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1. Introduction

Over the last two decades, Functional Data Analysis (FDA) has grown into a substantial field of statistics that has
found applications in a number of disciplines and stimulated the development of novel statistical approaches and
underlying theory. The field is now very rich and multifaceted, and it is at this point not possible to discuss most
representative publications or comment on their impact or importance. We merely note the monographs and textbooks
of Bosq [4], Ramsay and Silverman [25], Ferraty and Vieu [9], Ramsay et al. [24], Shi and Choi [29], Horvath and Kokoszka
[12], Hsing and Eubank [13] and Kokoszka and Reimherr [16]. Many review papers focusing on specific aspects or
applications of FDA are available, including many published by this journal, e.g., Goia and Vieu [11], Aneiros et al. [1]
and Aneiros et al. [2].

As an outgrowth of its well-known multivariate counterpart, Functional Principal Component Analysis (FPCA) has been
an important tool of FDA since the early days of the field and remains so. To explain the contribution of this paper, we
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begin by presenting the basics of the FPCA Denote by L? = L[?(i/) the space of square integrable functions on a domain

U with the inner product (f, g) fu u)du. If ¢ is a Polish space (complete and separable metric space), then L? is
a separable Hilbert space. Suppose we observe functions X1, X, ..., Xy € L2. Consider the sample covariance operator
1 N
= _ v v 2
= Z(X,, — X, X) (X — Xn), % € L2(U).
n=

Statistical software, see e.g., Ramsay et al. [24], can compute its orthonormal eigenfunction 9; and positive eigenvalues )ALJ-
that satisfy

Clo) = Ay Je (1.2, N}, (1)
and the sample scores énj = ( 2 — X, f)j). The ¥; are the sample Functional Principal Components (FPCs). Clearly,

no assumptions are needed to compute the sample quantities E )A\J, vj. To establish their convergence to population
quantities, one must impose assumptions on the observations. If the X; are independent with the same distribution as
X, and E||X||4 < 00, the products in the definition of C have finite second moment, so the CLT in a separable Hilbert space
implies that c converges with standard rate to the (population) covariance operator

C(x)=E[(X —EX,x) (X —EX)], x¢€Lu). (2)

A more subtle question is if the }ALj and the 9; converge to the A; and v; defined by C(v;) = A;v;, j > 1. This problem
was solved by Dauxois et al. [5] whose results are reported e.g. in Bosq [4] and Horvath and Kokoszka [12] in greater

generality. In particular, it is known that [|9; — vj| £> 0 and A — Aj, and asymptotic normality holds.

If one drops the assumption E||X||* < oo, the standard Hllbert space CLT cannot be applied to the operator C. Even in
the case of partial sums of scalar observations, to obtain convergence to a nondegenerate limit, one must assume that the
observations have regularly varying tails. A basically complete theory is given in Gnedenko and Kolmogorov [10], which
is summarized on a few pages in Section 2.2 of Embrechts et al. [8]. In the case of functional observations, it must be
assumed that the X; are regularly varying in L. Postponing the definitions and details to Section 2, if the index of regular
variation « satisfies & € (2, 4), then E[|X||> < oo, so the covariance operator C given by (2) is still well-defined. Asymptotic

. . . . -~ N P
theory for this case is worked out in Kokoszka et al. [17]. One can still conclude that ||C — C|| — 0, ||9; — vl — 0 and

)A\j £> Aj, and specify asymptotics distributions, which are no longer normal.

If « < 2, one cannot define the covariance operator C, because then E||X||?> = oco. Consequently one cannot consider
its elgenfunctlons v; and eigenvalues ;. However, one can always compute the sample covariance operator C and the
FPCs ©;. Some questions are then: Does C and do the v; converge to any limits? Since C and the v; do not exist, what
might those limits be? Can one establish convergence after a suitable normalization? What are the limits then? What
assumptions must be imposed on the functional data to ensure their existence? This paper is concerned with providing
precise answer to such questions. We provide exact formulas for various normalizing and centering sequences and show
how they impact the limits. A data example motivating our theory is provided in the online material. This paper is
concerned with the fundamental theory of PCA for infinite variance data. It is hoped that the understanding it provides
will lead to the development of effective tools to handle such multivariate and functional data. An objective of this paper
is thus to advance theory underlying the approximation

Q
)~ Eyiy(u) (3)
j=1

that is commonly used in FDA for dimension reduction or feature extraction. We want to understand the large sample
behavior of the FPCs ¥; and their scores &g;.

There is profound work on regularly varying functional data viewed as elements of abstract spaces. Such work focuses
primary on aspects relevant to Extreme Value Theory, including the polar decomposition and the extremal index. Without
attempting to give a full review, we note that following the work of Basrak and Segers [3], who studied the polar
decomposition of a regularly varying multivariate time series, Meinguet and Segers [22] provided a detailed study of
regularly varying time series in Banach spaces. Segers et al. [28] extended their results in two aspects: regular variation of
the time series treated as a single random element in a sequence space and the polar decomposition in star-shaped metric
spaces. It may be hoped that such general results combined with the results of this paper will motivate the development
of useful statistical models for regularly varying functional data.

The remainder of the paper is organized as follows. In Section 2, we conveniently organize known results and prove
corollaries that are needed in subsequent sections. Section 3 considers general, infinitely dimensional functional data. In
Section 4, we focus on multivariate models in which asymptotic quantities can be computed explicitly. The results of
Section 4 emphasize important differences between the cases of finite- and infinite variance multivariate or functional
observations. Section 5 contains infinitely dimensional results that extend some results of Section 4. Longer and more
technical proofs are collected in Sections 6 and 7. Online material contains a data example illustrating our theory.
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2. Preliminary results

We begin with Proposition 1 and Remark 1 that follow from known results. We spell out relationships between various
normalizing sequences that play a crucial role in the following. We first recall some definitions related to My convergence,
see Hult and Lindskog [14], Meinguet [21] and Lindskog et al. [20]. Suppose X a Polish space (a separable and complete
metric space) and B is a separable Banach space. Denote by M(-) the set of positive measures on the Borel sets of a
specified space. Denote further,

Mp(X) = {n € M(X) : u(X) < oo},
Mo(B) = {n € M(B\{0}) : V1 > 0, u({x : [Ix|| > 1}) < o0}.

Recall that the weak convergence of uy € Mp(X) to u € Mp(X) (written as uy LN ) means that for each bounded
and continuous function f : X — R, f fdun — f fdu. Denote by Cp4(B) the set of bounded continuous functions on B that

M,
vanish on an open disk containing zero. We say that uy € My(B) converges in My to 1 € Mp(B) (written as uy = w) if

/f(Z)MN(dZ) - /f(z)u(dz), Y f € Coa(B).
B B

Proposition 1. Let X be a random element in a separable Banach space B and « > 0. The following statements are equivalent:
(i) For some slowly varying function L,
P(JIX]| > u) = u™*L(u) (4)
and
Pu™'Xe -) M
PuXe )My u(+), u— oo, (5)
P(|IX]| > u)
where p is a non-null measure on the Borel o-field B(Bg) of Bg = B\ {0}. We call  the exponent measure.
(ii) There exists a probability measure I", called the angular measure, on the unit sphere S in B such that, for every t > 0,

PRI > @ X/IXIL€) v papey L, o ®)
P(IXI > W

(iii) Relation (4) holds, and for the same angular measure I" as in (ii),

PX/IIXIl € -IIXI| > w) = T(-), u— oo
(iv) There is a sequence ay — oo such that with the same w as in (i),

un() = NP (@y'X € ) =% u(-), asN — oo. 7)
(v) There is a sequence ay — oo such that for the same angular measure I" as in (ii),

X w o
NP ||X||>taN,me~ —t7*I'(-), asN — oo.

Remark 1. Several points are in place here.

o If any of the conditions of Proposition 1 holds, we will write X € RV_,(B).
e The angular measure I" is related to the exponent measure u via

X
wldx) = c ar*"'drr(ds), r=|x||, 6 = T (8)
where ¢ = p({x : ||x]| > 1}).
e Since I is the probability measure, condition (v) gives
NP (|| X]| > ay) — 1. (9)

We will refer to ay as the quantile sequence of X (formally speaking, the quantile sequence of || X||).

e The sequences ay and ay are regularly varying with index 1/«. They coincide if and only if x is normalized in such
the way that pu({x : ||x|| > 1}) = 1.

o In what follows, we consider random elements in a separable Hilbert space and use the norm ||x||?> = (x, x).

Suppose H is a separable Hilbert space and set Sy = {x € H: ||x|| = 1}.
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Definition 1. A random element S in H is stable with index p € (0, 2) if there is a finite measure o5 on B(Sy) and 8 € H
such that

Elexp{i{x,S)}] = exp {i (x,B) — [ |(x,s)[Pos(ds)+iC(p, X)} ,

Sm
where
tan Z2 X, s) | (x,s) [P 'og(ds), 1,
C(p,x):{ an P [y, (.9)] (x.8) " los(ds). p
=z Js, (x.5)log| (x,s) |os(ds), p=1.
For an orthonormal basis {n, k > 1} in H, define the projections
[o]
Tm(X) = Z (X, nk) M
k=m

and consider the following condition.

Condition 1. The random element Z € H satisfies the following conditions for p € (0, 2):
P(IZI > u, 1ZII7'Z €A)  [y(A)

m = ; s (10)
u=co P (|Z] > u, |1Z|7'Z € A*)  T;(A*)
where I7 is a finite measure on Sy and A, A*, I';(A*) > 0, are continuity sets of I';, and
P(||1Z u citP
Uzi>uw _at o

u=co P(|wm(Z)| > tu) — cm
where ¢, > 0, Vm > 1, and limpy_, o ¢y = 0.
Note that if Z € RV_,(H), then (10) holds and the angular measure I'; in (6) and I, in (10) are related by
I; = FZ//FZ’(SH) (12)

because Iy is a probability measure. Condition (11) ensures that the random objects we study are truly infinitely
dimensional. (We study the finite dimensional case, which is instructive, in Section 4.) The following proposition, proven
in Kokoszka et al. [17], establishes a connection between Condition 1 and regular variation.

Proposition 2. Condition 1 holds if and only if Z € RV_,(H) with p € (0, 2) and
vm=>1, uz(An)> 0, (13)

where
[o]
An =1z eH: @Il = | Y (e m)n| > 1¢,
j=m
and where 117 is the exponent measure in (5).
Theorem 4.11 of Kuelbs and Mandrekar [18] directly implies the following theorem.

Theorem 1. Let Zy, Z,, ... be i.i.d. random elements in a separable Hilbert space H with the same distribution as Z. Suppose
S is stable according to Definition 1. Then, there exist normalizing constants by and yy such that

N
_ d
by! (Zzn - yN> =, (14)
n=1

if and only if Condition 1 holds with I’} = os.
Remark 2 follows from the examination of the proof of Theorem 4.11 of Kuelbs and Mandrekar [18].

Remark 2. The sequence by must satisfy

by

by — oo, — 1, Nb?E[11Z11PIyz)12by) ] = Ap0s(Sh), (15)
N+1
where
p(1-p) p#£1
Ap=1{ TG-pcostap) ° (16)
2/m , b=1,

and I'(a) .= f0°° e *x%1dx, a > 0, is Euler’'s gamma function.
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Remark 3. If Condition 1 holds, then for arbitrary p € (0, 2) the yy € H may be chosen as
w = NE [Zlyizj<by)] - (17)

This choice does not yield 8 = 0 in Definition 1. If p € (0, 1), then yy can be chosen as yy = 0, while if p € (1, 2), we can
choose yy = E[Z]. These choices yield 8 = 0. Our theory will require p € (0, 1). Therefore, we set

w =0, if pe(o,1) (18)

The choice of the centering sequence does not follow from Kuelbs and Mandrekar [18], however, its form is well-known
in the scalar case. See Theorem 8.3.1 in Kulik and Soulier [19], which in turn is based on an analogous result in Davis and
Hsing [6].

Next, we want to replace the sequence by appearing in (14) with the quantile sequence ay in the definition of the
regular variation. We formulate the precise result we need as the following corollary to Theorem 1. We emphasize the
assumption p € (0, 1).

Corollary 1. Let Zy, Z,, ... be i.i.d. random elements in a separable Hilbert space H with the same distribution as Z that
satisfies Condition 1 with p € (0, 1) and has the angular measure I'’; (Z € RV_,(H) by Proposition 2). Then

N

0, Yz, 4 s, (19)
n=1
where ay 7 is the quantile sequence of Z and S is a p-stable random element with the characteristic functional
i{x.5%) p_ i TP p—1
Eelst) —expl—s, | [Ix9)P —itan 52 (x.5) | es) P tas (20)
i

and where

sp = I'(1 —p)cos(mwp/2). (21)

Proof. By Theorem 1 and (18), we only need to find the relationship between by in (15) and the quantile sequence ay 7.
From (15) we have

E[1Z1PIyjzi <by)
—2[ ol 2p0s(Sh).
N—oco by P(||Z]| > an,z)

On the other hand, Proposition 1.4.6 in Kulik and Soulier [19] gives
E [11Z11P1iz)1<by) ] p

N—oo B2P(|1Z|| > by)  2—p

Set ay z = kby. The above asymptotics give

2-p e 1/p —1/p,1/p
K = Tkp o5’ (Sn) =, Pos P (Sy) (22)

with s, = I'(1 — p) cos(mrp/2).
Theorem 1 with yy = 0 gives

N
13z, 4 -1
N.,Z n K s
n=1

with S given in (14), with the location parameter 8 = 0. The characteristic function is

E[exp {i(x,x7'S)}] = E [exp {i{x'x.S)}]

— exp {—K‘P | (%5} Pos(ds) + itan " f (x.5) | (x.5) |p‘1"5(d5)}
Su SH
ds . —1 0s(ds)
= exp {_sp . | (x,s) |P% +itan %psp /SH (x,8) | (x,s) P 1;5(SH)} )

Again, Theorem 1 gives that o5 = I';, with I; from Condition 1. The result follows from (12).
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For a given Hilbert space H let S = Sy be the space of Hilbert-Schmidt operators. If x, y € H, then x®y € S is defined
by (x ® y)(z) = (x,z)y,z € H. For ¥, @ € S, we define

oo

(W, @)s =) (w(e), ole)),

j=1

where {e;, j > 1} is an orthonormal basis in H.

We want to link the regular variation of X to that of X ® X. We first state a simple fact that will allow us to deal with
sample covariance operators even if the corresponding population covariance operator does not exist. We will use it with
H = [*(U).

Fact 1. If X is a random element of H, then X ® X € S with probability one and
IX ®Xlls = IX|I* as.

Proof. For any orthonormal basis {e;,j > 1} in H,

o0 o0
IX@XI% =D 1K e)XI2 = IXI2 Y [{X. &) " = IX]“.
j=1

j=1

Since X € H a.s,, it follows that || X|| < oo a.s. and so ||[X ® X||s < oo a.s., and the norm identity follows.
The next result is taken from Kokoszka et al. [17].

Proposition 3. IfX € RV_,(H), « > 0, then X ® X € RV_,2(Su).
3. General convergence results

In this section, we derive limiting behavior of the sample covariance operator and establish consistence of the sample
FPCs. Proofs that are not given in this section, are given in Section 6, so as not to interrupt the narrative.

3.1. Asymptotic behavior of the sample covariance operator

On reflection, the following fact is elementary, but it emphasizes that no moment conditions are needed to define the
sample covariance operator and that it has desirable properties with probability one.

Fact 2. Suppose Xi, X, ..., Xy are random elements of L?(¢/). Then the sample covariance operator defined by
1N
= Z] (Xn — X, X) (Xn — Xn),  x € LA(U), (23)
n=

o~

is a random element of S that is a.s. symmetric, (E(x), y) = (x, f(y)), and nonnegative, (C(x), x) > 0.

Proof. Since Lz(u)Ais a vector space, X, —):(N € L2(t). By Fact 1, (X, — Xy) ® (X» — Xy) is a random element of S. Since S
is a vector space, C € S. The claims that C is a.s. symmetric and nonnegative follow from its definition.
Next, we formulate the main assumption of this paper.

Assumption 1. The random function X is regularly varying in [> = L*(¢/) with tail index @ € (0, 2) and the angular
measure I'y. The random functions X, X5, ..., Xy are i.i.d. copies of X.
In relation to (11) in Condition 1, we introduce the following assumption.

Assumption 2. For an orthonormal basis e;,j > 1, in L2, set 7;(x) = D isy <x, e,-)e]-. We assume that for any I, ] > 1, there
are constants c(I, J) > 0 such that

P (IO IOl > u) e, ])
1m —
U= 00 P (||x||2 > u) c(1,1)

and c(I,]J) — 0,as I,] — oo.

In conjunction with Assumption 1, Assumption 2 means that the distribution of X is regularly varying on the whole
space L?, not a finite dimensional subspace, but the projections m;(X) become asymptotically negligible relative to the
distribution of X as ] — oc.

We can now state the most general result of our paper. Recall that the constant s, is defined by (21).

6
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Theorem 2. Suppose Assumptions 1 and 2 hold. Denote by ay the quantile sequence of X defined by (9). Then

-~ d
Nay*C = Cu,

where Cy, is an («/2)-stable Hilbert-Schmidt operator with the characteristic functional

E[exp{i(p.Cx)s}] = exp {—sa/z / | (¢, x @ X) 5 /2 Ix(dx) + iC(at, §) | ,
S

12
with the scalar C(«, ¢) given by
To
o) =sutan () [ 6.x 0051050 05 1 Tyl

4 s

Remark 4. The sequence ay in Theorem 2 has the representation ay = N 1/«] (N) with a slowly varying function L.
Ignoring the slowly varying function, one can say that, roughly, C ~ C,,N?/*~1. Since « € (0, 2), N¥*~1 — oo. Thus, C

does not converge to any finite limit and ||6||S — o0.

Remark 5. The proof of Theorem 2 shows, c.f. Lemma 4, that the non-centered covariance operator
1N
=y n;‘xn ® X, (24)

has the same asymptotic distribution as the usual covariance operator C. This is the effect of very heavy tails, /2 < 1,
that suppress averaging. This effect is fairly well-known in the case of scalar observations, see e.g. Section 4 of Davis and
Resnick [7]. In the case of scalar observations with finite variance, the asymptotic distributions of N~! ZINZ ,(Xi—Xy)? and
N-1YN | X2 differ by v/N(E [X1]).

Remark 6. The proof of Theorem 2 critically relies on Corollary 1, which in turn relies on the centering (18). The universal
centering (17) in Theorem 1 leads to Theorem 3. We state it below in order to provide a precise results that shows a
constant, deterministic shift in the limit.

Theorem 3. Suppose the conditions of Theorem 2 hold and yy is given by (17) with Z = X ® X. Then

ay? (NC — ) 4 Coo — Wx(at),

where the deterministic operator Wx(«) is given by

Uy(a) := /21 4 / (x ® x)I'x(dx),
2—« SLZ

with « given in (22) with p = «/2.
Remark 7. The above result involves the constant «. It can be eliminated from the limit by replacing by in the definition
of yy with the quantile sequence ay z. From Lemma 7 we can conclude that

ay2 (NC— ) & Coo —

/ (x ® X)Ik(dx),
2—o Jg 2
L
with
v = NE [ZI{HszfaN,Z}] ’

To deal with the convergence of the FPCs, we will need almost sure convergence of Na;zf to Cwo. The following theorem
is a direct consequence of Theorem 13 in Section IV.3 of Pollard [23] because every point of a separable metric space is
completely regular in the sense of Definition 6 of Pollard [23]. The measurability conditions does not come into play
because we work with Borel o-algebras and Borel-measurable functions.

Theorem 4. Suppose X is a separable metric space and uy, |+ probability measures on X. If the yun converge weakly to w,
then there are random elements Xy and X with distributions, respectively, uy and w such that Xy — X almost surely.

Using Theorem 4, we can prove the following result.
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Lemma 1. There are versions EN and EOO of C and Cso Such that

Nay'Cy 3 C..

Moreover, CN and COQ are symmetric and nonnegative with probability 1.

Proof. The almost sure convergence follows directly from Theorem 4. Since L?(i/) is separable, the following sets are
Borel subsets of S:

Bym = {® € 5 : (®(x),y) = (x, D(y)) forall x,y e [},

Bon = {® € S: (®(x),x) > 0 for all x € [%}.

By Fact 2, Cis symmetric and nonnegative almost surely, that is
P(C € Bym) =1, P(C € Byy) = 1.

Since EN and C have the same distribution,
P(Cy € Bsym) =1, P(Cy € Bnp) = 1.

Hence, each EN is symmetric and nonnegative almost surely.

The map S 3 @ — (®(x), x) is continuous, so

<Na,;1’5N(X), X) as. (Ew(x), x> > 0.

Similarly, we conclude that

<EOO(X)s }’> = <Eoo()’), X) a.s.

The above two relations are at this point established for fixed x and y, i.e. they hold on events £2, and £y , of probability 1.
By the separability of L2, we can chose a dense subset {x;, i > 1} such that (Coo(w)(x; ). Xi) > 0 for w € £2. with P(2,) = 1.
Since the map 2 5 x — (®(x), x) is continuous,- we conclude that for w € £2, (Coo{@)(x),x) > 0 for each x € . A
similar argument shows that there is a probability 1 event on which the symmetry of C, holds for all x, y.

We will use the following corollary.
Corollary 2. The limiting operator Co, is symmetric and nonnegative almost surely.

Proof. Since COO and Cy, have the same distribution, as in the proof of Lemma 1, P(Cx € Bsym) = P(COO € Bym) =1 and
P(Cso € Ban) = P(Coo € Bon) = 1.

3.2, Convergence of sample FPCs

We now turn to the study of the asymptotic behavior of the eigenfunctions and the eigenvalues of a i.e. the sample
functional principal components and their analysis of variance. If E||X||?> < oo, the population covariance operator C exists
and one generally imposes the assumption A1 > A, > --- > A, > 0 on its eigenvalues to ensure that the estimation
targets are uniquely defined. The asymptotic distribution of the estimated eigenfunctions, the estimated FPCs 9; can then
be formulated using the deterministic eigenfunctions v; of C and their eigenvalues ; that are fixed numbers, see Kokoszka
and Reimherr [15] and Kokoszka et al. [17]. In the setting of this paper, the population covariance operator does not exist
and the objects discussed above are not defined.

Recall that if ¥ is a symmetric, nonnegative Hilbert-Schmidt operator, then it admits the spectral decomposition

o0
= ij (x.ej)ej, x eL? (25)
=1

with A; > 0 and an orthonormal basis {e;,j > 1} depending on lI/ Due to Fact 2, Cis as. symmetric and nonnegative.
Hence, it admits decomposition (25). Since C( ) € span(Xj, ..., Xy), there are at most N nonzero A, in the spectral
representation of C, i.e. with probability 1,

X) = Z)A\] <1’>j, X> i)j, X € L2. (26)

The sample eigenvalues ij and eigenfunctions v; are well-defined random objects.

8
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If o > 2, the covariance operator C defined by (2) has the spectral decomposition
[o]
C(x) = Z)\j <vj,x> vj, (27)
j=1

where A;’s are its (deterministic) eigenvalues and v; are (deterministic) functions, and X can be expressed as X = Z}’; &v;

with & = (X, vj>. One can show that qN():]- — ;) and gn(9j — v;) converge in distribution at some specific rate gy — o0,
see Kokoszka and Reimherr [15] and Kokoszka et al. [17].

In case of @ < 2, the limit Cy, in Theorem 2 is random. However, thanks to Corollary 2, C is both symmetric and
nonnegative a.s., and hence it admits a spectral representation:

Cool¥) = D A;(V; X} Vi, (28)
j=1

where the V;s are random functions, orthonormal with probability 1, and A; are random variables, nonnegative with
probability 1. The following two results (Proposition 4 and Theorem 5) clarify the relationship between the estimated
quantities in (26) and the asymptotic quantities in (28).

Set ry = Na;z. By Remark 4, ry — 0. In the case of @ > 2, analogous normalizing constants tend to infinity. By
Lemma 1, there are representations EN and Eoo, respectively, of C and Cs such that rNEN a_.s). Ew. In what follows, we
drop the™in the notation for the versions, unless there is a possibility for a confusion.

Our first result shows that rescaled eigenvalues ij in (26) approximate the A;s in (28).

Proposition 4. Consider the ij in (26) and the A;s in (28). Under the conditions of Theorem 2, rNij —d> Aj. (Recall, ry = Na,;z.)
Proof. By Lemma 1, we can assume that C and Cy are defined on the same probability space and rNE — Cy almost
surely, i.e.

I C — Coolls = 0, as. (N — o). (29)

The sample covariance operator has the spectral decomposition (26). The limiting operator C,, has the spectral decom-
position (28). Both are a.s. Hilbert-Schmidt and hence compact. Therefore, by Lemma 2.2 in Horvath and Kokoszka [12],

Irvhj = Ajl < IvC = Coolls as. (30)
By (29), on the common probability space, rNXj — Aj as., implying the claim.

The next theorem shows that the sample FPCs 9; in (26) converge to the eigenfunctions V; in (28) under a suitable
condition that separates the eigenvalues to ensure that the limiting eigenspaces are a.s. one-dimensional. Our condition
(31) is similar in spirit to the assumption A; > A; > --- > 0 used when the population covariance operator exists.

Theorem 5. Suppose the assumptions of Theorem 2 hold, and j is such that

inf(A; — A)? > 0 as. (31)
ki

Then, ¥; 4 sign((d;, V;))V;.

The 9; and the V; in Theorem 5 are arranged by decreasing eigenvalues for each outcome for which the convergence
(29) holds. Detailed proof is given in the proof of Theorem 5.

In Section 4, we illustrate the results of this section in some special cases. We will see that even in the finite dimensional
case, results widely used in FDA no longer hold. Consequently, outputs of standard FDA procedure must be interpreted
with care.

4. Multivariate observations

The purpose of this section is to describe the structure of the limit C,, as well as the form of its eigenvalues
and eigenfunctions in commonly encountered multivariate settings. This section contains discussion and informative
arguments. More involved proofs are provided in Section 7. Throughout this section, we work under the following
assumption.

Assumption 3. Suppose X = Zle &jvj, where the vector § = (&4, ..., &) is regularly varying with index « € (0, 2) and
the angular measure I';. The deterministic functions v; satisfy [lv;|| = 1, (v,-, vj> =0fori#j.

9
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Assumption 3 is particularly relevant in simulation studies that, by necessity can use only finite sums. For example, the
vj’s are often taken to be the eigenfunctions in the Karhunen-Loéve expansion of the Brownian motion or the Brownian
bridge, i.e., respectively, vj(u) = /2 sin((j — 1/2)ru) , vi(u) = ﬁsin(nju) ,u € [0, 1]. The results of this section pertain,
in particular, to the relationship between the known and deterministic vj, which could be viewed as population FPCs, and
their estimators, if the & have infinite variance.

Lemma 2. Under Assumption 3, X € RV_,(H), where H is the subspace of L? space spanned by {v1, ..., v4}.

We reformulate Theorem 2 in the finite dimensional case. Instead of Assumptions 1 and 2, we impose Assumption 3.
Note that Assumption 3 excludes Assumption 2 and as such the finite dimensional case does not follow from Theorem 2.

Let |- | be a norm on R¥, k = d? For the vector & = (&,...,&;), define a vector Y in R¥ by Y = g(&) with
g(x1,...,xq) = (xix;,1,j € {1,...,d}). Let dy be a sequence defined by

NP (Y| > d}) = 1. (32)

Theorem 6. Suppose Assumption 3 holds. Then

d
o~ d
NdNZC — Cp = Z A,-,j(v,‘ ® Uj),
ij=1
where the random vector A = (A;j,i,j € {1,...,d})in RK, k = d?, has the characteristic function
d P d P
E[exp{i(0,A)}] = exp —sp/ |Z€,-Jx,-xj| 1 — isign Zei,jx,-xj tan (7) Te(dx) (33)
Spd j=1 j=1

with 0 = (6;j.1.j € (1,....d}).

In what follows, we investigate special cases of Theorem 6.
4.1. One-dimensional case

We begin the illustration of Theorem 6 with the simplest possible case of X = &v, v € 2, ||v|| = 1 and £ is a regularly
varying random variable with index « € (0, 2). That is, for all t > O,

P(§] > tu) P(§ >u) P(§ < —u)

i —a =1 i

im ——~ = , lim =qy = im —.
u—oo P(|§] > u) u—oo P(|&] > u) u—oo P(|&] > u)

The angular measure of £ (in the sense of Proposition 1) is I: = q4+61 + q-6_1, g+ + q— = 1. Note that X is regularly
varying as well. Indeed, we have ||X|| = |£| and

(34)

X .
m = sign(&)v .

For any A C S)2, denote —A = {—a : a € A}. Regular variation of £ implies
P(|X]|| > tu, X/||X]|| € A P > tu, sign(§)v € A _
(XU > . X/IXI € A) _ PUEL> tuSignEo €A) | o o0 oo
P(IX]l > u) P(|§] > u)

Thus, X is regularly varying and its angular measure (again in the sense of Proposition 1) is I'y = q+§, + q—6_,. Hence,
Assumption 3 holds. Then Z = X ® X = £%(v ® v) is also regularly varying and its angular measure is I'; = 8,g,. What is
the limit Co, in this case? We will argue that

Coo = AL ®V), A~ Sy(s).1,0). (35)

We will approach it from two directions. We first present a direct argument. Suppose X, = &,v, n > 1, where the &, are
i.i.d. with the same distribution as & in (34). Then

N

N
G=N"YX@X =(@uN') &

n=1 n=1

Let cy be defined by NP(|&| > cy) = 1. By Lemma 9, ¢y Y N_, &2 d Sy(sy’", 1,0). Recall that ay is chosen as
NP(||X|| > ay) = 1. Since ||X]| = |&|, the cy in Lemma 9 and the ay in Proposition 1 coincide. This directly verifies
that Nay,>Cy converges to C in (35).

10
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Now we show how this result follows from Theorem 6. We also make a link to Theorem 2, even though the latter
theorem is not applicable here (Assumption 2 does not hold). For ¢ € S and C, in (35),

B0 = exp {51 (9 v @ v} P (1~ ignl( v@ v s)an ()]

Note that with p = «/2,
/ [ {#, x®x)s IPTx(dx) = (q+ + q-) (v @ V)5 P = (p, v ® V)5 |P
52
and

/ (6, xR X)s (P, x®X) s |p711—‘x(dx) =04 (P, v V)s| (P, vQV)s |pi1
S2

L

+ g (p, (—0)® (V)5 | (P, (—V) ® (—V))s P
= (v V)s|{p. v @V [P

Therefore, the characteristic functional in Theorem 6 (and Theorem 2) coincides with the characteristic functional of C.
in (35). We summarize the discussion above as the following fact. We note that the limiting eigenvalue is random, while
the limiting eigenfunction is deterministic.

Fact 3. If X = £v, where £ satisfies (34) and v is a unit length element of L2, then

Nay*Cy 4 Coo = Spls,/P. 1,0)v ®@ V) (p = /2)
with ay defined by NP(|§| > ay) = 1.

4.2, Extremal independence

The next result identifies the operator C, in the case of extremally independent components. It follows from
Theorem 6, by considering the specific form of the angular measure as well as the relation between the sequence dy
in (32) and the quantile sequence ay of ||X|| defined by

NP(||X]| > ay) = 1.

Proposition 5. Suppose Assumption 3 holds with the angular measure I'z concentrated at the points e;,j € {1,2,...,d},
where the e; are the standard coordinate vectors in RY. Let H be spanned by {v1, ..., vq). Then

d
_ d
NaNZCN = Copo = ZAj(vj ® vj),
j=1

where the A; are independent p-stable random variables with the characteristic function

E [exp {i0.4,)] = exp | ~5p0716P (1 isign @) tan (7))

with U]p = Fg’:(ej').

Remark 8. The characteristic function of A = (A1, ..., A4) can be written as
d b d p
Elexp{i(0, A)}] = exp{ —s / 6;s? 1 — isign ;5% | tan (—) T(ds) ¥ . (36)
p 5 J_Zl J°j ; j2j 2 &

Remark 9. We note that C,, has the representation (28) with V; = v;, yielding Co(vj;) = Ajv;. The eigenvalues are
random, but the eigenfunctions are deterministic. Notice also that since the A; are independent,

min (A — A2 >0 as.
ke{],Z,...,d}\{i}( )~ A

Therefore, condition (31) holds, and the same proof as in the infinite dimensional case shows that ¥ £> sign((f)j, vj>)vj for
eachje {1,2,...,d}.

11
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Remark 10. If the covariance operator C defined by (2) exists, then its largest eigenvalue and the corresponding
eigenfunction (the first FPC) satisfy, respectively, A; = MaXyes (C(x), x) and vy = arg MaXyes (C(x), x). In the context of
this paper, we can analogously define

Moo = Max (Coo(X), X), V1,00 = argmax (Coo(X), X) . (37)
XeS p X€S)3

Since all A;’s are positive, we have for any unit length x = Y, v, € [?,

d 2 d d
(CoolX), ) = ) 4 <u,-, Zﬁ,w> =Y A < Amax Y B = Amax.
j=1 l j=1 j=1

Therefore, A1,00 = Amax, Where Amax = max{Aq, Ay, ..., Ag}). Also, we immediately obtain that vy o = vj, where J is an
integer-valued random variable defined by ] = argmax{A;,j € {1, ..., d}. We note that defining the first FPC via (37) is
not the same as defining it as the first eigenfunction of the limit C,,. Observe that v;  is random because it can be any
of the d deterministic functions used to define X in Assumption 3. A take away is that for infinite variance functional
data these two definitions of FPCs are no longer equivalent.

Remark 11. The assumption of Proposition 5 holds when &1, .. ., &; are independent, all regularly varying with index —a.
If the & have the same distribution, then I:(e;) = 1/d and hence the limiting random variables A; are Sp((sp/d)l/p, 1, 0).
On the other hand, if & 4 V& v # 0and §,j € {1,...,d}, are iid, then I(e;) = |y%/ Y0, [|®. These quantities
appear in Theorem 7 that extends Proposition 5 to the case d = oo.

Remark 12. Let] C {1, ..., d}. It is possible that some of the random variables &, j € I, have asymptotically smaller tails
than &, j € I. Then Iz(ej) = 0 for j € I and the sum in the statement of Proposition 5 reduces to the sum over j & I.

Remark 13. The assumption of Proposition 5 also holds when &; = A;V;, where V; are independent and regularly varying
with index —a, while A4, ..., A; independent of Vq, ..., Vy such that E |A;|"‘+E] < oo for some € > 0. Note thatAq, ..., A4
do not need to be independent between themselves.

As noted in Remark 11, under suitable summability conditions, Proposition 5 can be extended to an infinite determin-
istic basis v1, v,, .. .. The extension is presented in Section 5.

4.3. Extremal linear dependence

Now, we consider a special case of extremal dependence. Assume that & is a regularly varying random variable with

index —«, ¢ € (0,2), and ¢ = ({1, ..., ¢q) is a random vector, independent of &j, such that E [l;l”‘“] < oo for the
Euclidean norm | - | on R? and € > 0. Define & = & + ¢, i € {1, ..., d}. Then the random vector £ = (&, ..., &) fulfills
Assumption 3 and the angular measure /% is concentrated on (1,...,1)/|(1,...,1)] = (xo, ..., Xo). The characteristic

exponent in (33) becomes
d /2 d
a . np
—5pXg | Z; 0il 1 — isign Zei’j tan (7)
j=

j=1
We note that this is the characteristic exponent of a random vector (4, ..., A) in R, k = d?, where A ~ Sp(s;/p, 1,0).
Therefore, C, in Theorem 6 has the representation

d
Coo=A Z(vi ® vj).

ij=1

Remark 14. Similarly to Remark 10, we want to determine A; o and vy given by (37). For A;j,i,j € {1,...,d} in

Theorem 6, let & = (A;;){;_; be a symmetric random matrix. For x = > B, ZJL B} =1, we have

(Coo(x), %) = BT =B = Q(B)-
The maximal value of the quadratic form Q(B), subject to the constraints Zle ﬂjz = 1, equals Xp,.x, Where X, is the
largest eigenvalue of the random matrix . Therefore, A1 max = Zmax
In the current situation, ¥ = A1, where 1 is d x d matrix of ones. The matrix has two eigenvalues: d A (with multiplicity

1) and 0 (with multiplicity d). Hence, the eigenfunction associated to dA is B(vy + - - - + vq) with 8 > 0. Therefore, the
eigenfunctions are deterministic, but they do not agree with v;’s in Assumption 3.

In the Online Material, we discuss and example of functional data that may exhibit extremal dependence.

12
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5. Expansion using an infinite deterministic basis

In this section, we assume that X = Zf:ol &jv;, where the v; are deterministic functions satisfying ||vj|| = 1, (vi, Uj> =0
for i # j. In contrast to Assumption 3, we need to make specific assumptions on £js in order to (a) ensure summability of

the series; (b) guarantee regular variation.

Assumption 4. Suppose X = Z]?’; &vj, where &, j > 1, are independent random variables. Furthermore, there exists a
regularly varying random variable & with index « € (0, 2) and a sequence of real numbers y; # 0 such that

d .
§ = vk, j=1, (38)
and there exists € > 0 such that
oo
D Iyl < oo, (39)
j=1

Remark 15. If o € (1, 2) and E[£;] # 0, then the summability of the series Z}’; ly;| is necessary for X to be well-defined.
If E[&] = 0, then it is enough to assume Zf; ly1*7¢ < oo, see Corollary 4.2.1 in [19].

Proposition 6 is basically a special case of Proposition 7.1 in Meinguet and Segers [22]. A detailed proof is not presented
due to a page limit, but is available upon request.
Proposition 6. Under Assumption 4, X € RV_,(H), where H is the subspace of > space spanned by {vi, v, ..., }.

To establish the convergence of the sample covariance operator, we must strengthen Assumption 4 to the following
assumption.

Assumption 5. Assume that & i y]éo,j, where §o,j,j > 1 are i.i.d regularly varying with index « € (0, 2) and the same
distribution as & o. There exists q € («/2, « A 1) such that

(o]
> Iyl < oo, (40)
i=1

The sequences {£,;,j > 1}, n > 1, are i.i.d. copies of {&,j > 1}.
The main result of this section is an extension of Proposition 5 to the infinite-dimensional case. The long proof cannot
be presented due to a page limit, but is available upon request.

Theorem 7. Suppose Assumption 5 holds. Let H be spanned by {vq, va, ..., }. Then

L, d =
Nay*Cy = Coo = Y A1 ® vy),
j=1

where the A; are independent p-stable random variables with the characteristic function
E [exp {i6 Aj}] = exp {—spojp|0|" (1 — isign (0) tan (@))} (41)

2
with of = [/ 322, Inl*.

The scaling parameters o; have interpretation as the values of the angular measure, see Remark 11.
6. Proofs of the results of Section 3

Proof of Theorem 2. Lemmas 3-4 lead to the asymptotic distribution of the operators Cy defined by (24). Lemma 5
shows that C has the same asymptotic distribution.

Lemma 3. Under the assumptions of Theorem 2, Z = X ® X satisfies Condition 1 with p = «/2 € (0, 1).

Proof. By Assumption 1 and Proposition 3, Z € RV_p(S). Condition (10) thus follows from part (ii) of Proposition 1. To
establish (11), recall that if {e;, j > 1} is an orthonormal basis in L%, then {e; ® ¢;, i, j > 1} is an orthonormal basis in S.
Identifying m with the pair (I, ]), it is easy to check that ||7,(z)lls = ll7:(x)] |7r;(x)]|. Consequently,
PUIZlls >w) — _ P(IZlls > u) _P(IZlls > tu) N tPC(]’ 1)
Plmm(2)lls > tu)  P(IZlls > tu) P(llrm(Z)lls > tu) c(I,])
13
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Lemma 4. Suppose the assumptions of Theorem 2 hold and recall that the non-centered sample covariance operators Cy are
defined by (24). Denote by ay the quantile sequence of X defined by (9). Then

Nay*Cy Ly
where C, is specified in Theorem 2.
Proof. We want to apply Corollary 1 with Z, = X;; ® X;, and H = S. Lemma 3 shows that Assumptions 1 and 2 imply
Condition 1 with p = «/2 € (0, 1). Let ay z be the quantile sequence of ||Z|| = |[X ® X||: NP(||Z||s > anz) = 1. Since

IX ® X|ls = IX]|%, we immediately get ay ; = (ay)?. By (19), Nay*Cy —d> Sx.
It remains to identify S% in Corollary 1 with C, in Theorem 2. By Remark 3.2. in Kokoszka et al. [17], if Z = X ® X,
then the angular measure I'; is concentrated on the diagonal

Ds={¥ eSs: ¥ =x®x, xel?}
and I'y(B ® B) = I'x(B) for B € I2. Therefore, for ¢ € S and any function f such that s — f({(¢, s)s) is integrable over S,
(@, 5)s)I7(ds) =/ fl{e, x ® x) s )k (dX).
Ss SLZ

This shows that the characteristic functionals of S}, and C,, are the same.
Lemma 5. If Assumption 1 holds with a € (0, 2), then
- ~, P
Nay?||Cy — Clls — 0.

Proof. The result basically follows from the Marcinikiewicz-Zygmund law of large numbers (MZLLN), with some issues
related to the fact that this law must be applied to random elements of a Hilbert space rather than to scalars. Let us recall
the MZLLN: Suppose Y, are i.i.d. (scalar) random variables and r € (0, 2). Then

N
N {Z Y, — bN:| 230
n=1

if and only if E|Y;|" < oo, where b=0if r € (0, 1) and b = EY; if r € [1, 2).
In our context, for any x € H, Cy(x) — C(x) = (Xy, x) Xy, s0

ey — Clls = [IXn 112

- P
so we must show that \/IVaFXN — 0. Note that
N
VNay|IXnll < N7y [1Xl).
n=1

Consider r € (0, min(a, 1)) to be specified later. Since E||X,||" < oo, by the MZLLN, N~/ Zﬁ'z] [1Xn !l el 0, so we must
ensure that N~'/2a;'N'/" — 0. By Remark 4, ay' < N~"/**3 for arbitrarily small § > and sufficiently large N. Therefore,
it is enough to ensure that

1 1 1

r 2 «

For « € (0, 1), the above condition can be met by choosing r slightly smaller than «, for « € [1, 2), slightly smaller than
1 because the RHS is greater than 1 due to « < 2.

Proof of Theorem 3. Recall that ay is the quantile sequence of || X|| and ay 7 is the quantile sequence of ||Z| = X ® X]|.
By Theorem 2, it is enough to show that

ay’yn = NayE [Zlzy s <by] — ¥x(@) (42)
because ay ; = a,zv. The convergence is not trivial because E [||Z||] = oo, so a more subtle argument utilizing the regular

variation of X (and so of Z) must be used. It suffices to establish the convergence in (42) in the weak topology of S because
this is enough to ensure the convergence of characteristic functionals. If one can also prove tightness, this will imply the
convergence in distribution. Since the limit is a constant in S, the convergence is in probability, so the claim of Theorem 3
will follow.

We thus begin with establishing the convergence (42), up to a scaling constant that will be worked out later. Recall
that if (X, A, 1) is a measure space and B is a separable Banach space, then a measurable function f : X — B is Bochner

14
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integrable if there is a sequence of simple functions s, : X — B such that fx IIf — snlldu — 0. The function f is Bochner
integrable if and only of fx Iflldue < oo. We will apply the following general Lemma with H = S. In the proofs of this
section ¢ = u({z : ||z|| > 1}).

Lemma 6. IfZ € RV_,(H), p € (0, 1), then

My = Na,;1E[ZI{HZHSaN,]—>/ zpz(dz) = M, (43)
B1(H)

where B,(H) = {z € H: ||z|| <1}, r > 0, and ay is the normalizing sequence such that
. M
() =NP(Ey'Z € ) =5 pz(-). (44)
The convergence in (43) is in the weak topology of H, i.e. for each y € H, (y, My) — (y, M).

Proof. Let I'; be the angular measure of Z and write B, = B, (IH). We first verify that the limit in (43) exists in the sense
of Bochner. This follows immediately from (8):

-p 1-p

since Iy is the probability measure on Sy. The weak convergence (43) is equivalent to

1
/ ||Z||Mz(dl)=C/ / rprP-ldr I'(d8) = —2— Iy (S) = —P—,
B+ (H) su Jo 1

VyeH ]N::f

By

v, z) un(dz) — / V. 2) uz(dz) =:J.
By

Fix y € H. Following Definition 2.5.4 in Meinguet [21], we use the superscript ) to denote the restriction on a measure
in Mg to {x € H : ||x|| > r}. We approximate the integrals Jy and J, respectively, by

D= | wuldz, JO0=| .2 ud2)
B Bq

and use the inequality

U—=Inl < U =J1+ U =101+ U = Il
Fix € > 0. We first verify that for sufficiently small r, |J — J'| < €/3. This follows from the bounds

p

,
U=J"I= 1yl | lizllpz(dz) = clyl Tz(S)p / whdu = er' Pyl .
; -

By
Next, we establish a similar bound on |’ — Jy|. Observe that J’ — Jy = (v, Nay'E [ZIjjz<ray])- Hence S —Jy| <
||y||Nf1,;lE [||Z||I[qusrﬁm] . Using relation (1.4.5a) in Kulik and Soulier [19] with 8 = 1, = p,x = Gy, t =, we see that,
as N — oo,

Nay'E [1Zyzy<ray) ] ~ Nay' ]
ri-r P

p p~
T PRI > an)

= NP(||Z]| > a).
1-p
By part (iv) of Proposition 1, we therefore obtain
. _ p
limsup [ — Jv| < cr'Pllyll——.
N—oo 1-— p

Now choose r so small that

. . 2e
lim sup [U( )+ l],(\,r) —szl] < —

N—o0 3

and such that ,u%) converges weakly to u", as N — oc. The latter requirement can be satisfied by Theorem 2.5.6
in Meinguet [21]. Since the integration in the definition of j,(Vr ) extends only over the unit ball, the uniform integrability
condition is automatically met, and so ]IE,r N J©. We conclude that for sufficiently large N, |J — Jn| < €.

In the next lemma, we specialize the limit in (43) to the case Z = X ® X. Note also that different scaling sequences
are used.
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Lemma 7. Suppose the assumptions of Theorem 2 hold and Z = X @ X. Then

_ o
Nay YE [Zlyz s <ay 1] = ﬁ/ (x ® x)Ix(dx), (45)
—aJs,

_ w1
NayLE [Z1zys<byy] = €/ 1m/8. (x ® x)Ix(dx), (46)

12

in the weak topology of the Hilbert space S, where « is given in (22).

Proof. Recall that the Hilbert space here is H = S. Set B, = B,(S), || - || = || - |ls- Recall also that ay and ay ; are the
quantile sequences of X and Z = X ® X, respectively. By Remark 1,

_ M
NP(a;}Z € -) —% pz(-)
and ¢ = uz(z : ||z|| > 1) = 1. Hence, (43) reads, by (8),

p /QFZ(dQ).
—p Ss

As noted in the proof of Lemma 4, if Z = X ® X, then I7 is concentrated on the diagonal Ds and I'z(B ® B) = I'x(B) for
B € I2. Therefore, IZ(Ss) = I'x(S;2) and sz 6I37(do) = [ ,(x ® x)Ix(dx), showing that M in (43) can be expressed as
L

1
Nay YE [Zlz)<ay 1] — / zuz(dz) = c/ / r0 prP=ldrIy(do) = ¢
’ o By 0 Jss 1

M =

/ (x ® x)I'x(dx).
2—«a

SLZ

At the same time, with ay = by, (43) and the above computation gives

NbE]E[Z’{MZHSbN)]—’/ zuz(dz) = c'5

By

P / 6 1y(d0) = ¢~ / (x ® X)X (d),
—D Ss 2-«a

Sp2

where
NP(by'Z € -) My ()

and ¢’ = u,(z : ||lz|| > 1). From the proof of Corollary 1 we know that ay z; = «by, hence ¢’ = «”. Indeed:
1~ NP(||IZ|| > a z) = NP(IZ|| > kbn) ~ k" PNP(||Z|| > by) ~ xPc’.

Thus,

_ _ bN ¢ «
Nay 2E [Zlyzy <o) ] = Nby 'E [Zlzi<oy) ] —— — —5— / (x ® x)Ik(dx),
an.z K2—«o Sp2

Lemma 8. Under the assumptions of Theorem 2, the sequence of Dirac measures at the points zy = Na,;ﬁle [ZI{qusbe,] is
tight.

Proof. Set again || - || = || - ||s. A sequence of Dirac measures in a metric space is tight if and only if the points of the
sequence form a relatively compact subset. In a separable Hilbert space, a subset is relatively compact if and only if it is
bounded and has equi-small tails with respect to any (one) orthonormal system {n;}, i.e.

Ve>03m=>1VN=1 Y (v, m)’ <e. (47)

k>m

Since ay z = «by, it follows from relation (1.4.5a) in Kulik and Soulier [19] that

lzv Il < Nay %E [IZ1zy<byy ] ~ &P

’

1-p
so the sequence zy is bounded in S. To verify (47), notice that it can be written as

lim limsup ||[7wm(zy)ll = 0
m— N—o00

and observe that

Tm(zn) = Nay LE [7n(2)lz)<by)] -
16
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Therefore, identifying m in (11) with the pair (I, J) in Assumption 2, we get by relation (1.4.5a) in Kulik and Soulier [19],

lI7mm(zn )l < Nag YE [I7m(Z) 21 <by) ]
< Nag E [17m(Z) | mzyi<by) |
p _
=5 Nay s buP (7 (@)1 > by)

~

p
" NP (||lmm(Z)Il > an.z) kP.

~

Next, we use the factorization
P (I7m(@)Il > an.z)

NP VA a = NP(||Z a, .
(Ilmm(2)l > an.z) PUZI = avg) (Zl > an.z)
By (11),
C
lim sup [[7m(zy)l| < % —P— 1,

N—o0o Cq 1- IJ
The claim thus follows because c,, — 0 by Assumption 2.

Proof of Theorem 5. Set ¢; = sign((d;, V;)) and
=inf|A; — Agl.
(041 ;{r:&] | j Kl

By Assumption (31), @ > 0 a.s., so the claim will follow once we have shown that (for the versions in Lemma 1)

. 2V2 | o~
Iy — gVjll = ——IIrv€ — Coolls-
G

(Recall that by Lemma 1 ||rNE — Cxolls a3 0.) Set
N A N 2
D; = [[Cool®) — Ayl S5 =Y _ (0 V)"
ktj
To prove (48), it is enough to show that

~ 2 .

[l — GVillI~ < 25;;
2 2.

C\lj Sj < Dj’

Dj < 2[|rvC — Coolls-

(48)

(49)
(50)

(51)

We begin with the verification of (49). Since the V; form an orthonormal basis in L? almost surely,

o]

18 = GVill? = 3= (35 vid = (v Vil)* = (35 vi) = )" +5;

k=1

Since ¢ = 1 and ¢, Vj) = | (&}, Vi) I, ({05, v;) — G)’ = (1 — (), V;) ) Using

o0
(1= 1y, Vi) D2 = Y (5. Vel = 21 {85, i) 1+ (85, v
k=1

we obtain
(o5 V) = ) =i +2 (o Vil = 185, v)1) <5,
Combining the last bound with (52), we obtain (49).

(52)

We now turn to (50). Since the Vj form a basis in L? almost surely and since C,, is symmetric almost surely,

o0 oo

D = ((Coold) Vi) = 2385, Vi) = D (i, AuVi) = 43 {8, Vi)

k=1 k=1
It remains to verify (51). This follows from the decomposition

Coo(ﬁj) - Ajl’)j = (Coo - rNE) (ﬁ]) + (TNE - Aj) (1’)])

Z(Ak — Aj)z <I’}j, Vk>2 > oszSj.

Note that (rrf — 4A)) (%) = (rN):j - A]-) (9;) and by (30), |ryA; — Aj] < [I'vC — Coolls.

17
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7. Proofs of the results of Section 4

Proof of Lemma 2. Since H = L? is spanned by {v1, ..., v4}, any A C Sz has those the form A = Ag = {v = Zjdzl Biv; :
lvll =1, (B1, ..., Bq) € B} for some Borel set B of R%. Since ||v]|*> = Zf:] ]-2, B C Sga, where the latter unit sphere stems
from the Euclidean norm || - ||4. We note that Zf:] &vj € Agif and only if (&1, ..., &4)/lI(&1, ..., &4)lla € B. Since |[vj]| = 1,
we have ||X]|? = Z,-dzl éjz = ||(&1, ..., &)ll3. Hence, the assumed regular variation of & := (&1, ..., &) gives
PAIXIN > tu, X/1IX| € As) _ PCIIEN > tu, §/11&] < B) S U Iy(B).
P(IX]l > u) P(lI§ll > u)

The regular variation of X follows by identifying I'x(Ag) = I's(B).
7.1. Stable convergence of random vectors

The results of this section are needed to prove Theorem 6 and other results of Section 4.
Recall that a random variable A is p-stable, p € (0, 2) \ {1}, if its characteristic function is given by
E [exp {i6 A}] = exp [iﬂ@ —aPloP (1 — iysign(@)tan (%p»} , 0 eR, (53)

with B € R, 6 > 0, y € [—1, 1]. We write A ~ Sp(G, v, B). A random vector A = (Aq, ..., Ag) is p-stable (p # 1) if

. . . np
E 0,A)} = ,0) — 0,s)P(1— 0,s))t — d. ,
exp (i (6, A)} exp{l(ﬂ ) /Squ( )17 (1~ isign((6. ) tan (%) ) oa s)l

where 6 € RY, B € RY and o, is a finite measure on the unit sphere in RY. (Note that we use (-, -) for both inner
product in L? and RY). We write A ~ Sp(oa, B), see Samorodnitsky and Taqqu [27], Definition 2.3.2. In the scalar case,
the spectral measure of A = A is concentrated on {—1, 1} and (53) is obtained by setting & = (g4({1}) + oA({—1}))/?,
while 8 = (o4({1}) — o4({—=1}1))/(0a({1}) + oa({—1})).

For our considerations, we need a well-known lemma.

Lemma 9. Assume that &,, n > 1, are independent, identically distributed and regularly varying random variables with index
« € (0,2) and let cy be defined by NP(|&1| > cy) = 1. Then

N oo
_ d o
CN2 E 53% E PnNSp(S;/p,l,O), p:Es
n=1 n=1

where {P;,j > 1} is the sequence of points of a Poisson process with the mean measure vy, vp(dx) = px‘p‘ldxl[x>0} and sp is
given by (21).

Lemma 9 is basically a special case of Theorem 8.3.1 in Kulik and Soulier [19]. Since p = «/2 € (0, 1), the series Zﬁi] Py
is summable and defines a p-stable random variable Sp(s;,/ P 1,0), see Theorem 1.4.5 in Samorodnitsky and Taqqu [27]
and Section 8.2.1 in Kulik and Soulier [19]. ~

Let now | - | be a norm on RY. Let dy be defined by NP(|&| > dy) = 1. By Assumption 3, & = (&, ..., &) is regularly
varying, and hence Proposition 1(ii) gives

NP <|.§| > tdy, % € ) L5 t7Ty(-), asN — oo, (54)

where [ is a probability measure on the | - |-unit sphere. Let 1¢ be the associated exponent measure as in (7). That is
NP (&,;1.5 c . ) Mo, ().
The choice of dy gives ug({x € RY: x| > 1) = 1.

For g : RY — Rk k = d?, defined by g(x1,...,%s) = (xxj,1,j € {1,...,d}), set Y = g(&, ..., &s). According to
Proposition 2.1.12 in Kulik and Soulier (2020), if the measure uy = g o g~ is not identically equal to zero on R¥, then
Y is regularly varying with index p = «//2 and the exponent measure py = g og~!. The corresponding scaling sequence
is d3:

~_5 Mo
NP (dN Y € ) 2o 1y ().
With a norm | - | on R¥, we have
NP (|y| > ag) = uy(u e R : Ju) > 1)) = pe(ix e R : |g(x)] > 1}).

18
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Note that the 1atter~expression may be different from 1, unless g : R — R, g(x) = x2. Set ¢ = (ne(fx € RY ¢ |g(x)] >
1}))/@P) and dy = dyc,. With this choice

NP (|Y| > dy) — 1 (55)
and

my(+)

M
NP (dy?Y € - ) —> ¢, Puy(-) =
(dy ) = & () py({u € RE: [ul > 1))

(56)

(Note that in the scalar case of d = 1 we have dy = dy.) With the aforementioned norm | - | on R¥, consider the polar
coordinate transformation T : R¥ — R, x S¥=': T(y) = (||, y/ly|). Using Eq. (2.2.4) in Kulik and Soulier (2020) we have
cgzpuy oT 1= v, @ I'y, where v, is defined by v,(dx) = px‘p‘ldxl(x>0] and Iy is the angular measure of Y = g(&4, ..., &).
With this background, we can formulate the following Lemma.

Lemma 10. Assume that & = (&1, ..., &q) is regularly varying with index o € (0, 2). Set Y = g(&1,..., &) = (&§;, i,j €
{1,....d}) and choose dy as in (55). Assume that (1, ...,&na),n € {1,..., N}, are independent, 1dent1cally distributed
coples of’.;' Set p = /2. Then

N oo
_ .. d
(dN2 E Sn.i’gn,jy L,]= 1»~--»d> - E P,Wy,
n=1

n=1

where {(W;,j > 1} is a sequence of i.i.d. random vectors on Sk=1 with the distribution Iy, independent from the sequence
{P;.j > 1} of the points of a Poisson process with the mean measure Vp-
The k = d?-dimensional limiting random vector A = Z 1 PaW, is p-stable with the characteristic function

E[exp {i(0, A)}] = exp {—sp/ 1 (6, s)|P (1 — isign((6, s)) tan (717;))) Fy(ds)} . (57)
s

=k

Proof. The proof is relatively classical, we sketch it for completeness without dealing with some particular technical
details. Let Y,,n € {1, ..., N} be independent copies of Y. Define

N
My = E adﬁzYn
n=1

Then (56) and the classical result on Poisson convergence (see Theorem 5.3 in [26]) give My = M, where M is Poisson
random measure with mean measure ¢, » uy and = denotes weak convergence in the space of Radon measures.
Since CI:ZP[;LY oT 1= vp ® Iy, Example 7.1.15 in Kulik and Soulier (2020) gives the following representation of M:

o0
M = Z 5]’1—1/pwn,
n=1

where {W;,j > 1} is a sequence of i.i.d. random vectors on Sk=1 with distribution Iy, independent from the sequence
{J;,j = 1} of points of a unit rate homogeneous Poisson process. Equivalently,

oo
M = Z Spawi»
n=1

where {P;,j > 1} are the points of a Poisson process with the mean measure v.
Fix € > 0. The summation functional

2.8 = ) % yeR,
J J

is continuous on {x € R¥ : |x| > €}; see page 215 in Resnick [26]. This implies

N o]
d
g2
Ve i=dy ZY"I{|Y,1\>d12\,e} = Y PaWalypwg e
n=1 n=1
Since p € (0, 1), the series Zi; P, is summable (see Section 8.2.1 in Kulik and Soulier [19]). Moreover, since |W,| = 1,
we can let € — 0 on the right hand side of the above expression to get the limit in the form ) > | P,W,.
To conclude, it suffices to show that dy Z 1 Yl {Val<d2 ) CONVETges to zero in probability as first n — oo and then
€ — 0. With the norm | - | on R* we have (see Proposmon 1.4.6 in Kulik and Soulier [19])
. _ _ 1 P
Jim Nd,*E ('Y"”wn|sd§,e1) = T,
19
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In conclusion,
N d 00
A’ > Y= Y PaW.
n=1 n=1

Proof of Theorem 6. We use the finite-dimensional asymptotics from Lemma 10 along with the continuous mapping.
As in Lemma 10, let dy be defined by NP (|Y| > d%) = 1,Y = g(&1,..., &) &(X1,....Xa) = (xx;,i.j € {1,...,d}). By
Lemma 10 and the continuous mapping theorem,

d N d
Nd*Cy = Z (dEZ Z En,ién,j) (v ® vj) —d> Z Ajj(vi ® vj), (58)

ij=1 n=1 ij=1

where a random vector A = (Aij,i,jefl,...,d})in R¥ has the characteristic function given in (57). Let G : Spa — Sg«
be defined by

(i jefl,...,d))

G(x1,...,%q) = = ,
I(xixj, i,j € {1,...,d})
with the norm | - | on R¥. Then the angular measures of £ = (&, ..., &) and Y fulfill Igo G '=Tyand
d p
[ resrries= [ e.conrndo= [ 1Y e riew. (59)
Sgk Sgd Spd  jj=1
where we used a representation 6 = (6;;,i,j € {1, ..., d}). The corresponding expression holds for the second integral in

the characteristic functional in (57). Therefore, the characteristic function of A agrees with the one in (33).

Proof of Proposition 5. The angular measure I is concentrated on the intersection of the unit ball and the axes, the only
possibility for the product x;x; to be nonzero, is if i = j. Consequently, the joint characteristic function in (33) becomes

d p
exp § —sp /;Rd |;9j,jxj2| (1 — isign((6, s))tan (%p)) T(dx)

Since the angular measure has non-zero mass on ¢;’s only, the characteristic function reduces to

d
1_[ exp {_SPUJP|9].J|P (1 — isign (6;) tan (%p))}
=1

with o = I(e)).
Now, we need to find the relationship between the scaling sequence dy and the quantile sequence ay: NP(||X| >
ay) = 1. We have

d
NP(IX|| > ay) =NP | Y & >ai | = 1.
j=1
On the other hand, choose the norm on R¥ (k = d?) to be the Euclidean norm. Hence,

d
NP(]Y| > d%) = NP Zg,—gj >d| =1

ij=1
Since the angular measure I is concentrated on ¢;'s, we have
lim NP(|&&| > dy) =0, i#j:
N—o0

see the discussion leading to Corollary 2.1.20 in Kulik and Soulier [19]. Now, if V is a regularly varying random variable,
and U is such that P(|U| > u)/P(|V| > u) > 0 as u — oo, then P(U +V > u)/P(V > u) - 1 as u — oo. Therefore, the
sequences ay and dy are asymptotically equivalent: limy_  ay/dy = 1.
Hence,
d d
Nay*Cy — Z Aj(v; ® vj), (60)
j=1
where A; = A;; are independent p-stable random variables as in the statement of the theorem.
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Remark 16. We illustrate that statement of Proposition 5 is in agreement with Theorem 2 even though the latter is not
applicable in the current, finite dimensional situation. Recall the characteristic integrals in Theorem 2:

/ | (b x @ )5 PTx(dX)
SLZ

and
| @xensio.xxns P . (61)
SLZ
where Iy is the angular measures of X. Consider the map H : Sga — Sj2 defined by H(sy,...,sq) = Z}; sjvj. Then

I'; o H™! = Ik and the first characteristic integral becomes
p

d d
| 1@ x@nspr = [ <¢>, {Zsfv:}@’ Zsf'vj> y(ds)
Sp2 Spd i=1 j=1

R s
p

d
= / ZSiSj <¢), Vi ® Uj)S F&(ds)
Spd |ij=1

p

= / Zs,s, ), vj)| Te(ds). (62)
S,

RA |ij=1

The corresponding relationship holds for the second characteristic integral.
We apply Corollary 1. Using the property of the angular measure, we continue with (62) to get

p p
[ vo.xensrrao= [ 1> s ot ) 1) = | |Zs Hluy), )| 1Y)
Sp2 Spd J=1 Sgd
with the corresponding expression for the second characteristic integral. Thus, the characteristic exponent becomes
d p
~s [ 1305 (bt 1 e (63)
Spd j=1
d d p-1
. p
+spitan —- /S D ost o u) | 1Y st (e, v) | Tx(ds). (64)
rd \ j=1 j=1

Let now A] be independent p-stable random variables as in the statement of Proposition. Set A = (Aq,..
A = ZJ 1 Aj(v; ® vj). Then

., Ag). Let

Eel®Ax)s — Eeiijl 4i{d.vi®v) = EeiZle 6 Aj

with 6; = (¢, v; ® vj) ; = (¢(v))., vj). Using (36) it is immediate to see that the characteristic function of A, coincides with
the one induced by (63)-(64).
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