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Abstract

We propose statistical fault detection methodology based on high-frequency data streams

that are becoming available in modern power grids. Our approach can be treated as an

online (sequential) change point monitoring methodology. However, due to the mostly

unexplored and very nonstandard structure of high-frequency power grid streaming data,

substantial new statistical development is required to make this methodology practically

applicable. The paper includes development of scalar detectors based on multichannel data

streams, determination of data-driven alarm thresholds and investigation of the performance

and robustness of the new tools. Due to a reasonably large database of faults, we can

calculate frequencies of false and correct fault signals, and recommend implementations

that optimize these empirical success rates.

Keywords: high-frequency streaming data, power grid faults, sequential change point detec-

tion.
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1 Introduction

Faults in power systems cause excessive currents and pose safety threats to people and prop-

erty, and even cause major fires with substantial economic and social impacts. Fast and reliable

detection of faults is therefore of paramount importance. Traditional methods use high fault cur-

rent magnitude and power flow direction to differentiate between normal operating conditions

and faulted conditions. Integration of inverter based (solar, wind) distributed energy resources

(DERs) in the distribution system has created bi-directional current flows under normal opera-

tion and reduced the effectiveness of the traditional methods based on current direction. This

challenge has created great interest in new methods of detecting faults in power grids. Our

objective is to contribute to the recent intensive research in this area by proposing a relatively

simple, but effective, way to detect power grid faults. Our approach is different from existing

engineering approaches and points toward possibilities of using high-frequency measurements

generated by modern measurement units. It is anchored in statistical sequential change point

monitoring methodology that goes back to the work of Page (1954) and has been developed

in many directions, see Lorden (1971), Lai (1998) and the book of Tartakovsky et al. (2015),

among hundreds of significant contributions. However, due to the mostly unexplored and very

nonstandard structure of high-frequency power grid data, a great deal of exploration and many

adjustments need to be made to make the approach practically applicable. The objective of this

paper is to propose a general statistical paradigm for power grid fault detection using the type

of data that are becoming available in real time. In addition to the new statistical methodology,

an advance over very extensive engineering literature is the computation of success rates, sim-

ilar to type I and II errors, and incorporation of incomplete data (some measurements may be

unavailable).

Existing fault detection methods in power systems fall into the following three categories:

qualitative model-based, quantitative model-based, and data-driven approaches, see Jiang et

al. (2011). Data-driven approaches have recently been receiving considerable attention for the
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following reasons: (1) Various intelligent electronic devices (IEDs) have been widely adopted

and installed in the power grid (Moghaddass and Wang, 2017; Ghosal and Conti, 2019; Chen et

al., 2020). These devices collect large amounts of different data at many nodes across the grid.

(2) Compared to the traditional model-based approaches, the data-driven approaches are more

resilient against system model misspecification and adapt better to the variations in system

components and/or topology (Chen et al., 2018; Chen et al., 2019; Tripathi and De, 2018;

Yin et al., 2014). To illustrate the scope of research on power grid fault detection, without

aiming at a complete list of references, we also cite (Zhou et al., 2019; Chow et al., 2007;

Xie et al., 2014; Kaci et al., 2014; Kim et al., 2017; Cui et al., 2019; Nguyen et al., 2015;

Rafferty et al., 2016).

Recent new approaches generally test a proposed method to a single fault. For example,

using the magnitude of the voltage, Gholami et al. (2019) develop advanced fault detection

methods based on multiple detectors. The approach of Hannon et al. (2021), based on machine

learning, is very promising, but the application uses only one bus. The focus of Ardakanian et

al. (2016) is the estimation of the admittance matrix. A change in this matrix and its localization

provide information on the timing and the localization of a fault. The algorithm is evaluated on

a 13 bus grid, similar to the one we use, but only on a single fault. Recent methods for fault

localization, e.g. Li et al. (2019) and Khushwant et al. (2021), require the knowledge of the

time the fault occurs, the issue we address. The importance of incorporating PMU measurement

before, during and after a fault was emphasized by Chen et al. (2016) who proposed a method

to detect and identify faults in near real-time by exploiting the statistical properties of voltage

phase-angle measurements. We take a similar view. Our work has a statistical dimension be-

cause we apply many versions of our method to a relatively large database of 55 faults, and

report success and failure rates, similar to size and power of a significance test, to identify the

best methods. As we explain in Section 2, the 55 faults we consider are basically all possible

faults in a 13 bus system we use as a test bed.
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To summarize, we develop a basically complete statistical methodology to detect a fault in

a small grid based on high-frequency measurements at selected notes of the grid. Since the

temporal resolution of data streams is very high, the detection is almost immediate. Such an

immediate detection can be expected of many other methods, if a fault in fact did occur. We

therefore focus on the correct decision. It is important to avoid false alarms because cutting

off power has serious consequences. On the other hand, failing to detect a fault may have

even more serious consequences. We therefore focus on frequencies of correct and incorrect

decisions, similarly as in the Neyman–Pearson testing paradigm. For this, reasonably many

different faults are needed. We address the following items: (1) preprocessing of irregularly

recorded data streams, (2) development of scalar detectors based on multichannel data streams,

(3) determination of dynamic alarm thresholds, (4) investigation of the performance and robust-

ness of our methodology. In the end, we are able to recommend specific implementations that

work very well in our test-bed grid. However, our process of statistical methodology develop-

ment can be even more valuable, as it can be viewed as a recipe that could be applied in similar,

but different, settings.

The remainder of the paper is organized as follows. Section 2 is dedicated to the descrip-

tion of the data we study, Section 3 to the development of the methodology and Section 4 to

the examination of its performance. We summarize and provide an illustrative algorithm in

Section 5.

2 IEEE 13 bus feeder: structure and data generation

Real power grid fault data are generally not publicly available; power companies do not share

them, chiefly for legal reasons. However, the mechanisms and types of faults that occur in real

power grids are well understood. National Renewable Energy Laboratory (NREL) has hardware

and software to generate faults of any type at specified times and locations within a grid that
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4. Bus 671 (includes buses 684, 611, 652, 692)

5. Bus 675

6. Bus 680

The above partition of the grid is dictated by the way the buses are connected and power trans-

mitted. For example, there is only a circuit breaker between Bus 671 and Bus 692, so they are

identical buses when the circuit breaker is closed. The data at Bus 611 and Bus 652 can be

assumed to be identical to the data at Bus 671 because the lines connecting Bus 671 to Bus 611

and Bus 652 are short. Similar arguments hold for Bus 632 with the surrounding buses; voltage

drops are insignificant from the perspective of the target application.

To explain what data are available at each of the six buses, we must briefly describe how

power is generated and transmitted. We provide only the most essential facts that are well-

known to power grid engineers and researchers, but may be less known to statisticians. De-

tailed background is available in dozens of textbooks, Glover et al. (2022) is a recent edition

of a popular textbook. Alternating current (AC) is generated by a generator that has a large

electromagnet spinning inside stationary coils of wire (windings). Industrial generators have

three separate windings, each producing its own current. These separate currents are referred to

as A, B and C phases. Measurement devices at buses can measure each phase separately and all

three phases combined. If there are no faults, the voltage and current of the phases are shifted

exactly by π/3 radians. This corresponds to the equi-spaced locations of the three windings

inside which the electromagnet rotates at a constant speed, generating currents of constant fre-

quency (nominally 60 Hz in the United States). At each bus, we thus have measurements of 12

variables: voltage (in kilovolts), current (in kiloamperes) and frequency (in hertz) for phases

A, B, C, and three-phase. From these measurements, voltage and current Root Mean Square

(RMS) can be computed, which is the peak voltage or current divided by
√

2. This convention

is routinely used in sinusoidal AC power transmission systems because then the transmitted

power can be calculated as the product of the RMS current and RMS voltage. If there is a
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fault, the measured current, voltage and frequency will be impacted, but they also exhibit small

fluctuations in the absence of any faults.

This IEEE 13 bus systems is simulated in a digital real time simulator (DRTS) in electromag-

netic transients (EMT) domain. The RMS of voltage and current are calculated in real-time. The

frequency measurements are calculated using phase locked loop (PLL) approach. The measure-

ments are stored as csv files through UDP (User Datagram Protocol) streaming from DRTS.

For this study, 55 different simulations of faults were conducted. These include all possible

bus faults in this test grid. We used a fault model from the RSCAD library which uses an

impedance in the path to the ground. We used the value of 0.1 Ohms for the impedance value.

In each simulation, different types of faults were applied to buses 632, 634, 646, 650, 671, 675,

680, 684. Additionally, faults were applied at the middle of the line between buses 632 and

671. In each simulation, the fault was applied at the beginning of second 10 and the simulation

was running for another 5 seconds. The total length of each simulation is thus 15 seconds. It is

assumed that the earliest time when a fault can be detected is the start of second 10. If a fault

is detected earlier, it is treated as a false detection. Depending on the type of the faulted bus

(two-phase or three-phase), up to seven different types of faults are possible. These types are

(1) Phase A fault (2) Phase B fault (3) Phase C fault (4) Phases A and B fault (5) Phases A and

C fault (6) Phases B and C fault (7) Three-phase fault. Also, additionally, one 35 second long

simulation without a fault was conducted. It is used for training certain aspects of our algorithm,

as elaborated on in Section 4.1.
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Figure 2: Measurements at Bus 675 with phase A fault applied at Bus 632. The fault is

applied at the beginning of second 10. From Top to Bottom - phases A, B, C, and Three-phase

measurements. From Right to Left - voltage, current, and frequency measurements.

Figure 2 presents a part of the data for Phase A fault at Bus 632. The presented data contains

the measurements at Bus 675. Each time series goes through noticeable perturbations after the

fault. Figure 3 presents the same data, but focuses on the first 0.3 seconds after the start of

second 10, i.e. after the fault. Notice that the first visible reaction can be seen only around 0.25

seconds later.
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Figure 3: Close-ups of the data shown in Figure 2, the first 0.3 seconds after the fault.

If we take all simulations and all buses into account, we would end up with 6× 55 = 330

Figures analogous to Figure 3. Visual examination of some of them reveals that while delays

are similar, the shapes of responses differ. A relationship between the location of a fault and a

location of the bus at which it is measured, as well as the responses of the 12 measured variables

and the type of the fault, are not easy to establish. In the next section, we describe a general

approach that uses all available information and work out the details of specific, most effective

approaches. The effectiveness is measured by a low rate of false alarms and a high rate of

correct fault detections.

3 Methodology

The goal of statistical change-point detection is to determine if a change in the structure of data

has occurred and to estimate the time of the change. The context of the streaming power grid

data we consider falls into the field of on-line, real-time or sequential change-point detection, or
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change point monitoring. All these terms are almost synonymous. There are now many mono-

graphs on change point detection, e.g. Brodsky and Darkhovsky (1993), Gustafsson (2000),

Chen and Gupta (2011), Basseville et al. (2012) and Brodsky (2017). There is a continuous

stream of publications within this field that focus on specific aspects, models and applications.

With the awareness of listing a subjectively selected small sample, we cite Aminikhanghahi et

al. (2019), Horváth et al. (2021), Zhang et al. (2021), Estrada Gómez et al. (2022), who also

provide many references specific to the directions they advance.

Our purpose is to develop an effective method of detecting a fault in power grid streaming

data. We will explain the relevant statistical concepts as we progress with the methodology

development. In our approach, we use a moving window change-point detection technique.

This section is organized as follows. First, in Section 3.1, we focus on the irregular structure

of the data and present our regularization approach. In Section 3.2, we describe the derivation of

the methodology leading to change-point detection. We explore a few different approaches. The

proposed methodology requires a suitable normalization of the data streams, which is described

in Section 3.3. In Section 3.4, we describe the derivation of the threshold for decision-making,

the approach for determining the final form of our fault detection methodology, and criteria for

parameter tuning.

3.1 Regularization

The data capturing mechanism used by the NREL hardware and software provides unevenly

spaced time series, so a regularization approach is needed. The 55 simulations share an almost

identical data capture mechanism. Within a simulation, all 12 variables, like phase A current

or three-phase voltage, are recorded at the same time. Thus, at any moment, if the value of

one variable is recorded, the values of for the remaining 11 variables are recorded as well. The

recording times are however not identical for the 55 simulations. Moreover, if different devices

are used in a monitoring of a power grid, the assumption of the identical recording times for all
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variables might not hold. The regularization approach proposed below would work even in this

more general setting.

To illustrate the irregularity of the measurement time points, we use a simulation with A

phase fault at Bus 632 and analyze differences between subsequent time points. The histogram

is presented in Figure 4. The minimum of differences is 0.00096s, the maximum is 0.00798s

(more than a 700% difference). Most of the values group around 0.001, 0.002 and 0.003 sec-

onds. For other simulations, the broad picture is similar, but the distributions of the time points

are slightly different.

Figure 4: The unit area histogram of differences between subsequent time points of A phase

fault at Bus 632 simulation.

The proposed regularization procedure consists of dividing the total time of a simulation

into a set of fixed length subintervals. Each second is divided into D equal intervals of length

d = 1/D seconds. If D is too large, the intervals will be too small, some would contain no

data points, eventually leading to additional noise in the data. If D is too small, intervals would

contain many data points, leading to a loss of valuable information. In our analysis, we used

D = 500, to reflect the most typical time points separations described above.

Denote by t1, t2, . . . the end points of the intervals, where ti+1 − ti = d. Denote by Xt a

variable, e.g phase A voltage, observed at time t. The value Xt j
is calculated as the average

of the Xt with t j − d < t ≤ t j. If such Xt do not exist (there are no observations in the interval

(t j −d; t j]), we assign Xt j
:= Xt j−d . Recall that each simulation with a fault is 15 seconds long
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and starts at second 0, thus this procedure leads to a maximum of 7,500 (with D= 500) different

equally spaced time points, and our time series are defined at times {0.002,0.0004, . . .} seconds.

If a fault is detected, we no longer need to continue to calculate the regularized Xt j
.

3.2 Moving window detection algorithm

We begin by introducing a convenient notation. Fix a simulation and consider all-time series

X(b′,k′, f ′). We use the primers to distinguish the indexes identifying the available data steams

from parameters of a statistical fault detection procedure. The index b′ refers to a bus number, so

b′ ∈ {650,632,634,671,675,680}. The index k′ refers to a type of variable and k′ can be either

Voltage, Current, or Frequency. The index f ′ refers to a type of phase and can be either A, B, C,

or three-phase. For example, X(650,Voltage,A) refers to A-phase voltage measurements at Bus 650.

and X(650,Voltage,A)(t) is to A-phase voltage measurement at Bus 650 at time t. As described

before, we have six buses, three types of variables and four types of phases. Our purpose is

to determine the time of a fault using a suitable change-point detection technique based on a

moving window. A moving window ensures that a detection statistic can be calculated in real-

time, as it is based on only a limited number of observations, and that it adjusts to the most

recent state of the system. The slow evolution of system readings does not indicate a fault of

the type we are aiming to detect.

Denote by l the length of the moving window in seconds. We split the moving window into

two intervals of lengths pl and (1− p)l seconds. The first interval is used to evaluate the prior

state. The second interval is used to evaluate the current state. It is natural to choose p > 0.5,

as it provides a more stable evaluation of the prior state. This leads to (1− p) < 0.5. The

shorter interval helps better capture the current state and respond to a fault quickly. However,

the interval that is too short might put too much emphasis on noisy observations, thus one needs

to find optimal values. We explain in the following how this is done. Assume that ti is the

current time point. Notice that if ti < l, the moving window intervals cannot be built. Without
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Figure 5: An example of the moving window using l = 0.25 seconds and p = 0.7. Here, the

current time is ti = 9.4 seconds. Dark grey area represents the interval of length pl and light

grey - the interval of length (1− p)l.

loss of generality, we assume that ti ≥ l, because we do not expect a fault within a fraction of a

second after the monitoring has begun. The moving window with the two subintervals is shown

in Figure 5.

We now turn to the description of a general class of tests statistics, often referred to as

detectors, that are based on the two subintervals of the moving window. Set

(3.1) V(b′,k′, f ′)(ti) =
[

f (X(b′,k′, f ′))(ti)− f̃ (X(b′,k′, f ′))(ti)
]

,

where f (X(b′,k′, f ′))(ti) is some function f computed from the trajectory X(b′,k′, f ′) using the

points t j, such that ti − l ≤ t j < ti − (1− p)l (the first interval) and f̃ (X (b′,k′, f ′))(ti) is the same

function on ti − (1− p)l ≤ t j ≤ ti (the second interval). Thus, for each combination of indexes,

(b′,k′, f ′), we acquire a statistics V(b′,k′, f ′)(ti) at the current time point ti.

The next step is to specify the functions f that can capture differences between the two inter-

vals well and propose a method to combine the V(b′,k′, f ′) over all indexes. One should notice that

the pool of choices is wide, and considering all of them is not practical. We considered several
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options for f and several ways to combine the V(b′,k′, f ′)(ti) across the indexes. The performance

of these different approaches is evaluated in Section 4. The choices of f we considered are

listed in Table 1.

Table 1: The functions f considered in this study. The time ti is the end point of the moving

window. The specified functions are computed over the two intervals shown in Figure 5.

Name f (X(b′,k′, f ′))(ti) Definition

Mean X̄(b′,k′, f ′) The average of observations

SQMean X2
(b′,k′, f ′) The average of the squared observations

Range max(X(b′,k′, f ′))− min(X(b′,k′, f ′)) The range of observations

Median median(X(b′,k′, f ′)) The median of observations

The potential functions f in (3.2) can be viewed as features computed from the data on each

of the two subintervals of the moving window. One can clearly come up with many functions,

which could also be combined in various ways, e.g. by addition or multiplication. The functions

listed in Table 1 are just the most commonly used statistics and, as we shall see, already lead

to reliable detection. As illustrated in Figure 2, a fault is “seen” by different measurements at

different buses differently, and it is not clear what differences between the two intervals one

should look for. Generally, it is some sort of level shift, but the direction of the shift is unclear,

and it may consist of several “sub-shifts”. However, if a moving window starts to cover the

fault, the differences between the two intervals should become visible for suitable functions

f that must be determined empirically. For the streaming data, we think of the window as a

filter through which that data stream passes. This filter must be tuned to detect a fault most

effectively.

To combine the differences V(b′,k′, f ′)(ti) into suitable real-valued statistics, we considered

three methods, which result in statistics we denote as Vmean, Vmedian, and Vtrunc. They are defined

as follows. The detector Vmean is the average of the squared differences:

(3.2) Vmean(ti) =
∑(b′,k′, f ′)

{

V(b′,k′, f ′)(ti)
}2

#(b′,k′, f ′)
.
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Formula (3.2) shows that if one or more of the differences V(b′,k′, f ′)(ti) between the two subin-

tervals of the moving window is large, then Vmean(ti) will be large. On the other hand, one

unusually large value of V(b′,k′, f ′)(ti), that can be due, for example, to the instrument failure,

can lead to a false detection. It can be argued that in smaller systems like the IEEE 13, if a

fault happens, at least half of the measurements (collected variables) should react to it. Thus,

alternatively, we considered the median:

(3.3) Vmedian(ti) = median(b′,k′, f ′)
{

V(b′,k′, f ′)(ti)
}2

.

A statistics that combines the characteristics of the mean and median is the truncated mean:

(3.4) Vtrunc(ti) =
∑(b′,k′, f ′)∈Q

{

V(b′,k′, f ′)(ti)
}2

#(b′,k′, f ′) ∈ Q
.

The set Q in (3.4) consists of the indexes (b′,k′, f ′) such that the values (V(b′,k′, f ′)(ti))
2 are

between the q/2th and the (1− q/2)th quantiles. Here, q can be considered as a tuning pa-

rameter. Figure 6 illustrates the concept of truncated mean. In the following, all three methods

Vtrunc,Vmean and Vmedian are generically denoted as Vstats, if the same considerations apply to all

of them.
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histogram.png

Figure 6: Histogram of (V(b′,k′, f ′)(ti))
2 at ti = 0.5 seconds using Mean for f with l = 0.25 and

p = 0.95. The data is from the simulation without a fault and were normalized as described

Section 3.3 before computing the V(b′,k′, f ′)(ti) values. The shaded area shows the central 60%

of the (V(b′,k′, f ′)(ti))
2 values, corresponding to q = 0.4. The truncated mean is the average of

observations in the shaded area. The solid line represents Vmean(ti), the dashed line Vmedian(ti),

and the dotted line Vtrunc(ti).

It is natural to set the value ti at which V (ti) exceeds a suitable threshold τ as the estimated

time of the fault. In principle, a slightly earlier time could be used, e.g. (1− p)l seconds earlier,

but this is a minor point and a delay of a small fraction of a second may be inconsequential. One

could shift the detection time even more because there is a delay of about 0.25 s in the reaction

of the test grid to a fault. Such a delay may however be different in a different grid and would

generally be unknown. Adjustments of this type are easy to add to our procedure and do not

affect the correct and false detection rates. Thus, we define the time of the fault as

(3.5) t f = min
{

t j : Vstats(t j)> τ(t j)
}

,

where τ(t j) is a threshold that is adjusted in real time. The methodology for the derivation of

such a threshold is described in Section 3.4. First, we explain the normalization of the data
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streams in Section 3.3.

The performance of detection procedures based on different choices of Vstats(ti) as well as

different options for f (X)(b′,k′, f ′)(ti) is discussed in Section 4.

3.3 Normalization

The method described in Subsection 3.2 compares the two parts of the moving window (Figure

5) by evaluating Vstats. Thus for each variable included in the data, e.g. phase A voltage RMS,

three-phase current RMS, etc., we compute separate V(b′,k′, f ′)(ti) at time point ti. Notice that

each V(b′,k′, f ′)(ti) has an equal weight in the formula for computing Vstats(ti). Figure 2 shows

that different variables have different ranges, averages and variances. Thus, without further

adjustments, our proposed methodology would favor some variables merely based on units of

measurement and other irrelevant scale factors. Additionally, if units of measurements or other

aspects of data collection are changed, this can lead to completely different different perfor-

mance of our method. For example, instead of measuring a current using the RMS, one could

decide using the peak to peak range, but leave voltage and frequency measures unadjusted,

possibly getting very different results in Vstats. Using amperes instead of kiloamperes would ba-

sically eliminate all variables except the current. At this point, we do not know which variables

are important for fault detection, and we see that they all react to a fault, so it is judicious to

give them equal weight in some suitable sense.

To ensure that each bus, type of variable (voltage, current, and frequency), and phase has an

equal weight in the equations of Section 3.2, we use normalization. Traditionally, normalization

uses an estimate of standard deviation and of the mean to calculate a Z score. In the case of

streaming data, one cannot take the mean and standard deviation estimates of the whole data.

Moreover, the potential for a fault implies that measurements over a period considered fault-free

should be used. There is no perfect and widely accepted solution. After initial exploration, we

propose using the following moving window technique.
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We have observations X(b′,k′, f ′)(ti) at time point ti. We compute the sample mean and the

sample standard deviation over the time period ti − l ≤ t j < ti − (1− p)l and denote them as

m(X(b′,k′, f ′)(ti)) and SD(X(b′,k′, f ′)(ti)). The interval over which these statistics are computed

is the same as the first interval in (3.2). The normalized value Z(b′,k′, f ′)(ti) at the point ti is

calculated as:

(3.6) Z(b′,k′, f ′)(ti) =
X(b′,k′, f ′)(ti)−m(X(b′,k′, f ′)(ti))

SD(X(b′,k′, f ′)(ti))
.

The normalized values Z(b′,k′, f ′)(ti) depend on the choice of p and l. Figures 7 contain examples

of normalization applied to Bus 632 voltage trajectories with l = 0.25 s and p = 0.9. In the

methodology of fault detection, we use the Zb′,k′, f ′ as input (instead of the Xb′,k′, f ′).

18



Figure 7: Illustration of the normalization procedure applied to Bus 632 voltage data (no fault).

The right four panels contain the regularized data (original data with irregularity removed)

and the left four panels show the corresponding normalized values using l = 0.25 second and

p = 0.9. Note the different vertical scales between the left and right columns.

3.4 Threshold determination methodology

The performance of the method described in Section 3.2 depends on how well we can acquire

the dynamic threshold τ . We want to determine the τ that balances two criteria: 1) if there is

no fault, false alarms should be rare, 2) if there is a fault, it should be detected with a large

probability and the delay of detection (time of detection - time of fault) should be small. A

larger τ ensures that criterion 1) is met, and a smaller τ ensures that criterion 2) is met. There

is no guidance on how to balance these two criteria for power grid streaming data. In this
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section, we explain our approach to the determination of τ . Our method relies on several tuning

parameters, and it is a priori not clear which of them will work best for our data. The winners

are determined after the application of our approach in Section 4.1.

First, we explored how different tuning parameters affect the Vstats(ti) values. The properties

we are looking for are small variance and moderate percentage change between Vstats(ti−1) and

Vstats(ti) if there is no fault. Such properties would lead to a robust threshold calculation based

on a moving window. The tuning parameters are:

• the length of the moving window l,

• the proportion parameter p,

• in case of Vtrunc - cut off parameter q.

Also, we separately discuss the differences between the Vtrunc,Vmean, Vmedian values. (The me-

dian appears in two different contexts: in Equation (3.3) and in the definition of the statistic

f (X)(b′,k′, f ′)(ti) = median(X(b′,k′, f ′)(ti)).) For each combination of tuning parameters, we ex-

plore for different statistics - Mean, SQMean, Range, Median, cf. Table 1. The properties we are

looking for are small variance and moderate percentage change difference between Vstats(ti−1)

and Vstats(ti) if there is no fault at time point ti. On the other hand, some variability in Vstats

should be expected, as otherwise, the detector would not respond to changes and the detection

of a fault would be practically impossible.

While many threshold formulas are reasonable, to narrow down our choices, we considered

3 different ways to calculate τ . To display the formulas, we first introduce the interval

I1(ti) = {t j : ti − l ≤ t j ≤ ti−1}.

The above interval resembles the interval considered in the Vstats(ti) calculations, but it does not

contain the final time point ti; if a fault happens, its effects should be noticed comparing current

Vstats(ti) value to a threshold based on previous values. We considered:
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1. τ1(ti) = 3maxt j∈I1(ti)Vstats(t j);

2. τ2(ti) = maxt j∈I1(ti)Vstats(t j)+3ranget j∈I1(ti)
Vstats(t j);

3. τ3(ti) = maxt j∈I1(ti)Vstats(t j)+3SDt j∈I1(ti)Vstats(t j).

Using the coefficient 3 is motivated heuristically by the 99.7% quantile of the normal distri-

bution. In the following, all three thresholds τ1,τ2,τ3 are referred to as τ . After choosing tuning

parameters, Vstats, and a procedure for computing τ , the fault is signaled at the first time point t j

such that Vstats(t j)> τ(t j), as expressed in equation (3.5).

4 Results

In Section 4.1, we explore the performance of the methodology derived in Section 3 assuming

all data streams are available. Based on the observed performance, we select the final form of the

method. In Section 4.2, we investigate to what extend our method is robust to the elimination

of certain data streams or buses at which they are measured. The first consideration may be

viewed as a further tuning of our method because there may be sufficient information only in

one of two data stream, and it may not be necessary to use all streams. This is however not clear

a priori. The second consideration is very practical because if all buses react to a fault, it may

be enough to place measurement devices only at some of them. Again, the answer is not clear a

priori and the question must be investigated.

We use the following quantities for the assessment:

F1 - Fraction of simulations in which a fault is detected over the first 10 seconds. This quantity

is similar to the size of a statistical significance test or type I error.

F2 - Fraction of simulations in which a fault is detected over the whole 15 seconds. This quantity

is similar to power under an alternative or 1 minus type II error.

In statistical significance tests, F1 equal to 5 or 1 percent would generally be acceptable.

Since in power grids a false alarm may be expensive to investigate, we may target a different
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value of F1. Even F1 = 0 might be reasonable. We proceed analogously as in the traditional

Neyman–Pearson paradigm. We first determine method parameters that give satisfactory F1.

From those, we select those that give the best F2.

4.1 Detection based on complete data

In accordance with the plan outlined above, we first applied our method to a simulation that

does not contain a fault. We tested different combinations of tuning parameters and different

choices of Vstats and f . We noticed that different values l do not have a large impact on F1. One

should not choose the value that is too small, as it increases variance in Vstats and leads to false

detections. The value we propose to use is l = 0.25 s, but one can choose relatively close values

and get basically identical results. Regarding the selection of p, our statistical experiments

showed that p should be close to 1. We have observed better properties of Vstats when the first

interval of the moving window is longer, and the second interval is relatively short. The value

we propose to use is p = 0.95, but one can choose relatively close values, like 0.9, and similar

results. Notice that with l = 0.25 and p = 0.95, the effective interval used to detect the faults

has the length of (1− p)l = 0.0125 s. The explorations regarding Vstats revealed that using

Vmean leads to many false-detection cases. Random variability in the data combined with the

sensitivity of the standard error to large and small values leads to high volatility in Vmean values,

thus resulting high percentage change from Vstats(ti−1) to Vstats(ti). On the other hand, Vmedian

solves the aforementioned problems, but introduces some other issues; it is too conservative, as

it is calculated using the middle of input values. It is basically not sensitive to a change in 50%

of the largest input values. This method had little variation and values proved to be insensitive

even if there are some changes in the data. This leads to undetected faults. The best results were

obtained using Vtrunc. This statistic proved to be less volatile than Vmean, but more flexible than

Vmedian. The value we propose to use is q = 0.1 (90% of the ”middle” data). To summarize, we
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recommend

(4.1) l = 0.25 s, p = 0.95, and Vstats =Vtrunc with q = 0.1.

All tables that follow are produced using these settings.

The above settings produced the best overall results for the faults we considered. With

additional knowledge of the type of fault, it is possible that slightly different settings might

be optimal.

Next, for each proposed threshold τ , and each statistic f in the Table 1, we evaluated how

many times the detector was triggered over the course of the simulation without a fault (Table

2). The best results (0 false detections) were achieved by using Mean and Range for f (X(b′,k′, f ′))

and either τ1 or τ2. We observed no false detections in either of these four cases. However, even

in the worst cases we observed only 21 false alarms out of potential 17,500 time points where

they could be signaled. As note above, in power grids false alarms are expensive, and we have

found methods that basically do not produce them.

Table 2: Counts of false detections over the simulation with no fault using settings (4.1). The

last column shows the count of false detections over the whole length of the interval (35s) which

contains 35 ·500 = 17,500 regularized time points.

f τ Count f τ Count

Mean τ1 0 Range τ1 0

Mean τ2 0 Range τ2 0

Mean τ3 4 Range τ3 5

Median τ1 3 SQMean τ1 3

Median τ2 3 SQMean τ2 2

Median τ3 21 SQMean τ3 21
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We now show how the methods with the best parameters perform over the simulations with

faults (55 simulations). The results are presented in Table 3. Notice that three of four combina-

tions showed perfect results in terms of fault detection (F1 = 0 and F2 = 1). The combination of

τ2 and Mean gave results of F2 = 0.98 (in one of the simulations, the fault were missed). The

fractions F1 of false detections were computed using the first 10 seconds because we know that

there were no faults in the initial 10 s.

Table 3: Fault detection evaluation over 55 simulations with a fault using setting (4.1). Results

are presented for the combinations of f and τ that showed the best results in Table 2.

f τ F1 F2

Mean τ1 0 1.00

Mean τ2 0 0.98

Range τ1 0 1.00

Range τ2 0 1.00

Allowing for uncertainty associated with using a database of 55 faults, our results show that

any of the four combinations in Table 3 can be used. For additional certainty, One can choose

to use these four combinations simultaneously. Additionally, we tested the timing of the fault

detection to see if there exist any differences between these four combinations. The results show

that τ1 and τ2 have no effect on the detection timing and are identical for both f choices. With

additional information about the type of fault, e.g. its impedance or path, it might be possible to

recommend an optimal τ most suitable for the specific faults. In 29% of the simulations, Range

led to a faster fault detection than Mean, but only by 0.002s. In the other 71% simulations, both

statistics gave identical time of the fault.
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4.2 Detection with partial data streams

In this Section, we explore how robust our methodology is to the reduction of the available data

streams. We consider only the best parameters settings, those defined by (4.1) and Table 3.

Recall that the data streams are indexed by the triples (b′,k′, f ′), where b′ is the bus number,

k′ is the variable (voltage, current, frequency) and f ′ is the phase (A, B, C, 3 phase). There

are a large number of ways in which data streams could be restricted. To provide information

in some systematic way, we restrict each of the three coordinates separately and investigate

what the impact of such a data reduction is. In Section 4.2.1, we consider the practically most

important setting of measurement devices placed only at some buses. In Sections 4.2.2 and

4.2.3 we investigate, respectively, what happens if only some variables or some phases are

used. Information of this type is also relevant because it might, for example, be the case that it

is enough to use only voltage. Since the data streams we use have not be explored from such

angles, the answers are not a priori clear. As a byproduct of the investigations in this section,

we may be able to give preference to some of the methods in Table 3.

4.2.1 Limited buses

In Table 3 data from all buses were used. In this section, we investigate what happens if data

from subsets of cardinality K of the set {650,632,634,671,675,680} are used. If K = 6, there

is only one subset, if K = 5, there are 6 subsets, if K = 4, there are 15 subsets, etc. (number

of combinations). For example if K = 2, a possible combination is {650,632}, and we have 15

combinations in total for K = 2. Thus for K = 2, we can compute F1 and F2 using 15 ·55 = 825

cases. The results are displayed in Table 4. Notice that for smaller K, the F1 values are higher

and F2 values are smaller. With K ≥ 3, the F1 stays at 0, while F2 varies from 0.97 to 0.99. For

low K values Mean gives better results in terms of F1 than Range. For K ≥ 3, Range gives better

results than Mean with F1 = 0 and larger values of F2. The main conclusion is that to ensure

no false alarms, it is enough to use any three of the six buses, but to ensure that each fault is
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detected all six buses must be used.

Table 4: Faults detection evaluation using complete data streams from K buses.

f τ K F1 F2 K F1 F2

Mean τ1 1 0.07 0.93 4 0.00 0.97

Mean τ2 1 0.00 0.88 4 0.00 0.96

Range τ1 1 0.08 0.95 4 0.00 0.98

Range τ2 1 0.12 0.95 4 0.00 0.98

Mean τ1 2 0.00 0.94 5 0.00 0.98

Mean τ2 2 0.00 0.92 5 0.00 0.98

Range τ1 2 0.12 0.96 5 0.00 0.99

Range τ2 2 0.22 0.96 5 0.00 0.99

Mean τ1 3 0.00 0.95 6 0.00 1.00

Mean τ2 3 0.00 0.94 6 0.00 0.98

Range τ1 3 0.00 0.97 6 0.00 1.00

Range τ2 3 0.00 0.97 6 0.00 1.00

4.2.2 Limited variables

We now explore if it is necessary to consider all three variables. Table 5 shows the results of

our procedure based on only one of the three available variables. We see that using only current

gives perfect results, even slightly better than using all three variables, cf. Table 3.
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Table 5: Performance of procedures based on single variables

f τ Variable F1 F2

Mean τ1 Frequency 0.00 0.96

Mean τ2 Frequency 0.00 0.93

Range τ1 Frequency 0.00 0.96

Range τ2 Frequency 0.00 0.96

Mean τ1 Current 0.00 1.00

Mean τ2 Current 0.00 1.00

Range τ1 Current 0.00 1.00

Range τ2 Current 0.00 1.00

Mean τ1 Voltage 0.00 0.91

Mean τ2 Voltage 0.00 0.87

Range τ1 Voltage 0.02 1.00

Range τ2 Voltage 0.04 1.00

4.2.3 Limited phases

We finally explore how our procedure performs if only one phase measurement is used. The

phases are A, B, C and 3 (three-phase measurement). The last case revers to a single value

derived from all three phases, for example the sum of currents flowing in phases A, B, C at

a given time. The results displayed in Table 6 are not clear-cut. The performance is perfect

for f =Mean and phase=3, but replacing f =Mean with f =Range gives a lot of false alarms.

Using a truly single phase, A, B or C gives practically no false alarms but can miss up to 10%

of faults.
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Table 6: Performance of procedures based on single phase measurements. Phase 3 refers to the

simultaneous measurement of all three phases reported as a single number.

f τ Phase F1 F2 Phase F1 F2

Mean τ1 A 0.00 0.91 C 0.00 0.91

Mean τ2 A 0.00 0.91 C 0.00 0.91

Range τ1 A 0.00 0.93 C 0.04 0.95

Range τ2 A 0.00 0.93 C 0.04 0.95

Mean τ1 B 0.00 0.93 3 0.00 1.00

Mean τ2 B 0.00 0.91 3 0.00 1.00

Range τ1 B 0.00 0.93 3 0.38 1.00

Range τ2 B 0.00 0.93 3 0.24 1.00

5 Summary and an algorithm

Algorithm 1 Detection procedure using f =Mean, threshold τ1 and 3 phase current

Input: Trajectories X(b′,k′, f ′) with k′ =current and f ′ =3 phase

Output: Fault = 1 or 0 (1 if fault detected); t f (time of fault)

1: Initialization

2: Set l = 0.25 s, p = 0.95, and Vstats =Vtrunc (3.4) with q = 0.1,d = 1/500.

3: while Fault= 0 do

4: Set ti := ti +d

5: Apply regularization to each X(b′,k′, f ′)(t), t ∈ [t −2l, ti] (Section 3.1)

6: Find Z(b′,k′, f ′)(t j) (3.6) for t j ∈ [ti − l, ti] using regularized X(b′,k′, f ′)(t j)

7: Find Vtrunc(t j) (3.4) for t j ∈ [ti − l, ti] using Z(b′,k′, f ′)(t j) and f =Mean

8: Calculate τ1(ti) = 3maxt j∈I1(ti)Vtrunc(t j) (Section 3.4)

9: if Vtrunc(ti)> τ1(ti) then

10: Set Fault= 1 and t f := ti

11: end if

12: end while
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We have proposed a methodology for fault detection in a small power distribution system based

on a suitably developed moving window change-point analysis technique. We investigated the

properties of our technique and determined optimal parameter and other settings, including data

stream regularization and normalization as well as dynamic threshold selection. Investigations

reported in Section 4, indicate that three phase current is the most important variable. In fact, a

simple version of our procedure that uses only three phase current at all six buses produces per-

fect results; there are no false alarms and all faults are detected. This is true for both f =Mean

and f =Range and for thresholds τ1 and τ2. Other options also produce perfect or nearly perfect

results for our data set of 55 faults, showing that the general approach is sound. Algorithm 1

summarizes the whole procedure with f =Mean, threshold τ1 and three phase current. It is

possible that some false alarms and missed faults might occur if a grid with a different topology

is used, but our methodology shows how to find a nearly perfect algorithm for any grid.

Our research proposes a general, data-driven, statistical approach to instantaneous and cor-

rect detection of faults in a subgrid of a distribution system that is based on high-frequency

measurements, like those generated by PMUs. This approach looks ahead to the increasing

penetration of renewable energy sources that generate more random variability and bidirec-

tional power flows. Our methodology is obviously not a definite engineering solution, but it

shows a potential of data-driven, statistical approaches to fault detection and develops a scal-

able paradigm.

Extensions of this work might provide further useful insights. More complex grid topologies

could be explored. Fault behavior can vary based on the fault path impedance and the source

impedance. For this work, we did not vary the source impedance and we did not vary the fault

impedance either. Events such as a direct on line (DOL) motor start can cause under voltage for

more than a second. Learning on a more extensive data base of faults and various transient but

normal events can refine our approach.
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