
erature as a “strong scaling test”. Constant values of the
absorption and scattering coefficients were used for this
test (although, of course, such selections do not affect the

computing time), and the algorithm was run for a dis-
cretization with Nx = Ny = 2000 and of M = 16 direc-
tions, for a total of T = 1000 time steps. Computing times
for other final times or discretization sizes, or even other
numbers of computing cores, can easily be estimated from
the results presented in Figure 4 in view of the linear scal-
ing of the method. To avoid irregularities in the parallel
acceleration caused by the “Intel turbo” technology, which
operates as a few cores are used per node, but which is “in-
crementally” turned off as processors are incorporated in
a run, we present scaling data up to sixteen nodes, using
a single node as reference, and we report the computing
times observed as the number of nodes increases. As indi-
cated by the figure, the proposed algorithm enjoys perfect
parallel scaling (and, even somewhat better than perfect,
on account of the logarithmic cost factors associated with
the FFT algorithm [32]) at least up to the 256 process-
ing cores used—and, we conjecture, for arbitrarily large
number of processing cores, as long as the computational
domain can reasonably be decomposed in a corresponding
number of subdomains.

16 32 64 128 256
Number of processors

2×101

3×101

6×101

1×102

3×102

t [
s]

Linear scaling
Observed scaling

Figure 4: (Color online). Observed scalability of the proposed algo-
rithm for the model problem detailed in the text. The computational
time on 256 processors, t256 for perfect scalability (red circles) pro-
duces a speedup t256/t16 = 16 with respect to the computational
time for the simulation in 16 processors, t16. The measured scalabil-
ity with the proposed FC–DOM parallel algorithm (black diamonds)
produces a speedup t256/t16 = 21.872, providing an efficiency of
136.7%.

The second example in this section concerns the nu-
merical convergence properties of the algorithm. To study
solution errors we consider the “manufactured-solution”
RTE problem

T
[
u[a], a

]
= q, (x, θ) ∈ Ω× [0, 2π)

u(x, θ, t = 0) = u0, (x, θ) ∈ Ω× [0, 2π),

u(x, θ, t) = ub, (x, θ) ∈ Γ−.

(46)

for which the exact solution

uan(x, θ, t) = e−(x−t)2−(y−t)2−cos(θ)2 . (47)

is prescribed and accounted for by selecting the right-
hand side q and initial and boundary conditions u0 and
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ub that result as the proposed solution (47) is substituted
in (46). For this test we use the square domain Ω =
[xmin, xmax] × [ymin, ymax], with xmin = ymin = 0 cm and
xmax = ymax = 3 cm, and we evolve the solution in the
time interval 0 ≤ t ≤ T = 3 ps. We use a domain de-
composition with eight subdomains. The scattering me-
dium considered is isotropic and homogeneous, with g = 0,
a = 0.35/cm and b = 20/cm. We study the convergence
properties on all the variables involved, evaluating maxi-
mum errors, in each case, by comparison with numerical
scalar fluxes (4) against the analytic scalar flux

Φan(x, t) =

∫
2π

uan(x, θ, t)dθ = kΦ × e−(x−t)2−(y−t)2 ,

kΦ =

∫
2π

e− cos(θ)2dθ ' 4.052876133898710,

where kΦ was obtained, with 16-digit accuracy, using the
software Wolfram Mathematica. The solution was evolved
up to a fixed final time T , and the maximum error was
then evaluated by means of the expression

ε = maxx∈Ω|Φnum(x, T )− Φan(x, T )|.

The high order convergence of the FC–DOM parallel ap-
proach against the proposed manufactured solution is demon-
strated in figure 5, which displays convergence curves as
∆t, ∆x = ∆y and ∆θ are refined. (When considering
refinements in one of the variables, the mesh sizes in the
other variables were kept fixed at sufficiently fine levels, so
as to avoid error cross-contamination.) Clearly, excellent
convergence is observed in all three cases.

In actual optical tomography contexts, for which an
analytic solution is, of course, not known, typically colli-
mated irradiation from a pulsed laser beam is incident at
the boundary of the domain; the third and last example in
this section, which is presented in what follows, concerns
precisely such a scenario. In our test case the collimated
irradiation from laser pulses is modeled by means of a
peaked function in the directional variable, θ, wherein the
function peak coincides with the laser beam direction. We
solve equation (2) with Fresnel boundary conditions and
using the well-known approach based on use of a Gaussian
spatial variation for a collimated laser-beam source:

q(x, θ, t) = exp(−|x − xs|2/2σ2
x)× w

(
|θ − θs|
σθ

)
× w

(
|t− ts|
σt

)
;

(48)

the beam dependence on the temporal and angular vari-
ables, in turn, are modeled on the basis of the window
function (5), but any other models of these variations
could be used without difficulty. For our example the
laser source is located at xs = (1.5, 0) with spatial spread
σx = 0.3cm, it points in direction θs = π/2 with angular
spread σθ = π/4, and is temporally centered at ts = 0,
with temporal spread σt = 30 ps. By choosing a smooth
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Figure 5: (Color online). Convergence for the FC–DOM parallel
solver over each variable. The plot is shown in log-log scale. The
dash dotted lines shows the slope for the given convergence order.
The solver shows spectral convergence over the angular variable θ.

source, we avoid the appearance of singularities in the
source function that would be inherited by the RTE so-
lution and deteriorate the convergence properties of the
method. We solve the RTE (2) in the 2D spatial domain
Ω = [xmin, xmax] × [ymin, ymax] = [0, 3] × [0, 3] with val-
ues a(x) = 0.35/cm, b(x) = 20/cm, g = 0.8, nΩ = 1.4 and
n0 = 1. Figure (6) displays the scalar flux eq. (4) obtained
for this problem; clearly a smooth spatio-temporal distri-
bution is obtained suggesting a solution of high quality in
accordance with the accuracy studies presented above in
this section.
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Figure 6: (Color online). Photon transport simulation produced by the parallel FC-DOM algorithm presented above. The scalar flux eq. (4)
is shown at three different times from left to right, t = 30ps, t = 100ps and t = 170ps, for a source injecting radiation at xs = (1.5, 0)cm.

6. Inverse problem solver

As indicated in Section 1, the inverse problem solver
proposed in this paper incorporates, in particular, the novel
MSS strategy based on use of multiple staggered sources
instead of the transport sweep TS strategy that underlies
the previous related literature. In the previous TS source
method, a separate forward-adjoint pair of simulations is
used for each one of the laser-source illuminations, and
the results are then combined to achieve the inversion via
gradient descent. The proposed MSS approach, in turn,
constructs the objective function on the basis of time-
staggered laser sources in conjunction with a single pair
of forward and adjoint simulations, and thus, as demon-
strated in Section 7 (quantitatively in Figures 9 and 11,
and qualitatively in Figures 10 and 12), it significantly
reduces the computing time required for the solution of
the inverse problem (e.g. by a factor of six in Figure 11)
without any deterioration in image quality.

Detector readings corresponding to a TS source and
an MSS source are displayed in the upper and lower pan-
els of Figure 7, respectively; both noiseless and noisy data
with 10% random noise added, are presented in the fig-
ure. The MSS time delays introduce a degree of decou-
pling in the portions of the detector signals originating
from laser beams applied at different locations, thus en-
abling effective inversions without requiring independent
forward and backward solutions for each one of the beams
separately. As indicated in Section 3.1, depending on pa-
rameter choices, the expression (6) yields sources corre-
sponding to the TS or MSS illumination approach, and
Section 7 presents results obtained from both the TS and
MSS methods.

We solve both the TS and MSS inverse problems on
the basis of the iterative lm-BFGS [34] quasi-Newton gra-
dient descent method. In detail, the inverse solver seeks
the absorption coefficient function that minimizes eq. (12)
subject to the constraints a` ≤ a(x) ≤ au, i.e. we seek the
absorption function a = a(x) given by

a = argmina`≤ã(x)≤auΛ[ã]. (49)

The constraints on the values of admissible functions ã(x)
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Figure 7: Detector readings (G1[u1] in eq. (9)) for the TS and MSS
methods, with Ns = 1 source for TS method, and Ns = 4 sources
for the MSS method, and with and without addition of 10% of
noise to the signal. The detector was placed at xd = (3.0, 2.25).
Each single MSS laser beam is located at the center of a face of the
square domain, and the activation times τ1,1 = 0ps, τ2,1 = 200ps,
τ3,1 = 400ps, and τ4,1 = 600ps were used. Clearly, the MSS detector
readings combine signals arising from all sources.

are known as prior knowledge on the general absorption
properties of the tissue under consideration.

The inverse solver, which is summarized in Algorithm 2,
proceeds as follows. Starting from an initial guess a0(x) for
the absorption coefficient and using the experimental de-
tector readings G̃j,i, with j = 1, . . . , Nd and i = 1, . . . , Nq,
the forward and adjoint problems (2) and (34) are solved,
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and the gradient (38) is computed. The functional gra-
dient is then passed to the lm-BFGS algorithm, which
returns an updated absorption coefficient a1(x) that re-
duces the mismatches between the experimental and sim-
ulated detector readings. The procedure is iterated with
lm-BFGS convergence to a minimum of the objective func-
tion (12).

Algorithm 2 Parallel Inverse Problem Solver

1: for iteration i = 1, . . . , imax do
2: for each generalized source qj , j = 1, . . . , Nq do
3: solve the forward problem by means of algorithm 1
4: solve the adjoint problem by means of algorithm 1
5: end for
6: Construct the gradient eq. (38), call lm-BFGS and

update the coefficient ai(x).
7: end for

7. Numerical Results II: Inverse problem

This section demonstrates the character of the pro-
posed inverse problem solver for two main model prob-
lems, namely, 1) Imaging of cancerous tissue within a hu-
man neck section; and, 2) Hemodynamic response in a
human head model. In both cases, the optical tomogra-
phy inverse problems under consideration concerns config-
urations in which inclusions characterized by absorption
higher than that of the surrounding tissue are to be im-
aged; the higher absorption values arise from the excess
of oxygenated hemoglobin under the presence of a tumor
in tissue (due to the tumoral angiogenesis) in the neck-
tumor problem [15, 16, 17, 22, 23], and from radiation ab-
sorption excess originated by the presence of oxygenated
hemoglobin triggered by hemodynamic response due to the
activation of a brain region [18, 19, 20, 35], in the brain-
imaging problem. Accordingly, in what follows the lower
bound a`(x) for a(x) in (49) is set to equal the absorp-
tion value of the background tissue (which is assumed to
be known a priori), and the corresponding upper bound is
set to au(x) = 1/cm, which provides a reasonable upper
constraint for the absorption values of the types of tissue
under consideration [36].

We solve these inverse problems on the basis of syn-
thetic data obtained by running the forward problem for
a given “target” absorption coefficient at(x). In order to
account for experimental noise, we add a 10% of random
noise to the resulting detector readings prior to the inver-
sion process, as illustrated in Figure 7. In particular, we
study the convergence of Algorithm 2 for a varying num-
ber of sources and detectors for the given configuration.
In order to evaluate the convergence of the reconstruction
process we use the L2-error norm

E(i) =

√∫
Ω

(at(x)− ai(x))2dx∫
Ω

(at(x))2dx
(50)

where E(i) corresponds to the L2-error in the absorption
value ai(x) obtained at the i-th iteration of the inverse
solver.

7.1. Neck tumor imaging

Our first test case concerns the application of optical
tomography for diagnoses in patients for which a back-
ground Magnetic Resonance Imaging of a neck section is
available (Figure 8); such situations arise as e.g. imag-
ing of either evolving tumors or new metastatic tumors
is sought within a body part (the neck, in this case) for
which an existing MRI image was acquired months or years
in advance. The portability and low cost of optical tomo-
graphic systems make optical tomographic devices much
more accessible than MRI systems for such periodic moni-
toring and diagnostic applications. Studies for the forward
modeling of light propagation in the human neck are re-
ported in [17, 37]. In the present test case we consider the
inverse problem for such a configuration (which, of course,
requires the repeated solution of forward and adjoint prob-
lems, as described in Algorithm 2), focusing on the recon-
struction itself and illustrating the convergence character
and computational time required by the proposed algo-
rithm. For the present test case the absorption coeffi-

Figure 8: Magnetic Resonance Image [38] for the neck model em-
ployed. The absorption and scattering coefficients were set in accor-
dance with reference [37].

cients for the spine, the spinal chord, and the trachea will
remain fixed in the reconstruction process (in accordance
with the values provided in [37]), since tumoral angiogen-
esis is only expected to exist in the soft tissue. Addition-
ally, we restrict the presence of tumor inclusions to regions
slightly away from the neck boundary, so as to avoid the
error amplification associated with the existence of expo-
nential boundary layers [39] (a full treatment of such near-
boundary imaging configurations is left for future work).
Accordingly, the value of the absorption coefficient in the
proximity of the boundary is set to the background tissue
value a(x) = ab(x) at all points closer than 0.5cm from
the boundary.

We tackle the present neck-imaging problem by means
of both the TS and MSS methods described in Section 3.1,
in a configuration containing Nb laser beams (see eq. (8)),
and we consider examples with Nb = 4, 8 and 16. Per the
description in that section, a single generalized source con-
taining Nb = Ns beams is utilized in the MSS approach,
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Figure 9: L2-error norm eq. (50) convergence for the absorption coefficient reconstruction with respect to the number of iterations, for different
number of detectors (top) and sources (bottom), for the TS and MSS methods. Left panel: convergence eq. (50) up to 100 iterations for the
TS method. Right panel: convergence eq. (50) up to 100 iterations for the MSS method. For the simulations in the top panel 16 laser sources
were used. For the simulations in the bottom panel, 36 detectors were used.

Figure 10: (Color online). From left to right: true absorption coefficient, reconstructed absorption coefficient after 100 iterations using the
TS method, and reconstructed absorption coefficient after 100 iterations using the MSS method. For these reconstructions 36 detectors and
16 sources were used.

with Nq = 1, and groups of four sources, one per face in
the square domain depicted in Figure 8, are simultane-
ously activated, with time delay of 300ps between groups
of four sources. For example, in the case Nb = 16 and let-
ting xi1 denote the i-th beam in the group of four beams
that is activated first we have τ1,1 = 0ps for the simulta-
neous sources placed at x1

1 = (2.0, 0.0), x2
1 = (10.0, 2.0),

x3
1 = (8.0, 10.0), x4

1 = (0.0, 8.0). The remaining sources,
located at point xik, activated at time τk,1 (k = 2, 3, 4)
are arranged as follows: x5

2 = (4.0, 0.0), x6
2 = (10.0, 4.0),

x7
2 = (6.0, 10.0), x8

2 = (0.0, 6.0) activated at τ2,1 = 300ps;

x9
3 = (6.0, 0.0), x10

3 = (10.0, 6.0), x11
3 = (4.0, 10.0), x12

3 =
(0.0, 4.0) activated at τ3,1 = 600ps; and x13

4 = (4.0, 0.0),
x14

4 = (10.0, 4.0), x15
4 = (6.0, 10.0), x16

4 = (0.0, 6.0) ac-
tivated at τ4,1 = 900ps. This MSS arrangement was ob-
tained by seeking to optimize the required simulation time,
which, considering the exponential decay of the photon
density wave, was achieved by using simultaneous laser
sources that are as far away from each other as possible—
and thus facilitate the discrimination of signals received at
any given detector. In order to provide a sufficiently long
relaxation time for the photon density wave produced by
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the last sources to be activated, each forward simulation
for the MSS method was carried on up to a final time
tmax = 1400ps. Similar arrangements, whose details are
not provided explicitly for the sake of brevity, where used
for the MSS cases Nb = 4 and Nb = 8. For the TS me-
thod, in turn, each independent forward simulation was
carried up to the final time tmax = 600ps, with detectors
and sources placed at the same position as for the single
sources of the MSS method with the corresponding value
of Nb and using the same numerical grids, and number of
processors for each case.

Figure 9 shows that the TS and the MSS methods enjoy
similar convergence properties for a varying number Nb of
sources and Nd of detectors (cf. equation (14)). However,
for the Nb = 16 benchmarks, the MSS method required
12, 689 seconds to reach one-hundred iterations of the lm-
BFGS algorithm while the TS method, required 88, 093
seconds—so that the MSS method produces an accelera-
tion by a factor of almost seven to achieve one-hundred
lm-BFGS iterations. The figure also shows that increasing
the number of sources and detectors produces a signifi-
cant improvement on the convergence of the inverse solver
for a fixed number of iterations. The number of sources
has a more significant impact on the reconstructions than
the number of detectors employed. This can be under-
stood as follows: the role of the sources is to produce the
photon density waves that are used to sense the medium.
Although the detector reading mismatches (Gj [ui]− G̃j,i)
are related to the sources for the adjoint problem (34),
the intensity of these adjoint sources depends, in turn, on
the amount of photons reaching a given detector. It can
be argued that for the same reason the number of sources
utilized has a more significant impact than whether the
sources are run on independent forward simulations (as in
the TS method), or simultaneously (as in the MSS me-
thod), which makes MSS strategy a reliable and efficient
approach.

Figure 10 displays the true absorption coefficient as
well as the reconstructed absorption coefficients obtained
by both the TS and the MSS methods, with 16 sources
and 36 detectors, after 100 iterations of the lm-BFGS al-
gorithm. Clearly, the reconstructions obtained by both
methods are of comparable quality, but the MSS recon-
struction resulted in a reduction in computing time by a
factor of 7.

7.2. Brain imaging based on hemodynamic activation or
cancerous tissue

In this final test case we consider a “head model” simi-
lar to the one utilized in references [9, 40]. This head model
mimics the typical situation where optical tomography is
used to study hemodynamic activity in the brain, and cap-
tures one of its salient features, namely the clear layer that
surrounds the brain. This is a region between the scalp and
the brain filled by cerebrospinal fluid with negligible ab-
sorption and scattering coefficients—which, in the context
of optical tomography, is not suitable for modeling under

the diffusion approximation [18] and thus requires use of
the full RTE.
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Figure 11: L2-error norm eq. (50) evolution per iteration for the
absorption coefficient reconstruction in the head model for the TS
and the MSS method.

In the present context we employ the same number of
sources as in reference [9], where a total of 16 sources, with
four sources per face, are utilized for a similar head model.
For our reconstructions we again look for inclusions over
a known background, where the background value is used
as the initial guess. We employ 32 detectors, with 8 de-
tectors equally distributed per face. For this benchmark
all sources that are placed at the same face of the do-
main are activated simultaneously. By employing the no-
tation previously described in Section 7.1, the activation
configuration for the MSS method for this benchmark is
as follows: x1

1 = (1.0, 0.0), x2
1 = (2.0, 0.0), x3

1 = (3.0, 0.0),
x4

1 = (4.0, 0.0), activated at τ1,1 = 0ps; x5
2 = (1.0, 5.0),

x6
2 = (2.0, 5.0), x7

2 = (3.0, 5.0), x8
2 = (4.0, 5.0) activated

at τ2,1 = 100ps; x9
3 = (5.0, 1.0), x10

3 = (5.0, 2.0), x11
3 =

(5.0, 3.0), x12
3 = (5.0, 4.0) activated at τ3,1 = 400ps; and

x13
4 = (0.0, 1.0), x14

4 = (0.0, 2.0), x15
4 = (0.0, 3.0), x16

4 =
(0.0, 4.0) activated at τ4,1 = 500ps. Figure 11 displays the
evolution of the error eq. (50) for the TS and MSS meth-
ods, and Figure 12 presents the true absorption coefficient
and the final reconstructed absorption coefficients for the
head model.

A reconstruction using the TS method for a total of 50
iterations is presented in the middle panel of Figure 12.
The right panel in this figure, in turn, presents the results
produced by MSS using 79 iterations, which result in a
similar error in the L2 norm (50) as the one obtained from
the 50 TS iterations. The absorption in the clear layer
and the region exterior to the clear layer are assumed to be
known and remain fixed during the reconstruction process.
The search for the inclusions is performed in the region
which is surrounded by the clear layer, given that this
would be the region where brain activity should be looked
for in a real optical tomography experiment. In terms of
computational time, the fifty iterations of the TS method

15



Figure 12: (Color online). From left to right: true absorption coefficient, reconstructed absorption coefficient after 50 iterations of the TS
method, and reconstructed absorption coefficient after 79 iterations of the MSS method. For these reconstructions 32 detectors and 16 sources
were used.

required more than six times longer than the 79 iterations
required by the MSS method to achieve the same error.

8. Conclusions

In this work we have considered the inverse RTE prob-
lem in optical tomography by means of a non linear itera-
tive optimization scheme based on the lm-BFGS gradient
descent method. We have demonstrated that the proposed
domain decomposition parallel strategy presents perfect
parallel scaling, making it suitable to tackle the compu-
tational demands in optical tomography. Our newly ob-
tained adjoint-gradient expressions under Fresnel bound-
ary conditions enables correct accounting of refractive in-
dex mismatches at interfaces. In conjunction with the MSS
strategy, the algorithm provided a reduction in computa-
tional times of several orders of magnitude over previous
approaches. This allowed us to produce reconstructions
of the absorption parameter in only a few hours, which in
a single processor and by means of the typically used TS
method would have required months of computing time to
complete.
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lel algorithms for Sn transport sweeps on unstructured meshes.
Journal of Computational Physics, 232(1):118–135, 2013.

[8] H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi. Hybrid model of
light propagation in random media based on the time-dependent
radiative transfer and diffusion equations. Journal of Quanti-
tative Spectroscopy and Radiative Transfer, 147:145–154, 2014.

[9] K. Prieto and O. Dorn. Sparsity and level set regularization
for diffuse optical tomography using a transport model in 2D.
Inverse Problems, 33(1), 2017.

[10] O. Dorn. A transport – backtransport method for optical to-
mography. Inverse Problems, 14:1107–1130, 1998.

[11] L. G. Henyey and J. L. Greenstein, Diffuse radiation in the
galaxy, The Astrophysical Journal, 93:70–83, 1941.

[12] O. P. Bruno and B. Delourme. Rapidly convergent two-
dimensional quasi-periodic Green function throughout the
spectrum-including Wood anomalies. Journal of Computational
Physics, 262:262–290, 2014.

[13] J. J. Duderstadt and W. R. Martin, Transport Theory. John
Wiley & Sons, New York, USA, first edition, 1979.

[14] K. Ren. Recent developments in numerical techniques for
transport-based medical imagingmethods. Communications in
Computational Physics, 8(1):1–50, 2010.

[15] Q. Zhu, S. H. Kurtzman, P. Hegde, S. Tannenbaum, M. Kane,
M. Huang, N. Chen, B. Jagjivan, and K. Zarfos. Utilizing op-
tical tomography with ultrasound localization to image hetero-
geneous hemoglobin distribution in large breast cancers. Neo-
plasia, 7(3):263–270, 2005.

[16] Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin,
Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman,
P. J. Deckers, and S. H. Tannenbaum. Early-stage invasive
breast cancers: Potential role of optical tomography with US
localization in assisting diagnosis. Radiology, 256(2):367–378,
2010.

[17] H. Fujii, Y. Yamada, K. Kobayashi, M. Watanabe, and
Y. Hoshi. Modeling of light propagation in the human neck for
diagnoses of thyroid cancers by diffuse optical tomography. In-
ternational Journal for Numerical Methods in Biomedical En-
gineering, 33(5):e2826, 2016.

16



[18] D.A. Boas, D.H. Brooks, E.L. Miller, C.A. Dimarzio, M. Kilmer,
R.J. Gaudette, and Q. Zhang. Imaging the Body with Dif-
fuse Optical Tomography. IEEE Signal Processing Magazine,
18(6):57–75, 2001.

[19] A Bluestone, G Abdoulaev, C Schmitz, R Barbour, and
A Hielscher. Three-dimensional optical tomography of hemo-
dynamics in the human head. Optics express, 9(6):272–286,
2001.

[20] S. R. Arridge. Optical Tomography in medical imaging. Inverse
Problems, 15:R41–R93, 1999.

[21] A. D. Klose, V. Ntziachristos, and A. H. Hielscher. The inverse
source problem based on the radiative transfer equation in op-
tical molecular imaging. Journal of Computational Physics,
202(1):323–345, 2005.

[22] M. Althobaiti, H. Vavadi, and Q. Zhu. Diffuse optical to-
mography reconstruction method using ultrasound images as
prior for regularization matrix. Journal of Biomedical Optics,
22(2):026002, 2017.

[23] M. Guven, B. Yazici, X. Intes, and B. Chance. Diffuse opti-
cal tomography with a priori anatomical information. Optical
Tomography and Spectroscopy of Tissue V, 4955:634, 2003.

[24] E. Hille, R.S. Phillips Functional analysis and semi-groups.
Providence, Rhode Island, USA: American Mathematical So-
ciety, first edition, 1957.

[25] T. K. Kim and H. Lee. Effect of anisotropic scattering on ra-
diative heat transfer in two-dimensional rectangular enclosures.
International Journal of Heat and Mass Transfer, 31(8):1711–
1721, 1988.

[26] L. H. Liu, L. M. Ruan and H. P. Tan. On the discrete ordinates
method for radiative heat transfer in anisotropically scatter-
ing media. International Journal of Heat and Mass Transfer,
45(15):3259–3262, 2002.

[27] J. Stoer, R. Bulirsch Introduction to numerical analysis. New
York, USA: Springer-Verlag, third edition, 2002

[28] O. P. Bruno and M. Cubillos. Higher-order in time “quasi-
unconditionally stable” ADI solvers for the compressible
Navier–Stokes equations in 2D and 3D curvilinear domains.
Journal of Computational Physics, 307:476–495, 2016.

[29] F. Amlani and O. P. Bruno. An FC-based spectral solver for
elastodynamic problems in general three-dimensional domains.
Journal of Computational Physics, 307:333–354, 2016.

[30] O. P. Bruno, M. Cubillos and E. Jimenez. Higher-order implicit-
explicit multi-domain compressible Navier-Stokes solvers. Jour-
nal of Computational Physics, 391:322–46, 2019.

[31] O. P. Bruno and M. Lyon. High-order unconditionally stable
FC-AD solvers for general smooth domains I. Basic elements.
Computer Physics Communications, 229(6):2009–33, 2010.

[32] N. Albin and O. P. Bruno. A spectral FC solver for the
compressible Navier-Stokes equations in general domains I:
Explicit time-stepping. Journal of Computational Physics,
230(16):6248–6270, 2011.

[33] M. Fontana, O. P. Bruno, P. D. Mininni and P. Dmitruk. Fourier
continuation method for incompressible fluids with boundaries.
Journal of Computational Physics, 391:322–46, 2020.

[34] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory
Algorithm for Bound Constrained Optimization. SIAM Journal
on Scientific Computing, 16(5):1190–1208, 1995.

[35] E. Hernandez-Martin and J. L. Gonzalez-Mora Diffuse opti-
cal tomography in the human brain: A briefly review from the
neurophysiology to its applications. Brain Science Advances,
6(4):289–305, 2020.

[36] M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vi-
gnaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali,
“Quantitative investigation of the effect of the extra-cerebral
vasculature in diffuse optical imaging: a simulation study,”
Biomedical Optics Express, vol. 2, no. 3, p. 680, 2011.

[37] H. Fujii, K. Nadamoto, S. Okawa, Y. Yamada, M. Watanabe,
Y. Hoshi, and E. Okada. Numerical Modeling of Photon Migra-
tion in Human Neck Based on the Radiative Transport Equa-
tion. Journal of Applied Nonlinear Dynamics, 5(1):117–125,
2016.

[38] Case courtesy of RMH Core Conditions, Radiopaedia.org, rID:
26271.

[39] E. L. Gaggioli, D. M. Mitnik, and O. P. Bruno. Skin effect in
neutron transport theory. Physical Review E, 104(3):L032801-
1–L032801-6, 2021.

[40] A. D Klose, U. Netz, J. Beuthan, and A. H. Hielscher. Optical
tomography using the time-independent equation of radiative
transfer — Part 1: forward model. Journal of Quantitative
Spectroscopy and Radiative Transfer, 72(5):691–713, 2002.

[41] U. Netz, J. Beuthan, and H. J. Cappius. Imaging of Rheumatoid
Arthritis in Finger Joints Medical Laser Application, 16:306–
310, 2001.

17


	1 Introduction
	2 Preliminaries
	3 Inverse problem and adjoint gradient formalism
	3.1 Objective functions
	3.2 Inverse problem
	3.3 Functional derivatives
	3.4 Fast gradient evaluation via the adjoint method
	3.5 Verification and accuracy assessment of the functional-derivative expression (33)
	3.6 Numerical functional gradient calculation

	4 Parallel FC–DOM numerical implementation for the Radiative Transfer Equation
	4.1 Velocity-domain discretization
	4.2 Time propagation
	4.3 Discretization over the spatial domain: the FC–DOM method
	4.4 Domain decomposition and parallel implementation

	5 Numerical Results I: Direct RTE problem
	6 Inverse problem solver
	7 Numerical Results II: Inverse problem
	7.1 Neck tumor imaging
	7.2 Brain imaging based on hemodynamic activation or cancerous tissue

	8 Conclusions
	9 Acknowledgements

