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1. Introduction

The objective of this paper is to review, compare, and extend white noise tests
in the context of Functional Time Series (FTS). White noise tests are critical to
many aspects of analyzing a time series, mainly through their use in exploring
the serial dependence structure of the series and performing time series model
diagnositic checks, and the literature surrounding their application to FTS has
grown steadily over the last fifteen years. We refer the reader to the text books
of Li (2004) and Francq and Zakoian (2010) for reviews of white noise tests for
scalar and vector valued time series.

As in the analysis of univariate or multivariate time series, white noise tests
for FTS can be categorized into two groups: the time domain approach based on
autocovariance operators, and the spectral domain approach based on spectral
density operators. The tests can further be categorized based on type of the
null hypothesis considered. Either the hypothesis of i.i.d. white noise can be
tested, denoted by H0-IID, or the hypothesis of uncorrelated white noise can be
tested, denoted by H0-WN. Precise definitions will be given in the following. At
this point, it is informative to list the tests surveyed in this paper in Table 1.1.
The tests with an asterisk are compared in a simulation study conducted in
Section 6.

A common technique to evaluate the goodness-of-fit of an FTS model is to
apply white noise tests to model residuals. Since, even if the FTS model is well
specified, model residuals typically share a common dependence on estimators
of the model parameters, white noise tests applied to residuals often must be
adjusted to account for this. This paper also surveys and compares via sim-
ulation available goodness-of-fit tests for FTS models. We also provide a new
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contribution in this setting, which extends, both via a new theory and an im-
plementation, the test of Kokoszka et al. (2017) to testing goodness-of-fit of a
functional autoregressive model, the FAR(1). This is motivated by the compar-
atively good performance of this extension, and since it provides a time domain
analog of a spectral domain test derived by Zhang (2016).

All tests we compare are implemented in the companion R package called
wwntests, which is available on the Comprehensive R Archive Network (CRAN).

Table 1.1

White noise tests for FTS considered in this paper. The tests marked with an asterisk (*)
are compared in a simulation study in Section 6.

Null type Time domain Spectral domain

H0-IID Gabrys and Kokoszka (2007)* Characiejus and Rice (2020)*
Horváth et al. (2013) Hlávka et al. (2021)
Rice et al. (2020)

H0-WN Kokoszka et al. (2017)* Zhang (2016)*
Bücher et al. (2023) Bagchi et al. (2018)

The paper is organized as follows. Section 2 is dedicated to the review of the
most relevant concepts related to FTS. In particular, we define the two white
noise null hypotheses. Time domain tests are reviewed in Section 3, and spectral
domain tests are discussed in Section 4. Section 5 contains reviews of goodness-
of-fit tests for FTS models. In Section 6, we compare the performance of selected
tests and also present a data example that illustrates their applicability.

The paper contains a comprehensive appendix. The information presented in
it is not essential to learn about white noise testing for FTS, but it is useful.
In the analysis of scalar time series, white noise tests are typically accompanied
by normality tests, most commonly normal QQ-plots. Testing for periodicity
and change points is also very common. Such tests in the context of FTS are
reviewed in Section A. Section B is dedicated to the derivation, asymptotic jus-
tification and practical implementation of a time domain goodness-of-fit test of
the FAR(1) model. Section C presents additional simulation results that provide
further justification for specific conclusions reported in the main text.

2. Functional data analysis background

In this section, we review the concepts of Functional Data Analysis (FDA)
that are essential to understand this paper. We also introduce the notation and
terminology used in the remainder of the paper. All concepts introduced in this
section are explained in much greater depth in Ramsay and Silverman (2005),
Horváth and Kokoszka (2012) and Hsing and Eubank (2015), as well as in the
introductory text of Kokoszka and Reimherr (2017). We begin by defining the
null hypotheses.

2.1. White noise null hypotheses

Suppose X1, X2, . . . , XN are a sample of functional observations. In FDA, the
observations are most commonly considered as elements of the function space
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L2 = L2(T ), where T is some domain, a compact interval being the most
common case. From a theoretical perspective we consider the observed functions
as representatives of equivalence classes of almost every equal functions in L2,
and view L2 as a separable Hilbert space. The inner product in L2 is defined by
〈x, y〉 =

∫
x(t)y(t)dt, and it generates the norm ‖x‖ =

√
〈x, x〉, where

∫
=
∫

T
.

If X1, X2, . . . , XN are identically distributed functions in L2 with the same
distribution as X, then their common mean function can be defined pointwise
μ(t) = EX(t), and it coincides with the Bochner and Pettis integrals in L2

under the assumption E‖X‖ < ∞.
We are interested in testing the following two null hypotheses:

H0-IID: the Xi are independent and identically distributed elements of L2;

H0-WN: the Xi form a white noise sequence in L2 according to Definition 2.1.

Definition 2.1. A sequence {Xi, −∞ < i < ∞} of L2 random elements is a
(mean zero) white noise if

0 < E‖Xi‖2 < ∞, EXi(t) = 0 (2.1)

and for any h �= 0, and any i,

E [Xi(t)Xi+h(s)] = 0, for almost every t, s ∈ T . (2.2)

We denote E‖Xi‖2 = σ2.

Specific tests discussed in the following generally impose additional assump-
tions on the data under the null hypothesis, but the dichotomy reflected in our
definitions of H0-IID and H0-WN is the central aspect, similarly as in tradi-
tional time series analysis. We note that E [Xi(t)Xi+h(s)] is the autocovariance
function or kernel of {Xi}, whose general definition with nonzero mean will be
introduced in Section 2.3. Definition 2.1 is analogous to the definition of white
noise for a multivariate time series: to be white noise random vectors must have
zero mean and their autocovariance matrices at nonzero lags must vanish. Also,
note that, under (2.1), condition (2.2) is equivalent to the condition

E [〈Xi, x〉 〈Xi+h, y〉] = 0, for any x, y ∈ L2,

which appears in Definition 3.1 of Bosq (2000). This follows from the identity

E [〈Xi, x〉 〈Xi+h, y〉] =
∫∫

E [Xi(t)Xi+h(s)] x(t)x(s)dtds.

The broader null H0-WN contains functional processes that are uncorrelated,
but possibly dependent; for example, fARCH models introduced by Hörmann et
al. (2013) or fGARCH models of Aue et al. (2017) and Cerovecki et al. (2019).
Therefore, it is important to make the distinction between H0-IID and H0-WN
in the context of model diagnostic checking.
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2.2. Functional principal components

Functional principal components (FPCs) are used in many procedures discussed
in this paper, so it is convenient to display formulas that can be readily referred
to.

FPCs are defined under the condition E ‖X‖2
< ∞, which we assume through-

out this paper. The covariance operator of X is defined by

C(x) := E[〈X − μ, x〉 (X − μ)], x ∈ L2, (2.3)

where μ = EX. The eigenfunctions of C, denoted by vj , j ≥ 1, are the FPCs,
i.e. C(vj) = λjvj . The FPCs lead to the Karhunen–Loéve expansion

Xi(t) = μ(t) +
∞∑

j=1

ξijvj(t), ξij = 〈Xi − μ, vj〉 . (2.4)

The scores ξij satisfy Eξij = 0, Eξ2
ij = λj , E[ξijξij′ ] = 0 for j �= j′. Expansion

(2.4) is not directly accessible because μ and the vj are unknown population
parameters. The mean function μ is most commonly estimated by the average
X̄N = N−1

∑N
i=1 Xi. The FPCs vj and the eigenvalues λj are estimated by v̂j

and λ̂j defined as the solutions to the equations

Ĉ(v̂j)(t) = λ̂j v̂j(t), t ∈ T , 1 ≤ j ≤ N, (2.5)

where Ĉ is the sample covariance operator defined by

Ĉ(x)(t) =
1
N

N∑

i=1

〈
Xi − X̄N , x

〉
(Xi − X̄N )(t), x ∈ L2.

Each curve Xi can then be approximated by a linear combination of a finite
set of the estimated FPCs v̂j , i.e. Xi(t) ≈ X̄N +

∑p
j=1 ξ̂ij v̂j(t), where the ξ̂ij =〈

Xi − X̄N , v̂j

〉
are the sample scores. Each ξ̂ij quantifies the contribution of the

curve v̂j to the shape of the curve Xi. Thus, the vector of the sample scores,
[ξ̂i1, ξ̂i2, . . . , ξ̂ip]�, encodes the shape of Xi to a good approximation.

To illustrate, Figure 2.1 displays the first three sample FPCs, v̂1, v̂2, v̂3, for
intraday return curves Ri for Walmart stock from July 05, 2006 to Dec 30, 2011.
These curves are described in detail in Section 1.4 of Kokoszka and Reimherr
(2017) and several papers. The curves Ri show how a return on an investment
changes throughout a trading day, and its two examples are shown in Figure 2.2.
The first estimated FPC v̂1 can be identified with a monotonic trend throughout
the day. If the score corresponding to it is large, trading in this stock on a given
day was dominated by a systematic increase (or decline if the score is negative)
in the price of the stock. Notice the gradually decreasing slope of v̂1, which
reflects the well-known fact that the most intense trading takes place after the
opening of the trading floor. The second FPC, v̂2, has a large score if there is
a significant reversal in investor sentiment during a given trading day. These
observations are illustrated in Figure 2.2.
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Fig 2.1. The first three sample FPCs of intraday returns on Walmart stock based on sample
of 1,378 curves.

Fig 2.2. Walmart intraday cumulative return curves on two trading days and their approx-
imations by

∑3
i=1 ξ̂ij v̂j(t). In the left panel, ξ̂1 = −4.7, ξ̂2 = 0.4, ξ̂3 = −0.1, observed on

October 7, 2008. In the right panel, ξ̂1 = 0.8, ξ̂2 = 1.2, ξ̂3 = 0.1, observed on November 18,
2008.

2.3. Autocovariance operators and spectral analysis

An integral operator Ψ with kernel ψ(·, ·) is defined by

Ψ(x)(t) =
∫

ψ(t, s)x(s)ds, x ∈ L2.
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The Hilbert-Schmidt norm of Ψ is defined by

‖Ψ‖S =
{∫∫

|ψ(t, s)|2dtds

}1/2

(2.6)

and the operator is called Hilbert–Schmidt, denoted Ψ ∈ S, if it is finite.
Suppose that {Xi} is a second-order stationary time series taking values in

L2, with the mean function EXi(t) = μ(t). The autocovariance operator at lag
h, h ≥ 0, is defined by

Γh(x)(t) :=
∫

γh(t, s)x(s)ds, x ∈ L2, (2.7)

where γh(t, s) is the autocovariance function defined by

γh(t, s) := E [(Xi(t) − μ(t))(Xi+h(s) − μ(s))] , t, s ∈ T . (2.8)

At lag zero, Γ0 = C, where C is the covariance operator in (2.3). The func-
tions γh(·, ·), h ≥ 0, characterize the serial correlation in the series {Xi}. Given
functional observations, X1, . . . , XN , γh can be estimated using its sample coun-
terpart

γ̂N,h(t, s) :=
1
N

N−h∑

i=1

(Xi(t) − X̄N (t))(Xi+h(s) − X̄N (s)), 0 ≤ h < N. (2.9)

The operator Γh may then be estimated with Γ̂h(x) =
∫

γ̂N,h(t, s)x(s)ds. A
simple graphical summary of the serial dependence in the series can be obtained
by plotting

r̂h =
‖γ̂N,h‖∫

γ̂N,0(t, t)dt
(2.10)

as a function of h, which we refer to as the functional autocorrelation function
(fACF), and was studied in Mestre et al. (2021) and Kokoszka et al. (2017).

Panaretos and Tavakoli (2013b) introduced a frequency domain framework
for describing the second–order structure of functional sequences. The spectral
density function of {Xi} is defined by

fω(t, s) :=
1

2π

∑

h∈Z

e−ihωγh(t, s), t, s ∈ T , ω ∈ [−π, π], (2.11)

where i =
√

−1 is the imaginary unit. If
∑

h∈Z
‖γh‖ < ∞, the series in (2.11)

is convergent in L2. The spectral density operator is the integral operator with
the kernel fω. Under the assumption

∑
h∈Z

‖Γh‖S < ∞, it is defined by

Fω(x)(t) :=
∫

fω(t, s)x(s)ds =
1

2π

∑

h∈Z

e−ihωΓh(x)(t), x ∈ L2. (2.12)
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A natural way of approximating the spectral density function fω is to use the
functional periodogram

Pω(t, s) :=
1

2π

∑

|h|<N

e−ihωγ̂N,h(t, s). (2.13)

Note that the periodogram is not a consistent estimator of the spectral density
even in the scalar case, see e.g., Section 10.3 of Brockwell and Davis (1991). To
estimate fω, modifications of the periodogram, such as kernel lag–window type
estimators, are typically used. They will be introduced in Section 4. A basically
complete theory of the estimation of the spectral density operator under optimal
conditions is developed in van Delft (2020).

3. Ljung-Box type tests

The goal of this section is to review time domain based white noise tests for
FTS, including Gabrys and Kokoszka (2007), Horváth et al. (2013), Kokoszka et
al. (2017), and Rice et al. (2020). These tests build on the ideas introduced by
Box and Pierce (1970) and Ljung and Box (1978), both of which are developed
in the context of traditional scalar time series. Therefore, to better understand
the tests for FTS, we begin by describing the main idea of procedures in Box and
Pierce (1970) and Ljung and Box (1978). Their tests are developed to check the
adequacy of time series models by examining the residuals. The test statistics
are based on the sum of the squares of sample autocorrelation functions (sample
ACFs).

Suppose that X1, X2, . . . , XN are real–valued observations, and denote their
sample ACFs by ρ̂(h), 0 ≤ h < N . The test statistic considered by Box and
Pierce (1970) is

Q̂BP = N

H∑

h=1

ρ̂2(h), (3.1)

where H is the number of lags. The statistic Q̂BP quantifies the serial corre-
lation in the sequence up to lag H. Note that if the Xi are white noise, ρ̂(h)
should be close to 0 for all 1 ≤ h < N . Thus, a large value of Q̂BP suggests
that the observations might not be white noise. More specifically, it is known
that the limiting distribution of the sample ACFs is multivariate normal with
mean zero and identity covariance matrix, if the Xi are i.i.d. with finite fourth
moment, see e.g., Theorem 7.2.2 in Brockwell and Davis (1991). Using this re-
sult, Box and Pierce (1970) note that under the i.i.d. assumption the limiting
distribution of Q̂BP is chi–square with H degrees of freedom, χ2

H . The i.i.d.
assumption can thus be rejected at significance level α if Q̂BP > χ2

1−α(H),
where χ2

1−α(H) is the (1 − α)th percentile of χ2
H . For diagnostic checking of

time series models, Box and Pierce (1970) propose to use Q̂BP calculated from
residuals. Denote the sample ACFs of the residuals from a model by ρ̃(h). Since
the residuals form a sequence of dependent random variables, the asymptotic
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behavior of Q̂BP constructed by ρ̃(h) is not trivial. To tackle this, Box and
Pierce (1970) first establish the relationship between the residual autocorrela-
tions ρ̃ := [ρ̃(1), . . . , ρ̃(H)]� and the population white noise autocorrelations
ρ̂ := [ρ̂(1), . . . , ρ̂(H)]�; ρ̃ is approximated by (IH − D)ρ̂, where IH ∈ MH×H is
the identity matrix, and D ∈ MH×H is a matrix such that IH −D is an idempo-
tent matrix of rank H −d, where d is the number of parameters to be estimated.
Box and Pierce (1970) show that D depends on the model parameters, and its
element dij goes to zero as i and/or j increase. From this, they argue that for
sufficiently large H, the asymptotic behavior of ρ̃ is close to that of ρ̂, so Q̂BP

constructed from ρ̃ follows a χ2
H−d distribution. Box and Pierce (1970) justify

their argument by means of a simulation study, but no rigorous derivation is
presented.

Ljung and Box (1978) consider a statistic that modifies Q̂BP :

Q̂LB = N(N + 2)
H∑

h=1

ρ̂2(h)/(N − h).

They compare the first and second moments of Q̂LB and Q̂BP and argue that
Q̂LB follows the χ2

H distribution more closely than Q̂BP . For Q̂LB calculated
from the residual autocorrelations ρ̃, a similar argument is made; the asymptotic
distribution of Q̂LB from ρ̃ is closer to χ2

H−d than Q̂BP computed from ρ̃. This is
supported by simulation results, but again, a rigorous mathematical justification
is absent. The precise asymptotic distribution of Q̂LB when computed from
ARMA model residuals is calculated in (McLeod, 1978). The Box–Ljung–Pierce
approach was extended to multivariate time series settings, see Chitturi (1976),
Hosking (1980) and Li and McLeod (1981).

3.1. Tests of H0-IID

Gabrys and Kokoszka (2007) introduce a test of independence and identical
distribution for functional observations, which follows the Box–Ljung–Pierce
paradigm. The procedure is based on the sum of the sample autocorrelation
matrices computed from projections of FTS.

Suppose that X1, X2, . . . , XN are a sample of functional observations in L2.
Gabrys and Kokoszka (2007) consider the null hypothesis H0-IID against HA:
H0-IID does not hold. To test H0-IID, the key idea of constructing a single
test statistic from infinite–dimensional functions is to obtain finite–dimensional
projections of the observed functions. For dimension reduction, the FPCs in-
troduced in Section 2.2 are employed. Recall that the unknown population
scores ξij = 〈Xi − μ, vj〉 in (2.4) are estimated by the sample scores ξ̂ij =〈
Xi − X̄N , v̂j

〉
, where the v̂j are estimators of the FPCs vj . We introduce the

following score vectors:

Yi = [ξi1, . . . , ξip]�, Ŷi = [ξ̂i1, . . . , ξ̂ip]�, i = 1, 2, . . . , N.
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Under H0-IID, the projections Yi are i.i.d. multivariate random vectors with the
mean zero vector and covariance matrix V = [v(k, l)]k,l=1,...,p, where v(k, l) =
E[ξikξil]. Thus, testing H0-IID now turns into testing i.i.d. assumption for the
Yi.

Motivated by Chitturi (1976), Gabrys and Kokoszka (2007) define their test
statistic as follows. Let Ch = [ch(k, l)]k,l=1,...,p be the sample autocovariance
matrix where

ch(k, l) =
1
N

N−h∑

i=1

ξikξi+h,l.

Denote by ρf,h(k, l) the entries of matrix C−1
0 Ch and by ρb,h(k, l) the entries of

matrix ChC−1
0 . Then, they consider the random variable

GKN,H = GKN,H(p) = N

H∑

h=1

p∑

k,l=1

ρf,h(k, l)ρb,h(k, l)

which is based on the population scores Yi. Note that GKN,H cannot be com-
puted because the FPCs vj are unknown, so the ξij cannot be computed from
the data. Instead, they consider GKN,H that is computed from the sample scores
Ŷi. It can be shown that the distance between a population score and its approx-
imation is asymptotically negligible under the existence of the fourth moment
E‖Xi‖4 < ∞. From this, Gabrys and Kokoszka (2007) establish that the test
statistic GKN,H computed from Ŷi asymptotically follows a χ2

p2H distribution
under H0-IID. They also consider one alternative, an FAR(1) model, see Sec-
tion 5, which is one of the extensively used stationary models for FTS, and show
consistency against the model under mild conditions. Zamani et al. (2019) put
forward two methods to improve the finite sample properties of this test.

Horváth et al. (2013) develop a test procedure to test H0-IID, which does not
involve projections. The test is based on the sample autocovariance functions
obtained directly from functional observations. To display the test statistic, we
first recall the sample autocovariance functions γ̂N,h in (2.9). Horváth et al.
(2013) considered the following test statistic

V̂N,H = N

H(N)∑

h=1

‖γ̂N,h‖2 = N

H(N)∑

h=1

∫∫
γ̂2

N,h(t, s) dtds. (3.2)

The form of V̂N,H is an extension of Q̂BP and Q̂LB to a FTS setting; it is the
sum of the L2 norms of γ̂N,h that quantifies the serial correlation in a sequence
of functional observations.

To get a standard normal approximation, it is assumed in Horváth et al.
(2013) that the number of lags H(N) goes to infinity with the sample size N ,
in such a way that H(N) = O((log N)α) for some α > 0. With this assumption
and the condition E‖Xi‖4 < ∞, Horváth et al. (2013) establish that the limit
distribution of the scaled V̂N,H under H0-IID is the standard normal distribu-
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tion;
1√

2H(N)σ̂2
N

(
V̂N,H − H(N)μ̂N

)
d→ N(0, 1),

where

μ̂N =
(∫

γ̂N,0(t, t) dt

)2

, σ̂2
N =

(∫∫
γ̂2

N,0(t, s) dtds

)2

.

For alternative, a broad class that contains FAR(1) and functional linear
process models is considered:

HA : the Xi are stationary and ergodic sequence such that for some h ≥ 1,
∫∫

γ2
h(t, s) dtds > 0,

where γh is defined in (2.8). Under HA, the consistency of the test procedure is
shown with the assumptions H → ∞, N/H3/2 → ∞, and E‖Xi‖2 < ∞.

3.2. Tests of H0-WN

In this section, we review time domain tests of H0-WN. Functional GARCH–
type models are included in H0-WN.

Kokoszka et al. (2017) consider the statistic V̂N,H in (3.2) and develop a
testing procedure based on it that is applicable to test H0-WN. To introduce a
distinction from V̂N,H developed for testing H0-IID, we define in the context of
H0-WN testing

KRSN,H = N
H∑

h=1

‖γ̂N,h‖2,

in which H is fixed and does not depend on N . The asymptotic distribution of
KRSN,H is obtained assuming H0-WN, which results in a more complex limiting
distribution.

The null distribution of KRSN,H is established under the assumption of L4-m-
approximability, see Definition B.1 in the appendix, and some first, second, and
fourth order moment characteristics matching those of functional GARCH–type
models. These conditions define a broad class of nonlinear FTS allowing for
conditional heteroscedasticity. Kokoszka et al. (2017) show that the asymptotic
distribution of KRSN,H is a weighted sum of independent χ2

1 random variables.
It is non-pivotal, i.e., the distribution depends on the covariance structure of
a process. To approximate it, the Welch–Satterthwaite approximation method
is employed, which entails approximating this distribution with a scaled χ2

distribution of the form R = βχ2
ν , where β and ν are estimated so that the first

two moments of R approximately match those of the limiting distribution. This
is described in detail in Section 2.4 of Kokoszka et al. (2017). They also verify
that the test statistic is consistent under the alternative of γh �= 0, for some
0 < h ≤ H.
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In the setting of locally stationary functional time series introduced in van
Delft and Eichler (2018), Bücher et al. (2023) developed a general white noise
test based on maxh∈{1,...,H} N‖γ̂N,h‖2.

4. Spectral domain tests

In this section, we discuss spectral domain white noise tests for FTS. As in
Section 3, we first review main concepts of frequency domain tests in the context
of univariate time series and then extend them to the FTS context.

Spectral analysis provides an alternative way of characterizing the structure
of a random process. A key tool of spectral analysis is the spectral density.
Suppose that {Xi} is a stationary, real–valued time series with its ACFs γ(h)
satisfying

∑∞
h=−∞ |γ(h)| < ∞. Then, the spectral density of {Xi} is defined by

f(ω) =
1

2π

∑

|h|<∞

e−ihωγ(h), ω ∈ [−π, π].

Note that the spectral density of a white noise does not depend on the frequency
ω. Therefore, if a process is not white noise, its spectral density will deviate from
a constant function on the frequency domain. Spectral domain tests are based
on the spectral density of a process. In the context of scalar time series, spectral
domain tests are developed to test various hypothesis, see e.g., Grenander and
Rosenblatt (1953, 2008), Durbin and Brown (1967), Bartlett (1978), Durlauf
(1991), and Hong (1996). We briefly review the approach of Hong (1996), which
is extended to FTS by Characiejus and Rice (2020) and Bagchi et al. (2018).

Hong (1996) proposes goodness-of-fit tests for linear dynamic regression mod-
els. His test statistics are derived from the distance between a kernel–based
spectral density estimator and the constant spectral density. To measure the dis-
tance, Hong (1996) considers three types of measures: the L2 norm, the Hellinger
metric, and the Kullback–Leibler information criterion. We describe only the L2

norm statistic here since the statistics from the other two measures are obtained
in a similar manner. Suppose that X1, X2, . . . , XN are real–valued observations.
Denote by γ̂(h), 0 ≤ h < N , the sample autocovariance functions of the residuals
from fitting a linear dynamic regression model to the Xi. To estimate the spec-
tral density of the errors, Hong (1996) employs a kernel lag–window estimator
f̂N defined by

f̂N (ω) =
1
N

∑

|h|<N

K

(
h

BN

)
γ̂(h)e−ihω, ω ∈ [−π, π],

where BN is the bandwidth and K(·) is a kernel function. The L2–distance
between the estimated spectral density of the residuals and the white noise
spectral density is defined by

D(f̂N ; f0) =

[
2π

∫ π

−π

∣∣∣∣f̂N (ω) − 1
2π

∣∣∣∣
2

dω

]1/2

.
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Hong (1996) then shows that the asymptotic distribution of the standardized
D(f̂N ; f0) is N(0, 1) under the i.i.d. assumption. The same holds for statistics
derived from the other distances.

4.1. Tests of H0-IID

Characiejus and Rice (2020) construct test statistics based on the distance be-
tween the spectral density operator of a functional process and a white noise
spectral density operator. They employ the Hilbert–Schmidt norm (2.6) to mea-
sure the distance and use a kernel lag–window type estimator to estimate the
spectral density operator. The null distributions of the statistics are established
under H0-IID.

Suppose {Xi} is a mean-zero second-order stationary time series taking values
in L2. Recall the spectral density operator Fω in (2.12). In Characiejus and Rice
(2020), the squared distance between the spectral density of a functional process
and the spectral density corresponding to the white noise is defined by

D2 = 2π

∫ π

−π

∥∥Fω − (2π)−1Γ0

∥∥2

S
dω. (4.1)

In this notation, the testing problem can be specified as H0 : D2 = 0 vs.
HA : D2 > 0. However, it must be kept in mind that the behavior of the test
is established under a more restrictive null hyposthesis of H0-IID. Characiejus
and Rice (2020) work with a kernel lag–window estimator of Fω given by

F̂ω =
1

2π

∑

|h|<N

K

(
h

HN

)
Γ̂he−ihω,

where HN is the bandwidth parameter, and K(·) is a symmetric kernel. To
construct a pivotal test statistic, the distance D2 is approximated by

D̂2 = 2π

∫ π

−π

∥∥∥F̂ω − (2π)−1Γ̂0

∥∥∥
2

S
dω = 2

N−1∑

h=1

K2

(
h

HN

)∥∥∥Γ̂h

∥∥∥
2

S
. (4.2)

By scaling D̂2, the test statistic is defined by

CRN,K = CRN,K(HN ) =
2−1ND̂2 − σ̂4CN (K)

‖Γ̂0‖2
S

√
2DN (K)

, (4.3)

where σ̂2 = N−1
∑N

i=1 ‖Xi‖2 and

CN (K) =
N−1∑

h=1

(
1 − h

N

)
K2

(
h

HN

)
,

DN (K) =
N−2∑

h=1

(
1 − h

N

)(
1 − h + 1

N

)
K4

(
h

HN

)
.
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Under H0-IID, the statistic CRN,K in (4.3) converges to the standard normal
distribution. A modification analogous to the transformation proposed by Chen
and Deo (2004) is also considered to get better approximations.

Hlávka et al. (2021) also test H0-IID, but they propose an approach based
on the characteristic function (ch.f.). The key idea of the procedure is that
independence is equivalent to the factorization of the joint ch.f.. Hlávka et al.
(2021) study the case of discretely observed functions.

Suppose that a sample of curves, X1, X2, . . . , XN , is observed at points tm;p =
m/p, m = 1, . . . , p. Denote the column vector of the available observations of
the ith curve by

Xi = [Xi(t1;p), Xi(t2;p), . . . , Xi(tp;p)]�, i = 1, 2, . . . , N.

Under the assumption of stationarity of the functional observations, the empir-
ical joint ch.f. of X1 and X1+h is

Φ̂1,N−h(u, v) =
1

N − h

N−h∑

j=1

exp
{

i(u�Xj + v�Xj+h)
}

, u, v ∈ R
p.

The corresponding marginal empirical characteristic functions are

ϕ̂1,N−h(u) =
1

N − h

N−h∑

j=1

exp
{

iu�Xj

}
,

ϕ̂1+h,N (v) =
1

N − h

N−h∑

j=1

exp
{

iv�Xj+h

}
.

The difference between the joint ch.f. and the product of the marginal ch.f.s is

D̂N,h(u, v) = Φ̂1,N−h(u, v) − ϕ̂1,N−h(u)ϕ̂1+h,N (v).

Based on the measure of dependence D̂N,h at lag h, Hlávka et al. (2021) intro-
duced the test statistic defined by

∆̂N,H =
H∑

h=1

(N − h)
∫

Rp

∫

Rp

|D̂N,h(u, v)|2w(u)w(v)dudv,

where w is a positive, integrable weight function. It is then proven that for
suitable constants γp, νp (recall that p is the number of the discrete points in
the interval (0, 1]),

∆̂N,H − Hνp√
Hγp

d→ N(0, 1), as H → ∞.

The above relation also holds with γp, νp replaced by suitable estimators γ̂p, ν̂p.
An analog of ∆̂N,H can be defined of continuously observed functions and an
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analogous asymptotic normality holds. For a fixed H, the null distribution of
∆̂N,H can be approximated by computing this statistic on all or a large number
of permutations of X1, X2, . . . XN . Intuitively, this approach is justified because
the functional observations are independent under H0-IID. The permutation
test produces much more accurate empirical sizes.

4.2. Tests of H0-WN

Recall the spectral density function defined in (2.11). The white noise testing
problem considered by Zhang (2016) is formulated as

H0 : ∀ ω ∈ [−π, π], fω(t, s) =
1

2π
γ0(t, s),

HA : ∃ ω ∈ [−π, π], fω(t, s) �= 1
2π

γ0(t, s).

The idea of the test is as follows. Under H0-WN, the spectral density function
does not change with ω, so its periodogram Pω, defined in (2.13), changes with
ω very little, in some random manner. Therefore, the differences

∫ πλ

0

RePω(t, s)dω − λ

∫ π

0

RePω(t, s)dω

will be small for all λ, so continuous functionals based on the above process
will have an asymptotic distribution under H0-WN. Zhang (2016) considers a
Cramér-von-Mises functional that is shown to be equal to the following tests
statistic

ZN =
N

8π2

N−1∑

h=1

h−2

∫∫
{γ̂h(t, s) + γ̂h(s, t)}2

dtds. (4.4)

Under the assumption of L4-m-approximability, see Hörmann and Kokoszka
(2010) or Chapter 16 of Horváth and Kokoszka (2012), the statistic ZN in (4.4)
has a limiting distribution that can be expressed as an integral of the square
of a Gaussian process. Like KRSN,H introduced by Kokoszka et al. (2017),
its asymptotic null distribution depends on the distribution and dependence
(GARCH-like dependence) of the uncorrelated observations. Zhang (2016) de-
velops a block bootstrap method for approximating the null distribution.

Under HA, N−1ZN converges in probability to a positive limit. These re-
sults are stated precisely as Theorems 2.1 and 2.2 in Zhang (2016). The form
of the limit under HA shows that the test can detect alternatives such that∫∫

{γ̂h(t, s) + γ̂h(s, t)}2
dtds > 0 for some h > 0.

Bagchi et al. (2018) also introduce a test of H0-WN that follows the approach
of Hong (1996). As Characiejus and Rice (2020), they compare the spectral
density operator of a functional process and the white noise density as shown
in (4.1). However, the main difference is that Bagchi et al. (2018) estimate the
distance D2 in (4.1) by sums of periodogram functions while Characiejus and
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Rice (2020) use a kernel lag–window estimator. Specifically, Bagchi et al. (2018)
consider

B2 =
1

2π
D2 =

∫ π

−π

∥∥Fω − (2π)−1Γ0

∥∥2

S
dω.

It is further shown that

B2 =
∫∫ ∫ π

−π

|fω(t, s)|2dωdtds − 1
2π

∫∫ ∣∣∣
∫ π

−π

fω(t, s)dω
∣∣∣
2

dtds.

To estimate B2, they employ the periodogram Pω defined in (2.13) and introduce
the statistic

B̂2
N = 2π

∫∫ (
SN,2(t, s) − SN,1(t, s)SN,1(t, s)

)
dtds,

where

SN,1 =
1
N

�N/2�∑

i=1

(Pωi
+ P̄ωi

), SN,2 =
2
N

�N/2�∑

i=2

(Pωi
P̄ωi−1

),

with ωi = 2πi/N for i = 1, . . . , �N/2�. The estimator is motivated by the
unbiased approximation EB̂2

N ≈ B2, which follows from

ESN,1(t, s) ≈ 1
2π

∫ π

−π

fω(t, s)dω, ESN,2(t, s) ≈ 1
2π

∫ π

−π

|fω(t, s)|2dω,

see Panaretos and Tavakoli (2013b). The asymptotic null distribution of B̂2
N is

normal, and the asymptotic variance can be obtained using the Pωi
.

5. Goodness-of-fit tests for functional time series models

In this section, we describe how some tests introduced above may be adapted
to evaluate the goodness-of-fit of several popular functional time series models.

5.1. Functional autoregressive models

A sequence {Xi, −∞ < i < ∞} of random variables in L2 with mean μ is said
to follow a functional autoregressive process of order 1 (FAR(1)) if

Xi(t) − μ(t) = Ψ(Xi−1 − μ)(t) + εi(t), i ∈ Z, (5.1)

where Ψ(X)(t) =
∫

ψ(t, s)X(s)ds for a kernel function ψ ∈ L2 ([0, 1] × [0, 1]),
and {εi} is a mean-zero, L2-valued white noise sequence with covariance op-
erator Γε,0. When

∥∥Ψj
∥∥

S
< 1 for some j ∈ N, there is a unique stationary

solution to (5.1) that takes the form of a functional linear process Xi(t) =
μ(t) +

∑∞
j=0 Ψj (εi−j) (t). To ease notation, in the following discussion, we as-

sume that μ(t) = 0. When implementing the techniques described below, we
always start with centering by the sample mean function.
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The white noise tests introduced above may be used to evaluate the goodness-
of-fit of model (5.1) to an observed functional time series by applying them to
model residuals. In order to estimate the model and calculate the residuals, it
is typical to employ dimension reduction techniques. Let

C̃−1(·) =
kN∑

j=1

〈v̂j , ·〉
λ̂j

v̂j ,

denote the Moore-Penrose inverse of Ĉ, where the empirical eigenvalues and
eigenfunctions (λ̂j , v̂j)1≤j≤kN

are defined in (2.5). Then a combination of func-
tional principal component analysis and a least-squares principle suggest esti-
mating Ψ with

Ψ̂N (·) = Γ̂1C̃−1(·) =
1
N

N∑

i=2

kN∑

j=1

〈v̂j , ·〉
λ̂j

〈Xi−1, v̂j〉Xi,

see e.g. Chapter 8 of Bosq (2000) for a detailed derivation of this estimator.
In order for Ψ̂N to be a consistent estimator of Ψ, one must take kN to be a
suitably increasing sequence, although in practice kN is typically selected using
the total variance explained approach, cross-validation, or information criteria.

The model residuals are then defined as

ε̂i(t) = Xi(t) − Ψ̂N (Xi−1)(t), i ∈ {2, ..., N}.

Zhang (2016) shows that if indeed the observations are drawn from a stationary
series following (5.1), then the test statistic

Z
(GF )
N =

N

8π2

N−1∑

h=1

h−2

∫∫
{γ̂ε̂,h(t, s) + γ̂ε̂,h(s, t)}2

dtds,

where

γ̂ε̂,h(u, v) =
1
N

N∑

t=1+h

ε̂t(u)ε̂t−h(v),

also converges in distribution to the squared norm of a Gaussian process. Impor-
tantly though, the covariance of this limiting Gaussian process does not coincide
with the limiting covariance when the observations evolve simply as a stationary
white noise sequence. The difference is attributable to the effect of estimating
the operator Ψ. Because of the complicated form of this limiting process, a
modified block bootstrap procedure to adjust for this effect was introduced in
Section 3.2 of Zhang (2016) to estimate the null distribution of Z

(GF )
N , which

may then be used to perform goodness-of-fit testing for the FAR model.
An analogous adjustment may be introduced to make the statistic KRSN,H

described in Section 3.2 applicable to testing the goodness-of-fit of the FAR(1)



136 M. Kim et al.

model. We define the corresponding statistic as

KRS(GF )
N,H = N

H∑

h=1

‖γ̂ε̂,h‖2.

It is shown in Section B that under the null hypothesis of FAR(1), KRS(GF )
N,H

d→
VH , where VH is a weighted sum of independent χ2

1 random variables, with com-
plicated weights reflecting the dependence structure of the FAR(1) model and
the effect of the estimation of the autoregressive operator Ψ. Using a suitable
Welch-Satterthwaite approximation, the distribution of VH can be effectively
approximated, as explained in Section B.2. Even though the theory underlying
the convergence KRS(GF )

N,H
d→ VH is complex, but comparable to the correspond-

ing theory of Zhang (2016), the advantage is that an analytic approximation
to the asymptotic null distribution can be derived, eliminating the need for the
bootstrap.

González-Manteiga et al. (2023) recently developed a goodness-of-fit test for
the FAR(1) model based on evaluating the condition E[Xi −Φ(Xi−1)|Xi−1] = 0
using random projections. This test is akin to the goodness-of-fit test for the
functional regression models developed in Cuesta-Albertos et al. (2019).

5.2. Functional linear models

A sequence of pairs of functional data {(Xi, Yi), −∞ < i < ∞} is said to follow
a functional linear model (FLM) if

Yi(t) = K(Xi)(t) + εi(t) =
∫

κ(t, s)Xi(s)ds + εi(t), (5.2)

where {εi, −∞ < i < ∞} is a mean-zero, L2-valued white noise sequence that is
uncorrelated (at all lags) with the covariate series {Xi, −∞ < i < ∞}, and κ ∈
L2 ([0, 1] × [0, 1]) is a kernel function. When the pairs of functions are observed
as a bivariate FTS, white noise tests can be applied to the model residuals in
order to evaluate the plausibility of the white noise error assumption. Given a
sample (X1, Y1), ..., (XN , YN ), a commonly used estimator of the operator K is
given by

K̂(·) =
1
N

N∑

i=1

kN∑

j=1

1

λ̂j

〈Xi, v̂j〉〈v̂j , ·〉Yi,

where we used the notation of Section 2.2. The derivation of K̂ is given, for
example, in Section 8.3 of Horváth and Kokoszka (2012). The model residuals
may then be computed as

ε̂i(t) = Yi(t) − K̂(Xi)(t), i ∈ {1, ..., N}. (5.3)

White noise tests applied to these residuals may then be based on the statis-
tics Z

(GF )
N and KRS(GF )

N,H . Interestingly, and in contrast to the FAR case, due
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to the assumption that the covariates Xi and errors εi are uncorrelated at all
lags, and under suitable additional moment and rate conditions on kN , both
these statistics have the same limiting distributions as if they were based on the
unobservable errors {εi, −∞ < i < ∞}. This justifies the practice of applying
each test to the residuals in (5.3) in the same way as described in Sections 3
and 4.

5.3. Tests for conditional heteroscedasticity and goodness-of-fit for

functional GARCH models

A pronounced property of many scalar economic and financial time series, or
model residuals, is that they are uncorrelated, but their squares or absolute
values are strongly correlated. Conditionally heteroscedastic models, especially
the GARCH models, have become popular tools, and extensive methodology and
theory are now available, see e.g. Francq and Zakoian (2010). There is a much
smaller body of research on functional conditionally heteroscedastic models. We
review in this section its aspects related to the focus of this paper.

The test introduced by Rice et al. (2020) is concerned with testing H0-IID,
but focuses on detecting conditional heteroscedasticity in functional observa-
tions. Conditional heteroscedasticity is defined by the conditions

E[Xi|Fi−1] = 0, Cov(X2
i (t), X2

i+h(s)) �= 0, in L2 sense for some h ≥ 1, (5.4)

where the filtration Fi is the sigma algebra generated by random functions
{Xj , j ≤ i}. The alternative hypotheses thus is

HA : the Xi satisfy (5.4).

A key feature of conditional heteroscedasticity is the presence of serial corre-
lation in the squared series, which motivates the following two test statistics:

ÛN,H = N

H∑

h=1

γ̂2
X2(h), KRS(CH)

N,H = N

H∑

h=1

‖γ̂X2,N,h‖2, (5.5)

where γ̂X2(h) is the sample autocorrelation of the squared norms, ‖X1‖2, . . . ,
‖XN ‖2, and

γ̂X2,N,h(t, s) =
1
N

N−h∑

i=1

(
X2

i (t) − μ̂X2,N (t)
) (

X2
i+h(s) − μ̂X2,N (s)

)

with μ̂X2,N denoting the sample mean of the functions X2
i . The statistic ÛN,H

is indeed Q̂BP in (3.1) applied to the squared norms, and KRS(CH)
N,H is the same

as the statistic in (3.2), but derived from the squared functions X2
i .

Rice et al. (2020) show that under H0-IID, ÛN,H converges in distribution to
the χ2

H distribution, whereas KRS(CH)
N,H converges to an infinite sum of χ2

1 ran-
dom variables with weights. The weights are products of certain eigenvalues that
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can be estimated. Under HA, it is proven that the N−1ÛN,H and N−1KRS(CH)
N,H

converge to positive constants.
Rice et al. (2020) further study tests to evaluate the fit of functional GARCH

models introduced in Hörmann et al. (2013), and further developed in Aue et
al. (2017) and Cerovecki et al. (2019). These models have the form Xi(t) =
σi(t)εi(t) with i.i.d. mean zero functions εi satisfying Eε2

i (t) = 1. The condi-
tional variance process σi(t) takes a GARCH(p, q) form:

fGARCH(p, q) : σ2
i (t) = ω(t) +

p∑

	=1

α	(X2
i−	) +

q∑

k=1

βk(σ2
i−k), (5.6)

where ω is a non-negative function in L2, and the α	’s and βk’s, are kernel-
integral operators with non-negative kernels. After estimating such a model,
one can compute the residuals as ε̂i(t) = Xi(t)/σ̂i(t). If the model is correct,
these residuals should be approximately i.i.d. with Eε̂2

i (t) ≈ 1. In case of the
statistic KRS(CH)

N,H , the autocovariances γ̂X2,N,h(t, s) are replaced by

γ̂ε2,N,h(t, s) =
1
N

N−h∑

i=1

(
ε̂2

i (t) − 1
) (

ε̂2
i+h(s) − 1

)
.

The asymptotic null distribution of KRS(CH)
N,H obtained from γ̂ε2,N,h depends

on model parameters and the method used to estimate them, but can still be
expressed as an infinite sum of independent χ2

1 random variables. These asymp-
totic results are known when functional principal component analysis as well as
least squares or Quasi-Maximum likelihood estimators are used to estimate the
operators in (5.6).

6. Numerical comparisons

The goal of this section is to compare the white noise tests described in Sections 3
and 4 by means of a comprehensive simulation study. Some of these tests have
been compared to each other in the papers cited above, but we would like to
present a more comprehensive and independent comparison. In Section 6.1, we
evaluate the empirical size and power of the tests, and in Section 6.2 we focus on
goodness-of-fit testing for FLM and FAR(1) models. An application study where
we investigate suitable models for Eurodollar futures curves is also provided in
Section 6.3. The numerical work presented in this section was performed using
R, R Development Core Team (2008). The code used to implement these tests
is collected in the R package wwntests.

6.1. White noise testing

We begin by briefly describing the tests that we compare, including the choice
of required tuning parameters.
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GKN,H is the test statistic introduced by Gabrys and Kokoszka (2007), and
its null distribution is developed under H0-IID. It is based on projec-
tions of functional observations onto the estimated FPCs defined in (2.5).
To choose the dimension of projections, we use the smallest p such that∑p

j=1 λ̂j/
∑N

j=1 λ̂j > 0.85. We consider implementations with the total
number of lags H = 1, 5, 20.

CRN,K is introduced by Characiejus and Rice (2020), assuming H0-IID. It
is constructed from the proximity of a kernel lag–window type estimator
to the white noise spectral density. We use the Bartlett (Bl) and Parzen
(Pz) kernels with bandwidths HN = N1/(2q+1), where q is the order of
the specific kernel, following Characiejus and Rice (2020).

KRSN,H is introduced by Kokoszka et al. (2017), assuming H0-WN. It is based
on the sum of the L2 norm of sample autocovariance functions up to lag
H. The total number of lags, H = 1, 5, 20, are considered.

ZN (b) is introduced by Zhang (2016), assuming H0-WN. This test statistic can
be viewed as a special case of CRN,K with a certain choice of kernel and
bandwidth, but ZN assumes a broader null than CRN,K . This test requires
bootstrap procedures with block size b and the number of resamples B to
approximate the null distribution of ZN . We use b ∈ {5, 10} and B = 299.

We thus compare four tests that reflect the dichotomies discussed in this
paper, as summarized in the following diagram:

H0-IID H0-WN
Time GKN,H KRSN,H

Frequency CRN,K ZN (b)

To investigate the empirical size and power of the tests, we consider the
following data generating processes (DGPs):

• IID-BM: the Xi are the i.i.d. standard Brownian motions (BMs) on [0, 1].
We generate their trajectories as rescaled cumulative sums of independent
normal variables.

• fGARCH(1, 1): recall (5.6). The Xi satisfy Xi(t) = σi(t)εi(t). The con-
ditional variance has the form

σ2
i (t) = δ(t) + α(X2

i−1)(t) + β(σ2
i−1)(t),

where δ = 0.01, and α, β : L2 → L2 are linear operators satisfying

(αx)(t) = (βx)(t) =
∫

12t(1 − t)s(1 − s)x(s)ds.

The εi are i.i.d. Ornstein-Uhlenbeck processes given by εi(t) = e−t/2Bi(et),
where the Bi are i.i.d. standard BMs. The particular settings for σi and
εi are from Cerovecki et al. (2021).

• FAR(1, S)–BM: recall (5.1). The Xi satisfy

Xi(t) =
∫

ψ(t, s)Xi−1(s)ds + εi(t),
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Table 6.1

Empirical sizes (in percent) based on 1000 replications for tests applied to series generated
from the DGP’s IID-BM and fGARCH(1,1).

DGP IID-BM fGARCH(1, 1)
N 100 250 100 250
Nominal level 5% 1% 5% 1% 5% 1% 5% 1%

GKN,1 4.7 0.6 4.8 0.5 15.3 6.2 19.8 9.5
GKN,5 3.5 0.1 4.2 1.2 16.4 8.4 25.8 13.0
GKN,20 2.2 0.3 3.5 0.6 6.9 3.5 15.0 8.0
CRN,Bl 6.0 1.1 6.2 1.2 18.4 7.9 27.8 15.9
CRN,P z 5.9 1.1 4.9 1.1 16.1 6.9 21.1 11.0
KRSN,1 5.4 1.5 5.6 1.7 3.0 0.2 5.4 1.1
KRSN,5 4.9 1.1 4.0 1.0 3.2 0.6 4.8 0.8
KRSN,20 6.1 2.0 5.9 1.4 4.0 1.1 5.6 1.4
ZN (5) 7.0 1.7 6.0 1.2 3.6 0.3 5.1 1.1
ZN (10) 6.0 1.6 5.0 1.9 5.5 0.8 5.4 0.9

where the εi follow IID-BM. The Gaussian kernel ψ(t, s) = c exp{−(t2 +
s2)/2} is assumed with the choice of c such that ‖ψ‖ = S. For S, we
consider S = 0.1, 0.3, 0.5, 0.7.

• FAR(1, S)–fGARCH: the Xi follow the same process as FAR(1, S)–BM,
except for the innovations εi following the fGARCH(1, 1).

• FMA(5, S)–BM: the Xi satisfy

Xi(t) =
∫

ψ(t, s)εi−5(s)ds + εi(t), (6.1)

where the εi follow IID-BM and ψ is the Gaussian kernel. For the norm
of the kernel, we consider S = 0.1, 0.3, 0.5, 0.7.

Note that IID-BM satisfies both H0-IID and H0-WN. The fGARCH(1, 1)
model satisfies H0-WN, but not H0-IID. The FAR and FMA models with ‖ψ‖ >
0 violate both H0-WN and H0-IID. All DGPs simulate functional observations
on a grid of 100 equally–spaced points on the unit interval [0, 1], and we discard
a burn–in period of the first 50 curves for all DGPs. Each process is generated
by 1000 replications with the sample sizes N = 100 and N = 250.

To assess the empirical size of the tests, we consider IID–BM and fGARCH(1,
1). Table 6.1 reports the empirical rejection rates from tests of GKN,H , CRN,K ,
KRSN,H , and ZN (b) at nominal levels of 5% and 1%. To investigate the empirical
power, we apply those tests to data generated from FAR(1, S)–BM, FAR(1,
S)–fGARCH, and FMA(5, S)–BM. The empirical power as a function of the level
of serial dependence, measured by S, of the kernel is presented in Figure 6.1.
Since the rejection rates from FAR(1, S)–BM are almost identical over the tests
and uniformly higher than the rates from FAR(1, S)–fGARCH, we only report
the results from FAR(1, S)–fGARCH and FMA(5, S)–BM. The conclusions from
Table 6.1 and Figure 6.1 can be summarized as follows:

1. All tests perform well under IID–BM. In terms of power, all methods ex-
hibit increasing power as a function of the strength of the serial dependence
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Fig 6.1. Empirical power in percent (y-axis) for increasing values of the norm S (proxy
of correlation) (x-axis), for FAR(1, S)-fGARCH (upper plots) and FMA(5, S)-BM (lower
plots); N = 100 (left), N = 250 (right); significance level = 5%.

in the series, measured by S, as well as with the sample size N .
2. The tests based on GKN,H and CRN,K achieve good size when the errors

are i.i.d., but they over-reject severely under the fGARCH errors.
3. The tests based on ZN (b) and KRSN,H exhibited close to nominal empir-

ical size for i.i.d. as well as weak white noise sequences.
4. The CRN,K and ZN (b) tests share a common feature in that decreasing

weights are applied to the norms of the autocovariance kernels when cal-
culating the test statistics. This appears to manifest itself in that these
tests have strong power against autocorrelation occurring in the sequence
at small lags, e.g. the FAR(1, S)–fGARCH case (top plots in Figure 6.1),
but they do not consistently detect serial correlation that occurs only at
longer lags, e.g. the FMA(5, S)–BM case (bottom plots in Figure 6.1). We
see here that although in practice each of these statistics are consistent
against autocorrelation occurring in the FTS at any lag, the weights em-
ployed in computing CRN,K and ZN (b) decrease quickly enough so that
by lag 5 even rather strong autocorrelation in the series is not reliably
detected.

5. In terms of computational time, the tests based on GKN,H , CRN,K and
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KRSN,H , which use explicit approximations of their null limiting distri-
butions, run quickly, with the computational bottleneck lying in comput-
ing and integrating high-dimensional covariance kernels. Implementing the
test based on ZN (b) takes somewhat more time, since it relies on a block
bootstrap. For example, computing the p-values of each test on a single
sample of size N = 250 took 3.72s for GKN,5, 1.16s for CRN,Bl, 4.92s for
KRSN,5, and 32.32s for ZN (10), using a 2.3 GHz Intel dual-core processor
running a Windows 64 bit implementation of R.

In conclusion, our numerical comparisons suggest that the test based on
KRSN,H should be used as a default and benchmark. It demonstrated nearly
nominal empirical size in all examples considered, both for i.i.d. and weak white
noise sequences, competitive power, and is easy and quick to compute. More-
over, the fact that it gives equal weight to each autocovariance considered makes
it somewhat more transparent and easier to interpret. Although KRSN,H comes
with a theoretical drawback that the statistic is not asymptotically powerful
against autocorrelation occurring in the FTS at any lag, we have seen in prac-
tice that the spectral based tests, which do have this property, are often not
powerful with typical choices of the tuning parameters to detect strong auto-
correlation occurring at modest lags with even large sample sizes. We think a
reasonable default choice for H is to take H = 10 or 20, since the approximation
methods used to estimate the null distribution of KRSN,H appear to work well
for these choices, among the sample sizes we have considered (N ≥ 100).

6.2. Simulation study of goodness-of-fit tests

We now turn our attention to the application of the tests based on KRSN,H and
ZN (b) to evaluate the goodness-of-fit of FLM and FAR(1) models, as discussed in
Section 5. We focus only on these two tests because they work well when applied
directly to functional observations, we want to consider non-i.i.d. errors, and
finally keep the numerical study reasonably compact. The tests are constructed
as follows: if the residuals satisfy H0-WN, the model is declared to fit well.

First, we assessed the empirical size and power of the goodness-of-fit tests for
the FAR(1) model by considering the following DGPs:

• FAR(1)–BM: recall (5.1). The Xi follow

Xi(t) =
∫

ψ(t, s)Xi−1(s)ds + εi(t),

where εi follows IID-BM DGP in Section 6.1, and ψ is taken to be the
Gaussian kernel ψ(t, s) = c exp{−(t2+s2)/2}, or the Wiener kernel ψ(t, s) =
c min(t, s), with the choice of c such that ‖ψ‖ = S, with S = 0.5, 0.8.

• FAR(1)–fGARCH: the data are generated from the same process as
FAR(1)–BM, except that the innovations εi follow the fGARCH(1, 1) of
Section 6.1.
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• FAR(2, S): the Xi follow

Xi(t) =
∫

ψ1(t, s)Xi−1(s)ds +
∫

ψ2(t, s)Xi−2(s)ds + εi(t),

where ψ1 and ψ2 are the Gaussian kernel with ‖ψ1‖ = 0.5 and ‖ψ2‖ = S,
and S = 0.1, 0.3, 0.5, 0.7. The εi follow IID–BM.

• FAR(1)–FMA(5, S): the Xi satisfy

Xi(t) =
∫

ψ1(t, s)Xi−1(s)ds +
∫

ψ2(t, s)εi−5(s)ds + εi(t),

where ψ1 and ψ2 are the Gaussian kernel with ‖ψ1‖ = 0.5 and ‖ψ2‖ = S,
and S = 0.1, 0.3, 0.5, 0.7. The εi follow IID–BM.

We note both the DGPs FAR(1)–BM and FAR(1)–fGARCH are FAR models as
in (5.1), whereas the DGPs FAR(2, S) and FAR(1)–FMA(5, S) are not FAR(1)
processes. In implementing the estimation of the FAR(1) kernel, the dimen-
sion reduction parameter kN is chosen to be the smallest number that satisfies∑kN

j=1 λ̂j/
∑N

j=1 λ̂j > 0.90.

Table 6.2

Empirical sizes (in percent) based on 1000 replications. The tests KRS
(GF )
N,H , Z

(GF )
N (b) are

applied to evaluate the goodness-of-fit of an FAR(1) model with the Wiener kernel.

DGP FAR(1)–BM FAR(1)–fGARCH
S N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%
0.5 KRSN,1 5.4 1.9 5.0 1.9 5.8 2.0 6.7 1.5

KRSN,5 4.9 1.1 4.6 1.7 3.0 0.7 4.8 0.8
KRSN,20 6.6 1.0 5.6 1.3 5.3 1.4 4.9 1.3
ZN (b = 10) 5.2 1.3 6.4 1.2 4.7 0.9 4.1 0.3

0.8 KRSN,1 5.5 1.6 5.9 1.3 6.4 1.3 6.3 1.2
KRSN,5 4.8 0.9 5.4 1.7 3.6 0.7 4.7 1.0
KRSN,20 5.6 1.7 5.8 1.2 4.7 1.8 5.2 1.4
ZN (b = 10) 6.1 2.0 5.4 1.4 4.5 0.7 3.4 0.8

Empirical sizes are given in Table 6.2 for the Wiener kernel, and sizes for
the Gaussian kernel are given in Table C.1 of Appendix C. Power curves as
a function of S are displayed in Figure 6.2. We see that both tests have well-
controlled size; the empirical power is increasing with N . Similarly as reported
in Section 6.1, KRS(GF )

N,5 performs similarly well for both alternatives, whereas

Z
(GF )
N (10) performs worse for the FAR(1)–FMA(5, S) process.
To assess goodness-of-fit of the functional linear model, we consider the fol-

lowing examples:

• FLM–BM: recall (5.2). The Yi is defined by

Yi(t) =
∫

κ(t, s)Xi(s)ds + εi(t),
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Fig 6.2. Empirical power in percent (y-axis) for increasing values of the norm S, of the
Gaussian kernel (x-axis) for FAR(2, S) (left) and FAR(1)–FMA(5, S) (right); significance
level = 5%; N = 100, 250.

Table 6.3

Empirical sizes (in percent) based on 1000 replications. The tests KRS
(GF )
N,H , Z

(GF )
N (b) are

applied to evaluate the goodness-of-fit of an FLM model with the Wiener kernel.

DGP FLM–BM FLM–fGARCH
S N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%
0.5 KRSN,1 4.4 0.7 5.0 1.1 4.9 0.5 3.8 0.3

KRSN,5 4.7 1.2 4.9 1.3 3.9 0.4 2.9 0.6
KRSN,20 5.9 1.4 5.6 1.6 5.9 1.5 3.7 1.1
ZN (10) 5.6 1.7 5.2 1.3 6.2 1.7 4.1 0.5

0.8 KRSN,1 5.0 1.5 5.2 1.7 5.3 0.9 5.2 1.3
KRSN,5 4.9 1.2 4.6 1.6 4.1 1.2 3.7 1.0
KRSN,20 7.3 2.7 6.7 2.1 5.2 1.8 5.2 1.7
ZN (10) 7.0 2.4 6.3 1.5 7.2 1.2 4.5 1.2

where the pairs (Xi, εi) are i.i.d., and the εi are independent of the Xi.
The Xi are generated as Xi(t) = it, and the εi are generated from the
IID-BM DGP of Section 6.1. For the regression kernel κ, we consider
the Gaussian kernel κ(t, s) = c exp{−(t2 + s2)/2} and the Wiener kernel
κ(t, s) = c min(t, s) with the choice of c such that ‖κ‖ = S, with S =
0.5, 0.8.

• FLM–fGARCH: the data are generated from the same process as FLM–
BM, except that the innovations εi follow the fGARCH(1, 1) of Section 6.1.

• FLM–FAR(1, S): the data are generated from (5.2) with Xi(t) = it and
the Gaussian kernel such that ‖κ‖ = 0.5. The εi follow the FAR(1, S)–BM
DGP of Section 6.1, with S = 0.1, 0.3, 0.5, 0.7.

Table 6.3 reports empirical sizes of the goodness-of-fit tests based on KRS(GF )
N,H
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Fig 6.3. Empirical power in percent (y-axis) for increasing values of the norm S of the
Gaussian kernel (x-axis) for FLM–FAR(1, S); significance level = 5%; N = 100, 250.

and Z
(GF )
N (b) for FLM–BM and FLM–fGARCH generated with the Wiener ker-

nel. The sizes for the Gaussian kernel are presented in Table C.2 of Appendix C.
Both tests exhibit accurate sizes, even for N = 100, and for both values of S.
To investigate empirical power, we examine the rejection rates of the residuals
obtained by fitting an FLM to data generated from FLM–FAR(1, S). The result
is reported in Figure 6.3. We observed similar performance in this case as when
these tests were applied to FAR models.

6.3. Application to Eurodollar futures contract curves

In this section, we illustrate the practical application of several of the tests
discussed in previous sections by considering daily Eurodollar futures curves. A
Eurodollar futures contract represents an obligation to deliver 1,000,000 USD to
a bank outside of the United States at a specified time. The Eurodollar futures
curves consist of daily settlement prices of such a contract, which are available
at monthly delivery dates for the first six months, and quarterly delivery dates
for up to 10 years into the future. The sample considered in this study consists of
10 years of daily Eurodollar futures curves taken from 1994 to 2003. The curves
are preprocessed using cubic-splines, following Kargin and Onatski (2008), so
that the raw data can be transformed into smooth curves on a grid of 114
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equally–spaced points. Denote by Xi(t) the smoothed futures curve on day i =
1, . . . 2486, where t = 1, . . . , 114. We divide the curves into yearly series, so that
we consider 10 yearly samples of functional time series, each of which consists
of approximately 250 curves. A plot of the curves Xi from 2003 is displayed on
the upper left of Figure 6.4.

Analyses of Eurodollar futures curves have been conducted in several pa-
pers. Kargin and Onatski (2008) argued that the curves can be modeled and
forecasted using an FAR(1) model, which is also supported by the model iden-
tification procedures introduced by Mestre et al. (2021). Another approach to
the analysis of the Eurodollar future curves is to assume that such curves fol-
low random walk models. A study in this direction is done by Characiejus and
Rice (2020), where frequency domain tests are applied to the first differences
Yi = Xi − Xi−1. The tests supported the claim that the Yi evolve as a white
noise. In this section, we explore both approaches using the white noise and
goodness-of-fit tests discussed throughout the paper. All results of these tests
are displayed in terms of p-values in Table 6.4.

We first examined whether the curves Xi appeared to exhibit autocorrelation.
For this, the tests based on GKN,H , CRN,K , KRSN,H , and ZN (b) discussed in
Section 6.1 were employed. All tests reject the i.i.d. and white noise hypotheses;
the p–values from the tests are all zero in each year (this is omitted from Ta-
ble 6.4 to save space). As can be seen in the upper left hand panel of Figure 6.4,
the raw series exhibit strong (stochastic) trends, which leads to large in norm
autocovariance kernel estimators; see the fACF plot in the upper right panel of
Figure 6.4.

In order to model the evident serial dependence in the series, Kargin and
Onatski (2008) suggest fitting an FAR(1) model. In order to evaluate whether
the residuals of such a model fit to this data are plausibly white noise, we applied
the goodness-of-fit tests KRS(GF )

N,H , H ∈ {1, 5, 20}, and Z
(GF )
N (b) discussed in

Section 6.2. Each of these tests provided strong evidence that the residuals of
an FAR(1) model fit still contain substantial autocorrelation, suggesting that
the FAR models do not fit this data well; see the top panel of Table 6.4.

Given the strong and fluctuating trends evident in the raw series, we also
explored whether the series instead appear to evolve as a random walk with
potentially conditionally heteroscedastic functional innovations. Let Yi(t) =
Xi(t) − Xi−1(t) be the first differenced Eurodollar futures curves. The second
panel of Table 6.4 reports the p–values from the tests GKN,H , CRN,K , KRSN,H ,
and ZN (b) in Section 6.1 applied to the Yi each year. The p-values observed here
appeared more uniformly distributed, suggesting that the white noise hypoth-
esis is more plausible for these curves. Evidently though there are some years
where strong autocorrelation is observed in the differenced curves that cannot
be accounted for by allowing for conditional heteroscedasticity in the series, as
seen by the results of the KRSN,H and ZN (b) tests.

By applying the same tests to the squared differences, Y 2
i , see the third

panel of Table 6.4, we observed that for most series the p-values of the same
white noise tests decreased, which suggests the presence of some conditional
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Table 6.4

The p–values of suitable tests applied to curves derived from the Eurodollar curves Xi. The
curves and/or the tests are specified in the top row of each panel.

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

goodness-of-fit of FAR(1) applied to Xi

KRS
(GF )
N,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KRS
(GF )
N,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KRS
(GF )
N,20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z
(GF )
N (10) 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00

first difference curves Yi = Xi − Xi−1

GKN,1 0.76 0.13 0.25 0.40 0.00 0.02 0.02 0.08 0.18 0.43
GKN,5 0.49 0.02 0.50 0.57 0.00 0.00 0.10 0.19 0.27 0.95
GKN,20 0.42 0.03 0.58 0.25 0.00 0.08 0.17 0.14 0.53 0.99
CRN,Bl 0.69 0.08 0.48 0.53 0.00 0.00 0.02 0.07 0.15 0.67
CRN,P z 0.71 0.11 0.28 0.44 0.00 0.01 0.01 0.06 0.15 0.33
KRSN,1 0.74 0.07 0.23 0.31 0.06 0.02 0.03 0.14 0.17 0.28
KRSN,5 0.61 0.03 0.50 0.52 0.01 0.01 0.19 0.25 0.22 0.91
KRSN,20 0.63 0.05 0.62 0.17 0.00 0.12 0.22 0.18 0.52 0.99
ZN (10) 0.61 0.08 0.10 0.25 0.12 0.02 0.06 0.11 0.25 0.40

squared first difference curves Y 2
i

GKN,1 0.11 0.55 0.75 0.14 0.00 0.44 0.04 0.00 0.59 0.33
GKN,5 0.05 0.07 0.42 0.32 0.00 0.22 0.10 0.00 0.03 0.11
GKN,20 0.02 0.12 0.01 0.78 0.00 0.43 0.16 0.00 0.01 0.01

CRN,Bl 0.01 0.08 0.94 0.31 0.00 0.51 0.12 0.00 0.28 0.40
CRN,P z 0.10 0.64 0.83 0.18 0.00 0.53 0.06 0.00 0.39 0.43

KRS
(CH)
N,1 0.11 0.68 0.83 0.18 0.00 0.52 0.06 0.00 0.39 0.43

KRS
(CH)
N,5 0.03 0.05 0.45 0.38 0.00 0.20 0.14 0.00 0.03 0.09

KRS
(CH)
N,20 0.01 0.12 0.00 0.85 0.00 0.38 0.31 0.00 0.02 0.00

goodness-of-fit of fGARCH(1, 1) model applied to Yi

KRS
(GF )
N,1 0.17 0.05 1.00 1.00 1.00 0.50 0.54 0.50 0.01 0.98

KRS
(GF )
N,5 0.30 1.00 0.29 1.00 1.00 1.00 0.00 0.26 0.02 0.60

KRS
(GF )
N,10 0.60 0.82 0.93 0.83 0.99 0.35 0.00 1.00 0.38 0.00

heteroscedasticity in the differenced series. We therefore fit an fGARCH(1, 1)
model to the differenced curves Yi in each year, and checked the goodness-of-fit
of these models using the statistic KRSN,H . The results of this are presented
in the last panel of Table 6.4. These generally suggested that the residuals of
the fGARCH(1, 1) model applied to Yi behave like white noise, supporting the
adequacy of the model.

In conclusion, this analysis suggests that 1) FAR(1) models do not fit the
Eurodollor futures curves well, and 2) a functional random walk model,

Xi(t) = μ(t) +
i∑

j=0

εj(t),

where the innovations εj evolve as a functional GARCH process cannot be
rejected as an adequate model.
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Fig 6.4. 3D Rainbow plot of the daily Eurodollar futures curves Xi in 2003, with earlier
curves in red and later curves in violet (upper left). The fACF plots (see (2.10)) of the raw
Xi (upper right), of the differenced curves Yi = Xi − Xi−1 (lower left), and of the squared
differenced curves Y 2

i (lower right). The blue dotted (red solid) line is the white noise (i.i.d.)
95% critical bound for the fACF.

7. Directions for future work

It remains an open problem how to extend several existing spectral based tests,
such as in Characiejus and Rice (2020), to general, uncorrelated functional data,
as well as to applications in goodness-of-fit in FTS models. An important refer-
ence that tackles this problem for univariate time series is Shao (2011), and the
results in van Delft (2020) appear applicable to establish the limiting distribu-
tion of some test statistics in this class. A common problem encountered in ap-
plying white noise tests to FTS in practice is their sensitivity to outlying curves.
This introduces a much larger, and largely unexplored to the knowledge of the
authors, problem of developing robust methods for measuring serial dependence
and performing model diagnostic checking for FTS. Recent preprints in this di-
rection include Xin and Shang (2023) and Yeh et al. (2023). An emerging area
in recent years is, potentially high-dimensional, vector valued FTS. White noise
tests as well as diagnostic model checks for such data have not been developed
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to our knowledge. See Chang et al. (2023), Guo and Qiao (2023), and Yuan et
al. (2019) for some work in this direction.

Appendix A: Other diagnostics

In the analysis of scalar time series and regression, many diagnostics beyond
white noise tests are applied. Perhaps the most prominent are normal QQ-plots
of residuals because normality of the errors is needed to justify various F and t
tests as well as prediction confidence bands. In section A.1, we review normality
tests in the context of functional data. In Section A.2, we briefly discuss, chiefly
by providing suitable references, other diagnostic procedures, like change-point
and periodicity tests. Obviously, a FTS that exhibits such characteristics cannot
be white noise. We also briefly mention a few goodness-of-fit tests beyond those
investigated in Section 6.2.

A.1. Tests of normality

Verification of the normality of residuals of ARIMA and other models for scalar
time series is an integral part of diagnostic checks, see e.g. Section 3.7 of Shumway
and Stoffer (2017). Normality is chiefly needed to validate prediction confidence
intervals produced by various methods. Standard outputs include normal QQ-
plots and P-values of several normality tests applicable to i.i.d. scalar observa-
tions.

Tests of normality of functional data are studied in Górecki et al. (2018)
and Górecki et al. (2020). Górecki et al. (2018) propose several normality tests
applicable to functional time series, and the observed functions need not be in-
dependent. The starting point of these tests is the most commonly used Jarque-
Bera test for i.i.d. scalar observations, Jarque and Bera (1980), and its extension
to regression residuals, Jarque and Bera (1987). The idea is that standardized
normal observations have approximately skewness 0 and fourth moment 3. De-
noting by τ̂ the sample skewness and by κ̂ the sample fourth moment, a direct
by lengthy calculation shows that

JBN := N

(
τ̂2

6
+

(κ̂ − 3)2

24

)
d→ χ2(2).

The standard Jarque-Bera test uses the above convergence and the quantiles of
the limit chi-square distribution with two degrees of freedom.

In the functional setting, the null hypothesis is that the realization X1, X2, . . . ,
XN is generated by a functional Gaussian process. By definition, {Xj}, Xj ∈ L2,
is Gaussian if for any d, any indexes i1, i2, . . . , id and any functions φ1, φ2, . . . ,
φd ∈ L2, the vector

[〈Xi1
, φ1〉 , 〈Xi2

, φ2〉 , . . . , 〈Xid
, φd〉]�

is normal in R
d. Thus normality implies that the population scores ξij in (2.4)

must be normal. If the Xj are independent, the sets of scores ξij and ξi′j′ are
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independent if i �= i′. For a fixed i, the ξij are uncorrelated across j, hence
independent under normality. Combining these observations, it is easy to show
that for any p,

JB(p)
N := N

p∑

j=1

(
τ̂2

j

6
+

(κ̂j − 3)2

24

)
d→ χ2(2p), (A.1)

where τ̂j and κ̂j are, respectively, the sample skewness and kurtosis of the
pseudo-observations

ξ1,j , ξ2,j , . . . , ξN,j . Convergence (A.1) leads to a simple and effective test to
validate if a sequence of i.i.d. functions is normal.

More complex test statistics are needed if the Xi are not white noise. Ac-
cording to the simulations in Górecki et al. (2018), if the Xi exhibit temporal
dependence, the best test is based on their statistics (2.13) that combines the
methodology of Lobato and Velasco (2004) and Hörmann et al. (2015). The dy-
namic functional principal components of Hörmann et al. (2015) and Panaretos
and Tavakoli (2013a) decorrelate functional time series more completely than
the traditional FPCs introduced in Section 2.2, and so lead to good normality
tests. This decomposition was extended by Kuenzer et al. (2021) to a spatial
setting. The functional data have the form X(si), where the si are locations on
a regular spatial grid. For example, X(si; t) can be Sea Surface Temperature at
location si in month t. Using this extension, Hörmann et al. (2021) developed
a normality test for functional data with spatial dependence.

Normality tests that go beyond the skewness-kurtosis paradigm of Jarque
and Bera are considered in Górecki et al. (2020). The authors consider many
multivariate normality tests and apply them to the scores computed from func-
tional samples or from the residuals of a functional linear model. In the first
scenario, the tests are applied under the assumption that the functions in a
sample are i.i.d., in the second scenario under the assumption that the linear
model is valid and has i.i.d. errors. It turns out that the best tests are actually
those based on skewness and kurtosis, which have to be suitably defined in the
multivariate setting. Górecki et al. (2020) examine the normality of many data
sets extensively used in FDA research. To illustrate, the well–known male/fe-
male growth curves considered in Ramsay and Silverman (2005) can be assumed
normal in L2, but the tecator curves (fat, water and protein content of meat
samples) are definitely not normally distributed. Another interesting finding is
that fractional anisotropy tract profiles are normal in the control group, but not
normal in the MS group.

A.2. Change-point, periodicity and other goodness-of-fit tests

From the point of view of the theory of time series, the most obvious depar-
ture from stationarity, and hence from the white noise assumption, is a change
point. If data structures of any form are sequentially collected, we say that there
is a change point if starting from a certain point the random structure of the
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data changes in some way. Thus, there is a change point k
 in the sequence
X1, X2, . . . , XN of functions if the distribution in L2 of X1, . . . , Xk� is different
from the distribution of Xk�+1, . . . , XN . In change point analysis, the change
point k
 is unknown and at least some characteristics of the distribution before
and after the change point are unknown. In the context of FDA, the simplest
form of change is the change in the mean function. Under the null hypothe-
sis, EXi(t) = μ(t) for some unknown function μ ∈ L2. Under the alternative
hypothesis, EXi(t) = μ1(t) for i ≤ k
 and EXi(t) = μ2(t) for i > k
. The
functions μ1 and μ2 are unknown. In an analogous way, one can define a change
point in the covariance function or other aspects of the distribution. An intro-
duction to such tests in given in Chapter 6 of Horváth and Kokoszka (2012),
with a change point detection in the FAR(1) model studied in Chapter 14. A
comprehensive review of change point analysis that contains recent results re-
lated to functional data is given in Horváth and Rice (2014). A recent work that
also discusses references to research on multiple change points is Chiou et al.
(2019). Other tests of stationarity for FTS are studied in Horváth et al. (2014)
and Aue and van Delft (2020).

Periodicity is another obvious departure from the white noise assumption,
and also from stationarity. In the context of FTS, Hörmann et al. (2018) pro-
vide several tests of periodicity assuming that the potential period is known.
For example, daily pollution curves will exhibit weekly and annual periodicity.
If some method is applied to remove periodicity, one should test if the desea-
sonalized FTS is still periodic. Tests of Hörmann et al. (2018) would be useful
in such contexts. Such problems have been investigated for a long time in the
context of scalar time series, see McElroy and Roy (2022) for a review. Cerovecki
et al. (2021) solve a different problem. Given a FTS, how can we test if it has
an unknown period? In the analysis of scalar time series, such tests are based
on the maximum of the periodogram. Cerovecki et al. (2021) develop analogous
tests and the requisite theory in the functional and multivariate contexts.

We now discuss several papers related to the goodness-of-fit tests discussed in
Section 6.2. Gabrys et al. (2010) derive two types of tests for the correlation of
errors εi in the FLM (5.2). Kokoszka et al. (2008) develop a simple test for the
significance of the kernel ψ(·, ·) in (5.2), which is also discussed in Chapter 9 of
Horváth and Kokoszka (2012). A general goodness-of-fit test of the FLM (5.2)
is developed in García-Portugués et al. (2021), and other inferential procedures
in this direction can be also found in Lee et al. (2020) and Patilea and Sánchez-
Sellero (2020). Horváth et al. (2022) study goodness-of-fit testing in a general
functional factor model of the form

Xi(t) =
K∑

	=1

bi,	,0f (N)�(t; λ) + εi(t),

where the functions f (N)� are known up to an unknown parameter vector λ.
Such models are routinely used in finance.
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Appendix B: A time domain test of goodness-of-fit of functional
AR(1) model

B.1. Assumptions and asymptotic theory

We consider functional observations X1, ..., XN drawn from a stationary FAR(1)
model

Xi(t) − μ(t) = Ψ(Xi−1 − μ)(t) + εi(t), i ∈ Z,

where Ψ(X)(t) =
∫

ψ(t, s)X(s)ds for a kernel function ψ ∈ L2 ([0, 1] × [0, 1]),
and {εi, −∞ < i < ∞} a mean-zero, L2-valued white noise sequence with
covariance operator Γε,0. We assume going forward without loss of generality
that μ = 0. For a non-decreasing integer sequence kN → ∞, put

C̃−1(·) =
kN∑

j=1

〈v̂j , ·〉
λ̂j

v̂j

and

Ψ̂N (·) = Γ̂1C̃−1(·) =
1
N

N∑

i=2

kN∑

j=1

〈v̂j , ·〉
λ̂j

〈Xi−1, v̂j〉Xi.

Let
ε̂i(t) = Xi(t) − Ψ̂N (Xi−1)(t), i ∈ {2, ..., N}

and

γ̂ε̂,h(u, v) =
1
N

N∑

t=1+h

ε̂t(u)ε̂t−h(v).

The weak convergence of γ̂ε̂,h can be established under the following assump-
tions:

Assumption B.1. ‖Ψ‖ < 1

Assumption B.2. ‖Ψ̂N − Ψ‖ = oP (N−1/4).

Assumption B.3. {εi, −∞ < i < ∞} are i.i.d., with Eεi = 0, E‖εi‖4 < ∞.

Below we let

πk(·) =
k∑

i=1

〈·, vi〉vi

denote the projection operator on the closed linear span of the first k FPC’s,
and

C−1πk(·) =
k∑

i=1

〈·, vi〉
λi

vi,

denote the Moore-Penrose inverse of C.
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Assumption B.4. The array of scalars

ξm,N =
∞∑

	=1

‖C1/2Ψm+1
∗ C−1πkN

Ψh−1Γε,0(v	)‖2,

satisfies

∞∑

m=1

sup
N≥1

ξm,N < ∞.

Assumption B.1 implies that a stationary, causal solution Xi to the FAR(1)
equation exists, which takes the form of a linear process

Xi(t) = μ(t) +
∞∑

j=0

Ψj (εi−j) (t); (B.1)

see Bosq (2000) (or Section 8.8 of Kokoszka and Reimherr (2017)). Assump-
tion B.2 coincides with the conclusion of Lemma 3.2 of Zhang (2016), and holds
for the estimator ΨN under decay rate conditions on the eigenvalues of C in (2.3)
and for corresponding rates of increase on the parameter kN ; see Assumption
3.6 of Zhang (2016).

Assumption B.4 is used in order to show that the variables ε̂t(u)ε̂t−h(v)
are well approximated with a uniformly L2-m-approximable triangular array
as discussed in Section B.3. This property is not addressed in detail in Zhang
(2016). We note that if the operators Ψ∗ and C commute, then some simple
arithmetic using Parseval’s identity and the fact that {vj}j≥1 are orthonormal
gives that

ξm,N =
∞∑

	=1

‖Ψm+1
∗ C1/2C−1πkN

Ψh−1Γε,0(v	)‖2

≤ ‖Ψ‖2m+2
∞∑

	=1

∥∥∥∥∥∥

kN∑

j=1

〈Ψh−1Γε,0(v	), vj〉
λ

1/2
j

vj

∥∥∥∥∥∥

2

= ‖Ψ‖2m+2
∞∑

	=1

kN∑

j=1

〈v	, Γε,0Ψh−1
∗ (vj)〉2

λj

= ‖Ψ‖2m+2
kN∑

j=1

‖Γε,0Ψh−1
∗ (vj)‖2

λj

≤ ‖Ψ‖2m+2‖C−1/2Ψh−1Γ2
ε,0Ψh−1

∗ C−1/2‖1,

where ‖ · ‖1 denotes the trace norm. Hence, in this case, Assumption B.4 holds
in light of Assumption B.1 with supN≥1 ξm,N decreasing to zero geometrically,
so long as

‖C−1/2Ψh−1Γ2
ε,0Ψh−1

∗ C−1/2‖1 < ∞. (B.2)
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Condition (B.2) coincides with the assumption of Proposition 3.1 in equation
(29) of Zhang (2016). In the absence of commutativity of Ψ and C, it is unclear
what conditions are needed in addition to (B.2) in order for Assumption B.4 to
hold. We also note that Assumption B.4 implies that for each 1 ≤ i, j ≤ H, the
kernels

ci,j(u, v, u′, v′)=Cov
(

εt(u)εt−i(v)−εt(u)f (N)
t,i (v), εt(u′)εt−j(v′)−εt(u′)f (N)

t,j (v′)
)

(B.3)

where
f

(N)
t,i (v) = Γε,0Ψi−1

∗ C−1πkN
(Xt−1)(v).

The function ft,i characterizes the effect of the estimation of Ψ has on the
distribution of the residual autocovariances.

Theorem B.1. Under Assumptions B.1–B.4, then jointly for h ∈ {1, ..., H},

√
Nγ̂ε̂,h(u, v) :=

1√
N

N∑

t=1+h

ε̂t(u)ε̂t−h(v) d→ Gh(u, v), (B.4)

where Gh(u, v), h ∈ {1, ..., H} are mean-zero jointly Gaussian process in
L2([0, 1]2), with cross-covariance kernels E[Gi(u, v)Gj(u′, v′)] = ci,j(u, v, u′, v′),
where the ci,j are defined in (B.3).

Corollary B.1. Under the assumptions of Theorem B.1,

KRS(GF )
N,H := N

H∑

h=1

‖γ̂ε̂,h‖2 d→ VH ,

where VH is a weighted sum of independent χ2
1 random variables, with the

weights determined by the kernels in (B.3).

Theorem B.1 is proven in Section B.4 following the formulation and a proof
of a required CLT for triangular arrays of functions in Section B.3. We first
explain in Section B.2 how to approximate the distribution of the limit VH in
Corollary B.1

B.2. Approximation of the limit VH in Corollary B.1

The function ci,j may be estimated by

ĉi,j(u, v, u′, v′) (B.5)

=
1
N

N∑

k=1+max{i,j}

(ε̂k(u)ε̂k−i(v)−ε̂k(u)f̂k,i(v))(ε̂k(u′)ε̂k−j(v′)−ε̂k(u′)f̂k,j(v′))

−
(

1
N

N∑

k=1+i

ε̂k(u)ε̂k−i(v) − ε̂k(u)f̂k,i(v)

)
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×

⎛
⎝ 1

N

N∑

k=1+j

ε̂k(u′)ε̂k−j(v′) − ε̂k(u′)f̂k,j(v′)

⎞
⎠ ,

where

f̂t,h =
1
N

N∑

j=h+1

kN∑

k=1

λ̂−1
k

〈
Xt−1, φ̂k

〉〈
Xj−1, φ̂k

〉
ε̂j−h.

The limiting random variable VH in Corollary B.1 takes the form of a squared
norm of a Gaussian process

VH
d
=

H∑

h=1

∫∫
G2

h(u, v)dudv,

and hence may be further expressed as a weighted sum of independent χ2
1 ran-

dom variables with weights determined by the covariance kernels ci,j in (B.3).
Using then the estimators ĉi,j , our goal is to approximate the distribution of VH

using the Welch-Satterthwaite (WS) approximation that approximates VH by
X ∼ βχ2

v where χ2
v is a chi–square random variable with v degrees of freedom

and β > 0. To estimate β, v, the WS method equates the first two moments of
VH and X; E[VH ] = E[X] and V ar[VH ] = V ar[X]. From this, we have

β̂ =
σ̂2

H

2μ̂H
, v̂ =

2μ̂2
H

σ̂2
H

.

The μ̂H is the estimated first moment of VH , which is obtained from

μ̂H =
H∑

i=1

∫∫
ĉi,i(t, s, t, s)dtds ≈ 1

J2

∑

t,s

H∑

i=1

ĉi,i(t, s, t, s),

where J is the number of points on the grid on which the functional data are
observed, and ĉi,j are defined in (B.5). The σ̂2

H is the estimated second moment
of VH , calculated from

σ̂2
H = 2

∑

1≤i,j≤H

∫∫∫∫
ĉi,j(t, s, u, v)dtdsdudv

≈ 2
M

M∑

k=1

∑

1≤i,j≤H

ĉi,j(vk1, vk2, vk3, vk4),

where {(vk1, vk2, vk3, vk4), 1 ≤ k ≤ M} is a set of M randomly selected points
on the grid (Monte Carlo integration). A typical choice is M = 10, 000.

B.3. Central limit theorem for triangular arrays of dependent

random variables in H

In this section we formulate a limit result needed to prove Theorem B.1. All
functions are assumed to be measurable with respect to suitable σ-algebras. Let
H denote a separable Hilbert space.
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Definition B.1. We say that {Xt,n : t ∈ Z, n ∈ N} is a uniformly Lν − m-
approximable triangular array in H if

a) EXt,n = 0,
b) For each n, there exists a measurable space En and a function gn : E∞

n �→ H

such that
Xt,n = gn(εt,n, εt−1,n, ...), (B.6)

where the εt,n, t ∈ Z, are independent and identically distributed elements of
En,

c) if θm = supn≥1[E‖X0,n − X
(m)
0,n ‖ν)]1/ν , then

∞∑

m=0

θm < ∞, (B.7)

where X
(m)
0,n = gn(ε0,n, ε−1,n, ..., ε−m,n, ε′

−(m+1),n, ε′
−(m+2),n, ...), with {ε′

t,n t ∈
Z} an independent and identically distributed sequence in En, independent of,
but with the same distribution as, {εt,n, t ∈ Z}.

In the definition of stationary m-approximable time series, the analog of
representation (B.6) takes the form Xt = g(εt, εt−1, ...) and the assumptions in
part c) take a correspondingly simpler form, see Hörmann and Kokoszka (2010)
or Chapter 16 of Horváth and Kokoszka (2012), among many contributions that
have used this concept. In Definition B.1, a different function gn can be used in
every row, indexed by n, of the array Xt,n, but the “tails” of the functions gn

must “decay” uniformly fast, as specified in condition c).
We aim to establish conditions under which the partial sum

Sn =
1√
n

n∑

t=1

Xt,n

of variables forming a uniformly Lν −m-approximable triangular array converge
weakly in H to a Gaussian element. We begin by noting that if ν ≥ 2, the
covariance operator of Sn is

Fn =
n−1∑

h=1−n

(
1 − |h|

n

)
Γh,n, Γh,n = E[X0,n ⊗ Xh,n].

The following theorem refers to trace class operators. The definition and a
brief exposition of their chief properties are given in Section 13.5 of Horváth
and Kokoszka (2012), but such operators are studied in many textbooks and
monographs. In particular, every covariance operator is trace class, and its trace
is equal to

∑∞
j=1 λj , cf. (2.4). Gaussian elements of H are concisely explained

in Section 11.3 of Kokoszka and Reimherr (2017), as well as in many other
textbooks.

Theorem B.2. Suppose {Xt,n : t ∈ Z, n ∈ N} is a uniformly Lν − m-
approximable triangular array for some ν ≥ 2. If, in addition, there exists
a positive definite operator F on H satisfying
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i) F is trace class,
ii) For each v ∈ H, 〈Fn(v), v〉 → 〈F(v), v〉, as n → ∞,
iii) tr(Fn) → tr(F), as n → ∞.
Then

Sn
d(H)→ Z,

where Z is a Gaussian element in H with covariance operator F , and
d(H)→ de-

notes weak convergence in H.

Before proceeding with the proof, we state a proposition that facilitates
the application of Theorem B.2 in case of integral operators acting on H =
L2([0, 1]p), a case directly applicable to the tests we consider.

Proposition B.1. Suppose Xt,n satisfy Definition B.1 with H = L2([0, 1]p) and
ν ≥ 2. Set γh,n(t, s) = Cov(X0,n(t), Xh,n(s)).

If there exist autocovariance operators Γh,∞ with kernels γh,∞ satisfying
1) ‖γh,n − γh,∞‖ → 0, as n → ∞,
2) ∫

|γh,n(t, t) − γh,∞(t, t)|dt → 0, as n → ∞,

then conditions i)-iii) of Theorem B.2 hold with

F =
∑

h∈Z

Γh,∞

and

tr(F) =
∞∑

h=−∞

∫
γh,∞(t, t)dt.

Proof. We first verify condition i). In this proof we let c† denote unimportant
positive numeric constants that may change from line to line. Using the notation
in Definition B.1, we note that for each n, X0,n and X

(h)
h,n are independent. It

then follows by the Cauchy-Schwarz inequality that

‖Γh,n‖S =
(∫∫

γ2
h,n(t, s)dtds

)1/2

=
(∫∫

[Cov(X0,n(t), Xh,n(s) − X
(h)
h,n(s))]2dtds

)1/2

≤
(∫∫

EX2
0,n(t)E[Xh,n(s) − X

(h)
h,n(s))]2dtds

)1/2

= (E‖X2
0,n‖)1/2(E‖Xh,n − X

(h)
h,n‖2)1/2

≤ c†θh.

It follows similarly that
∣∣∫ γh,n(t, t)dt

∣∣ ≤ c†θh. To verify ii), observe that
condition 1) implies
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〈Γh,n(v), v〉 → 〈Γ∞,h(v), v〉. Therefore, by the dominated convergence theo-
rem,

〈Fn(v), v〉 =
n−1∑

h=1−n

(
1 − |h|

n

)
〈Γn,h(v), v〉 →

∑

h∈Z

〈Γ∞,h(v), v〉 = 〈F(v), v〉.

The dominated convergence theorem is applicable here since as a result of the
Cauchy-Schwarz inequality,

|〈Γn,h(v), v〉| ≤ ‖Γn,h(v)‖‖v‖ ≤ ‖Γn,h‖S‖‖v‖2 ≤ c†θh‖v‖2, (B.8)

and the right hand side of (B.8) is summable for each v ∈ H as a result of the
assumption in (B.7). A similar application of the Cauchy-Schwarz inequality
and the dominated convergence theorem also give that

tr(Fn) =
n−1∑

h=1−n

(
1 − |h|

n

)∫
γn,h(t, t)dt → tr(F),

which implies iii).

We next state Theorem 6.1 of Neumann and Paparoditis (2008), which is
an important tool in the proof of Theorem B.2. We first formulate a technical
assumption they use.

Assumption B.5. Scalar random variables Xk,n form a stationary sequence
for each n, EXk,n = 0,
EX2

k,n ≤ C < ∞ and for n ≥ n0 there is a nonincreasing and summable
sequence of θr ≥ 0 such that for all indices

1 ≤ s1 < s2 < · · · < su < su + r = t1 ≤ t2 ≤ n,

|Cov (f(Xs1,n, . . . , Xsu,n), Xt1,n) | ≤ θr

{
Ef2(Xs1,n, . . . , Xsu,n

}1/2
(B.9)

for all square integrable functions f : Ru → R, and for all bounded functions
f : Ru → R

|Cov (f(Xs1,n, . . . , Xsu,n), Xt1,nXt2,n) | ≤ θr ‖f‖∞ . (B.10)

Assumption B.5 quantifies dependence by θr that is indexed by the separation
r between su and t1.

Theorem B.3 (Neumann and Paparoditis). Suppose scalar random variables
Xk,n satisfy Assumption B.5, and, as n → ∞,

∀ ε > 0
1
n

n∑

k=1

EX2
k,nI

{
|n−1/2Xk,n > ε

}
→ 0 (B.11)

and
1
n

Var [X1,n + · · · + Xn,n] → σ2 ∈ [0, ∞). (B.12)
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Then,

1√
n

n∑

k=1

Xk,n
d→ N(0, σ2). (B.13)

Proof of Theorem B.2. We let c† denote an unimportant positive numerical con-
stant that may change between uses. For each v ∈ H, let Xt,n(v) = 〈Xt,n, v〉.
We first show that

〈Sn, v〉 =
1√
n

n∑

t=1

Xt,n(v) d→ N(0, 〈F(v), v〉), (B.14)

by showing that the Xt,n(v) satisfy the conditions of Theorem B.3. By (B.6),
for each n, the Xt,n(v) form a stationary sequence. By conditions a) and c)
of Definition B.1, and the assumption ν ≥ 0, EXt,n(v) = 0 and EX2

t,n(v) ≤
E‖Xt,n‖2‖v‖2 ≤ c†‖v‖2(= C).

Let X
(m)
t,n (v) = 〈X(m)

t,n , v〉. We then have that, for each positive integer u,
square integrable f : Ru → R, and indices 1 ≤ s1 < · · · < su < su + m = t1 ≤
t2 ≤ n, by the Cauchy-Schwarz inequality,

|Cov(f(Xs1,n(v), ..., Xsu,n(v)), Xt1,n(v))|
= |Cov(f(Xs1,n(v), ..., Xsu,n(v)), Xt1,n(v) − X

(m)
t,n (v))|

≤
√

Ef2(Xs1,n(v), ..., Xsu,n(v))E〈Xt1,n − X
(m)
t,n , v〉2

≤
√

Ef2(Xs1,n(v), ..., Xsu,n(v))θm‖v‖.

Moreover, for each f : Ru → R such that ‖f‖∞ = supx∈Ru |f(x)| < ∞, we have
using the triangle inequality that

|Cov(f(Xs1,n(v), ..., Xsu,n(v)), Xt1,n(v)Xt2,n(v)))|
= |Cov(f(Xs1,n(v), ..., Xsu,n(v)), Xt1,n(v)Xt2,n(v) − X

(m)
t,n (v)X(m)

t2,n(v))|
= |E{[f(Xs1,n(v), ..., Xsu,n(v))

− Ef(Xs1,n(v), ..., Xsu,n(v))][Xt1,n(v)(Xt2,n(v) − X
(m)
t2,n(v))]}|

+ |E{[f(Xs1,n(v), ..., Xsu,n(v))

− Ef(Xs1,n(v), ..., Xsu,n(v))][Xt2,n(v)(m)(Xt1,n(v) − X
(m)
t1,n(v))]}|

=: R1,n + R2,n.

By the Cauchy Schwarz inequality,

R1,n ≤
(
E[f(Xs1,n(v), ..., Xsu,n(v)) − Ef(Xs1,n(v), . . . , Xsu,n(v))]2X2

t1,n(v)
)1/2

×
(

E(Xt2,n(v) − X
(m)
t2,n(v))2

)1/2

≤ c†‖f‖∞θm.
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It follows similarly that R2,n ≤ c†‖f‖∞θm, and hence

|Cov(f(Xs1,n(v), ..., Xsu,n(v)), Xt1,n(v)Xt2,n(v)))| ≤ c†‖f‖∞θm.

This completes the verification of Assumption B.5. It remains to verify the
Lindeberg condition (B.11) and the convergence (B.12). Using dominated con-
vergence theorem, for all ε > 0,

1
n

n∑

t=1

EX2
t,n(v)I{|Xt,n(v)|/

√
n > ε} = EX2

0,n(v)I{|X0,n(v)|/
√

n > ε} → 0.

By condition ii),

1
n

Var

[
n∑

t=1

Xt,n(v)

]
= Var[〈Sn, v〉] = 〈Fn(v), v〉 → 〈F(v), v〉.

As a result, by Theorem B.3, (B.14) holds.
We now aim to show that the sequence Sn is uniformly tight in H by applying

Lemmas 14-16 of Cerovecki and Hörmann (2017). For any orthonormal basis
{vj}j≥1 of H, using their notation let p

(n)
j = 〈Fn(vj), vj〉, and p

(0)
j = 〈F(vj), vj〉.

Then p
(n)
j , p

(0)
j satisfy the following conditions of Lemma 14 of Cerovecki and

Hörmann (2017): a) p
(n)
j ≥ 0, which follows since Fn is positive definite. b)

limn→∞ p
(n)
j = p

(0)
j , which follows from condition ii). (c)

∑∞
j=1 p

(0)
j = p < ∞,

which follows with p = tr(F). (d) limn→∞

∑∞
j=1 p

(n)
j = p, which follows from

condition iii). (e)
∑∞

j=1 p
(n)
j < ∞ for all n ≥ 1, which follows since by the

Cauchy-Schwarz inequality, |E〈X0,n, Xh,n〉| ≤ c†θ|h|, and so

∞∑

j=1

p
(n)
j = tr(Fn) =

n−1∑

h=1−n

(
1 − |h|

n

)
E〈X0,n, Xh,n〉 ≤ c†

∞∑

h=1

θh < ∞.

As a result of these conditions, it may be shown as in Lemma 16 of Cerovecki
and Hörmann (2017) that Sn is a tight sequence in H. The result now follows
from Prohorov’s Theorem, see e.g. p. 46 of Bosq (2000).

B.4. Proof of Theorem B.1

Let
Y

(h)
j,N (u, v) = εj(u)εj−h(v) − εj(u)Γε,0Ψh−1

∗ C−1πkN
(Xj−1)(v).

Using that ε̂j = εj + (Ψ − Ψ̂N )(Xj−1), it follows from Assumption B.2 as in the
proof of Theorem 3.3 of Zhang (2016) that

∫∫ [
1√
N

N∑

t=1+h

ε̂t(u)ε̂t−h(v) − 1√
N

N∑

t=1+h

Y
(h)

t,N (u, v)

]2

dudv = oP (1).
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As a result, and since H is fixed, the conclusion of the theorem follows upon
showing that

1√
N

N∑

t=1+h

Y
(h)

t,N (u, v) d→ Gh(u, v),

jointly for h ∈ {1, ..., H}. We note that Y
(h)

t,N forms a triangular array of row-wise
stationary variables, and the same holds for the vector valued functional process
Vt,N = (Y (1)

t,N , ..., Y
(H)

t,N )�, and for any linear combination of projections Pt,N =

a1〈Y (1)
t,N , v1〉2 + · · · + aH〈Y (H)

t,N , vH〉2, for any a1, ..., aH ∈ R, and v1, ..., vH ∈
L2([0, 1]2), where 〈·, ·〉2 denotes the standard innerproduct on L2([0, 1]2). More-
over, if Y

(h)
t,N is uniformly L2 − m-approximable for each h ∈ {1, ..., H}, then so

are Vt,N and Pt,N . Hence it is enough to show that for any h ∈ {1, .., H}, Y
(h)

t,N

is uniformly L2-m-approximable, and satisfies conditions i)-iii) of Theorem B.2.
Let

X
(m)
j =

m∑

	=0

Ψ	(εj−	) +
∞∑

	=m+1

Ψ	(ε′
j−	),

where {ε′
	, −∞ < � < ∞} is independent of {ε	, −∞ < � < ∞}, but with the

same distribution. Let

Y
(h,m)

t,N (u, v) = εt(u)εt−h(v) − εt(u)Γε,0Ψh−1
∗ C−1πkN

(X(m)
t−1 )(v).

Then if m > H, using that εt and Xt−1, X
(m)
t−1 are uncorrelated, we obtain that

E‖Y
(h)

t,N − Y
(h,m)

t,N ‖2

= E‖εt ⊗ Γε,0Ψh−1
∗ C−1πkN

(Xt−1) − εt ⊗ Γε,0Ψh−1
∗ C−1πkN

(X(m)
t−1 )‖2

= E‖εt‖2E‖Γε,0Ψh−1
∗ C−1πkN

(Xt−1 − X
(m)
t−1 )‖2. (B.15)

Since

Xt − X
(m)
t =

∞∑

	=m+1

Ψ	(εt−	) +
∞∑

	=m+1

Ψ	(ε′
t−	)

= Ψm+1

(
∞∑

	=0

Ψ	εt−(m+1)−	

)
+ Ψm+1

(
∞∑

	=0

Ψ	ε′
t−(m+1)−	

)

d
= Ψm+1(X0) + Ψm+1(X ′

0),

where X ′
0 is independent of, but has the same distribution as, X0. Continuing

then on the right hand side of (B.15), we have by expanding E‖Γε,0Ψh−1
∗ C−1πkN

[Ψm+1(X0) + Ψm+1(X ′
0)]‖2 that

E‖Y
(h)

t,N − Y
(h,m)

t,N ‖2 = 2E‖εt‖2E‖Γε,0Ψh−1
∗ C−1πkN

Ψm+1(X0)‖2.

Using Parseval’s identity and the fact that the adjoint of a linear operator R,
R∗, satisfies
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〈Rx, y〉 = 〈x, R∗y〉, we get that,

E‖Γε,0Ψh−1
∗ C−1πkN

Ψm+1(X0)‖2 =
∞∑

	=1

E〈Γε,0Ψh−1
∗ C−1πkN

Ψm+1(X9), v	〉2

=
∞∑

	=1

E〈X0, Ψm+1
∗ C−1πkN

Ψh−1Γε,0(v	)︸ ︷︷ ︸
=: A(v�)

〉2

=
∞∑

	=1

∫∫
EX0(t)X0(s)A(v	)(t)A(v	)(s)dtds

=
∞∑

	=1

〈CA(v	), A(v	)〉

=
∞∑

	=1

〈C1/2A(v	), C1/2A(v	)〉

=
∞∑

	=1

‖C1/2Ψm+1
∗ C−1πkN

Ψh−1Γε,0(v	)‖2

= ξm,N .

Hence E‖Y
(h)

t,N − Y
(h,m)

t,N ‖2 ≤ c†ξm,N , and so by Assumption B.4, Y
(h)

t,N is
uniformly L2 − m-approximable.

We now aim to show that conditions i)-iii) of Theorem B.2 hold for the
sequence Y

(h)
t,N . By expanding the products and using that εi is a white noise

sequence, we obtain that for all k �= 0,
EY

(h)
0,N (u, v)Y (h)

k,N (u′, v′) = 0, and

EY
(h)

0,N (u, v)Y (h)
0,N (u′, v′)

= C(u, u′)C(v, v′) − C(u, u′)Eε−h(v)f (N)
0,h (v′)

− C(u, u′)Eε−h(v′)f (N)
0,h (v) + C(u, u′)Ef

(N)
0,h (v)f (N)

0,h (v′).

For N > M , we have that using again Parseval’s identity

∫ ∫ [
Eε−h(v)f (N)

0,h (v′) − Eε−h(v)f (M)
0,h (v′)

]2

dvdv′

≤ E‖ε−h‖2E‖Γε,0Ψh−1
∗ C−1[πkN

(X−1) − πkM
(X−1)]‖2

= E‖ε−h‖2E

∥∥∥∥∥

kN∑

	=kM +1

1
λ	

〈Xt−1, v	〉Γε,0Ψh−1
∗ (v	)

∥∥∥∥∥

2

= E‖ε−h‖2E

∞∑

j=1

〈
kN∑

	=kM +1

1
λ	

〈Xt−1, v	〉Γε,0Ψh−1
∗ (v	), vj

〉2
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= E‖ε−h‖2E

∞∑

j=1

kN∑

	,	′=kM +1

1
λ	λ′

	

E〈Xt−1, v	〉〈Xt−1, v	′〉︸ ︷︷ ︸
=λ�1{	=	′}

× 〈v	, Ψh−1Γε,0(vj)〉〈v	′ , Ψh−1Γε,0(vj)〉

=
kN∑

	=kM +1

1
λ	

∞∑

j=1

〈Γε,0Ψh−1
∗ (v	), vj〉2

=
kN∑

	=kM +1

‖Γε,0Ψh−1
∗ (v	)‖2

λ	
→ 0

by Assumption B.4 as min{N, M} → ∞, since kN is non-decreasing and tends
to infinity. Therefore Eε−h(v)f (N)

0,h (v′) is Cauchy in L2([0, 1] × [0, 1]), and hence

has a limit. It may be shown similarly that Ef
(N)
0,h (v)f (N)

0,h (v′) is Cauchy, and
hence there exists a covariance kernel ch,h so that

EY
(h)

0,N (u, v)Y (h)
0,N (u′, v′) L2

→ ch,h(u, v, u′, v′). By the Cauchy-Schwarz and
Jensen’s inequality,

∫ ∣∣∣Eε−h(v)f (N)
0,h (v) − Eε−h(v)f (M)

0,h (v)
∣∣∣ dv

≤ (E‖ε−h‖2)1/2(E‖f
(N)
0,h − f

(M)
0,h ‖2)1/2 → 0

as min{N, M} → ∞. It hence also follows similarly that

∫∫
|EY

(h)
0,N (u, v)Y (h)

0,N (u, v) − ch,h(u, v, u, v)|dudv → 0, N → ∞.

Therefore the conditions of Proposition B.1 are satisfied with γ0,∞ = ch,h and
γh,∞ = 0, which in turn imply that condition i)-iii) of Theorem B.2 hold. Ap-
plying this result gives

1√
N

N∑

t=1+h

Y
(h)

t,N (u, v) d→ Gh(u, v),

where Gh is Gaussian with covariance ch,h. The joint result follows upon noting
that for each h, r ∈ {1, ..., H}, EY

(h)
0,N (u, v)Y (r)

k,N (u′, v′) = 0, if k �= 0, and

EY
(h)

0,N (u, v)Y (r)
0,N (u′, v′) → ch,r(u, v, u′, v′).

Appendix C: Additional tables
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Table C.1

Empirical sizes (in percent) based on 1000 replications. The tests KRS
(GF )
N,H , Z

(GF )
N (b) are

applied to evaluate the goodness-of-fit of an FAR(1) model with the Gaussian kernel.

DGP FAR(1)–BM FAR(1)–fGARCH
S N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%
0.5 KRSN,1 4.9 1.2 5.2 0.9 4.6 1.4 5.3 1.7

KRSN,5 5.3 1.1 4.2 1.4 4.0 0.6 3.9 1.1
KRSN,20 7.1 1.7 5.6 1.3 5.5 1.8 5.2 1.2
ZN (10) 4.3 1.0 4.6 0.8 5.0 0.7 4.9 1.5

0.8 KRSN,1 5.3 1.7 5.2 0.9 4.9 1.3 5.3 1.1
KRSN,5 5.2 1.4 4.2 1.4 3.8 0.6 4.1 1.0
KRSN,20 6.8 1.7 5.6 1.3 4.6 1.3 5.5 1.2
ZN (10) 3.9 0.8 4.4 0.7 5.1 1.4 4.7 1.2

Table C.2

Empirical sizes (in percent) based on 1000 replications for goodness-of-fit test of the FLM

model.The tests KRS
(GF )
N,H , Z

(GF )
N (b) are applied to evaluate the goodness-of-fit of an FLM

model with the Gaussian kernel (5.2).

DGP FLM–BM FLM–fGARCH
S N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%
0.5 KRSN,1 5.8 1.3 4.0 1.3 4.6 0.5 5.3 1.3

KRSN,5 4.3 0.8 5.1 1.1 3.0 0.5 3.5 0.5
KRSN,20 6.5 2.1 6.9 1.8 5.0 1.5 4.4 0.8
ZN (10) 7.2 1.8 5.1 1.2 5.4 1.2 4.6 0.5

0.8 KRSN,1 5.8 1.3 5.1 1.1 5.0 0.6 4.5 1.0
KRSN,5 4.3 0.8 6.3 1.0 3.9 0.6 3.8 0.5
KRSN,20 6.5 2.1 8.0 1.8 4.5 1.3 5.3 1.0
ZN (10) 6.8 1.9 5.5 1.0 4.7 1.0 4.0 0.7
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