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Abstract—This paper proposes an efficient boundary-integral based
“windowed Green function” methodology (WGF) for the numerical
solution of three-dimensional general electromagnetic problems contain-
ing dielectric waveguides. The approach, which generalizes a recently-
introduced two-dimensional version of the method, provides a highly
effective solver for such problems. In particular, using an auxiliary
integral representation, the proposed method is able to accurately model
incident mode excitation. On the basis of a smooth window function, the
integral operators along the infinite waveguide boundaries are smoothly
truncated, resulting in errors that decay faster than any negative power
of the window size.

Index Terms—Integral equations, optical waveguides, numerical anal-
ysis, Chebyshev approximation

I. INTRODUCTION

In view of their ability to efficiently guide electromagnetic energy,
dielectric (open) waveguides play central roles in many engineered
electromagnetic systems, including antenna feeds, coaxial cable
transmission lines, optical fibers and nanophotonic devices, among
many others [1]-[5]. As discussed in what follows, however, the
computational simulation of electromagnetic waveguides in three-
dimensions (3D) has posed a number of significant challenges—
mostly concerning accuracy and computational cost. Seeking to
tackle this difficulty, this paper introduces an efficient boundary
integral equation (BIE) Green-function based methodology for this
problem. This method incorporates, as a central enabling element,
a novel “windowed Green function” strategy (WGF)—previously
demonstrated in the context of layered media in two and three
dimensions, and for waveguide structures in two dimensions [6]—
[9]—to handle the truncation of BIE integration domains for fully-
vectorial problems involving 3D dielectric waveguides with arbitrary
shapes and configurations.

Most of the existing approaches for waveguide simulation rely on
volumetric discretizations and approximation of the differential form
of Maxwell’s equations [10], incorporating an absorbing condition,
such as a Perfectly Matched Layer (PML) [11], [12], to truncate
the computational domain and, in particular, all of the semi-infinite
waveguides present in the structure. The approach thus requires use of
large 3D computational domains, and, consequently, large numbers
of spatial unknowns. Further, evaluation of propagation over such
large computational domains, which may amount to tens or even
hundreds of wavelengths in relevant applications, can lead to signif-
icant dispersion errors by accumulation, over many wavelengths, of
the errors inherent in the derivative approximations used in Finite
Difference and Finite Element methods at each discretization point.
The time-domain versions of these methods that are often employed
additionally suffer from dispersion and accuracy loss in the time
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variable. As a result, these approaches may require extremely fine
meshes and associated high computing costs to maintain accuracy.

On the basis of the electromagnetic Green’s function, on the other
hand, boundary integral methods (BIE) can lead to significantly
reduced numbers of unknowns, since they only require discretiza-
tion of the interfaces between different materials. Additionally, BIE
methods are virtually free of numerical dispersion, in view of
the Green’s function’s ability to analytically propagate oscillatory
fields to arbitrary distances. And, although in their straightforward
implementations they lead to computing costs that grow quadratically
with the discretization sizes (at least if iterative solvers such as
GMRES [13] are used), BIE methods can be accelerated by a
variety of techniques [14]-[17]. Unfortunately, the application of
BIE methods has almost exclusively been restricted to systems with
bounded scatterers, in view of the lack of a suitable condition for
termination of the infinite computational domain arising from infinite
boundary interfaces.

Several effective approaches have recently emerged for the BIE
waveguide-truncation problem, however. These include the WGF
method [6]-[9], the closely related integral PML method [18],
and a physically-motivated “Surface Conductive Absorber” approach
(SCA) [19], [20]. Other methods based on use of adiabatic absorbers
in conjunction with volumetric integral formulations, have also been
demonstrated [21], [22]. The WGF method relies on a reformulation
of the waveguide BIE equations, which results as the Green’s function
is smoothly windowed to a compact support via multiplication by
a “slow-rise” window function in the integration variable. This
procedure, which only requires multiplication of the Green’s function
by an adequate smooth window function, effectively screens out
infinite boundary portions without introducing nonphysical reflection
points on the boundary of the truncation domain, and it thus yields
super-algebraic convergence—that is, asymptotically, faster conver-
gence than any negative power of the window size. (A detailed and
motivated description of the WGF method, including demonstrations
of its accuracy and a strategy for selection of algorithmic parameters,
can be found in [6].) The integral PML contribution [18] operates on
the basis of the same principle as the WGF method: in the integral
PML case the windowing effect is achieved by complexifying the
spatial variables starting at a certain distance along the waveguide,
which results in decaying exponentials in the Green’s function
and thus provide the desired reflection-screening effect. The SCA
approach [19], finally, incorporating a surface conductivity on the
material interfaces sufficiently far along the waveguides, demonstrates
decay rates of the order of 1/xP with the distance z along the
waveguide, with e.g. 4 < p < 8 for screening of waveguide modes
and with p = 1 for screening of reactive fields; see [19, Figs. 9, 10].

The present contribution generalizes the 2D WGF method for
waveguides [7] to the fully-vectorial 3D counterpart. It shows that
the approach can handle both illuminating beams and point sources,
as well as direct mode illumination. The paper is organized as
follows. Section II describes the integral representation of the fields
and the associated integral equations over the unbounded waveguide
boundaries, making a distinction between two types of illuminating
fields, namely, beams and point sources on one hand, and direct mode
sourcing, on the other. Section III describes the ideas underlying the
windowing of integral operators, and it presents our implementations
for the two types of incidence considered in this paper. Finally,
section IV presents a variety of numerical examples that demonstrate
the effectiveness and flexibility of the WGF method for geometrically
complex waveguide structures.



II. BOUNDARY INTEGRAL FORMULATION FOR
THREE-DIMENSIONAL DIELECTRIC WAVEGUIDES

Our approach is based on Miiller’s frequency-domain integral
formulation [23], [24] at a given temporal frequency w, which follows
from use of Green’s representation theorems [25]. (A time depen-
dence of the type exp(—iwt) is assumed and suppressed throughout.)
For clarity, in our description we consider a waveguide structure
consisting of a single core (interior) region {2; (containing a material
of permittivity €;, magnetic permeability y; and spatial wavenumber
k;), and a single cladding (exterior) region (2. (containing material
of permittivity ., magnetic permeability p. and spatial wavenumber
ke), as depicted in Fig. 1. The unbounded interface between €2;
and Q. and the corresponding normal pointing from the former to
the latter are denoted by I' and n, respectively. The wavenumber
is related to the frequency and material properties by the relation
k = w./eu. The generalization of these methods to structures
including an arbitrary number of waveguides and dielectric materials
does not pose major difficulties.
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Fig. 1. Diagram of the windowing strategy and auxiliary domains used for

bound mode excitation.

In this paper we consider two types of incident excitation, namely,
Type I excitation by fields (Ei, EZ¢) (beams or point source inci-
dence), for which the scattered fields E; and E. in the decomposition

E=E™+E, inQ;, E™+E. inQ. 6))
of the rotal electric field E are used as unknowns; and Type II
excitation (Bound-mode incident field), for which the toral electric
fields

E=E; inQ;, E. inQ. 2)
themselves are used as unknowns.

Remark 2.1: For both type I and type II problems, the electro-
magnetic field can be expressed in terms of Green’s function-based
integral representations. The main difference in our treatment of these
two cases is that for type II problems we use an integral representation
of the rotal field (including the incident bound mode), whereas for
type I problems we use an integral representation of the scattered
field.

In order to introduce the aforementioned integral representations,
we consider the following vector potentials acting on a surface
tangential density a(r’):

lal(r) =V x /FGZ(r,r')a(r/)da('r'),

3
Belal(r) =V x V x AGZ(r,r')a(r')da(r').

Here G¢(r,7") = exp (ike|r — 7'|)/(47|r — 7'|) denotes the free-
space Helmholtz Green’s function with wavenumber k.. Subscript
values ¢ = 7 and ¢ = e indicate quantities corresponding to the
interior and exterior domains, respectively.

The tangential values of the field (3) for » € I' are given by the
boundary integral operators

Scelal(r) = —n(r) x /FGg(r,r/)a(r/)da(r'),

Re[a](r) = —n(r) x V x / Ge(r,ra(r)do(r"),

(4a)

(4b)

T¢la](r) = —n(r) x V/ Ge(r,7")divra(r)do(r’), (4o
r

which are defined for » € I'. For conciseness, in what follows we
also use the weakly-singular operators

2
A = — . .
Ry = o (ae Re —ai Ri), (5a)
A__ 2% o 2q _42g
K& = o va) [(Te —T0) + (k2S. —k2S)],  (5b)

where the subindex « stands either for the dielectric constant symbol,
« = ¢, or the magnetic permeability symbol, o = p. Finally, we call

m; =-nxE; and j, = -—n xH; onT, (6a)

me.=4+nxE, and j_,=+n xH, onT. (6b)

the tangential magnetic and electric surface currents m, and j, on
the interior (¢ = ) and exterior (¢ = e) sides of T".

Using these notations, the direct integral representations [25,
theorem 5.5.1] (cf. the Stratton-Chu formulas [26, theorem 6.7]) for
the exterior and interior fields are given by

Alma(r) + = Bilj)(r) = {OE“") el W
i) = S Blm(r) = {ff(’") Zg (7b)

with ¢ = e and ¢ = i, respectively. The Miiller system of boundary
integral equations results as a linear combination of the tangential
limiting values of the fields in eq. (7) as » — I' from the exterior and
interior domains [23], [24], [27]. The linear combination is selected
in such a way that all the resulting integral operators are weakly-
singular.

In the case of Type I excitation the continuity of the tangential
components of the electromagnetic fields tells us that the unknown
density currents satisfy the relations

m=m;=—-m.+n x (E - E),

i=d;=—j.+nx (H*-HY).

(8a)
(8b)

The resulting Miiller system for the Type I unknowns m and j reads

KEA m|
a5
2(ee + €:) T e B — g, EN) x n
{Q(Me + i) " H(peHE — i HY) X n
It is easy to check that this system involves only weakly-singular
kernels; see e.g. [24], [9, chapter 5], [27].

For Type II excitation (that is, waveguide-mode incident fields) we
utilize integral representations for the total fields, which incorporate
integral expressions for the incident bound mode as well as the radi-
ation conditions for waveguide problems—thus taking into account
the directionality of incoming and outgoing modes [28].

[1+R?
—Kﬁ

(C)]



Following [7], we assume that the waveguide structure includes
one or more “semi-infinite waveguides” SIWGs). A SIWG is one half
of an infinite waveguide (of arbitrary cross-section), as is obtained
by cutting an ordinary infinite waveguide by a plane orthogonal
to the optical axis. In addition to the SIWGs, the structure may
contain arbitrary dielectric structures as long as all such structures
are contained within a bounded region: away from such a bounded
region, only the SIWGs break the homogeneity of space.

In view of these considerations, for the present incident-mode
problems we define Q™ as the union of all STWGs on which the
incoming bound modes are given. Then, for both ¢ = 7 and { = e,
the electric fields are characterized by the decomposition

EZ _ {EZCH[ + El[ﬂC ln Q[ m S)ll’l()7 N (]0)

| Dy in R®\ (Q, N Q™),

with similar expressions for the magnetic fields H,. The integral
representation in eq. (7) is still valid with the surface-current expres-
sions in eq. (6), but, in the present incidence-mode case, E, (¢ = i, €)
represents the total field, not just the scattered component of the field.
We can then re-express the unknown surface currents in terms of the
scattered fields, by utilizing the known incident densities:

scat

=-nxE™ and j=-nxH™ onT, (11a)

(11b)

inc inc

m =-nxE;

inc

and j™ = —n x H™ onT.

Just as in the case of type I sources, we must enforce the conti-
nuity of the tangential components of the fields, which implies that
me = —(m+m**) and j, = —(J+7°“). Using the representation
formula in eq. (7) and with the same derivation as for type I problems,
we obtain the Miiller system for type II incidence:

{HR? K2 } {m} _ [I+R§ K2 } [m} (12)

-Kg I+Rp| (4] [-Kp I+R2 5™

In order to produce a physical solution (e.g., to avoid the trivial
solution [m,j] = —[m™,;™]), the scattered currents m and j
must satisfy the waveguide radiation conditions [28, eq. (36)]. Briefly,
these radiation conditions, which are a generalization of the Silver-
Miiller condition [23], state that the scattered solution must only
consist of outgoing bound modes along the waveguide, and radiating
fields away from the core region. The validity of both of these
conditions in the WGF formulation results directly from its use of
outgoing Green functions.

III. WINDOWING OF INTEGRAL OPERATORS

The numerical solution of eq. (9) over the unbounded waveguide
boundary I' requires careful consideration, in view of the slow
decay rate—O(1/r)—of the integrands in the associated integral
operators. As discussed in this section, to do this, following [7], we:
(1) localize the scattering problem to a bounded region encompassing
the nonuniform parts of the waveguide structure, (2) use a window
function to evaluate the slowly decaying, oscillatory integrals in the
operators involving scattered currents, and (3) for type II problems
(bound mode excitation) use the representation formula for the modes
to evaluate the operators involving the incident currents from the
bound mode.

The integrands in the integral operators eq. (4), which are de-
fined over the unbounded boundary I', decay only as O(1/r) as
r — 00, but they are also oscillatory, which makes their integrals
finite. A direct truncation of the boundary I' leads to extremely
poor convergence—only O(1/+/A), where A denotes the SIWG-
truncation length [7], [29]. However, super-algebraic convergence—
O(A™P) for any positive integer p—can be regained on the basis
of the same truncation size A, simply by multiplying the relevant

integrands by a compactly supported, smooth “window” function. For
strict super-algebraic convergence, the window function wa (d) must
satisfy certain smoothness and “slow-rise”” conditions [7, section III-
B], namely, that the windowing function is smooth and that it decays
from 1 to O over the region d € (aA, A) for some o € (0,1). A
suitable choice of window function that satisfies the conditions for
super-algebraic convergence is given by the expression

1, s(d) <0,
ex — S 2
wa(d) = S exp (222 EUEQR) 0 <s@) <1, (13)
0, s(d) > 1,

where s(d) = (|d| — a«A)/(A — aA); throughout this paper we
utilize this window function with a = 0.5 and A = 10. High-
order convergence can also be achieved using other suitable window
functions, such as the error function, that don’t have strict compact
support, but tend to zero exponentially fast at infinity.

As shown in [7], using a window function w4 can greatly improve
the rate of convergence—so that oscillatory integrals along infinite
domains can be accurately truncated by multiplying the integrand
by wa. On the other hand, although the convergence rate is “super-
algebraic” (faster than any power of A), if the integrands are not
sufficiently oscillatory, then large values of A may be necessary to
achieve even modest accuracy. Hence, when the integrands might
have vanishing oscillations—as it’s the case of the right-hand-side
of eq. (12)—a special treatment is required; see e.g. the third
paragraph in [7, Sec. III(d)].

In the context of the three-dimensional waveguide problems con-
sidered in this paper, we can construct a suitable window function,
denoted by W4(r) for » € T, on the basis of the 1D window
function eq. (13). Indeed, we first set W 4(7) to equal one when
7 is not in any of the SIWGs. Then, for = in a SIWG we set
W4 equal to wa(d), where d denotes the distance from » to the
plane perpendicular to the optical axis that determines the end of the
SIWG. To define this mathematically, let M denote the total number
of SIWGs, and let Q(SIIWG denote the domain that encompasses the
g-th SIWG with its origin located at o, and optical axis (pointing
towards the infinite portion of the SIWG) along the ¢, direction.
Then, we have

Wal(r) =

Nl SIWG
{wA(cq (r—oq)), 7l NQF™", (14)

1, otherwise.

This definition of the window function for our waveguide problems
leads in a natural way to a truncated domain for which the window is
non-zero, i.e. I' =T N{r : Wa(r) > 0}. (For a different window
function that does not have strict compact support, this definition of
the truncated domain can be easily modified by taking the set for
which W4 (r) > 7, for some small tolerance n > 0.)

A. Type I Incidence: Direct Windowing

For the sake of simplicity, we assume incident fields for type
I problems to have wavevectors with positive projections onto the
optical axis ¢, of all the component SIWGs. This condition guar-
antees that the net oscillation of the integrands in the operators
of eq. (9)—taking into account both the oscillation of the kernels
and the solution currents—are bounded-away from zero, so that we
can rely on windowing along the infinite boundary I' to accurately
truncate the simulation boundaries onto I'. In the case that this
condition is not met, such vanishing oscillations can be treated by
means of an approach similar to the one used in [6] for layered media,
or, simply, by re-scaling the infinite boundaries in terms of the net
integrand wavenumber (net number of oscillations).
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Fig. 2. Errors in the electric field E along the center of a straight waveguide
with circular cross-section, obtained by comparison with the exact analytical
solution. Purple line: errors resulting from the WGF (windowed-based)
algorithm. Green line: errors obtained without use of windowing.

With the aforementioned assumption on the illuminating fields,
we can directly window the integral operators on the left-hand side
of eq. (9) to obtain

K2 W4 } [m] _

I+RSWal 4]
[ 2ce 4 £:) e E™ — g, EM) x n
2(pe + pa) " (neHE — i HEC) x 1

I+R2Wa
—KﬁWA

15)

This system of integral equations over the bounded boundary T'*
provides a super-algebraic approximation (w.r.t. the window size A)
of the original, unbounded problem in the region of interest, i.e. where
the nonuniform part of the structure is present. The system in eq. (15)
can now be solved numerically using any bounded obstacle numerical
method for integral equations.

Remark 3.1: 1In view of the definitions of the currents j and
m in terms of the interior scattered fields in eq. (8), together
with the waveguide radiation conditions discussed in section II, the
currents behave asymptotically as the tangential components of a
superposition of outgoing bound modes. The m-th mode contribution
along the g-th SIWG contains a factor of exp (+iky*|¢q - 7'|) (where
kq" denotes the propagation constant of the m-th mode). Since the
integral kernels oscillate with a factor of exp (+ik|r — r'|), and since
both k7" and k are positive, the product of the kernels and the currents
result in non-vanishing oscillations as r|r — co.

B. Type II Incidence: Accurate Evaluation of Incident Modes

This section proposes an integral equation methodology to
accurately simulate the scattering of incident bound modes. To do
this, windowing the integration domain in the same way as in sec-
tion III-A, we split the integrals on the right-hand side of eq. (12)
as the sum of two integrals—one over the bounded domain I and
another over the unbounded domain I"*° (noting that I' = I'* UT"*°).
Let R5™ and R5™ denote the operators in eq. (5) but with the
integration domains in eq. (4) substituted by I'” and I"*°, respectively.
Using similar definitions for the K operator, we see that the right-
hand side operators for the first equation in eq. (12) are given by

RE[m™](r) + K2[5"](r) = (RS +RE™)[m™](r)+

(KE™ +K&)[§™](r).  (16)

In this expression, the terms involving integrals over I' can be
easily computed, since the integration domain is bounded. On the
other hand, the integrands decay slowly over the infinite surface I"*®
for target points 7 in the region of interest (» € '), and may have
vanishing oscillations since the direction of the incoming mode is
opposite to that of the oscillations from the integral kernels.

Fig. 3. Mode propagation along a 90° bend. The color scale for |S| and
log |S| goes from A =5 x 106 to B=3 x 1071,

To evaluate the integrals over I'>° with minimal error, we introduce
an auxiliary representation for the incident modes. Let T denote the
orthogonal plane that cuts the incident SIWG at the end of I', and
let Q"> denote the portion of Q™ that goes from I't towards
the infinite side of the SIWG (see Fig. 1). Using the representation
theorems for the electromagnetic fields [25] we obtain

(T + )M () + wiw(%f + B[ (r)

_ {E}"C(r) re Q;“C"X’,

¢ 17
0 r & Q0. (17

For points 7 € I' (all of which are outside of Q"°) we then
have the relation

o) i { oo [ +inc
A [mgc](r) + — 27 [57°](r) =
wey
— i) (r) - —— B[ () a8)
wey
which can be used to evaluate the right-hand side of eq. (12):

RE[m™)(r) + K2 ("] (r) =

— R&[m™(r) — K& [G™)(r).  (19)

Using a representation for the field H similar to the one used
in eq. (17) for the field E we can obtain the right-hand side eq. (12) in
terms of integrals along the bounded surface [' and the unbounded
boundary T'. The resulting WGF version of eq. (12) reads

I+R2Wa  KEW4 | [m] _
~KAWa I+REWA|[F]

_[THRSY —RS)
—(K>" —Kph)

(KeA,w o KEA,L) :| |: m<,:|
w N -inc . (20)
I+Rp™ =R g

Remark 3.2: The operators on the right-hand side of eq. (20)
involve integrals that can be accurately computed. The integrals over
the bounded surface ' can be treated as in the bounded obstacle
case. On the other hand, the integrands over FL, namely, the incident
bound modes, decay exponentially as the distance to the interface
tends to infinity—along I'-. This exponential decay allows us to
evaluate integrals along I'" by simple truncation, while incurring
only exponentially small truncation errors.

IV. NUMERICAL EXAMPLES

Any numerical discretization for boundary integral methods can be
used to discretize the WGF integral equations: in particular, Galerkin,
Nystrom, or collocation method can be utilized. The illustrations
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Fig. 4. Modeling of a waveguide-fed dielectric antenna. (a) Discretization
of the structure, including the auxiliary circular surface I'* used to evaluate
the incident mode contribution. (b) Real part of E,. (c) Far-field RCS from
6 = 0 to w for ¢ = 0, obtained by means of the the proposed approach
and compared to the corresponding RCS produced via a commercial FDTD

solver.

presented in this paper were produced by means of the discretiza-
tion strategy presented in [27], [30], [31]. This approach relies on
discretization of boundaries by a set of non-overlapping quadrilateral
curvilinear patches that yields high-order convergence and can conve-
niently be applied to general CAD surface descriptions. The unknown
current densities are discretized via Chebyshev polynomials on each
surface patch. The far interactions are treated via Fejér’s quadrature,
and the near-singular and singular interactions are precomputed using
a high-order quadrature rule for the weakly-singular integrals. Then,
the system of integral equations is solved iteratively via GMRES.

This section presents several numerical examples that illustrate
the accuracy and applicability of the proposed WGF approach. Our
first example concerns a uniform circular waveguide, which allows
us to provide comparisons with the analytical solution of a mode
propagating unperturbed along the waveguide. In our second example
we then consider a circular waveguide with a 90° bend. In a third
example, we consider a dielectric antenna—e.g. an open waveguide
with a termination—demonstrating the applicability of the method for
this class of devices. The last example, finally, concerns a complex
nanophotonic structure with multiple output waveguides. For all
problems in this section we have assumed an exterior refractive
index of 1.0 and a interior refractive index of 1.47 (SiO2), with the

exception of the last one for which the core is silicon (nsi = 3.47)
and the cladding is SiO2 (nsio, = 1.44).

Fig. 5. Scattering by a complex silicon waveguide structure. Panels (a) and
(b) display the patches used to discretize the geometry. The real part of the
magnetic current 1 is shown in panel (c).

Fig. 2 presents, in purple color, the errors in the modal fields
produced by the proposed window-based solver for a perfectly
uniform waveguide with a circular cross section, along the line at
the center of the waveguide. For this problem the modal fields may
be expressed in terms of Bessel functions [5], [32], and the errors
shown were obtained by comparison with this exact solution. Errors
resulting from solutions without use of windowing but on the basis
of the same spatial discretization are also presented in this figure, in
green color; the beneficial effect of the windowing strategy can be
appreciated easily. For this particular case, where a discretization of
18 x 18 (~ 9 points per mode’s wavelength) is used, accuracies of
order 10™* are achieved by the WGF method, whereas errors of the
order of 10~ result from the un-windowed algorithm.

Fig. 3 presents simulation results for a circular waveguide with
a 90° bend, illuminated by a bound mode. This figure presents the
z-component of the electric field, and shows that the mode is mostly
preserved across the curved region: the difference in character of
the fields shown in the vertical and horizontal sections reflects the
fact that the z-component of the field is the tangential component in
the vertical section, but it is the normal component in the horizontal
section.

Fig. 4 displays the fields resulting in a terminated open waveguide
illuminated by a bound mode, i.e., a dielectric antenna. Fig. 4 (a)
presents the discretization used as well as the auxiliary boundary
I'" utilized in this case to evaluate the right-hand side of eq. (20).
Fig. 4 (b) presents the real part of E,, displaying, in particular, the
near-field pattern and the energy radiation away from the waveguide
termination region. Fig. 4 (c) plots the far-field radar cross section
(RCS) produced by the proposed method as well as the one obtained
via a well-known commercial FDTD solver. The proposed approach
produced the solution with a far-field error of the order 1 - 1073
in a computing time of 21 seconds on 36 cores Xeon Gold 6154
and one Nvidia Titan V GPU. The FDTD solution, in turn, which
does not support GPU acceleration, required 9.82 minutes on the
same machine using all 36 cores. If preferred, the GPU acceleration
in the present Green’s-function implementation could be substituted
by a Green’s function acceleration method [14]-[17], for which we



expect similar overall computing times would result.

Our last example, which is presented in fig. 5, concerns a complex
silicon structure, where all of the SIWGs have rectangular cross
section. This example demonstrates the applicability of the WGF
method to complex 3D nanophotonic structures. In order to handle the
challenging geometrical features in this structure we utilized the CAD
capabilities provided by Gmsh [33] to create the necessary patches
shown in fig. 5 (a) and (b). The waveguide structure is illuminated by
a Gaussian beam at the input port, and the real part of the magnetic
current density is shown in fig. 5 (c).

V. CONCLUSIONS

We have presented a fully vectorial numerical method for the so-
lution of complex 3D electromagnetic problems including waveguide
structures on the basis of a windowed Green function boundary inte-
gral method. In this approach, the relevant integral operators—which
are initially posed over the infinite boundaries of the waveguides—
can be accurately evaluated, with super-algebraically small errors,
by multiplying the integrands by a smooth window function and
truncating the integration domain to the region where the window
function does not vanish. In particular, we showed that incident
mode excitation can be accurately incorporated by means of an
auxiliary representation, which transform challenging integrals along
the infinite boundary of the waveguide carrying the incident mode,
onto integrals with exponentially decaying integrands. The ideas
presented here are independent of the numerical discretization of
the integral operators, and can indeed be used, in particular, in
conjunction with any Nystrom or Galerkin discretization, including
the well-known method-of-moments approach.
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