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a b s t r a c t

Principal Components Analysis is a widely used approach of multivariate analysis.
Over the past 30 years, it has gained renewed attention in the context of functional
data, chiefly as a commonly used tool for dimension reduction or feature extraction.
Consequently, a large body of statistical theory has been developed to justify its
application in various contexts. This theory focuses on the convergence of sample PCs
to their population counterparts in a multitude of statistical models and under diverse
data collection assumptions. What such results have in common is the assumption that
the population covariance operator exists.This paper is concerned with multivariate and
functional data that have infinite variance and, consequently, for which the population
covariance operator is not defined. However, the sample covariance operator and its
eigenfunctions are always defined. It has been unknown what the asymptotic behavior of
these important statistics is in the context of infinite variance multivariate or functional
data. We derive suitable large sample theory. In particular, we specify normalizing
sequences and conditions for suitably defined consistency. We study multivariate models
in which explicit limits can be derived. These examples show that definitions, results and
intuition developed for multivariate and functional data with finite variance need not
apply in the setting we consider.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Over the last two decades, Functional Data Analysis (FDA) has grown into a substantial field of statistics that has
found applications in a number of disciplines and stimulated the development of novel statistical approaches and
underlying theory. The field is now very rich and multifaceted, and it is at this point not possible to discuss most
representative publications or comment on their impact or importance. We merely note the monographs and textbooks
of Bosq [4], Ramsay and Silverman [25], Ferraty and Vieu [9], Ramsay et al. [24], Shi and Choi [29], Horváth and Kokoszka
[12], Hsing and Eubank [13] and Kokoszka and Reimherr [16]. Many review papers focusing on specific aspects or
applications of FDA are available, including many published by this journal, e.g., Goia and Vieu [11], Aneiros et al. [1]
and Aneiros et al. [2].

As an outgrowth of its well-known multivariate counterpart, Functional Principal Component Analysis (FPCA) has been
an important tool of FDA since the early days of the field and remains so. To explain the contribution of this paper, we
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begin by presenting the basics of the FPCA. Denote by L2 = L2(U) the space of square integrable functions on a domain
U with the inner product ⟨f , g⟩ =

∫
U
f (u)g(u)du. If U is a Polish space (complete and separable metric space), then L2 is

a separable Hilbert space. Suppose we observe functions X1, X2, . . . , XN ∈ L2. Consider the sample covariance operator

Ĉ(x) = 1

N

N∑

n=1

⟨
Xn − X̄N , x

⟩
(Xn − X̄N ), x ∈ L2(U).

Statistical software, see e.g., Ramsay et al. [24], can compute its orthonormal eigenfunction v̂j and positive eigenvalues λ̂j
that satisfy

Ĉ(v̂j) = λ̂jv̂j, j ∈ {1, 2, . . . ,N}, (1)

and the sample scores ξ̂nj =
⟨
Xn − X̄N , v̂j

⟩
. The v̂j are the sample Functional Principal Components (FPCs). Clearly,

no assumptions are needed to compute the sample quantities Ĉ, λ̂j, v̂j. To establish their convergence to population
quantities, one must impose assumptions on the observations. If the Xi are independent with the same distribution as
X , and E∥X∥4 < ∞, the products in the definition of Ĉ have finite second moment, so the CLT in a separable Hilbert space
implies that Ĉ converges with standard rate to the (population) covariance operator

C(x) = E [⟨X − EX, x⟩ (X − EX)] , x ∈ L2(U). (2)

A more subtle question is if the λ̂j and the v̂j converge to the λj and vj defined by C(vj) = λjvj, j ≥ 1. This problem
was solved by Dauxois et al. [5] whose results are reported e.g. in Bosq [4] and Horváth and Kokoszka [12] in greater

generality. In particular, it is known that ∥v̂j − vj∥
P→ 0 and λ̂j

P→ λj, and asymptotic normality holds.

If one drops the assumption E∥X∥4 < ∞, the standard Hilbert space CLT cannot be applied to the operator Ĉ . Even in
the case of partial sums of scalar observations, to obtain convergence to a nondegenerate limit, one must assume that the
observations have regularly varying tails. A basically complete theory is given in Gnedenko and Kolmogorov [10], which
is summarized on a few pages in Section 2.2 of Embrechts et al. [8]. In the case of functional observations, it must be
assumed that the Xi are regularly varying in L2. Postponing the definitions and details to Section 2, if the index of regular
variation α satisfies α ∈ (2, 4), then E∥X∥2 < ∞, so the covariance operator C given by (2) is still well-defined. Asymptotic

theory for this case is worked out in Kokoszka et al. [17]. One can still conclude that ∥̂C − C∥ P→ 0, ∥v̂j − vj∥
P→ 0 and

λ̂j
P→ λj, and specify asymptotics distributions, which are no longer normal.
If α < 2, one cannot define the covariance operator C , because then E∥X∥2 = ∞. Consequently one cannot consider

its eigenfunctions vj and eigenvalues λj. However, one can always compute the sample covariance operator Ĉ and the

FPCs v̂j. Some questions are then: Does Ĉ and do the v̂j converge to any limits? Since C and the vj do not exist, what
might those limits be? Can one establish convergence after a suitable normalization? What are the limits then? What
assumptions must be imposed on the functional data to ensure their existence? This paper is concerned with providing
precise answer to such questions. We provide exact formulas for various normalizing and centering sequences and show
how they impact the limits. A data example motivating our theory is provided in the online material. This paper is
concerned with the fundamental theory of PCA for infinite variance data. It is hoped that the understanding it provides
will lead to the development of effective tools to handle such multivariate and functional data. An objective of this paper
is thus to advance theory underlying the approximation

Xn(u) ≈
Q∑

j=1

ξ̂njv̂j(u) (3)

that is commonly used in FDA for dimension reduction or feature extraction. We want to understand the large sample
behavior of the FPCs v̂j and their scores ξ̂nj.

There is profound work on regularly varying functional data viewed as elements of abstract spaces. Such work focuses
primary on aspects relevant to Extreme Value Theory, including the polar decomposition and the extremal index. Without
attempting to give a full review, we note that following the work of Basrak and Segers [3], who studied the polar
decomposition of a regularly varying multivariate time series, Meinguet and Segers [22] provided a detailed study of
regularly varying time series in Banach spaces. Segers et al. [28] extended their results in two aspects: regular variation of
the time series treated as a single random element in a sequence space and the polar decomposition in star-shaped metric
spaces. It may be hoped that such general results combined with the results of this paper will motivate the development
of useful statistical models for regularly varying functional data.

The remainder of the paper is organized as follows. In Section 2, we conveniently organize known results and prove
corollaries that are needed in subsequent sections. Section 3 considers general, infinitely dimensional functional data. In
Section 4, we focus on multivariate models in which asymptotic quantities can be computed explicitly. The results of
Section 4 emphasize important differences between the cases of finite- and infinite variance multivariate or functional
observations. Section 5 contains infinitely dimensional results that extend some results of Section 4. Longer and more
technical proofs are collected in Sections 6 and 7. Online material contains a data example illustrating our theory.
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2. Preliminary results

We begin with Proposition 1 and Remark 1 that follow from known results. We spell out relationships between various

normalizing sequences that play a crucial role in the following. We first recall some definitions related to M0 convergence,

see Hult and Lindskog [14], Meinguet [21] and Lindskog et al. [20]. Suppose X a Polish space (a separable and complete

metric space) and B is a separable Banach space. Denote by M(·) the set of positive measures on the Borel sets of a

specified space. Denote further,

Mb(X) = {µ ∈ M(X) : µ(X) < ∞} ,
M0(B) = {µ ∈ M(B \ {0}) : ∀ r > 0, µ({x : ∥x∥ > r}) < ∞} .

Recall that the weak convergence of µN ∈ Mb(X) to µ ∈ Mb(X) (written as µN
w−→ µ) means that for each bounded

and continuous function f : X → R,
∫
fdµN →

∫
fdµ. Denote by Cbd(B) the set of bounded continuous functions on B that

vanish on an open disk containing zero. We say that µN ∈ M0(B) converges in M0 to µ ∈ M0(B) (written as µN

M0−→ µ) if
∫

B

f (z)µN (dz) →
∫

B

f (z)µ(dz), ∀ f ∈ Cbd(B).

Proposition 1. Let X be a random element in a separable Banach space B and α > 0. The following statements are equivalent:

(i) For some slowly varying function L,

P(||X || > u) = u−αL(u) (4)

and

P(u−1X ∈ · )
P(||X || > u)

M0−→ µ(·), u → ∞, (5)

where µ is a non-null measure on the Borel σ -field B(B0) of B0 = B\ {0}. We call µ the exponent measure.

(ii) There exists a probability measure Γ , called the angular measure, on the unit sphere S in B such that, for every t > 0,

P(||X || > tu, X/||X || ∈ ·)
P(||X || > u)

w−→ t−αΓ (·), u → ∞. (6)

(iii) Relation (4) holds, and for the same angular measure Γ as in (ii),

P (X/||X || ∈ ·|||X || > u)
w−→ Γ (·), u → ∞.

(iv) There is a sequence ãN → ∞ such that with the same µ as in (i),

µN (·) := NP
(
ã−1
N X ∈ ·

) M0−→ µ(·), as N → ∞. (7)

(v) There is a sequence aN → ∞ such that for the same angular measure Γ as in (ii),

NP

(
∥X∥ > taN ,

X

∥X∥ ∈ ·
)

w−→ t−αΓ ( · ), as N → ∞.

Remark 1. Several points are in place here.

• If any of the conditions of Proposition 1 holds, we will write X ∈ RV−α(B).
• The angular measure Γ is related to the exponent measure µ via

µ(dx) = c αr−α−1drΓ (dθ ), r = ∥x∥, θ = x

∥x∥ , (8)

where c = µ({x : ∥x∥ > 1}).
• Since Γ is the probability measure, condition (v) gives

NP (∥X∥ > aN) → 1. (9)

We will refer to aN as the quantile sequence of X (formally speaking, the quantile sequence of ∥X∥).
• The sequences aN and ãN are regularly varying with index 1/α. They coincide if and only if µ is normalized in such

the way that µ({x : ∥x∥ > 1}) = 1.

• In what follows, we consider random elements in a separable Hilbert space and use the norm ∥x∥2 = ⟨x, x⟩.
Suppose H is a separable Hilbert space and set SH = {x ∈ H : ∥x∥ = 1}.
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Definition 1. A random element S in H is stable with index p ∈ (0, 2) if there is a finite measure σS on B(SH) and β ∈ H

such that

E [exp {i ⟨x, S⟩}] = exp

{
i ⟨x, β⟩ −

∫

SH

| ⟨x, s⟩ |pσS(ds) + iC(p, x)

}
,

where

C(p, x) =
{

tan πp

2

∫
SH

⟨x, s⟩ | ⟨x, s⟩ |p−1σS(ds), p ̸= 1,
2
π

∫
SH

⟨x, s⟩ log | ⟨x, s⟩ |σS(ds), p = 1.

For an orthonormal basis {ηk, k ≥ 1} in H, define the projections

πm(x) =
∞∑

k=m

⟨x, ηk⟩ ηk

and consider the following condition.

Condition 1. The random element Z ∈ H satisfies the following conditions for p ∈ (0, 2):

lim
u→∞

P
(
∥Z∥ > u, ∥Z∥−1Z ∈ A

)

P
(
∥Z∥ > u, ∥Z∥−1Z ∈ A∗

) = Γ ′
Z (A)

Γ ′
Z (A

∗)
, (10)

where Γ ′
Z is a finite measure on SH and A, A∗, Γ ′

Z (A
∗) > 0, are continuity sets of Γ ′

Z , and

lim
u→∞

P(∥Z∥ > u)

P(∥πm(Z)∥ > tu)
= c1t

p

cm
, (11)

where cm > 0, ∀ m ≥ 1, and limm→∞ cm = 0.

Note that if Z ∈ RV−p(H), then (10) holds and the angular measure ΓZ in (6) and Γ ′
Z in (10) are related by

ΓZ = Γ ′
Z/Γ

′
Z (SH) (12)

because ΓZ is a probability measure. Condition (11) ensures that the random objects we study are truly infinitely
dimensional. (We study the finite dimensional case, which is instructive, in Section 4.) The following proposition, proven
in Kokoszka et al. [17], establishes a connection between Condition 1 and regular variation.

Proposition 2. Condition 1 holds if and only if Z ∈ RV−p(H) with p ∈ (0, 2) and

∀ m ≥ 1, µZ (Am) > 0, (13)

where

Am =

⎧
⎨
⎩z ∈ H : ||πm(z)|| =


∞∑

j=m

⟨
z, ηj

⟩
ηj

 > 1

⎫
⎬
⎭ ,

and where µZ is the exponent measure in (5).

Theorem 4.11 of Kuelbs and Mandrekar [18] directly implies the following theorem.

Theorem 1. Let Z1, Z2, . . . be i.i.d. random elements in a separable Hilbert space H with the same distribution as Z. Suppose
S is stable according to Definition 1. Then, there exist normalizing constants bN and γN such that

b−1
N

(
N∑

n=1

Zn − γN

)
d→ S, (14)

if and only if Condition 1 holds with Γ ′
Z = σS .

Remark 2 follows from the examination of the proof of Theorem 4.11 of Kuelbs and Mandrekar [18].

Remark 2. The sequence bN must satisfy

bN → ∞,
bN

bN+1

→ 1, Nb−2
N E

[
||Z ||2I{||Z ||≤bN }

]
→ λpσS(SH ), (15)

where

λp =
{

p(1−p)

Γ (3−p) cos(πp/2)
, p ̸= 1

2/π , p = 1,
(16)

and Γ (a) :=
∫∞
0

e−xxa−1dx, a > 0, is Euler’s gamma function.
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Remark 3. If Condition 1 holds, then for arbitrary p ∈ (0, 2) the γN ∈ H may be chosen as

γN = NE
[
ZI{||Z ||≤bN }

]
. (17)

This choice does not yield β = 0 in Definition 1. If p ∈ (0, 1), then γN can be chosen as γN ≡ 0, while if p ∈ (1, 2), we can

choose γN = E[Z]. These choices yield β = 0. Our theory will require p ∈ (0, 1). Therefore, we set

γN = 0, if p ∈ (0, 1). (18)

The choice of the centering sequence does not follow from Kuelbs and Mandrekar [18], however, its form is well-known

in the scalar case. See Theorem 8.3.1 in Kulik and Soulier [19], which in turn is based on an analogous result in Davis and

Hsing [6].

Next, we want to replace the sequence bN appearing in (14) with the quantile sequence aN in the definition of the

regular variation. We formulate the precise result we need as the following corollary to Theorem 1. We emphasize the

assumption p ∈ (0, 1).

Corollary 1. Let Z1, Z2, . . . be i.i.d. random elements in a separable Hilbert space H with the same distribution as Z that

satisfies Condition 1 with p ∈ (0, 1) and has the angular measure ΓZ (Z ∈ RV−p(H) by Proposition 2). Then

a−1
N,Z

N∑

n=1

Zn
d→ S∗

∞, (19)

where aN,Z is the quantile sequence of Z and S∗
∞ is a p-stable random element with the characteristic functional

Eei⟨x,S∗
∞⟩ = exp

{
−sp

∫

SH

[
| ⟨x, s⟩ |p − i tan

πp

2
⟨x, s⟩ | ⟨x, s⟩ |p−1

]
ΓZ (ds)

}
, (20)

and where

sp = Γ (1 − p) cos(πp/2). (21)

Proof. By Theorem 1 and (18), we only need to find the relationship between bN in (15) and the quantile sequence aN,Z .

From (15) we have

lim
N→∞

E
[
||Z ||2I{||Z ||≤bN }

]

b2NP(||Z || > aN,Z )
= λpσS(SH ).

On the other hand, Proposition 1.4.6 in Kulik and Soulier [19] gives

lim
N→∞

E
[
||Z ||2I{||Z ||≤bN }

]

b2NP(||Z || > bN )
= p

2 − p
.

Set aN,Z = κbN . The above asymptotics give

κ =
(
2 − p

p
λp

)1/p

σ
1/p

S (SH ) = s−1/p
p σ

1/p

S (SH ) (22)

with sp = Γ (1 − p) cos(πp/2).

Theorem 1 with γN = 0 gives

a−1
N,Z

N∑

n=1

Zn
d→ κ−1S,

with S given in (14), with the location parameter β = 0. The characteristic function is

E
[
exp

{
i
⟨
x, κ−1S

⟩}]
= E

[
exp

{
i
⟨
κ−1x, S

⟩}]

= exp

{
−κ−p

∫

SH

| ⟨x, s⟩ |pσS(ds) + i tan
πp

2
κ−p

∫

SH

⟨x, s⟩ | ⟨x, s⟩ |p−1σS(ds)

}

= exp

{
−sp

∫

SH

| ⟨x, s⟩ |p σS(ds)
σS(SH)

+ i tan
πp

2
sp

∫

SH

⟨x, s⟩ | ⟨x, s⟩ |p−1 σS(ds)

σS(SH)

}
.

Again, Theorem 1 gives that σS = Γ ′
Z , with Γ ′

Z from Condition 1. The result follows from (12).
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For a given Hilbert space H let S = SH be the space of Hilbert–Schmidt operators. If x, y ∈ H, then x⊗ y ∈ S is defined
by (x ⊗ y)(z) = ⟨x, z⟩ y, z ∈ H. For Ψ ,Φ ∈ S , we define

⟨Ψ ,Φ⟩S =
∞∑

j=1

⟨
Ψ (ej),Φ(ej)

⟩
,

where {ej, j ≥ 1} is an orthonormal basis in H.
We want to link the regular variation of X to that of X ⊗ X . We first state a simple fact that will allow us to deal with

sample covariance operators even if the corresponding population covariance operator does not exist. We will use it with
H = L2(U).

Fact 1. If X is a random element of H, then X ⊗ X ∈ S with probability one and

∥X ⊗ X∥S = ∥X∥2 a.s.

Proof. For any orthonormal basis {ej, j ≥ 1} in H,

∥X ⊗ X∥2
S

=
∞∑

j=1

∥
⟨
X, ej

⟩
X∥2 = ∥X∥2

∞∑

j=1

|
⟨
X, ej

⟩
|2 = ∥X∥4.

Since X ∈ H a.s., it follows that ∥X∥ < ∞ a.s. and so ∥X ⊗ X∥S < ∞ a.s., and the norm identity follows.
The next result is taken from Kokoszka et al. [17].

Proposition 3. If X ∈ RV−α(H), α > 0, then X ⊗ X ∈ RV−α/2(SH).

3. General convergence results

In this section, we derive limiting behavior of the sample covariance operator and establish consistence of the sample
FPCs. Proofs that are not given in this section, are given in Section 6, so as not to interrupt the narrative.

3.1. Asymptotic behavior of the sample covariance operator

On reflection, the following fact is elementary, but it emphasizes that no moment conditions are needed to define the
sample covariance operator and that it has desirable properties with probability one.

Fact 2. Suppose X1, X2, . . . , XN are random elements of L2(U). Then the sample covariance operator defined by

Ĉ(x) = 1

N

N∑

n=1

⟨
Xn − X̄N , x

⟩
(Xn − X̄N ), x ∈ L2(U), (23)

is a random element of S that is a.s. symmetric, ⟨̂C(x), y⟩ = ⟨x, Ĉ(y)⟩, and nonnegative, ⟨̂C(x), x⟩ ≥ 0.

Proof. Since L2(U) is a vector space, Xn − X̄N ∈ L2(U). By Fact 1, (Xn − X̄N ) ⊗ (Xn − X̄N ) is a random element of S . Since S

is a vector space, Ĉ ∈ S . The claims that Ĉ is a.s. symmetric and nonnegative follow from its definition.
Next, we formulate the main assumption of this paper.

Assumption 1. The random function X is regularly varying in L2 = L2(U) with tail index α ∈ (0, 2) and the angular
measure ΓX . The random functions X1, X2, . . . , XN are i.i.d. copies of X .

In relation to (11) in Condition 1, we introduce the following assumption.

Assumption 2. For an orthonormal basis ej, j ≥ 1, in L2, set πJ (x) =
∑

j≥J

⟨
x, ej

⟩
ej. We assume that for any I, J ≥ 1, there

are constants c(I, J) > 0 such that

lim
u→∞

P
(
∥πI (X)∥ ∥πJ (X)∥ > u

)

P
(
∥X∥2 > u

) → c(I, J)

c(1, 1)
,

and c(I, J) → 0, as I, J → ∞.

In conjunction with Assumption 1, Assumption 2 means that the distribution of X is regularly varying on the whole
space L2, not a finite dimensional subspace, but the projections πJ (X) become asymptotically negligible relative to the
distribution of X as J → ∞.

We can now state the most general result of our paper. Recall that the constant sp is defined by (21).

6



P. Kokoszka and R. Kulik Journal of Multivariate Analysis 193 (2023) 105123

Theorem 2. Suppose Assumptions 1 and 2 hold. Denote by aN the quantile sequence of X defined by (9). Then

Na−2
N Ĉ

d→ C∞,

where C∞ is an (α/2)-stable Hilbert–Schmidt operator with the characteristic functional

E
[
exp

{
i ⟨φ, C∞⟩

S

}]
= exp

{
−sα/2

∫

S
L2

| ⟨φ, x ⊗ x⟩S |α/2ΓX (dx) + iC(α, φ)

}
,

with the scalar C(α, φ) given by

C(α, φ) = sα/2 tan
(πα

4

) ∫

S
L2

⟨φ, x ⊗ x⟩S | ⟨φ, x ⊗ x⟩S |α/2−1ΓX (dx).

Remark 4. The sequence aN in Theorem 2 has the representation aN = N1/αLa(N) with a slowly varying function La.

Ignoring the slowly varying function, one can say that, roughly, Ĉ ∼ C∞N2/α−1. Since α ∈ (0, 2), N2/α−1 → ∞. Thus, Ĉ

does not converge to any finite limit and ∥̂C∥S

P→ ∞.

Remark 5. The proof of Theorem 2 shows, c.f. Lemma 4, that the non-centered covariance operator

CN = 1

N

N∑

n=1

Xn ⊗ Xn (24)

has the same asymptotic distribution as the usual covariance operator Ĉ . This is the effect of very heavy tails, α/2 < 1,

that suppress averaging. This effect is fairly well-known in the case of scalar observations, see e.g. Section 4 of Davis and

Resnick [7]. In the case of scalar observations with finite variance, the asymptotic distributions of N−1
∑N

i=1(Xi − X̄N )
2 and

N−1
∑N

i=1 X
2
i differ by

√
N(E [X1])

2.

Remark 6. The proof of Theorem 2 critically relies on Corollary 1, which in turn relies on the centering (18). The universal

centering (17) in Theorem 1 leads to Theorem 3. We state it below in order to provide a precise results that shows a

constant, deterministic shift in the limit.

Theorem 3. Suppose the conditions of Theorem 2 hold and γN is given by (17) with Z = X ⊗ X. Then

a−2
N

(
NĈ − γN

) d→ C∞ − ΨX (α),

where the deterministic operator ΨX (α) is given by

ΨX (α) := κα/2−1 α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx),

with κ given in (22) with p = α/2.

Remark 7. The above result involves the constant κ . It can be eliminated from the limit by replacing bN in the definition

of γN with the quantile sequence aN,Z . From Lemma 7 we can conclude that

a−2
N

(
NĈ − γ̃N

) d→ C∞ − α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx),

with

γ̃N = NE

[
ZI{||Z ||S≤aN,Z}

]
.

To deal with the convergence of the FPCs, we will need almost sure convergence of Na−2
N Ĉ to C∞. The following theorem

is a direct consequence of Theorem 13 in Section IV.3 of Pollard [23] because every point of a separable metric space is

completely regular in the sense of Definition 6 of Pollard [23]. The measurability conditions does not come into play

because we work with Borel σ -algebras and Borel-measurable functions.

Theorem 4. Suppose X is a separable metric space and µN , µ probability measures on X . If the µN converge weakly to µ,

then there are random elements XN and X with distributions, respectively, µN and µ such that XN → X almost surely.

Using Theorem 4, we can prove the following result.

7
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Lemma 1. There are versions C̃N and C̃∞ of Ĉ and C∞ such that

Na−1
N C̃N

a.s.→ C̃∞.

Moreover, C̃N and C̃∞ are symmetric and nonnegative with probability 1.

Proof. The almost sure convergence follows directly from Theorem 4. Since L2(U) is separable, the following sets are
Borel subsets of S:

Bsym = {Φ ∈ S : ⟨Φ(x), y⟩ = ⟨x,Φ(y)⟩ for all x, y ∈ L2},

Bnn = {Φ ∈ S : ⟨Φ(x), x⟩ ≥ 0 for all x ∈ L2}.
By Fact 2, Ĉ is symmetric and nonnegative almost surely, that is

P (̂C ∈ Bsym) = 1, P (̂C ∈ Bnn) = 1.

Since C̃N and Ĉ have the same distribution,

P (̃CN ∈ Bsym) = 1, P (̃CN ∈ Bnn) = 1.

Hence, each C̃N is symmetric and nonnegative almost surely.
The map S ∋ Φ ↦→ ⟨Φ(x), x⟩ is continuous, so

⟨
Na−1

N C̃N (x), x
⟩ a.s.→

⟨̃
C∞(x), x

⟩
≥ 0.

Similarly, we conclude that
⟨̃
C∞(x), y

⟩
=
⟨̃
C∞(y), x

⟩
a.s.

The above two relations are at this point established for fixed x and y, i.e. they hold on eventsΩx andΩx,y of probability 1.

By the separability of L2, we can chose a dense subset {xi, i ≥ 1} such that ⟨̃C∞(ω)(xi), xi⟩ ≥ 0 for ω ∈ Ωc with P(Ωc) = 1.
Since the map L2 ∋ x ↦→ ⟨Φ(x), x⟩ is continuous,- we conclude that for ω ∈ Ωc , ⟨̃C∞(ω)(x), x⟩ ≥ 0 for each x ∈ L2. A
similar argument shows that there is a probability 1 event on which the symmetry of C̃∞ holds for all x, y.

We will use the following corollary.

Corollary 2. The limiting operator C∞ is symmetric and nonnegative almost surely.

Proof. Since C̃∞ and C∞ have the same distribution, as in the proof of Lemma 1, P(C∞ ∈ Bsym) = P (̃C∞ ∈ Bsym) = 1 and

P(C∞ ∈ Bnn) = P (̃C∞ ∈ Bnn) = 1.

3.2. Convergence of sample FPCs

We now turn to the study of the asymptotic behavior of the eigenfunctions and the eigenvalues of Ĉ , i.e. the sample
functional principal components and their analysis of variance. If E∥X∥2 < ∞, the population covariance operator C exists
and one generally imposes the assumption λ1 > λ2 > · · · > λp > 0 on its eigenvalues to ensure that the estimation
targets are uniquely defined. The asymptotic distribution of the estimated eigenfunctions, the estimated FPCs v̂j can then
be formulated using the deterministic eigenfunctions vj of C and their eigenvalues λj that are fixed numbers, see Kokoszka
and Reimherr [15] and Kokoszka et al. [17]. In the setting of this paper, the population covariance operator does not exist
and the objects discussed above are not defined.

Recall that if Ψ is a symmetric, nonnegative Hilbert–Schmidt operator, then it admits the spectral decomposition

Ψ (x) =
∞∑

j=1

λj
⟨
x, ej

⟩
ej, x ∈ L2, (25)

with λj ≥ 0 and an orthonormal basis {ej, j ≥ 1} depending on Ψ . Due to Fact 2, Ĉ is a.s. symmetric and nonnegative.

Hence, it admits decomposition (25). Since Ĉ(x) ∈ span(X1, . . . , XN ), there are at most N nonzero λ̂j in the spectral

representation of Ĉ , i.e. with probability 1,

Ĉ(x) =
N∑

j=1

λ̂j
⟨
v̂j, x

⟩
v̂j, x ∈ L2. (26)

The sample eigenvalues λ̂j and eigenfunctions v̂j are well-defined random objects.

8
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If α > 2, the covariance operator C defined by (2) has the spectral decomposition

C(x) =
∞∑

j=1

λj
⟨
vj, x

⟩
vj, (27)

where λj’s are its (deterministic) eigenvalues and vj are (deterministic) functions, and X can be expressed as X =
∑∞

j=1 ξjvj

with ξj =
⟨
X, vj

⟩
. One can show that qN (λ̂j − λj) and qN (v̂j − vj) converge in distribution at some specific rate qN → ∞,

see Kokoszka and Reimherr [15] and Kokoszka et al. [17].
In case of α < 2, the limit C∞ in Theorem 2 is random. However, thanks to Corollary 2, C∞ is both symmetric and

nonnegative a.s., and hence it admits a spectral representation:

C∞(x) =
∞∑

j=1

Λj

⟨
Vj, x

⟩
Vj, (28)

where the Vjs are random functions, orthonormal with probability 1, and Λj are random variables, nonnegative with
probability 1. The following two results (Proposition 4 and Theorem 5) clarify the relationship between the estimated
quantities in (26) and the asymptotic quantities in (28).

Set rN := Na−2
N . By Remark 4, rN → 0. In the case of α > 2, analogous normalizing constants tend to infinity. By

Lemma 1, there are representations C̃N and C̃∞, respectively, of Ĉ and C∞ such that rN C̃N
a.s.→ C̃∞. In what follows, we

drop thẽ in the notation for the versions, unless there is a possibility for a confusion.
Our first result shows that rescaled eigenvalues λ̂j in (26) approximate the Λjs in (28).

Proposition 4. Consider the λ̂j in (26) and theΛjs in (28). Under the conditions of Theorem 2, rN λ̂j
d→ Λj. (Recall, rN := Na−2

N .)

Proof. By Lemma 1, we can assume that Ĉ and C∞ are defined on the same probability space and rN Ĉ → C∞ almost
surely, i.e.

∥rN Ĉ − C∞∥S → 0, a.s. (N → ∞). (29)

The sample covariance operator has the spectral decomposition (26). The limiting operator C∞ has the spectral decom-
position (28). Both are a.s. Hilbert–Schmidt and hence compact. Therefore, by Lemma 2.2 in Horváth and Kokoszka [12],

|rN λ̂j −Λj| ≤ ∥rN Ĉ − C∞∥S a.s. (30)

By (29), on the common probability space, rN λ̂j → Λj a.s., implying the claim.

The next theorem shows that the sample FPCs v̂j in (26) converge to the eigenfunctions Vj in (28) under a suitable
condition that separates the eigenvalues to ensure that the limiting eigenspaces are a.s. one-dimensional. Our condition
(31) is similar in spirit to the assumption λ1 > λ2 > · · · > 0 used when the population covariance operator exists.

Theorem 5. Suppose the assumptions of Theorem 2 hold, and j is such that

inf
k̸=j

(Λj −Λk)
2 > 0 a.s. (31)

Then, v̂j
d→ sign(

⟨
v̂j, Vj

⟩
)Vj.

The v̂j and the Vj in Theorem 5 are arranged by decreasing eigenvalues for each outcome for which the convergence
(29) holds. Detailed proof is given in the proof of Theorem 5.

In Section 4, we illustrate the results of this section in some special cases. We will see that even in the finite dimensional
case, results widely used in FDA no longer hold. Consequently, outputs of standard FDA procedure must be interpreted
with care.

4. Multivariate observations

The purpose of this section is to describe the structure of the limit C∞ as well as the form of its eigenvalues
and eigenfunctions in commonly encountered multivariate settings. This section contains discussion and informative
arguments. More involved proofs are provided in Section 7. Throughout this section, we work under the following
assumption.

Assumption 3. Suppose X =
∑d

j=1 ξjvj, where the vector ξ = (ξ1, . . . , ξd) is regularly varying with index α ∈ (0, 2) and

the angular measure Γξ . The deterministic functions vj satisfy ∥vj∥ = 1,
⟨
vi, vj

⟩
= 0 for i ̸= j.

9
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Assumption 3 is particularly relevant in simulation studies that, by necessity can use only finite sums. For example, the
vj’s are often taken to be the eigenfunctions in the Karhunen–Loéve expansion of the Brownian motion or the Brownian

bridge, i.e., respectively, vj(u) =
√
2 sin((j − 1/2)πu) , vj(u) =

√
2 sin(π ju) , u ∈ [0, 1]. The results of this section pertain,

in particular, to the relationship between the known and deterministic vj, which could be viewed as population FPCs, and
their estimators, if the ξj have infinite variance.

Lemma 2. Under Assumption 3, X ∈ RV−α(H), where H is the subspace of L2 space spanned by {v1, . . . , vd}.
We reformulate Theorem 2 in the finite dimensional case. Instead of Assumptions 1 and 2, we impose Assumption 3.

Note that Assumption 3 excludes Assumption 2 and as such the finite dimensional case does not follow from Theorem 2.
Let | · | be a norm on R

k, k = d2. For the vector ξ = (ξ1, . . . , ξd), define a vector Y in R
k by Y = g(ξ) with

g(x1, . . . , xd) = (xixj, i, j ∈ {1, . . . , d}). Let dN be a sequence defined by

NP
(
|Y | > d2N

)
= 1. (32)

Theorem 6. Suppose Assumption 3 holds. Then

Nd−2
N Ĉ

d→ C∞ :=
d∑

i,j=1

Λi,j(vi ⊗ vj),

where the random vector Λ̃ = (Λi,j, i, j ∈ {1, . . . , d}) in R
k, k = d2, has the characteristic function

E
[
exp

{
i
⟨
θ, Λ̃

⟩}]
= exp

⎧
⎨
⎩−sp

∫

S
Rd

|
d∑

j=1

θi,jxixj|
p
⎛
⎝1 − isign

⎛
⎝

d∑

j=1

θi,jxixj

⎞
⎠ tan

(πp
2

)
⎞
⎠Γξ(dx)

⎫
⎬
⎭ (33)

with θ = (θi,j, i, j ∈ {1, . . . , d}).
In what follows, we investigate special cases of Theorem 6.

4.1. One-dimensional case

We begin the illustration of Theorem 6 with the simplest possible case of X = ξv, v ∈ L2, ∥v∥ = 1 and ξ is a regularly
varying random variable with index α ∈ (0, 2). That is, for all t > 0,

lim
u→∞

P(|ξ | > tu)

P(|ξ | > u)
= t−α , lim

u→∞

P(ξ > u)

P(|ξ | > u)
= q+ = 1 − lim

u→∞

P(ξ < −u)

P(|ξ | > u)
. (34)

The angular measure of ξ (in the sense of Proposition 1) is Γξ = q+δ1 + q−δ−1, q+ + q− = 1. Note that X is regularly
varying as well. Indeed, we have ∥X∥ = |ξ | and

X

∥X∥ = sign(ξ )v .

For any A ⊆ SL2 , denote −A = {−a : a ∈ A}. Regular variation of ξ implies

P(∥X∥ > tu, X/∥X∥ ∈ A)

P(∥X∥ > u)
= P(|ξ | > tu, sign(ξ )v ∈ A)

P(|ξ | > u)
→ t−α {q+δv(A) + q−δv(−A)} , u → ∞.

Thus, X is regularly varying and its angular measure (again in the sense of Proposition 1) is ΓX = q+δv + q−δ−v . Hence,
Assumption 3 holds. Then Z = X ⊗ X = ξ 2(v⊗ v) is also regularly varying and its angular measure is ΓZ = δv⊗v . What is
the limit C∞ in this case? We will argue that

C∞ = Λ(v ⊗ v), Λ ∼ Sp(s
1/p
p , 1, 0). (35)

We will approach it from two directions. We first present a direct argument. Suppose Xn = ξnv, n ≥ 1, where the ξn are
i.i.d. with the same distribution as ξ in (34). Then

CN = N−1

N∑

n=1

Xn ⊗ Xn = (v ⊗ v)N−1

N∑

n=1

ξ 2n .

Let cN be defined by NP(|ξ | > cN ) = 1. By Lemma 9, c−2
N

∑N

n=1 ξ
2
n

d→ Sp(s
1/p
p , 1, 0). Recall that aN is chosen as

NP(∥X∥ > aN ) = 1. Since ∥X∥ = |ξ |, the cN in Lemma 9 and the aN in Proposition 1 coincide. This directly verifies
that Na−2

N CN converges to C∞ in (35).

10
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Now we show how this result follows from Theorem 6. We also make a link to Theorem 2, even though the latter

theorem is not applicable here (Assumption 2 does not hold). For φ ∈ S and C∞ in (35),

Eei⟨φ,C∞⟩ = exp
{
−sp| ⟨φ, v ⊗ v⟩S |p

(
1 − isign(⟨φ, v ⊗ v⟩S ) tan

(πp
2

))}
.

Note that with p = α/2,
∫

S
L2

| ⟨φ, x ⊗ x⟩S |pΓX (dx) = (q+ + q−)| ⟨φ, v ⊗ v⟩S |p = | ⟨φ, v ⊗ v⟩S |p

and ∫

S
L2

⟨φ, x ⊗ x⟩S | ⟨φ, x ⊗ x⟩S |p−1ΓX (dx) = q+ ⟨φ, v ⊗ v⟩S | ⟨φ, v ⊗ v⟩S |p−1

+ q− ⟨φ, (−v) ⊗ (−v)⟩S | ⟨φ, (−v) ⊗ (−v)⟩S |p−1

= ⟨φ, v ⊗ v⟩S | ⟨φ, v ⊗ v⟩S |p−1.

Therefore, the characteristic functional in Theorem 6 (and Theorem 2) coincides with the characteristic functional of C∞
in (35). We summarize the discussion above as the following fact. We note that the limiting eigenvalue is random, while

the limiting eigenfunction is deterministic.

Fact 3. If X = ξv, where ξ satisfies (34) and v is a unit length element of L2, then

Na−2
N CN

d→ C∞ = Sp(s
1/p
p , 1, 0)(v ⊗ v) (p = α/2)

with aN defined by NP(|ξ | > aN ) = 1.

4.2. Extremal independence

The next result identifies the operator C∞ in the case of extremally independent components. It follows from

Theorem 6, by considering the specific form of the angular measure as well as the relation between the sequence dN
in (32) and the quantile sequence aN of ∥X∥ defined by

NP(∥X∥ > aN ) = 1.

Proposition 5. Suppose Assumption 3 holds with the angular measure Γξ concentrated at the points ej, j ∈ {1, 2, . . . , d},
where the ej are the standard coordinate vectors in R

d. Let H be spanned by {v1, . . . , vd}. Then

Na−2
N CN

d→ C∞ =
d∑

j=1

Λj(vj ⊗ vj),

where the Λj are independent p-stable random variables with the characteristic function

E
[
exp

{
iθΛj

}]
= exp

{
−spσ

p

j |θ |p
(
1 − isign (θ) tan

(πp
2

))}

with σ
p

j = Γξ (ej).

Remark 8. The characteristic function of Λ = (Λ1, . . . ,Λd) can be written as

E [exp {i ⟨θ,Λ⟩}] = exp

⎧
⎨
⎩−sp

∫

S
Rd

⎛
⎝

d∑

j=1

θjs
2
j

⎞
⎠

p⎛
⎝1 − isign

⎛
⎝

d∑

j=1

θjs
2
j

⎞
⎠ tan

(πp
2

)
⎞
⎠Γξ(ds)

⎫
⎬
⎭ . (36)

Remark 9. We note that C∞ has the representation (28) with Vj = vj, yielding C∞(vj) = Λjvj. The eigenvalues are

random, but the eigenfunctions are deterministic. Notice also that since the Λj are independent,

min
k∈{1,2,...,d}\{j}

(Λj −Λk)
2 > 0 a.s.

Therefore, condition (31) holds, and the same proof as in the infinite dimensional case shows that v̂j
P→ sign(

⟨
v̂j, vj

⟩
)vj for

each j ∈ {1, 2, . . . , d}.
11
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Remark 10. If the covariance operator C defined by (2) exists, then its largest eigenvalue and the corresponding
eigenfunction (the first FPC) satisfy, respectively, λ1 = maxx∈S

L2
⟨C(x), x⟩ and v1 = argmaxx∈S

L2
⟨C(x), x⟩. In the context of

this paper, we can analogously define

λ1,∞ = max
x∈S

L2

⟨C∞(x), x⟩ , v1,∞ = argmax
x∈S

L2

⟨C∞(x), x⟩ . (37)

Since all Λl’s are positive, we have for any unit length x =
∑

l βlvl ∈ L2,

⟨C∞(x), x⟩ =
d∑

j=1

Λj

⟨
vj,
∑

l

βlvl

⟩2

=
d∑

j=1

Λjβ
2
j ≤ Λmax

d∑

j=1

β2
j = Λmax.

Therefore, λ1,∞ = Λmax, where Λmax = max{Λ1,Λ2, . . . ,Λd}. Also, we immediately obtain that v1,∞ = vJ , where J is an
integer-valued random variable defined by J = argmax{Λj, j ∈ {1, . . . , d}. We note that defining the first FPC via (37) is
not the same as defining it as the first eigenfunction of the limit C∞. Observe that v1,∞ is random because it can be any
of the d deterministic functions used to define X in Assumption 3. A take away is that for infinite variance functional
data these two definitions of FPCs are no longer equivalent.

Remark 11. The assumption of Proposition 5 holds when ξ1, . . . , ξd are independent, all regularly varying with index −α.
If the ξj have the same distribution, then Γξ (ej) = 1/d and hence the limiting random variables Λj are Sp((sp/d)

1/p, 1, 0).

On the other hand, if ξj
d= γjξ̃j, γj ̸= 0 and ξ̃j, j ∈ {1, . . . , d}, are i.i.d., then Γξ (ej) = |γj|α/

∑d

i=1 |γi|α . These quantities
appear in Theorem 7 that extends Proposition 5 to the case d = ∞.

Remark 12. Let I ⊂ {1, . . . , d}. It is possible that some of the random variables ξj, j ∈ I , have asymptotically smaller tails
than ξj, j ̸∈ I . Then Γξ (ej) = 0 for j ∈ I and the sum in the statement of Proposition 5 reduces to the sum over j ̸∈ I .

Remark 13. The assumption of Proposition 5 also holds when ξj = AjVj, where Vj are independent and regularly varying

with index −α, while A1, . . . , Ad independent of V1, . . . , Vd such that E
[
|Aj|α+ϵ] < ∞ for some ϵ > 0. Note that A1, . . . , Ad

do not need to be independent between themselves.

As noted in Remark 11, under suitable summability conditions, Proposition 5 can be extended to an infinite determin-
istic basis v1, v2, . . .. The extension is presented in Section 5.

4.3. Extremal linear dependence

Now, we consider a special case of extremal dependence. Assume that ξ0 is a regularly varying random variable with
index −α, α ∈ (0, 2), and ζ = (ζ1, . . . , ζd) is a random vector, independent of ξ0, such that E

[
|ζ|α+ϵ] < ∞ for the

Euclidean norm | · | on R
d and ϵ > 0. Define ξi = ξ0 + ζi, i ∈ {1, . . . , d}. Then the random vector ξ = (ξ1, . . . , ξd) fulfills

Assumption 3 and the angular measure Γξ is concentrated on (1, . . . , 1)/|(1, . . . , 1)| =: (x0, . . . , x0). The characteristic
exponent in (33) becomes

−spx
α
0 |

d∑

j=1

θi,j|
α/2
⎛
⎝1 − isign

⎛
⎝

d∑

j=1

θi,j

⎞
⎠ tan

(πp
2

)
⎞
⎠ .

We note that this is the characteristic exponent of a random vector (Λ, . . . ,Λ) in R
k, k = d2, where Λ ∼ Sp(s

1/p
p , 1, 0).

Therefore, C∞ in Theorem 6 has the representation

C∞ = Λ

d∑

i,j=1

(vi ⊗ vj).

Remark 14. Similarly to Remark 10, we want to determine λ1,∞ and v1,∞ given by (37). For Λi,j, i, j ∈ {1, . . . , d} in

Theorem 6, let Σ = (Λi,j)
d
i,j=1 be a symmetric random matrix. For x =

∑d

l=1 βlvl,
∑d

j=1 β
2
j = 1, we have

⟨C∞(x), x⟩ = β⊤
Σβ =: Q (β).

The maximal value of the quadratic form Q (β), subject to the constraints
∑d

j=1 β
2
j = 1, equals Σmax, where Σmax is the

largest eigenvalue of the random matrix Σ. Therefore, λ1,max = Σmax

In the current situation, Σ = Λ1, where 1 is d×d matrix of ones. The matrix has two eigenvalues: dΛ (with multiplicity
1) and 0 (with multiplicity d). Hence, the eigenfunction associated to dΛ is β(v1 + · · · + vd) with β > 0. Therefore, the
eigenfunctions are deterministic, but they do not agree with vj’s in Assumption 3.

In the Online Material, we discuss and example of functional data that may exhibit extremal dependence.
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5. Expansion using an infinite deterministic basis

In this section, we assume that X =
∑∞

j=1 ξjvj, where the vj are deterministic functions satisfying ∥vj∥ = 1,
⟨
vi, vj

⟩
= 0

for i ̸= j. In contrast to Assumption 3, we need to make specific assumptions on ξjs in order to (a) ensure summability of
the series; (b) guarantee regular variation.

Assumption 4. Suppose X =
∑∞

j=1 ξjvj, where ξj, j ≥ 1, are independent random variables. Furthermore, there exists a
regularly varying random variable ξ0 with index α ∈ (0, 2) and a sequence of real numbers γj ̸= 0 such that

ξj
d= γjξ0, j ≥ 1, (38)

and there exists ϵ > 0 such that
∞∑

j=1

|γj|(α−ϵ)∧1 < ∞. (39)

Remark 15. If α ∈ (1, 2) and E[ξj] ̸= 0, then the summability of the series
∑∞

j=1 |γj| is necessary for X to be well-defined.

If E[ξj] = 0, then it is enough to assume
∑∞

j=1 |γj|α−ϵ < ∞, see Corollary 4.2.1 in [19].

Proposition 6 is basically a special case of Proposition 7.1 in Meinguet and Segers [22]. A detailed proof is not presented
due to a page limit, but is available upon request.

Proposition 6. Under Assumption 4, X ∈ RV−α(H), where H is the subspace of L2 space spanned by {v1, v2, . . . , }.
To establish the convergence of the sample covariance operator, we must strengthen Assumption 4 to the following

assumption.

Assumption 5. Assume that ξ0,j
d= γjξ̃0,j, where ξ̃0,j, j ≥ 1 are i.i.d regularly varying with index α ∈ (0, 2) and the same

distribution as ξ̃0,0. There exists q ∈ (α/2, α ∧ 1) such that

∞∑

i=1

|γi|q < ∞. (40)

The sequences {ξn,j, j ≥ 1}, n ≥ 1, are i.i.d. copies of {ξ0,j, j ≥ 1}.
The main result of this section is an extension of Proposition 5 to the infinite-dimensional case. The long proof cannot

be presented due to a page limit, but is available upon request.

Theorem 7. Suppose Assumption 5 holds. Let H be spanned by {v1, v2, . . . , }. Then

Na−2
N CN

d→ C∞ =
∞∑

j=1

Λj(vj ⊗ vj),

where the Λj are independent p-stable random variables with the characteristic function

E
[
exp

{
iθΛj

}]
= exp

{
−spσ

p

j |θ |p
(
1 − isign (θ) tan

(πp
2

))}
(41)

with σ
p

j = |γj|α/
∑∞

i=1 |γi|α .
The scaling parameters σj have interpretation as the values of the angular measure, see Remark 11.

6. Proofs of the results of Section 3

Proof of Theorem 2. Lemmas 3–4 lead to the asymptotic distribution of the operators CN defined by (24). Lemma 5
shows that Ĉ has the same asymptotic distribution.

Lemma 3. Under the assumptions of Theorem 2, Z = X ⊗ X satisfies Condition 1 with p = α/2 ∈ (0, 1).

Proof. By Assumption 1 and Proposition 3, Z ∈ RV−p(S). Condition (10) thus follows from part (ii) of Proposition 1. To

establish (11), recall that if
{
ej, j ≥ 1

}
is an orthonormal basis in L2, then

{
ei ⊗ ej, i, j ≥ 1

}
is an orthonormal basis in S .

Identifying m with the pair (I, J), it is easy to check that ∥πm(z)∥S = ∥πI (x)∥∥πJ (x)∥. Consequently,
P(∥Z∥S > u)

P(∥πm(Z)∥S > tu)
= P(∥Z∥S > u)

P(∥Z∥S > tu)

P(∥Z∥S > tu)

P(∥πm(Z)∥S > tu)
→ tp

c(1, 1)

c(I, J)
.

13
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Lemma 4. Suppose the assumptions of Theorem 2 hold and recall that the non-centered sample covariance operators CN are
defined by (24). Denote by aN the quantile sequence of X defined by (9). Then

Na−2
N CN

d→ C∞,

where C∞ is specified in Theorem 2.

Proof. We want to apply Corollary 1 with Zn = Xn ⊗ Xn and H = S . Lemma 3 shows that Assumptions 1 and 2 imply
Condition 1 with p = α/2 ∈ (0, 1). Let aN,Z be the quantile sequence of ∥Z∥ = ∥X ⊗ X∥: NP(∥Z∥S > aN,Z ) = 1. Since

∥X ⊗ X∥S = ∥X∥2, we immediately get aN,Z = (aN )
2. By (19), Na−2

N CN
d→ S∗

∞.
It remains to identify S∗

∞ in Corollary 1 with C∞ in Theorem 2. By Remark 3.2. in Kokoszka et al. [17], if Z = X ⊗ X ,
then the angular measure ΓZ is concentrated on the diagonal

DS =
{
Ψ ∈ SS : ψ = x ⊗ x, x ∈ L2

}

and ΓZ (B ⊗ B) = ΓX (B) for B ∈ L2. Therefore, for φ ∈ S and any function f such that s ↦→ f (⟨φ, s⟩S ) is integrable over S ,
∫

SS

f (⟨φ, s⟩S )ΓZ (ds) =
∫

S
L2

f (⟨φ, x ⊗ x⟩S )ΓX (dx).

This shows that the characteristic functionals of S∗
∞ and C∞ are the same.

Lemma 5. If Assumption 1 holds with α ∈ (0, 2), then

Na−2
N ||CN − Ĉ ||S

P→ 0.

Proof. The result basically follows from the Marcińkiewicz–Zygmund law of large numbers (MZLLN), with some issues
related to the fact that this law must be applied to random elements of a Hilbert space rather than to scalars. Let us recall
the MZLLN: Suppose Yn are i.i.d. (scalar) random variables and r ∈ (0, 2). Then

N−1/r

[
N∑

n=1

Yn − bN

]
a.s.→ 0

if and only if E|Y1|r < ∞, where b = 0 if r ∈ (0, 1) and b = EY1 if r ∈ [1, 2).
In our context, for any x ∈ H, CN (x) − Ĉ(x) =

⟨
X̄N , x

⟩
X̄N , so

||CN − Ĉ ||S = ||X̄N ||2,

so we must show that
√
Na−1

N X̄N
P→ 0. Note that

√
Na−1

N ||X̄N || ≤ N−1/2a−1
N

N∑

n=1

||Xn||.

Consider r ∈ (0,min(α, 1)) to be specified later. Since E||Xn||r < ∞, by the MZLLN, N−1/r
∑N

n=1 ||Xn||
a.s.→ 0, so we must

ensure that N−1/2a−1
N N1/r → 0. By Remark 4, a−1

N < N−1/α+δ for arbitrarily small δ > and sufficiently large N . Therefore,
it is enough to ensure that

1

r
<

1

2
+ 1

α
.

For α ∈ (0, 1), the above condition can be met by choosing r slightly smaller than α, for α ∈ [1, 2), slightly smaller than
1 because the RHS is greater than 1 due to α < 2.

Proof of Theorem 3. Recall that aN is the quantile sequence of ∥X∥ and aN,Z is the quantile sequence of ∥Z∥ = ∥X ⊗ X∥.
By Theorem 2, it is enough to show that

a−2
N γN = Na−1

N,ZE
[
ZI{∥Z∥S≤bN }

]
→ ΨX (α) (42)

because aN,Z = a2N . The convergence is not trivial because E [∥Z∥] = ∞, so a more subtle argument utilizing the regular
variation of X (and so of Z) must be used. It suffices to establish the convergence in (42) in the weak topology of S because
this is enough to ensure the convergence of characteristic functionals. If one can also prove tightness, this will imply the
convergence in distribution. Since the limit is a constant in S , the convergence is in probability, so the claim of Theorem 3
will follow.

We thus begin with establishing the convergence (42), up to a scaling constant that will be worked out later. Recall
that if (X,A, µ) is a measure space and B is a separable Banach space, then a measurable function f : X → B is Bochner

14
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integrable if there is a sequence of simple functions sn : X → B such that
∫
X

∥f − sn∥dµ → 0. The function f is Bochner

integrable if and only of
∫
X

∥f ∥dµ < ∞. We will apply the following general Lemma with H = S . In the proofs of this

section c = µ({z : ∥z∥ > 1}).

Lemma 6. If Z ∈ RV−p(H), p ∈ (0, 1), then

MN := Nã−1
N E

[
ZI{∥Z∥≤ãN }

]
→
∫

B1(H)

zµZ (dz) =: M, (43)

where Br (H) = {z ∈ H : ∥z∥ ≤ r}, r > 0, and ãN is the normalizing sequence such that

µN (·) = NP(ã−1
N Z ∈ ·) M0−→ µZ (·). (44)

The convergence in (43) is in the weak topology of H, i.e. for each y ∈ H, ⟨y,MN⟩ → ⟨y,M⟩.

Proof. Let ΓZ be the angular measure of Z and write Br = Br (H). We first verify that the limit in (43) exists in the sense

of Bochner. This follows immediately from (8):

∫

B1(H)

∥z∥µZ (dz) = c

∫

SH

∫ 1

0

rpr−p−1dr Γ (dθ ) = cp

1 − p
ΓZ (SH) = cp

1 − p
,

since ΓZ is the probability measure on SH. The weak convergence (43) is equivalent to

∀ y ∈ H JN :=
∫

B1

⟨y, z⟩µN (dz) →
∫

B1

⟨y, z⟩µZ (dz) =: J.

Fix y ∈ H. Following Definition 2.5.4 in Meinguet [21], we use the superscript (r) to denote the restriction on a measure

in M0 to {x ∈ H : ∥x∥ > r}. We approximate the integrals JN and J , respectively, by

J
(r)
N =

∫

B1

⟨y, z⟩µ(r)
N (dz), J (r) =

∫

B1

⟨y, z⟩µ(r)
Z (dz)

and use the inequality

|J − JN | ≤ |J − J (r)| + |J (r) − J
(r)
N | + |J (r)N − JN |.

Fix ϵ > 0. We first verify that for sufficiently small r , |J − J (r)| < ϵ/3. This follows from the bounds

|J − J (r)| ≤ ∥y∥
∫

Br

∥z∥µZ (dz) = c∥y∥ΓZ (S)p

∫ r

0

u−pdu = cr1−p∥y∥ p

1 − p
.

Next, we establish a similar bound on |J (r)N − JN |. Observe that J
(r)
N − JN =

⟨
y,Nã−1

N E
[
ZI{∥z∥≤rãN }

]⟩
. Hence |J (r)N − JN | ≤

∥y∥Nã−1
N E

[
∥Z∥I{∥z∥≤rãN }

]
. Using relation (1.4.5a) in Kulik and Soulier [19] with β = 1, α = p, x = ãN , t = r , we see that,

as N → ∞,

Nã−1
N E

[
∥Z∥I{∥Z∥≤rãN }

]
∼ Nã−1

N

p

1 − p
r1−pãNP(∥Z∥ > aN )

= r1−p p

1 − p
NP(∥Z∥ > ãN ).

By part (iv) of Proposition 1, we therefore obtain

lim sup
N→∞

|J (r)N − JN | ≤ cr1−p∥y∥ p

1 − p
.

Now choose r so small that

lim sup
N→∞

[
|J (r) − J| + |J (r)N − JN |

]
<

2ϵ

3

and such that µ
(r)
N converges weakly to µ(r), as N → ∞. The latter requirement can be satisfied by Theorem 2.5.6

in Meinguet [21]. Since the integration in the definition of J
(r)
N extends only over the unit ball, the uniform integrability

condition is automatically met, and so J
(r)
N → J (r). We conclude that for sufficiently large N , |J − JN | < ϵ.

In the next lemma, we specialize the limit in (43) to the case Z = X ⊗ X . Note also that different scaling sequences

are used.
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Lemma 7. Suppose the assumptions of Theorem 2 hold and Z = X ⊗ X. Then

Na−1
N,ZE

[
ZI{∥Z∥S≤aN,Z }

]
→ α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx), (45)

Na−1
N,ZE

[
ZI{∥Z∥S≤bN }

]
→ κα/2−1 α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx), (46)

in the weak topology of the Hilbert space S , where κ is given in (22).

Proof. Recall that the Hilbert space here is H = S . Set Br = Br (S), ∥ · ∥ = ∥ · ∥S . Recall also that aN and aN,Z are the

quantile sequences of X and Z = X ⊗ X , respectively. By Remark 1,

NP(a−1
n,ZZ ∈ ·) M0−→ µZ (·)

and c = µZ (z : ∥z∥ > 1) = 1. Hence, (43) reads, by (8),

Na−1
N,ZE

[
ZI{∥Z∥≤aN,Z }

]
→
∫

B1

zµZ (dz) = c

∫ 1

0

∫

SS

rθ pr−p−1drΓZ (dθ ) = c
p

1 − p

∫

SS

θΓZ (dθ ).

As noted in the proof of Lemma 4, if Z = X ⊗ X , then ΓZ is concentrated on the diagonal DS and ΓZ (B ⊗ B) = ΓX (B) for

B ∈ L2. Therefore, ΓZ (SS ) = ΓX (SL2 ) and
∫
SS
θΓZ (dθ ) =

∫
S
L2
(x ⊗ x)ΓX (dx), showing that M in (43) can be expressed as

M = α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx).

At the same time, with ãN = bN , (43) and the above computation gives

Nb−1
N E

[
ZI{∥Z∥≤bN }

]
→
∫

B1

zµ′
Z (dz) = c ′ p

1 − p

∫

SS

θΓZ (dθ ) = c ′ α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx),

where

NP(b−1
N Z ∈ ·) M0−→ µ′

Z (·)

and c ′ = µ′
Z (z : ∥z∥ > 1). From the proof of Corollary 1 we know that aN,Z = κbN , hence c ′ = κp. Indeed:

1 ∼ NP(∥Z∥ > aN,Z ) = NP(∥Z∥ > κbN ) ∼ κ−pNP(∥Z∥ > bN ) ∼ κ−pc ′.

Thus,

Na−1
N,ZE

[
ZI{∥Z∥≤bN }

]
= Nb−1

N E
[
ZI{∥Z∥≤bN }

] bN

aN,Z
→ c ′

κ

α

2 − α

∫

S
L2

(x ⊗ x)ΓX (dx),

Lemma 8. Under the assumptions of Theorem 2, the sequence of Dirac measures at the points zN := Na−1
N,ZE

[
ZI{∥Z∥S≤bN }

]
is

tight.

Proof. Set again ∥ · ∥ = ∥ · ∥S . A sequence of Dirac measures in a metric space is tight if and only if the points of the

sequence form a relatively compact subset. In a separable Hilbert space, a subset is relatively compact if and only if it is

bounded and has equi-small tails with respect to any (one) orthonormal system {ηk}, i.e.

∀ ϵ > 0 ∃ m ≥ 1 ∀ N ≥ 1
∑

k≥m

⟨zN , ηk⟩2 < ϵ. (47)

Since aN,Z = κbN , it follows from relation (1.4.5a) in Kulik and Soulier [19] that

∥zN∥ ≤ Na−1
N,ZE

[
∥Z∥I{∥Z∥≤bN }

]
∼ κp p

1 − p
,

so the sequence zN is bounded in S . To verify (47), notice that it can be written as

lim
m→∞

lim sup
N→∞

∥πm(zN )∥ = 0

and observe that

πm(zN ) = Na−1
N,ZE

[
πm(Z)I{∥Z∥≤bN }

]
.
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Therefore, identifying m in (11) with the pair (I, J) in Assumption 2, we get by relation (1.4.5a) in Kulik and Soulier [19],

∥πm(zN )∥ ≤ Na−1
N,ZE

[
∥πm(Z)∥I{∥Z∥≤bN }

]

≤ Na−1
N,ZE

[
∥πm(Z)∥I{∥πm(Z)∥≤bN }

]

∼ p

1 − p
Na−1

N,ZbNP (∥πm(Z)∥ > bN)

∼ p

1 − p
κ−1NP

(
∥πm(Z)∥ > aN,Z

)
κp.

Next, we use the factorization

NP
(
∥πm(Z)∥ > aN,Z

)
=

P
(
∥πm(Z)∥ > aN,Z

)

P(∥Z∥ > aN,Z )
NP(∥Z∥ > aN,Z ).

By (11),

lim sup
N→∞

∥πm(zN )∥ ≤ cm

c1

p

1 − p
κp−1.

The claim thus follows because cm → 0 by Assumption 2.

Proof of Theorem 5. Set cj = sign(
⟨
v̂j, Vj

⟩
) and

αj = inf
k̸=j

|Λj −Λk|.

By Assumption (31), αj > 0 a.s., so the claim will follow once we have shown that (for the versions in Lemma 1)

||v̂j − cjVj|| ≤ 2
√
2

αj

||rN Ĉ − C∞||S . (48)

(Recall that by Lemma 1 ∥rN Ĉ − C∞∥S

a.s.→ 0.) Set

Dj = ||C∞(v̂j) −Λjv̂j||, Sj =
∑

k̸=j

⟨
v̂j, Vk

⟩2
.

To prove (48), it is enough to show that

||v̂j − cjVj||2 ≤ 2Sj; (49)

α2
j Sj ≤ D2

j ; (50)

Dj ≤ 2||rN Ĉ − C∞||S . (51)

We begin with the verification of (49). Since the Vk form an orthonormal basis in L2 almost surely,

||v̂j − cjVj||2 =
∞∑

k=1

(⟨
v̂j, Vk

⟩
− cj

⟨
Vj, Vk

⟩)2 =
(⟨
v̂j, Vj

⟩
− cj

)2 + Sj. (52)

Since c2j = 1 and cj
⟨
v̂j, Vj

⟩
= |

⟨
v̂j, Vj

⟩
|,
(⟨
v̂j, Vj

⟩
− cj

)2 = (1 − |
⟨
v̂j, Vj

⟩
|)2. Using

(1 − |
⟨
v̂j, Vj

⟩
|)2 =

∞∑

k=1

⟨
v̂j, Vk

⟩2 − 2|
⟨
v̂j, Vj

⟩
| +

⟨
v̂j, Vj

⟩2
,

we obtain
(⟨
v̂j, Vj

⟩
− cj

)2 = Sj + 2
(⟨
v̂j, Vj

⟩2 − |
⟨
v̂j, Vj

⟩
|
)

≤ Sj.

Combining the last bound with (52), we obtain (49).
We now turn to (50). Since the Vk form a basis in L2 almost surely and since C∞ is symmetric almost surely,

D2
j =

∞∑

k=1

(⟨
C∞(v̂j), Vk

⟩
−Λj

⟨
v̂j, Vk

⟩)2 =
∞∑

k=1

(⟨
v̂j,ΛkVk

⟩
−Λj

⟨
v̂j, Vk

⟩)2 =
∑

k̸=j

(Λk −Λj)
2
⟨
v̂j, Vk

⟩2 ≥ α2
j Sj.

It remains to verify (51). This follows from the decomposition

C∞(v̂j) −Λjv̂j =
(
C∞ − rN Ĉ

)
(v̂j) +

(
rN Ĉ −Λj

)
(v̂j)

Note that
(
rnĈ −Λj

)
(v̂j) =

(
rN λ̂j −Λj

)
(v̂j) and by (30), |rN λ̂j −Λj| ≤ ||rN Ĉ − C∞||S .
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7. Proofs of the results of Section 4

Proof of Lemma 2. Since H = L2 is spanned by {v1, . . . , vd}, any A ⊆ SL2 has those the form A = AB = {v =
∑d

j=1 βjvj :
∥v∥ = 1, (β1, . . . , βd) ∈ B} for some Borel set B of Rd. Since ∥v∥2 =

∑d

j=1 β
2
j , B ⊆ S

Rd , where the latter unit sphere stems

from the Euclidean norm ∥ · ∥d. We note that
∑d

j=1 ξjvj ∈ AB if and only if (ξ1, . . . , ξd)/∥(ξ1, . . . , ξd)∥d ∈ B. Since ∥vj∥ = 1,

we have ∥X∥2 =
∑d

j=1 ξ
2
j = ∥(ξ1, . . . , ξd)∥2

d . Hence, the assumed regular variation of ξ := (ξ1, . . . , ξd) gives

P(∥X∥ > tu, X/∥X∥ ∈ AB)

P(∥X∥ > u)
= P(∥ξ∥ > tu, ξ/∥ξ∥ ∈ B)

P(∥ξ∥ > u)
→ t−αΓξ(B).

The regular variation of X follows by identifying ΓX (AB) = Γξ(B).

7.1. Stable convergence of random vectors

The results of this section are needed to prove Theorem 6 and other results of Section 4.
Recall that a random variable Λ is p-stable, p ∈ (0, 2) \ {1}, if its characteristic function is given by

E [exp {iθΛ}] = exp
{
iβθ − σ̃ p|θ |p

(
1 − iγ sign(θ ) tan

(πp
2

))}
, θ ∈ R, (53)

with β ∈ R, σ̃ > 0, γ ∈ [−1, 1]. We write Λ ∼ Sp(σ̃ , γ , β). A random vector Λ = (Λ1, . . . ,Λq) is p-stable (p ̸= 1) if

E exp {i ⟨θ,Λ⟩} = exp

{
i ⟨β, θ⟩ −

∫

S
Rq

| ⟨θ, s⟩ |p
(
1 − isign(⟨θ, s⟩) tan

(πp
2

))
σΛ(ds)

}
,

where θ ∈ R
q, β ∈ R

q, and σΛ is a finite measure on the unit sphere in R
q. (Note that we use ⟨·, ·⟩ for both inner

product in L2 and R
q). We write Λ ∼ Sp(σΛ, β), see Samorodnitsky and Taqqu [27], Definition 2.3.2. In the scalar case,

the spectral measure of Λ = Λ is concentrated on {−1, 1} and (53) is obtained by setting σ̃ = (σΛ({1}) + σΛ({−1}))1/p,
while β = (σΛ({1}) − σΛ({−1}))/(σΛ({1}) + σΛ({−1})).

For our considerations, we need a well-known lemma.

Lemma 9. Assume that ξn, n ≥ 1, are independent, identically distributed and regularly varying random variables with index

α ∈ (0, 2) and let cN be defined by NP(|ξ1| > cN ) = 1. Then

c−2
N

N∑

n=1

ξ 2n
d→

∞∑

n=1

Pn ∼ Sp(s
1/p
p , 1, 0), p = α

2
,

where {Pj, j ≥ 1} is the sequence of points of a Poisson process with the mean measure νp, νp(dx) = px−p−1dxI{x>0} and sp is

given by (21).

Lemma 9 is basically a special case of Theorem 8.3.1 in Kulik and Soulier [19]. Since p = α/2 ∈ (0, 1), the series
∑∞

n=1 Pn

is summable and defines a p-stable random variable Sp(s
1/p
p , 1, 0), see Theorem 1.4.5 in Samorodnitsky and Taqqu [27]

and Section 8.2.1 in Kulik and Soulier [19].
Let now | · | be a norm on R

d. Let d̃N be defined by NP(|ξ| > d̃N ) = 1. By Assumption 3, ξ = (ξ1, . . . , ξd) is regularly
varying, and hence Proposition 1(ii) gives

NP

(
|ξ| > td̃N ,

ξ

|ξ| ∈ ·
)

w−→ t−αΓξ( · ), as N → ∞, (54)

where Γξ is a probability measure on the | · |-unit sphere. Let µξ be the associated exponent measure as in (7). That is

NP

(
d̃−1
N ξ ∈ ·

)
M0−→ µξ(·).

The choice of d̃N gives µξ({x ∈ R
d : |x| > 1}) = 1.

For g : R
d → R

k, k = d2, defined by g(x1, . . . , xd) = (xixj, i, j ∈ {1, . . . , d}), set Y = g(ξ1, . . . , ξd). According to
Proposition 2.1.12 in Kulik and Soulier (2020), if the measure µY := µξ ◦ g−1 is not identically equal to zero on R

k, then
Y is regularly varying with index p = α/2 and the exponent measure µY = µξ ◦ g−1. The corresponding scaling sequence

is d̃2N :

NP

(
d̃−2
N Y ∈ ·

)
M0−→ µY (·).

With a norm | · | on R
k, we have

NP

(
|Y | > d̃2N

)
→ µY ({u ∈ R

k : |u| > 1}) = µξ({x ∈ R
d : |g(x)| > 1}).
18
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Note that the latter expression may be different from 1, unless g : R → R+, g(x) = x2. Set cp = (µξ({x ∈ R
d : |g(x)| >

1}))1/(2p) and dN = d̃Ncp. With this choice

NP
(
|Y | > d2N

)
→ 1 (55)

and

NP
(
d−2
N Y ∈ ·

) M0−→ c−2p
p µY (·) = µY (·)

µY ({u ∈ Rk : |u| > 1}) . (56)

(Note that in the scalar case of d = 1 we have d̃N = dN .) With the aforementioned norm | · | on R
k, consider the polar

coordinate transformation T : Rk → R+ × S
k−1: T (y) = (|y|, y/|y|). Using Eq. (2.2.4) in Kulik and Soulier (2020) we have

c
−2p
p µY ◦T−1 = νp⊗ΓY , where νp is defined by νp(dx) = px−p−1dxI{x>0} and ΓY is the angular measure of Y = g(ξ1, . . . , ξd).
With this background, we can formulate the following Lemma.

Lemma 10. Assume that ξ = (ξ1, . . . , ξd) is regularly varying with index α ∈ (0, 2). Set Y = g(ξ1, . . . , ξd) = (ξiξj, i, j ∈
{1, . . . , d}) and choose dN as in (55). Assume that (ξn,1, . . . , ξn,d), n ∈ {1, . . . ,N}, are independent, identically distributed
copies of ξ. Set p = α/2. Then

(
d−2
N

N∑

n=1

ξn,iξn,j, i, j = 1, . . . , d

)
d→

∞∑

n=1

PnWn,

where {Wj, j ≥ 1} is a sequence of i.i.d. random vectors on S
k−1 with the distribution ΓY , independent from the sequence

{Pj, j ≥ 1} of the points of a Poisson process with the mean measure νp.

The k = d2-dimensional limiting random vector Λ̃ =
∑∞

n=1 PnWn is p-stable with the characteristic function

E
[
exp

{
i
⟨
θ, Λ̃

⟩}]
= exp

{
−sp

∫

S
Rk

| ⟨θ, s⟩ |p
(
1 − isign(⟨θ, s⟩) tan

(πp
2

))
ΓY (ds)

}
. (57)

Proof. The proof is relatively classical, we sketch it for completeness without dealing with some particular technical
details. Let Yn, n ∈ {1, . . . ,N} be independent copies of Y . Define

MN =
N∑

n=1

δ
d−2
N

Yn

Then (56) and the classical result on Poisson convergence (see Theorem 5.3 in [26]) give MN ⇒ M , where M is Poisson

random measure with mean measure c
−2p
p µY and ⇒ denotes weak convergence in the space of Radon measures.

Since c
−2p
p µY ◦ T−1 = νp ⊗ ΓY , Example 7.1.15 in Kulik and Soulier (2020) gives the following representation of M:

M :=
∞∑

n=1

δ
J
−1/p
n Wn

,

where {Wj, j ≥ 1} is a sequence of i.i.d. random vectors on S
k−1 with distribution ΓY , independent from the sequence

{Jj, j ≥ 1} of points of a unit rate homogeneous Poisson process. Equivalently,

M =
∞∑

n=1

δPnWn ,

where {Pj, j ≥ 1} are the points of a Poisson process with the mean measure νp.
Fix ϵ > 0. The summation functional∑

j

δxj →
∑

j

xj, xj ∈ R
k,

is continuous on {x ∈ R
k : |x| > ϵ}; see page 215 in Resnick [26]. This implies

Vn,ϵ := d−2
N

N∑

n=1

YnI{|Yn|>d2
N
ϵ}

d→
∞∑

n=1

PnWnI{|PnWn|>ϵ}.

Since p ∈ (0, 1), the series
∑∞

n=1 Pn is summable (see Section 8.2.1 in Kulik and Soulier [19]). Moreover, since |Wn| = 1,
we can let ϵ → 0 on the right hand side of the above expression to get the limit in the form

∑∞
n=1 PnWn.

To conclude, it suffices to show that d−2
N

∑N

n=1 YnI{|Yn|≤d2
N
ϵ} converges to zero in probability as first n → ∞ and then

ϵ → 0. With the norm | · | on R
k we have (see Proposition 1.4.6 in Kulik and Soulier [19])

lim
N→∞

Nd−2
N E

(
|Yn|I{|Yn|≤d2

N
ϵ}

)
= ϵ1−p p

1 − p
.
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In conclusion,

d−2
N

N∑

n=1

Yn
d→

∞∑

n=1

PnWn.

Proof of Theorem 6. We use the finite-dimensional asymptotics from Lemma 10 along with the continuous mapping.
As in Lemma 10, let dN be defined by NP

(
|Y | > d2N

)
= 1, Y = g(ξ1, . . . , ξd), g(x1, . . . , xd) = (xixj, i, j ∈ {1, . . . , d}). By

Lemma 10 and the continuous mapping theorem,

Nd−2
N CN =

d∑

i,j=1

(
d−2
N

N∑

n=1

ξn,iξn,j

)
(vi ⊗ vj)

d→
d∑

i,j=1

Λi,j(vi ⊗ vj), (58)

where a random vector Λ̃ = (Λi,j, i, j ∈ {1, . . . , d}) in R
k has the characteristic function given in (57). Let G : S

Rd → S
Rk

be defined by

G(x1, . . . , xd) = (xixj, i, j ∈ {1, . . . , d})
|(xixj, i, j ∈ {1, . . . , d})| ,

with the norm | · | on R
k. Then the angular measures of ξ = (ξ1, . . . , ξd) and Y fulfill Γξ ◦ G−1 = ΓY and

∫

S
Rk

| ⟨θ, s⟩ |pΓY (ds) =
∫

S
Rd

| ⟨θ,G(x)⟩ |pΓξ(dx) =
∫

S
Rd

|
d∑

i,j=1

θi,jxixj|
p

Γξ(dx), (59)

where we used a representation θ = (θi,j, i, j ∈ {1, . . . , d}). The corresponding expression holds for the second integral in
the characteristic functional in (57). Therefore, the characteristic function of Λ̃ agrees with the one in (33).

Proof of Proposition 5. The angular measure Γξ is concentrated on the intersection of the unit ball and the axes, the only
possibility for the product xixj to be nonzero, is if i = j. Consequently, the joint characteristic function in (33) becomes

exp

⎧
⎨
⎩−sp

∫

S
Rd

|
d∑

j=1

θj,jx
2
j |

p (
1 − isign(⟨θ, s⟩) tan

(πp
2

))
Γξ(dx)

⎫
⎬
⎭ .

Since the angular measure has non-zero mass on ej’s only, the characteristic function reduces to

d∏

j=1

exp
{
−spσ

p

j |θj,j|p
(
1 − isign

(
θj,j
)
tan

(πp
2

))}

with σ
p

j = Γξ(ej).
Now, we need to find the relationship between the scaling sequence dN and the quantile sequence aN : NP(∥X∥ >

aN ) = 1. We have

NP(∥X∥ > aN ) = NP

⎛
⎝

d∑

j=1

ξ 2j > a2N

⎞
⎠ = 1.

On the other hand, choose the norm on R
k (k = d2) to be the Euclidean norm. Hence,

NP(|Y | > d2N ) = NP

⎛
⎝

d∑

i,j=1

ξjξj > d2N

⎞
⎠ = 1.

Since the angular measure Γξ is concentrated on ej’s, we have

lim
N→∞

NP(|ξiξj| > d2N ) = 0 , i ̸= j;

see the discussion leading to Corollary 2.1.20 in Kulik and Soulier [19]. Now, if V is a regularly varying random variable,
and U is such that P(|U | > u)/P(|V | > u) → 0 as u → ∞, then P(U + V > u)/P(V > u) → 1 as u → ∞. Therefore, the
sequences aN and dN are asymptotically equivalent: limN→∞ aN/dN = 1.

Hence,

Na−2
N CN

d→
d∑

j=1

Λj(vj ⊗ vj), (60)

where Λj = Λj,j are independent p-stable random variables as in the statement of the theorem.
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Remark 16. We illustrate that statement of Proposition 5 is in agreement with Theorem 2 even though the latter is not
applicable in the current, finite dimensional situation. Recall the characteristic integrals in Theorem 2:

∫

S
L2

| ⟨φ, x ⊗ x⟩S |pΓX (dx)

and ∫

S
L2

⟨φ, x ⊗ x⟩S | ⟨φ, x ⊗ x⟩S |p−1ΓX (dx), (61)

where ΓX is the angular measures of X . Consider the map H : S
Rd → SL2 defined by H(s1, . . . , sd) =

∑d

j=1 sjvj. Then

Γξ ◦ H−1 = ΓX and the first characteristic integral becomes

∫

S
L2

| ⟨φ, x ⊗ x⟩S |pΓX (dx) =
∫

S
Rd

⏐⏐⏐⏐⏐⏐

⟨
φ,

[
d∑

i=1

sivi

]
⊗

⎡
⎣

d∑

j=1

sjvj

⎤
⎦
⟩

S

⏐⏐⏐⏐⏐⏐

p

Γξ(ds)

=
∫

S
Rd

⏐⏐⏐⏐⏐⏐

d∑

i,j=1

sisj
⟨
φ, vi ⊗ vj

⟩
S

⏐⏐⏐⏐⏐⏐

p

Γξ(ds)

=
∫

S
Rd

⏐⏐⏐⏐⏐⏐

d∑

i,j=1

sisj
⟨
φ(vi), vj

⟩
⏐⏐⏐⏐⏐⏐

p

Γξ(ds) . (62)

The corresponding relationship holds for the second characteristic integral.
We apply Corollary 1. Using the property of the angular measure, we continue with (62) to get

∫

S
L2

| ⟨φ, x ⊗ x⟩S |pΓX (dx) =
∫

S
Rd

|
d∑

i,j=1

sisj
⟨
φ(vi), vj

⟩
|
p

Γξ(ds) =
∫

S
Rd

|
d∑

j=1

s2j
⟨
φ(vj), vj

⟩
|
p

Γξ(ds) .

with the corresponding expression for the second characteristic integral. Thus, the characteristic exponent becomes

− sp

∫

S
Rd

|
d∑

j=1

s2j
⟨
φ(vj), vj

⟩
|
p

Γξ(ds) (63)

+ spi tan
πp

2

∫

S
Rd

⎛
⎝

d∑

j=1

s2j
⟨
φ(vj), vj

⟩
⎞
⎠ |

d∑

j=1

s2j
⟨
φ(vj), vj

⟩
|
p−1

Γξ(ds). (64)

Let now Λj be independent p-stable random variables as in the statement of Proposition. Set Λ = (Λ1, . . . ,Λd). Let

A∞ =
∑d

j=1Λj(vj ⊗ vj). Then

Eei⟨φ,A∞⟩S = Ee
i
∑d

j=1 Λj⟨φ,vj⊗vj⟩S =: Eei
∑d

j=1 θjΛj

with θj =
⟨
φ, vj ⊗ vj

⟩
S

=
⟨
φ(vj), vj

⟩
. Using (36) it is immediate to see that the characteristic function of A∞ coincides with

the one induced by (63)–(64).
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