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Abstract

We present lattice-QCD calculations of the hadronic form factors for the semileptonic decays
D — wlv, D — K{lv, and Dy — K{v. Our calculation uses the highly improved staggered quark
(HISQ) action for all valence and sea quarks and includes Ny = 24141 MILC ensembles with lattice
spacings ranging from a ~ 0.12 fm down to 0.042 fm. At most lattice spacings, an ensemble with
physical-mass light quarks is included. The HISQ action allows all the quarks to be treated with
the same relativistic light-quark action, allowing for nonperturbative renormalization using partial
conservation of the vector current. We combine our results with experimental measurements of the
differential decay rates to determine |Vyg|P~™ = 0.2238(11)%%Pt(15)QCP (04)FW (02)5TB[22] FP and
[Ves|P7E = 0.9589(23)F*Pt(40)RCP (15)EW (05)STB[95]QFP This result for |V 4| is the most pre-
cise to date, with a lattice-QCD error that is, for the first time for the semileptonic extrac-
tion, at the same level as the experimental error. Using recent measurements from BES III,
we also give the first-ever determination of |V.q|Ps7% = 0.258(15)F*Pt(01)Q€P[03]QFP from
D, — Klv. Our results also furnish new Standard Model calculations of the lepton flavor
universality ratios R);>™ = 0.98671(17)2°P[500]2"P, RP*K = 0.97606(16)*“P[500]2"P, and
Rf S:K = 0.98099(10)QCP[500]QFP | which are consistent within 20 with experimental measure-

/
ments. Our extractions of |V 4| and |Vs|, when combined with a value for |V|, provide the most
precise test of second-row CKM unitarity, finding agreement with unitarity at the level of one

standard deviation.
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I. INTRODUCTION

Historically, measurements in quark-flavor physics have a strong precedent of anticipating
the direct discovery of new particles. To name one instance, consider the charm quark,
decays of which are the subject of this paper. Its existence was conjectured on the basis
of symmetry [1, 2], and its mass was predicted to explain the rates of strangeness-changing
neutral-current processes [2, 3]. The discovery of the J/¢ [4, 5] was then immediately
interpreted as charmonium [6-9]. Another example is the measurement in 1987 of large
mixing in neutral B mesons by the ARGUS Collaboration [10], which suggested the unusually
large mass for the top quark (see, e.g., Ref. [11]), eight years before its direct observation
at the Tevatron in 1995 [12-14]. In light of several anomalies in measurements of B-meson
decays and tension in several tests of the Standard Model (SM) flavor structure [15, 16], one
can speculate that this area of particle physics is again pointing toward something new. To
illuminate the situation, it is timely to improve the theoretical ingredients in confronting
experiment with the Standard Model for other quark-flavor processes. In this paper, we
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report on lattice-QCD calculations relevant to the second row of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, enabling stringent tests of second-row CKM unitarity.
Within the Standard Model (SM), charged-current flavor-changing processes are de-
scribed by the CKM matrix
‘/;Ld ‘/;LS Vub
Vokm = | Vea Ves Ve | 5 (L.1)
Via Vis Vi

which describes the mismatch between the propagating mass eigenstates and the flavor
eigenstates which participate in the weak interaction. By construction, the CKM matrix is
unitary, so each row and column should have unit norm. Deviations from this expectation
can arise if Voxu is a 3 X 3 submatrix in an extended flavor sector or if non-SM processes
contribute to measured decay and mixing rates. It is important to test the CKM paradigm
using independent determinations from multiple processes, for example, comparing leptonic
and semileptonic decays with the same flavor charge. Improved precision for the individual
matrix elements leads directly to more stringent tests of the Standard Model. Any statisti-
cally significant deviation from the predictions of CKM-unitarity would constitute evidence
for new physics beyond the Standard Model.

The strongest test of unitarity comes from the first row, where the matrix elements are de-
termined most precisely, with the exception of |V,,;|, which plays a negligible role in the first
row unitarity relation at the current level of precision. Either taking the most precise value
of |V,q| that comes from superallowed 3 decays [17] ! and |V,,| as extracted from semilep-
tonic Ky3 = K — 7lv decays, or using only inputs from kaon and pion decays (i.e., |Viq]
from semileptonic decays and |V,4|/|Vig| from the ratio of leptonic decays, Kp = K — (v
over g = 7 — Lv [24]), the combination |V g|* + |Vis|? + |Vis|? is in tension with unitarity
at the 30 level [25]. There is also a ~ 30 tension between the semileptonic and the leptonic
determinations of |V,,| [25], where the leptonic determination uses |V,4| from superallowed
decays as an external input. In those tests, the relevant QCD nonperturbative inputs for
semileptonic and leptonic decays, the form factor f7(0) [26-29] and the ratio of decay con-
stants fx/fr [30-35], respectively, are calculated using lattice QCD with uncertainties that
have reached the ~ 0.18% level [36]. Experimental data for the decay widths of Kj3 and
Ky /7 decays are similarly precise [37, 38], leaving electromagnetic corrections as an im-
portant source of uncertainty in the extraction of the corresponding CKM matrix elements.
Pioneering work addressing the calculation of structure-dependent QED corrections both
for pion and kaon leptonic decays using lattice techniques [39, 40] and kaon semileptonic
decays [41-43] including lattice calculations of the y1¥/-box contribution, have been recently
performed, opening the door to an important reduction of the electromagnetic uncertainty.

Similarly precise tests for the CKM matrix elements in the second row have been limited
both by theory and experimental uncertainties. On the theory side, the error for the decay
constants fp and fp, (roughly 0.35-0.2% [36]) are now subleading in the extraction of |V4|
and |V |, respectively, from leptonic decays thanks to the progress made by lattice calcu-
lations in the last years [31, 32]. However, the situation is very different for semileptonic
extractions of those CKM matrix elements. Since the decay rates are not suppressed by the
lepton mass, experimental measurements are more precise. For leptonic decays, the HFLAV

! Recent calculations of the universal electroweak radiative corrections relevant for superallowed 8 decays
in Refs. [18-22] found larger values than those estimated before, shifting the central value of |V,,4| and
increasing the tension with unitarity. In addition, further, previously unaccounted, nuclear-structure
uncertainties in the inner radiative correction have considerably increased the error for earlier determina-
tions [19, 23].
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world averages for fp_|V.s| and fp|V.q| have fractional errors of roughly 1% and 2%, respec-
tively [44]. The corresponding semileptonic decay-rate measurements are roughly a factor of
two more precise in each case, with the fractional errors in f275(0)|V,s| and fP77(0)|V.ql
around 0.5% and 1%, respectively [44]. Lattice-QCD calculations of semileptonic form fac-
tors (including both normalization and shape), while more complex than for decay constants
for leptonic decays, have a long history in lattice QCD [45-58]. Now, however, the current
experimental errors and the forthcoming improvements by BES III motivate further reducing
the lattice-QCD errors to the level of experimental precision.

In this work, we leverage the same theoretical tools that were successfully employed in the
calculation of decay constants and the K3 form factor [27, 32, 59]: the same highly improved
relativistic lattice actions and gauge-field ensembles with physical quark masses and small
lattice spacings. In particular, we compute the hadronic form factors for the semileptonic
decays D — nlv, D — K/lv, and D, — K/{v in lattice QCD, with the goal of obtaining
percent-level determinations of |V.4| and |V.s| when combined with experimental data. Our
values for |V.4| and |V | provide a stringent test of unitarity and their precision allows a
commensurate comparison with leptonic determinations. As a key aspect of our analysis, we
report the correlations between the hadronic form factors in the different decay channels as
well as between the final values for |V4| and |V,| (see Sec. VII). Preliminary results for the
present calculation of the form factors have been presented in Refs. [60, 61]. We note that
the HPQCD collaboration has recently presented a precise lattice-QCD calculation of the
form factors for D — K decay [62, 63], with a quoted lattice-QCD uncertainty close to the
experimental one in the extraction of |V.s| [62]. On the other hand, this paper yields the
first percent-level determination of |V,4| and enables the first stringent test of second-row
CKM unitarity from semileptonic D-meson decays.

With the hadronic form factors for a given decay in hand, it is straightforward to con-
struct the lepton flavor universality (LFU) ratios R, /., which are defined as the ratio of
the branching fractions to muon versus electron final states; see Sec. VII E. These ratios are
expected to be close but not identically equal to unity in the SM, with differences coming
from lepton-mass, isospin-breaking, and QED effects. Lattice QCD calculations offer a the-
oretically clean method for determining the SM prediction to high precision (up to QED
corrections), contributing to stringent LFU tests in those channels.

The rest of this article is organized as follows. Section II reviews the definitions and
formalism for relating experimentally measured decay rates to the hadronic form factors
we calculate. Section III gives details related to the lattice-QCD simulation. Section IV
reports the statistical analysis of Euclidean correlation functions which yields renormalized
form factors. Section V describes the final chiral-continuum fit, which interpolates the form
factors to the physical hadron masses and extrapolates to the continuum limit. Section VI
analyzes the uncertainties in our calculation and summarizes the complete statistical and
systematic error budget for the form factors. Section VII discusses applications to phe-
nomenology, including determinations of the CKM matrix elements and the LFU ratios in
each channel. Finally, Sec. VIII gives some concluding remarks. Four appendices provide
additional technical information. Appendix A contains useful formulae appearing in the sta-
tistical analysis of staggered correlation functions. Appendix B presents useful information
about staggered fermions and heavy quark effective theory when the bare lattice quark mass
is large. Appendix C describes linear and nonlinear shrinkage techniques for correlation and
covariance matrix, the latter of which is a novel aspect of the correlator analysis presented in
this work. Appendix D provides supporting details and figures regarding various fits, which



exceed the scope of the main text but illustrate the robustness of our analysis.

II. DEFINITIONS

The differential decay rate for the semileptonic decay H — Lfv of a heavy pseudoscalar
meson H € {D, D} to a light pseudoscalar meson L € {K,r} is given by

ar _ Gk
A~ 2473 EW

2\ 2
p|’ (1 + g) ()| + lp| ME (1 %) %Ifo((f)!z] :

|Vea (1 = €)*(1 + Grm) %
(2.1)

— A

where € = m2/q¢? (with m, the lepton mass),? ¢ is the momentum transfer, My and M,
are the masses of the heavy initial and light final mesons, and p is the three-momentum
of the final-state meson in the rest frame of the initial hadron. Short-distance electroweak
corrections to G are contained in ngw = 1 + (aqep/m) In(Mz/p)|=n, = 1.009(2) [64],
where the error is an estimate of the scale uncertainty from a factor-of-two variation around
i = Mp.3 Long-distance and structure-dependent electromagnetic corrections are described
by 5EM-4

The form factors f,(¢?) and fy(¢®) encapsulate the nonperturbative hadronic structure
of the decay. They arise in the usual way from the Lorentz-covariant decomposition of the
relevant transition matrix elements,

(LIV*|H) = /2My [v* fi(¢*) + P fL(d)] (2.2)
= () (k o @q) S ()
(LIl = TL= ). (2.4

In these expressions, k*, and p* refer to the four-momentum of the heavy initial and light
final mesons; my;, and m, refer to the masses of the heavy and light quarks in the current;
v = k* /My is the four-velocity of the heavy meson; p/| = p* — (p - v)v* is the component
of the final-state hadron’s momentum orthogonal to v; and ¢* = k* — p* is the momentum
transfer. The same form factor fy appears in Egs. (2.3) owing to partial conservation of the
vector current (PCVC), namely 9,V* = (mj, —m,)S as an operator identity.

In lattice gauge theory, we introduce bilinears of lattice fermion fields—J = V°, V¢, and
S—and associated matching factors Z;, such that Z;J and the corresponding J have the
same matrix elements (up to controlled uncertainties). In this notation, and in the rest
frame of the decaying meson, the relations between form factors and matrix elements take

2 In our notation, m, with a cursive subscript always refers to the lepton mass in the decay H — Lfv. The

light-quark mass is denoted m;.
3 Physically, the scale dependence of ngw should cancel against that of the structure-dependent electro-

magnetic corrections which, though calculable in principle, have never been computed for these decays.

Computing these corrections exceeds the scope of the present work.
4 Systematic uncertainties from neglected electromagnetic corrections and strong isospin breaking are dis-

cussed in Sec. VIIB.



the following forms:

fi(@®) = Zvo%7 (2.5)
o, L(L|V'|H)
folq?) = ZnZg—n— "L (L] S |H). (2.7)

Mj; — M

[No sum is implied in Eq. (2.6).] Using the preceding equations, the vector form factor is
given by a linear combination of f, (¢*) and fy(¢?),

oy My — E, E?2 — M? 9 M2 — M? fo(qz)
Folq?) = <—2MH )(1——(M;_E§)2)ﬁ<q )+ (Mf; _Ef> CLERNCTS

which will be useful below.
In momentum space, PCVC implies the following condition for the lattice currents:®

Zyo(My — Er) (L|V°|H) + Zyiq - (L|V |H) = Z,Zs(my, — my) (L| S |H) . (2.9)

which can be used to extract the renormalization factors for the temporal and spatial com-
ponents of the vector current, Zyo and Zy [48], as explained in detail in Sec. IV C. With the
present treatment of all valence quarks with the highly improved staggered quark (HISQ)
action [65], the local scalar density enjoys absolute normalization, Z,,Zg = 1 [66, 67]. Fur-
thermore, PCVC allows one to express any single matrix element in terms of the other two
involved in the relation in Eq. (2.9), for example,

1

(*) = NeIE [fi(6®) + (Mu — Ev) fi(¢*)] (2.10)
1) = i (O = EDA@) + (B - MD @) @1

with f and f, computed using Eqgs. (2.5) and (2.6).° These alternative constructions will
be used to check for systematic errors in our analysis; see Sec. V C.

ITII. SIMULATION DETAILS

Our calculation uses ensembles generated by the MILC Collaboration using a one-loop
Symanzik improved gauge action and Ny = 2 4 1 + 1 flavors of dynamical sea quarks with
the HISQ action [32, 68, 69]7. Table I and Fig. 1 summarize the ensembles used in this
work. Lattice spacings range from a ~ 0.12 fm down to a ~ 0.042 fm. An ensemble
with physical-mass light quarks appears for all lattice spacings but a ~ 0.042 fm. For the

® In Minkowski space, the basic momentum-space operator relation reads iq, (V*(q)) = (my — my) (S).
Equation (2.9), in which all terms come with a positive sign and without factors of i, amounts to a

definition of the sign convention for Wick rotation and the phase convention for the lattice currents.
6 Another expression for f, in terms of fo and ) exists but involves a delicate numerical cancellation near

@2, For this reason it is excluded from the subsequent discussion.
" We have adopted a policy for sharing collaboration-generated gauge configuration files with highly-

improved staggered sea quarks. The policy, along with a list of lattices that are shared without restriction

as well as bibliographic guidance for citations, can be found on our GitHub page linked here.


https://github.com/milc-qcd/sharing/wiki/LatticeSharing

Table I. A summary of the lattice spacings, lattice spatial (Ns) and temporal (IV;) sizes, valence
quark masses, intermediate scale-setting parameters, number of source times and configurations
Ngre X Neonfigs, source-sink separations 7'/a, and approximate Goldstone (pseudoscalar taste) pion
masses used in our calculation. The text describes the ensembles’ sea and valence masses in more
detail. The gauge ensembles were generated by the MILC collaboration [32, 68, 69]. The values
for the gradient-flow scale wg/a have been calculated previously [70, 71]. The simulation program
is described in detail in Ref. [69] and was later extended to smaller lattice spacings (a ~ 0.042 fm),
as described in Ref. [32]. The number of source times Ng. refers to the number of loose-solve
source times employed in the truncated solver method; on each configuration one corresponding
fine solve is used. Values for the sea- and valence-quark masses are given in Table II.

~a N2 xN; m; mp/me wo/a  Nge X Neonfigs T/a ~ M p
[fm] [MeV]
0.12 48% x 64 physical 0.9,1.0,1.4 1.4168(10) 32 x 1352 {12, 13, 14, 16, 17} 135
0.088 643 x 96 physical 0.9,1.0,1.5,2.0 1.9470(13) 24 x 980 {16, 17, 19, 22, 25} 130
0.088 483 x 96 ms/10 0.9,1.0,1.5,2.0 1.9299(12) 24 x 697 {16, 19, 22, 25} 224
0.057 963 x 192 physical 0.9,1.0,1.1,2.2 3.0119(19) 32 x 877 {25, 28, 30, 34, 37} 134

(31)

(33)

(29)

0.057 643 x 144 ms/10 0.9,1.0,2.0 2.9478(31 36 x 916 {23, 30, 34, 37} 231
0.057 483 x 144 m4/5 0.9,1.0,2.0 2.8956(33 36 x 823 {23, 30, 34, 37} 325
0.042 643 x 192 m4/5 0.9,1.0,2.0 3.9222(29) 24 x 1008 {34, 39, 45, 52} 308

Table II. Sea- and valence-quark masses in lattice units for the ensembles used in this calculation.
The first two columns specify the ensemble by the approximate lattice spacing and the ratio of
light- and strange-quark masses. The next three columns give the sea-quark masses. The final
three columns contain the valence-quark masses.

valence ( mp, ) valence

sea {0.5744, 0.6382, 0.8935}

~a my/ms (amy)®® (amg)™® (am.)** (amy )
)
amg)*®  {0.389, 0.432, 0.648, 0.864}
)
)
)

0.12 1/27 0.001907 0.05252 0.6382

0.088 1/27 0.0012 0.0363 0.432
0.088 1/10 0.00363 0.0363 0.43

(

(

(
0.057 1/27 0.0008 0.022  0.26 (amy

(

(

sea {0.389, 0.432, 0.648, 0.864}

sea 0.257, 0.286, 0.572}
0.057 1/10 0.0024 0.024  0.286 sea £0.257, 0.286, 0.572}
0.057 1/5 0.0048 0.024  0.286 am,)*®  {0.257, 0.286, 0.572}

0.042 1/5 0.00316 0.0158 0.188 0.00311 0.01555 {0.164, 0.1827, 0.365}

finer lattice spacings, we also include ensembles with heavier-than-physical light quarks with
my &~ mg/10 and m; ~ my/5.

The masses of the valence light and strange quarks generally match those in the sea. In
all ensembles the charm and strange quarks in the sea have (close to) physical masses. The
heavy valence quarks used in this study range from around nine-tenths to around twice the
physical charm mass. The precise values for the sea- and valence-quark masses are given in
Table II.

Although the primary targets of this work are the dimensionless form factors f, and f,,
many intermediate quantities (e.g., f and f, and masses) are dimensionful. Throughout this
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work, the scale is set on each ensemble using previously calculated values for the gradient-
flow scale wy/a [70, 71], also listed in Table I. Details of the intermediate scale-setting scheme

in the chiral-continuum analysis are discussed below in Sec. V B.

IV. CORRELATOR ANALYSIS

A. Definitions

To access the matrix elements (L| S |H), (L|V°|H), and (L| V' |H), we compute the

following two- and three-point correlation functions:

CH) =D (Py(tse, @) Pt + tae, y))

x,y
CH () =D (A (tarer @) AY (¢ + tarer W) )
x,y
C'L Zelp(w v) <PL( srcy L )PL(t_'_tsrcuy))

C’H—>L t T p Z 6 w y PL srcy L )S<t +tsrc>y)PH(T+tsrcaz)>7

7y7
CH Lt T.p) =Y P @V (P (tye, @)V (t + tase, ¥) Prr(T + te, 2))
Y,z
cy LT, p) = Z P @Y Py (e, ) VOt + tare, Y) AN (T + toe, 2))
Y,z

‘ = 1000 configurations
15 . a=0.12 fm
Il 2=0.088 fm

Hl 2=0.057 fm
Bl 2=0.042 fm

Physical point
1/10 1 ‘ 5
127 1k ‘ ‘

0 004006 009 012
~a [fm]

ml/ms

(4.1)
(4.2)

(4.3)

Figure 1. Summary of the lattice spacings and light-quark valence masses used in the present
calculation. The sizes of the colored circles are proportional to the number of configurations in

each ensemble. Quantitative details are given in Table I.



Table III. The spin-taste structure of the staggered operators used in this work. Pseudoscalar
mesons are created and annihilated using P (7, K, D, and Ds) and A° (D and Dy). Transitions
between these states are induced by the currents S, V°, and V*. The operator A is necessary to
conserve taste in Eq. (4.6).

Operator Spin ® Taste Locality

P 75 ® &5 Local
A 0P ® &€ Local
S 1®1 Local
Vo 7 ® & Local
Ve Yol One-link

where the labels denote the initial heavy hadron H € {D, D,} and the final light hadron L €
{m, K}. The schematic structure of the three-point correlators in Eqs. (4.4)—(4.6) is depicted
in Fig. 2 and the spin-taste structure of the operators in our simulations specified in Table III.
The operators used for the scalar current S and temporal vector current VO are local, but
the spatial vector current V is the taste-singlet one-link operator. The tastes of the meson
creation and annihilation operators are chosen so that the correlation functions are overall
taste singlets. For three-point functions involving S and V', Egs. (4.4) and (4.5), it therefore
suffices to use local pseudoscalar operators P, corresponding to Goldstone pseudoscalar
mesons, at the source and sink. For three-point functions involving V% Eq. (4.6), we use
the local axial vector operator AY, corresponding to a non-Goldstone pseudoscalar meson, at
either the source or the sink. Our choice in Eq. (4.6) is to use A for the initial-state hadrons
(D and Dy) and P for the final-state hadrons (7 and K). To reduce statistical noise, APE
smearing [72] is applied to the gauge field appearing in the one-link vector current, with 20
iterations and staple weight 0.05.

In Egs. (4.1)—(4.6), we work in the rest frame of the heavy initial hadron H and compute
the recoiling light hadron L with eight different lattice momenta p = 2mn/Nga, where Ny is
the spatial extent of the lattice, and n is (0,0,0), (1,0,0), (1,1,0), (2,0,0), (2,1,0), (3,0,0),
(2,2,2), or (4,0,0). For each choice of heavy-quark mass in Table I and momentum above,
we compute the three-point function for several different source-sink separations 7', given
in Table I. The final-state light-quark and spectator-quark propagators are computed using
random corner-wall sources [73]. The heavy-quark propagators are computed sequentially
from the end of the spectator-quark propagator at time 71"+ t4. as shown in Fig. 2. For the

my mp
L J H
| :I |
| | |
tsrc t+ tsrc T+ tsrc

Figure 2. Schematic picture of the three-point functions defined in Eqs. (4.4)—(4.6). The final-state
hadron L € {m, K} is created with momentum p at the time ¢5.. An external current J is inserted
at time ¢ + tg. The initial-state hadron H € {D, Dy} is destroyed at rest at time T + tge.
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light- and strange-quark propagators, we employ the truncated solver method [74, 75|, using
a single fine solve together with 24 to 36 loose solves on each configuration (see Table I for
details). To reduce autocorrelation in Monte Carlo time, the source locations for the fine
and loose solves are precessed in Euclidean time from one configuration to the next.

As usual, states with both positive and negative parities contribute to the staggered
correlation functions. For the operators considered here, the negative-parity states decay
smoothly with FEuclidean time, while the positive-parity states oscillate while decaying in
Euclidean time. The spectral decompositions of Eqs. (4.1)—(4.6) take the following forms:

2
CO(t,p) = 3 (~1)"+D) (01O [m " (?L) )] (e—EY”(p)t + e—E(L“(p)(Nt—t)) | (4.7)
n=0 28" (p)
0O 2 m m
C9(t) = 3 (1D |<®|—2]\5@T>| (e 4 a0 (48)
m=0 H

—i-1) 01 O [n) (n] J |m) (m| On [0)
CJ tT _ -1 n(t+1) -1 m(T—t—1) <
H—)L( ) 7p) mzm( ) ( ) 4E£n) (p)MI({m) (49)

% (6—E§")<p>t 1By (p)(Nt—t)> (6—M§}") (T—1) 4 e—Mé,’”RNt—TH))

)

where O € {P, A%} is the appropriate interpolating operator and |@)) denotes the QCD
vacuum state. In the final line, the ground-state term contains the transition matrix ele-
ments, (n|J|m)|,_,._o = (L|J|H), from which one can extract the desired form factors via
Egs. (2.5)-(2.7).

For the sake of visualization, certain ratios of correlation functions prove useful:

Cy L (t,T,p)v2EL

Ry(t,T,p) = —= = 7 (410
\/CIL40 (t,p)CE(T — t)e Frte=Mu(T-1)
RULT,p) = V2L CY,.(t.T,p) o
o P \/COF(t,p)CH(T — t)e Erte=MuT—b)’
My =~ Cff(aL(t T, p)
HolbBop) = 2V A ~ > : 4.12
o(t, T, p) HLL (MJZ—[ - Mg) \/C'f(t,p)C’g(T ~ f)e—Pite—Mu(T—0) ( )

where the bars (e.g., CT) denote the time-slice-averaged correlators defined in Eqs. (A1)
and (A3). Up to discretization effects (and renormalization), these ratios asymptotically
approach the form factors at large Euclidean times:

Ry(t,T,p) "<S" Zy2 fy(p), (4.13)
Ri(t.T.p) "5 Z7 fL(p), (4.14)
Ro(t,T,p) "= fo(p). (4.15)

The subsequent analysis of statistical and systematic uncertainties was conducted in a
blinded fashion. More precisely, all of our three-point correlation functions were multiplied
by a blinding factor X € (0.95,1.05), which was chosen randomly and held fixed across all
ensembles, momenta, currents, and heavy-quark masses in the three-point functions. The
blinded results were carried all the way through the phenomenological applications described
in Sec. VII. The blinding factor was removed only after the estimate of systematic errors
was complete and the analysis was frozen.
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Figure 3. Pion two-point correlation functions CL'(t,p = 2mn/Nsa) and effective masses on the
physical-mass a ~ 0.088 fm ensemble. To reduce the visual impact of opposite parity states, the
effective mass is computed separately for even and odd times using Eq. (4.18) and plotted using
circles and triangles, respectively. After folding the data around the midpoint of the lattice, the
correlator is defined for t/a € [0, N;/2] = [0, 48]. Because of the form of Eq. (4.18) involves offsets
by 2, the effective mass is defined on times t/a € [2, N¢/2 — 2] = [2,46].

B. Statistical analysis

The statistical analysis consists of two stages. First, two-point functions are analyzed
in isolation. Second, the two- and three-point functions are analyzed together to extract
the form factors. Several features are common to the fits in both stages. To avoid possible
contamination from autocorrelation in Monte Carlo time, the data are binned by 10 con-
figurations prior to fitting. The amount of binning was chosen by looking for stability and
saturation of errors in the fit results for the masses and form factors.

Our analysis employs standard Bayesian fits, which can be described generally as least-
squares regression to a model function f(a) with parameters a for some data set D. The
likelihood function pr(D|a) o< exp [—1y?] is written in terms of the augmented chi-squared
function x* = xZ,¢a + Xorior» With

Xdata = (7 = f(@))" 5717 = f(a)), (4.16)
Xowior = (@ — @)"S 7 (a — &), (4.17)

where ¥ is a vector with the data means, ¥ is the covariance matrix, a is a vector with the
prior values, and 3 is the prior covariance matrix. These expressions are standard [76-78].
In the present analysis, § and ¥ correspond to the measured means and covariance matrices
of the correlation functions. The function f(a) corresponds to the spectral decomposition
of Egs. (4.7)-(4.9), with the energies and matrix elements serving as the parameters a. The
choices for the priors a are discussed below. Instead of using the usual binned-sample covari-
ance matrix in Eq. (4.16), we used an improved estimator S,, employing nonlinear shrinkage,
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Figure 4. Kaon two-point correlation functions CE(t,p = 2mn/Nya) and effective masses on the
physical-mass a ~ 0.088 fm ensemble. To reduce the visual impact of opposite parity states, the
effective mass is computed separately for even and odd times using Eq. (4.18) and plotted using
circles and triangles, respectively. After the data is folded around the midpoint of the lattice, the
correlator is defined for t/a € [0, N;/2] = [0, 48]. Because of the form of Eq. (4.18) involves offsets
by 2, the effective mass is defined on times t/a € [2, N¢/2 — 2] = [2,46].

which corrects for finite-sample-size effects [79]; for technical details, see Appendix C.® The
general procedure is as follows. First, we compute the binned variances ¢. Second, we
compute the correlation matrix C,, using the full (unbinned) data. Third, we compute the
shrinkage estimator C, taking the effective sample size to be the ratio of the total configura-
tions to the bin size. Finally, we construct S,, = diag(o)C,, diag(c). Apart from the usage of
shrinkage, a similar procedure has been employed in the past, e.g., in Ref. [32]. In all cases,
statistical uncertainties in the fit parameters are determined via bootstrap resampling with
500 draws. For fits on bootstrap-resampled pseudoensembles, the covariance matrix is held
fixed to the binned-sample covariance matrix with shrinkage (.5,,) for the full ensemble [80].

As mentioned above, the statistical analysis begins with two-point functions. Figures 3-5
display representative two-point functions and effective masses for the pion, the kaon and
the D meson, respectively, on the physical-mass a &~ 0.12 fm ensemble with a heavy-quark
mass near its physical value for the D meson. For the correlation functions themselves,
dramatic oscillations from opposite-parity states are present only for the heavy mesons (see
Fig. 5). When plotted in the usual way, oscillations are visible in all the effective masses
aside from the zero-momentum pion. To reduce the distraction of opposite-parity states and
bring out the approach to the ground state, the effective mass is constructed separately on

8 To avoid possible confusion, we emphasize our correlator fits use nonlinear shrinkage. The chiral-
continuum fits described below use linear shrinkage, since it combines data from different ensembles,

each with a different statistical size; see the discussion in Sec. V B.
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Figure 5. D-meson two-point correlation functions CDP/ A7 (t,p) at p = 0 and effective masses
with the heavy-quark mass near its physical value on the physical-mass a ~ 0.088 fm ensemble.
The corresponding results for the D; meson are very similar. To reduce the visual impact of
opposite parity states, the effective mass is computed separately for even and odd times using
Eq. (4.18) and plotted using circles and triangles, respectively. Open symbols indicate values of
the correlation function that are negative and, for ease of visualization, have been multiplied by
—1. These negative points are responsible for the behavior of the odd-site effective mass for C’éo
at early times. After folding the data around the midpoint of the lattice, the correlator is defined
for t/a € [0, N¢/2] = [0,48]. Because the form of Eq. (4.18) involves offsets by 2, the effective mass

is defined on times t/a € [2, N;/2 — 2] = [2,46].
even and odd time slices using
ameg(t) =

arcCosh [(C(t+2) + C(t — 2))/2C(1)] . (4.18)

N | —

In the effective mass plots, the triangle and circle markers correspond to the even and
odd time slices, respectively. As expected, the statistical noise grows exponentially for
correlators with nonzero momentum. High-momentum correlators therefore become noisy
at large times, especially those considered here with n = (2,2,2) or (4,0,0). Even so,
clear plateaus spanning several time slices are typically present in the effective mass at each
momentum. For D mesons, contributions from excited states are visibly larger when the
interpolating operator Ag is used. This observation informs certain analysis choices below.
The behavior of two-point functions is similar to the ones shown in Figs. 3-5 for other masses
and lattice spacings.

Each two-point correlator is fit to the corresponding spectral decomposition, Eq. (4.7) or
Eq. (4.8), using the choices in Table IV. We have verified that our results are stable under
reasonable variations of these choices, such as including more states or changing the value
of tin. The preferred number of states is roughly the minimal number required to achieve

14



Table IV. Preferred analysis settings for fits of two-point functions to Eq. (4.7) and Eq. (4.8). The
same settings are applied uniformly across all ensembles. The larger ¢, cut for C}?{O (t) is taken
to avoid the excited-state contributions visible in Fig. 5.

Correlator  Ngecay + Nosc  tmin [fm] tmax cut

CP(t,p=0) 340 ~ 0.5  Noise < 30%
CE(t,p=0) 3+ 1 ~ 0.5 Noise < 30%
CP(t,p+#0) 341 ~ 0.5  Noise < 30%
CE(t) 342 ~ 0.5  Noise < 30%
Cao(t) 342  ~0.75-0.85 Noise < 30%

Table V. Priors used for the energies in fitting two-point functions to the spectral decomposition.
All energy values are in MeV. At each lattice spacing, the values are converted to lattice units.
Internally, the actual fit parameters are (the logarithm of) energy differences [76]. For instance,
the splitting between the first and second excited states for the pion is 1700(400) — 1300(400) =
400(566) MeV. Priors for the amplitudes are discussed in the main text. For ensembles with
heavier-than-physical pions, the central values for the priors for E,; and E are increased using
the tree-level expectation from chiral perturbation theory for the quark-mass dependence of the
hadron mass (see Sec. V A below).

n Ex Eose Ex E9se Ep E%c Ep, E%e
0 135(50) 500(300) 498(100) 800(300) 1865(200) 2300(700) 1968(200) 2317(200)
1 1300(400) — 1460(400) —  2565(700) 3000(700) 2300(400) 2713(400)
2 1700(400) — 1860(400) —  3200(700)  — 2700(400)  —

statistically significant fits (with, say, x?/DOF < 1 or p = 0.1 for goodness of fit?), while
the cuts on t,;, and t,., are designed to retain as much of the data as possible without
undue contamination from excited states at early times or statistical noise at late times.
The choices for the number of states and t,,;, are broadly similar to Fermilab-MILC work
on decay constants [32]. The main difference from Ref. [32] is that the present analysis
includes more states for the pion and kaon, e.g., 3 + 1 versus 1 + 1, in order to include
data from shorter Euclidean times, which is advantageous for the subsequent analysis with
three-point functions. Table V summarizes the priors used for the energies in fitting the
two-point functions. For the amplitudes, we choose broad priors in lattice units: 0.50(20)
for decaying states and 0.1(1.0) for the oscillating states.

As an example, Fig. 6 shows the stability of the ground-state mass extracted from
CP(t,p = 0) on the physical-mass a = 0.12 fm ensemble using fits with different choices for
the number of states and t,,;,/a. Consistency with expectations from the effective mass is
demonstrated in Fig. 7. Similar studies inform the other choices in Table IV.

The second stage of the analysis combines data from two-point and three-point functions
to extract fo, fj, and fi. The basic procedure consists of simultaneous correlated fits to
the spectral decompositions, Eqs. (4.7)—(4.9), for a particular value of the heavy-quark mass

9 In this work, we use the augmented y? when quoting reduced y?/DOF. Throughout the analysis, judge-
ments about fit quality are insensitive to the precise definition used, and indistinguishable results are
obtained for other reasonable definitions, e.g., the alternative quality-of-fit metrics defined in Appendix
B of Ref. [81].
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Figure 6. Stability of the ground-state mass in multi-exponential fits to CX'(t,p = 0) on the
physical-mass a =~ 0.12 fm ensemble. The different colors show the posterior values for the ground-
state mass using different numbers of states. The blue points indicating 1-state fits are aligned
with the value of tin/a on the horizontal axis. The corresponding results for 2- and 3-state fits
at the same ty,in/a are offset slightly to the right. The size of the markers is proportional to the
p-value of the fit. As described in Table IV, the preferred fit uses 3 states and tyin/a = 4 and is
indicated by the green star.

and the current J using the choices for the numbers of states and the fit ranges in Table IV.
For instance, a simultaneous correlated fit to C5(t), CP(t,p), and C3_, _(¢,T,p) furnishes
(| S|D). For consistency between the two-point and three-point functions, the fit window
for the three-point functions is taken to be t € [t T — 525 where 5, and 7K are
the values of t,,;, associated with the source and sink operators, which in general differ.
For example, when the Ay sink operator is used t57¢ < 32 see Table IV. The Bayesian
priors used in these fits incorporate knowledge about the ground-state energies and overlap
factors coming from the two-point fits. Let May, = 0 My denote the posterior value of

the ground-state energy emerging from a fit to Eq. (4.7) or Eq. (4.8), and let Fy,(p?) =
M2

2pt
let Agpe +0Agpy denote the posterior value of the ground-state amplitude from the same fit.10
For the joint fits to the two- and three-point functions at zero momentum, the central values
for the amplitude and energy priors are taken to match the two-point posterior central
values (Ma,e and Ay, ), while the prior widths are taken to be ten times the posterior
widths (10 x dMyp and 10 x 0Ay,). For nonzero momentum, the prior central values
are obtained by boosting the corresponding ground-state results assuming the continuum
relativistic dispersion relation; the fractional prior widths are taken to match the expected
size of discretization effects, e.g., § Eapi/Eopy = O(asa?p?). Table VI summarizes the choices

+ p? denote the value of the energy obtained by boosting the central value. Similarly,

10 At large times, a generic two-point function is C(t) = A3 (eMaeet 4 eM"‘P‘(T_t)) + -+, so the amplitude

Agpy contains the momentum-dependent relativistic normalization of states in the denominator.
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Comparison of the ground-state mass from the preferred fit and the effective mass for

Cf: (t,p = 0) on the physical-mass a ~ 0.12 fm ensemble. To reduce the visual impact of opposite
parity states, the effective mass is computed separately for even and odd times using Eq. (4.18)
and plotted using circles and triangles, respectively.

1.04

0.96 -

-—-- lztasa2p2
@® Posteriors

Figure 8.

o_
—
N_
g
m_
©

Left: The pion dispersion relation. Within statistical uncertainties, E? = m? + p?.
Right: The behavior of the overlap factor <(B’ P |7r>, normalized by the value at zero momentum.

Normalized (0|P™|r)

-—-- 1+ a,a’p?
1.064 @ Posteriors
1.04
1.02 .
1.00 - +I\I:i/ E
0.98 1 T

-
-
-

o -
—_
[N
Ph_
o -

Within statistical uncertainties, the overlap factor is constant.

17




——— 2p2 Rl ——- 2.2 LT
1.03 - 1£a.a’p o 1.03 - L+a.a’p -
@® Posteriors s @® Posteriors g
1.02 - el K 1.02 gl
,z”/ g ,/’,, #
& 1.01 7 e A 1.011 o }
S e = e
3 p I = .
~ %5 ! {ex® I L
L 1001452 3 3 I g 10074gf §
~ Sso = Sso
T 0.99 el g 0.99- e
\\\\\ o \\\\\
0.98 1 el > 0.98 e
0.97 - NG 0.97 - e
LI T T T T T T T T T T T T T
012 4 6 9 12 16 012 4 6 9 12 16
Il2 l’l2

Figure 9. Left: The kaon dispersion relation. Within statistical uncertainties, £E? = m? 4 p?.
Right: The behavior of the overlap factor <®’ P |7T>, normalized by the value at zero momentum.
Within statistical uncertainties, the overlap factor is constant.

Table VI. Summary of how priors for simultaneous fits to two- and three-point functions incorpo-
rate information from the two-point fits. Values for a; are given in Table VIII.

Momentum Quantity Prior value
p?> =0 Energy Moy £ 10 x 0 Mapt
Amplitude Agpt £10 x 6 Agpt
p> >0 Energy Eopt % (1 + a5a2p2)

Amplitude Aope/Mopt/ Eopt X (1 + a5a2p2)

of these priors. For the excited states, the priors for the energy differences are the same as
those in Table V, and the priors for the amplitudes are as above.
For generic transition matrix elements, a prior of V,,,, = 0.1(10) in lattice units is used,

where
(01O 1) (n] J m) (m| O 0)
B )M

For the special case of the ground state, the central value of V{y is estimated from the plateau
in ratios following Eq. (D1) below, and the width is taken to be 50%.

Once statistically acceptable fits (e.g., x*/DOF < 1 or p = 0.1) are obtained, a variety of
visualizations give confidence that the bare form factors have been extracted reliably. For
instance, the fits must reproduce the data visually with reasonable uncertainties and give
results for the ground-state masses and overlap factors that agree with the initial analysis of
two-point functions in isolation. As the priors in Table VI suggest, energies are expected to
satisfy the continuum dispersion relation, E? = (M?+p?)(1+O(asa?p?)), and overlap factors
are expected to be constant, since only point-like interpolators were used for the source and
sink operators. Figures 8 and 9 demonstrate that both conditions are well satisfied. The blue

Vnm =

(4.19)
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Figure 10. Visual tests involving the ratio RY~" in Eq. (4.12) to form factors coming from the

spectral decomposition. Data and results are taken from the physical-mass 0.12 fm ensemble with
the charm-quark mass near its physical value. (Top) The approach to the asymptotic plateau
region for the ratio R~ at fixed momentum as a function of the source-sink separation. The
right panel shows the maximum point from each color set of points on the left, max; RY=7 (¢, T).
The horizontal black line in the top panels shows the form factor’s posterior value, taken from
the joint fit to the spectral decomposition. (Bottom) The form factor’s momentum dependence.
The left panel shows the ratio R{)jg’”(t,TmaX, p) at fixed source-sink separation, with each color
corresponding to a different momentum. Horizontal lines show the central value for the form factors
coming from the fits (including all source-sink separations 7"). The right panel shows the smooth
momentum dependence of f&77(g?).

points correspond to the posterior (“best-fit”) results, while the dashed lines show the size
of the priors for p*> > 0, as defined in Table VI. As the figure shows, the posteriors typically
are much narrower than the priors. We have verified that statistically consistent results,
with similar statistical precision, are obtained if the priors are relaxed by inflating the width
by a factor of ten. Figure 10 shows representative results for joint fits for D — w. The top
rows show the approach to the asymptotic (7//a — oo) plateau region. In the top left panel,
data are plotted at fixed momentum p = 2m(1,0,0)/Nsa, with each color corresponding
to a different source-sink separation 7. The top right panel shows the approach to the
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asymptotic plateau versus T'/a, with each point corresponding to the maximum point in the
curves on the top left: max; RY~" (¢, T, p = 27(1,0,0)/Nsa). The horizontal black line in the
top panels shows the form factor’s posterior value, taken from the joint fit to the spectral
decomposition. The bottom panels shows the form factor’s momentum dependence. In
the bottom left panel, the data correspond to the ratio R(l)) “7(t, Timax, P), With each color
corresponding to a different momentum. In each case, only the largest source-sink separation
Thmax is displayed. Horizontal lines denote the posterior central values for the form factors,
coming from fits including all source-sink separations 7. The bottom right panel shows the
smooth momentum dependence of fP~™(¢?). Additional details, along with similar figures

for the decays D — K and Dy — K are given in Appendix D 1.

C. Nonperturbative renormalization

Bare matrix elements are renormalized nonperturbatively by imposing the PCVC relation,
Eq. (2.9). Figure 11 shows the matrix elements entering this expression, before and after
renormalization, for the physical-mass a =~ 0.12 fm ensemble with the charm-quark mass
near is physical value. The black points show the quantity (m.—m,) (L| S |H)—q¢" (L| V" |H)
with L € {n,K}, H € {D, D}, and m, € {my,m,}. The fact that the open black circles
differ slightly from zero gives a visual indication that the renormalization factors Zyo and
Zyi are necessary to satisfy PCVC. The closed black squares, statistically consistent with
zero, show the precision with which the PCVC relation is satisfied after renormalization.

In principle, much freedom exists for extracting the vector-current renormalization fac-
tors. The present analysis fits the bare matrix elements as a function of momentum to
Eq. (2.9) for each ensemble and choice of my, treating Zyo and Zy. as free parameters.
Recall Z,,Zs = 1 for the local staggered scalar current. When constructing the renormal-
ized matrix elements, correlations between the bare matrix elements and Zyo0 and Zy.: are
incorporated via the bootstrap resampling discussed above.

Figures 12 and 13 show the results for renormalization factors for the temporal and spatial
components of the vector current, respectively, in all cases for the data with the charm-quark
mass near its physical value. The transition ¢ — [ appears in both D — 7 and D; — K
decays, differing only by the spectator quark. The data for the latter decay are statistically
more precise, which in turns yields more precise values for the renormalization factors of the
le currents. We thus use the renormalization factors extracted from the D, — K data to
renormalize both Dy — K and D — 7 matrix elements.

At a given lattice spacing, uncertainties both in the bare matrix elements (coming from
the correlator fits) and in the renormalization factors contribute to the total error budget
for the form factors. The relative importance of the renormalization error depends both
on the form factor (f) or f,) and the momentum. For instance, for the D — 7 decay
on the physical-mass a ~ 0.12 fm ensemble, the renormalization error in f from Zyo is
< 0.1%. For the same decay and lattice spacing, the renormalization error in f, from Zy: is
around 1%. For comparison, the individual statistical errors in both fj and f, (neglecting
the renormalization error) range from around 1% at low momentum to around 8% at large
momentum. These observations are consistent with the expectation that renormalization
with PCVC should enable sub-percent determinations of form factors.
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Figure 11. Matrix elements (in arbitrary units) entering the PCVC relation, Eq. (2.9), before and
after renormalization for the physical-mass a ~ 0.12 fm ensemble with the charm-quark mass near
its physical value, for the decays D — 7 (top left), D — K (top right), and D; — K (bottom)
The open circles denote bare quantities, while the filled squares are renormalized.

V. CHIRAL-CONTINUUM ANALYSIS

This section describes our chiral-continuum analysis, yielding results for f (¢?) and fo(¢?)
at physical quark mass and in the continuum limit. Section V A describes the fit function
used in the analysis and its connection to effective field theory (EFT). Section V B presents
the results of the fits and describes our definition of the physical point in isospin-symmetric
QCD. Section V C presents a cross check on our results by constructing f. and f; in different
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Figure 12. Vector-current renormalization factors Zyo, in all cases with the charm-quark mass
near its physical value. (Left) Results for the quark-level transition ¢ — [ appearing in the decays
D — 7 and Dy — K. As discussed in the text, the data are taken from fits to the Dy — K data.
(Right) Results for the quark-level transition ¢ — s appearing in the decay D — K. The light
gray points show the renormalization factors computed by HPQCD on the same ensembles, using
the same local V? current but slightly different valence masses [62]. The two sets of values agree
at 1-20.
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Figure 13. Vector-current renormalization factors Zy.:, in all cases with the charm-quark mass
near its physical value. (Left) Results for the quark-level transition ¢ — [ appearing in the decays
D — 7w and Dy, — K. As discussed in the text, the data are taken from fits to the D, — K data.
(Right) Results for the quark-level transition ¢ — s appearing in the decay D — K.
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ways. Section V D re-expresses our results in a compact form using the model-independent
z expansion. Section V E considers the spectator dependence of the form factors by com-
paring our results for D — 7 and Dy — K. Finally, Sec. VF compares our form factors
with published results in the literature.

A. Description of the chiral-continuum fit function

Together, the bare matrix elements and renormalization factors calculated in Sec. IV
furnish the form factors f|, f1, and fy at four different lattice spacings, three different pion
masses, and several values of the heavy-quark mass. These results are extrapolated to the
continuum limit and interpolated to the physical point using guidance from effective field
theory.

We treat the light-quark mass dependence of the form factors fj and f, with SU(2) heavy-
meson rooted staggered chiral-perturbation theory [82, 83]. Following earlier work [84, 85],
we use the version for a hard final-state hadron [86-88], hereafter referred to as “hard SU(2)
xPT.” We include the complete set of chiral logarithms and analytic corrections through
next-to-leading order (NLO) in the chiral expansion. To account for truncation errors,
we also include all analytic terms consistent with the power-counting scheme of Ref. [82,
83] through next-to-next-leading order (NNLO). These choices amount to considering the
following functional form for P € {||, 1,0, +}:

Co
Wo (E + Ax%p)

wngP(E) = X [1 + 0 flogs + CiX1 + CsXs + CHXH + CEXE

+ epX} + asXiXs + C2 X2
+ CHXIXH T QEXIXE + CsHXsXH T CsEXsXE (5.1)
+ mefq +cyEXaXE + CE2X2E

+ 5fa(ft212gmlgjs):| )

where the exponent dp € {1/2, —1/2, 0, 0} for P € {||, L,0,+} (respectively) and ¢ is a
dimensionless constant. Although, in principle, the function describing the chiral logarithms,
d frogs, depends on the form factor, in hard SU(2) xPT it is the same for all P € {||, L,0,+},
as discussed below.

The leading pole factor (in terms of the final-state hadron’s energy F) arises from the
exchange of a virtual W boson, which couples to an excited meson D] composed of ¢ and
the final-state quark x, contributing a factor proportional to

1 2Mp,
E+ Amy,p a M%; — q2'

(5.2)

The intrinsic angular momentum and parity of the D} are those of the virtual W boson,
which is JE = 17 for f, and J¥ = 0% for f;. According to the leading-order expectations
of the heavy-quark expansion [89], the same pole arises pairwise for f, as f,, and similarly
for the pair fj and fy (cf. Table VII). Equation (5.2) implies that location of the pole in the
energy can be written as

A Mpyry = Mp, — Mi
oy, P = 2N, , (5.3)
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Table VII. Approximate pole locations A, p appearing in the decays D — =w, D, — K, and
D — K.

Decay c¢—ax JP D:(JP) D, L Auyp (Agyp)TPC
D—nm c—1 17 D* D 7 Apy/1 140 MeV
0" Dj(2300) D m Aygy 480 MeV
Ds— K c—1 17 D Ds m Apgy/1 —25 MeV
0" D{(2300) Dy m Aoy 300 MeV
DK c—sl- D; D KAy, 200MeV
0+ D3(2317) D K Aggy 440 MeV

where y is the spectator quark and L € {m, K} is the final-state hadron. Values for the
Ay p are collected in Table VII for the decays of interest.

The y,, are dimensionless expansion parameters defined according to

(Mzimy:

X1 = B2 (5.4)

XS - 87T2f2 9 .
V2E

XE = it (5.6)
Anger  Anqet

XH = Z3rsim — 3/PDG (5.7)
MH(s) MD<s>

where f; is the physical pion decay constant and Amqer is the scale of heavy-quark ef-
fective theory. As in Ref. [32], we take Apqrr = 800 MeV. The parameters y; and xg
describe the analytic dependence on the light-quark mass m; (via the leading-order expres-
sion M? = 2um;) and the final-state hadron energy F, respectively. Their normalization
is such that, according to the typical YPT power counting, the corresponding coefficients
in the fit function ¢; and cg are expected to be of order 1. The parameter yp describes
the heavy quark mass mistuning through the difference between the simulated heavy meson
mass Mf}?;) and the physical Mpo or Mp,_ from Ref. [25]. This term allows for a simultaneous

description of results across several different heavy quark masses. Finally, y, describes the
strange-quark mass mistuning.!!

In hard SU(2) xPT, the chiral logarithms for fj and f, in Eq. (5.1) have the common

11 Gince the expansion parameters y; and Y, are written in terms of the simulated hadron masses, they
implicitly accommodate mistuning between the masses of the sea and valence quarks. As shown in
Table II, this feature is only relevant for the finest ensemble, where values for m; and mg differ by a small

amount (= 1%) between the sea and valence quarks.
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form [84, 85],
1
- (4nfr)?

(1+3¢%), D—r
X < 3¢2, D— K |,
1, D, —» K

1 1
Ofiog” = (‘E > T(Mrg) + (M) + Ti(May) = (M) + [V = A])
3

(5.8)

where Z; (M) = M? In(M?/A?)+ 417V (M, ML), with I}V(M, ML) being a calculable finite-
volume correction to the chiral logarithm which vanishes exponentially for large volumes;
see Sec. VIC below. Hard SU(2) xPT enjoys the further simplification that nonanalytic self-
energy corrections vanish for all three decays considered here. These expressions [Eq. (5.8)
and the self energies| were originally derived for a non-staggered heavy quark, but because
the heavy-quark taste is conserved in all-staggered xPT, they hold in the present case
too [90]. In heavy-meson xPT, compact expressions are available for f, and f; [91, 92],
while the corresponding results for f, and f; follow as linear combinations. Because of
their simple connection to heavy-meson yPT, previous lattice calculations have historically
worked primarily in terms of fj and f,. However, since the chiral logarithms have the same
functional form for f; and f| in hard SU(2) xPT [see Eq. (5.8)], the same functional form
also describes the chiral logarithms for fy and f,. In other words, Eq. (5.1) may be used
directly for all four form factors, with a 1~ pole for fi | or a 0 pole for fy.

Following Ref. [83], the arguments of the chiral logarithms involve the masses of mesons
with different tastes & € {I, P,V, A, T}, that can be expressed as

Mze =My, e = M. (5.9)
M; e = p(mi +my) + A, (5.10)
Mﬁ,w A) = = M, vyt 5\/(,4 (5.11)
A= 1—6;&5- (5.12)

The low-energy constant p and the taste splittings A¢ have been tabulated for these en-
sembles in Ref. [27]. At NLO in the chiral expansion, the taste splittings A, and the
hairpin parameters oy, 4 both scale like a?a?, so their ratio remains approximately con-
stant as the lattice spacing changes. We follow Ref. [32] and take &, /A = —0.88(09) and
&, /A = +0.46(23).

Chiral logs described above include the dominant discretization effects coming from the
taste-symmetry breaking of staggered fermions at NLO in the chiral expansion. We also
remove the leading-order (tree-level) heavy-quark discretization effects in the form factors
prior to fitting by applying a multiplicative normalization factor Z,IfoET’LO, described in
Appendix B. Because of the tree-level improvement of the HISQ action, the remaining
discretization effects are expected to arise at order a,(aA)? or ay(amy)?, where A is the
scale of generic discretization effects. They are thus expected to be well described by an
expansion in terms of the parameters x,2 and xy:

a?A
82w fQ7

Tg2 —

(5.13)
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Table VIII. Values for the strong coupling constant, which are based on the continuum value of
as(b GeV, Ny = 4) from Ref. [93]. Continuum perturbation theory is used to convert to the oy
scheme and to run to the scale 2/a [94].

~ a [fm] as(2/a)

0.15 0.3509

0.12 0.3091

0.088 0.2646

0.06 0.2236

0.042 0.2036

T = zamh. (5.14)
7

The quantity z,2 gives a dimensionless measure of order a,(aA)? discretization corrections,
while z;, is the natural expansion parameter for heavy-quark discretization effects. The
HISQ action was designed specifically to control lattice artifacts for charm physics, and the
leading heavy-quark corrections are suppressed both by a, and the velocity v ~ 1/1/10 of
the charm quark within the heavy hadron. Our preferred model thus takes the following
simple Ansatz for the discretization effects

a +h2 2
6fart1facts = Ca2Tq2 + QsUVCp2 Ty, (515)

Values for ay are given in Table VIII.
To check for truncation effects with high-order discretization effects, we also consider
variations:

2 2
+h +a 2 2
6fart1facts = Cq2Tg2 + OéSUChZZEh + Ca4xa2’ (516)
(a2+h2+h4 . 2 4
fartlfacts = Ca2%g2 + QgUCR2T}, + VCRAT Y, . (517)

With the HISQ action, discretization effects of order z} are suppressed by v (at the tree
level) or by a,. These suppression factors are numerically similar enough that the last term
in Eq. (5.17) tests both.

B. Chiral-continuum fits

We perform correlated fits, using the methodology described around Egs. (4.16) and (4.17),

to Eq. (5.1) with sfe rtlfacts in Eq. (5.15) for each of the above form factors for D — 7, D — K,
and Dy — K including all of the ensembles and heavy-quark masses described in Table 1.

In our preferred fits, the input data for the form factors f, /0 are defined using a single
matrix element each via Eqs. (2.5)-(2.7). The chiral-continuum fit results using the alter-
native constructions fa' of Eqs. (2.10) and (2.11) are considered below in the analysis of
systematic effects.

The free parameters varied in the fits are the coefficients ¢,, the coupling g, and the
mass splittings A, p. The Bayesian priors for these parameters are given in Table IX. The
leading coefficient ¢, is well determined by the data, so the preferred analysis uses a broad
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Table IX. Summary of the priors used in the chiral-continuum fits to Eq. (5.1). Values for
(Azy,p)PPY in the different decays are given in Table VII.

Parameter Value
o 1+10
Cn 0+1
g 0.5+0.2

Agyp (Agy p)PPY £200 MeV

prior (the results are insensitive to the central value, and any reasonable variation gives
indistinguishable results). The chiral-continuum fit function is based on power-counting
arguments from effective field theory, according to which the coefficients ¢, are expected to
be of order unity. The preferred analysis therefore uses priors of 0 £+ 1 for the parameters
¢n. The dimensionless (reduced) “DD*r” coupling appearing as a coefficient of the chiral
logarithms is expected to be g &~ 0.5, both from experimental measurement [95-97| and
previous lattice-QCD calculations [98-104]. For compatibility with these results, our fits
take a prior of 0.5 & 0.2. Because a broad width is used for A} p, and since the fits are
insensitive to the precise value, the priors do not distinguish between the J* = 0% and 1~
states. The other inputs to the fits are the measured initial- and final-state hadron masses
on each ensemble, the staggered parameters described in the previous section, and the pion
decay constant (which is held fixed to its physical value in Table X).

A few words are in order regarding our choice of intermediate scale setting using wg/a
and its role in the chiral-continuum fit function. The dimensionless expansion parameters Y;
and x g contain factors of the pion decay constant in the denominator. Using the continuum
values for f, and wy in Table X, we express the denominator as a dimensionless number. For
the numerator, we use the measured values of aM,; and wg/a to construct the dimensionless
product. In other words, on each ensemble y; is constructed as

Xl%((wo/a)Sim)Q (ad3m)? (5.18)

wo 82 (frP9)?

and similarly for xg and ygm. In the continuum limit and at the physical point, the wy
dependence cancels in all the analytic terms. Since f. and f, are dimensionless, the only
residual scale-setting dependence enters through the pole term, where the energy F (in
physical units) must be converted to wy units.

On each ensemble, the input data for the form factors and meson masses and energies
are correlated using the results of the bootstrap fits from Sec. IV. The resulting correla-
tion matrices tend to be near-singular, with small, poorly determined eigenvalues posing a
difficult challenge for the fits. For a given form factor, the dominant source of these eigen-
values is highly correlated data at nearby heavy valence masses (e.g., 0.9m,., 1.0m,, and
1.5m,). A common solution to this problem is SVD cuts, which have recently been used
in another lattice-QCD analysis of D — K form factors [62] and which are summarized
lucidly in Ref. [105]. Another solution is shrinkage of the eigenvalue spectrum, as described
in Appendix C.

In the analysis of correlation functions in Sec. IV, we could use nonlinear shrinkage,
which has the desirable feature of not involving any tunable parameters. As described in
Appendix C, however, the amount of shrinkage applied to the eigenvalue spectrum is con-
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Table X. External inputs used to define the physical point in isospin-symmetric QCD using
Eq. (5.1). As described in the text, the experimentally measured values of the heavy mesons
are also used implicitly as inputs in Eq. (5.1).

Quantity Value Reference
fr 130.2(8) MeV Ref. [36]
Mo 134.9768(5) MeV Ref. |
Mo 497.611(13) MeV Ref. |
wo 0.17177(67) fm  Ref. [36]
Mpo 1864.83(05) MeV Ref. |
Mp 1968.34(07) MeV Ref. |

s

trolled by the concentration ratio (the ratio of the number of random variables to the number
of independent statistical samples). Since the chiral-continuum extrapolation combines data
from different ensembles, there is no clear-cut concentration ratio. For the chiral-continuum
fits, we therefore employ linear shrinkage, which entails a parameter \. We find that A = 0.1
is large enough to regulate the small eigenvalues (thus giving good fits) without discarding
correlations unnecessarily. As with SVD cuts [105], linear shrinkage improves the quality of
fits and tends to increase the uncertainty in the posterior values. The quantitative effect of
linear shrinkage is discussed alongside other systematic effects in Sec. VIA. A qualitative
comparison of nonlinear shrinkage, linear shrinkage, and SVD cuts is given in Appendix C.

These fits deliver the form factors in the continuum limit and at the physical point. The
continuum limit of Eq. (5.1) is defined by setting fa(f;fzgfs) equal to zero and setting the
taste splittings to zero in ¢ fp joes. The physical point is defined by setting the input meson
masses equal to their physical values, given in Table X. By construction, all quantities
involving xg also vanish identically at the physical mass of the decaying heavy meson.
Our simulations and chiral analysis are both done in the isospin limit (i.e., with a pair of
degenerate quarks with mass m; = (m, + mg)/2), so the final results for the form factors
correspond to QCD in the isospin limit. The physical meson masses in Table X are chosen
accordingly, following the prescription in Ref. [36]. The systematic uncertainty with the
isospin-symmetric approximation is discussed below in Sec. VII B.

The results for the D — 7 form factors are shown in Fig. 14. To avoid plotting many
overlapping data and curves, the figures restrict to the three ensembles with physical-mass
pions and heavy valence masses with my/m. € {0.9,1.0,1.1}. In all cases, the nearly
coincident data around the physical charm mass (m, ~ m,.) suggest a mild dependence
on the lattice spacing. The black band denotes the result in the continuum limit and at
the physical point. The results for D — K and D, — K are quite similar and given in
Appendix D 2. Table XI summarizes the fit quality for the preferred fits.

C. Alternative constructions of f, and fy
Our default construction for fy is given by Eq. (2.7) and obtained in the preceding section.
In an analogous way we construct f, from the continuum-limit results for f; and f, in the

preceding section following Eq. (2.8). As discussed in Sec. 11, the PCVC relation in Eq. (2.9)
provides the alternative constructions given in Eqs. (2.10) and (2.11). Additional freedom
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Figure 14. The result of the chiral-continuum fit for the D — 7 form factors constructed using
Egs. (2.5)-(2.7) in units of the gradient-flow scale wg. For visual clarity, only the physical-mass
ensembles with heavy valence masses my/m. € {0.9,1.0,1.1} are shown, although all ensembles
and heavy valence masses in Table I are included in the fit. Different colors label different lattice
spacings and different shapes correspond to the different values of the heavy-quark mass. Points
with myp/m. =~ 1.1 were only simulated on the a ~ 0.06 fm ensemble.

exists in whether the linear combinations in Egs. (2.8), (2.10) and (2.11) are taken before
or after the chiral-continuum limit. A comparison of the different constructions is given in
Fig. 15 for D — 7 and Dy — K (D — K is similar), where excellent stability is observed
throughout the kinematic range. In the legend, the notation C'L specifies whether the
continuum limit is taken before or after computing the linear combination [C'L(f,)+CL( fo)
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Table XI. Summary of the reduced x? values and associated degrees of freedom (in brackets) for
the preferred fits to Eq. (5.1) for all decays and form factors.

D—-nm D—-K Ds— K

fo 0.91 [126] 0.48 [128] 1.31 [134]
fi 0.59 [112] 0.41 [123] 0.88 [128]
f1 0.64 [110] 0.32 [111] 0.66 [113]
£+ 0.59 [106] 0.29 [109] 0.60 [111]
30- F fo=CL(f) HH 3.04 * fo=CL(f)
. o foe CL(fy +£1) e fo CL(fy +f1)
fo CL(f)+CL(f1) ) Jo<=CL(f)+CL(f1)
o 2.5 = 2.5
S o fr < CL(fL + fo) % o fo < CL(fL + fo)
3 F fr < CL(fy + 1) # & e fi < CL(fy +11)
£ 207 & freCL)+OL(L) E 207 & £ eoL)+OL()
S e o CL(fL)+CL(f) B < o CL(fL)+ CL(fo)
£ 1.51 ﬁ 154 wu
f &
Q - a =
Q!‘ - G
07 lf‘f~ . " 1.0 1 -I__-u".'““o."
o ¥ wo B
0.5 il
0 1 2 3 00 05 1.0 15 20
q* [GeV?] q* [GeV?]

Figure 15. Comparison of the form factors coming from different continuum-limit constructions
for the decays D — m, and Dy — K. Points are offset horizontally for readability; the same value
of ¢? is used in each grouping. The notation used in the legend is explained in the main text. The
black points denote the preferred results with the best statistical precision. Similar agreement was
also found for D — K.

versus CL(f + fo), respectively]. In all cases, f; and f, are directly related to vector
matrix elements via Egs. (2.5) and (2.6). Because the results are statistically consistent, our
preferred analysis takes the results with the best statistical precision (our default analysis).
We take fo from Eq. (2.7). We construct f, via Eq. (2.8), using results for f, and f; given
by Egs. (2.6) and (2.7), each separately extrapolated to the continuum limit.

D. Model-independent z expansion

The previous section gave results for f.(¢?) and fy(¢?) in the continuum limit and at
the physical point. To facilitate comparison with experimental measurements and other
theoretical calculations, it is convenient to re-express our results using the z expansion. To
start, consider the decays D — m and D — K. The 2z expansion leverages the known
analytic structure of the form factors in the complex g?-plane to write the form factors as a
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Table XII. Pole masses and cut positions used in Egs. (5.23) and (5.24). The closest pole and the
start of the cut are the same for both D — 7 and Dy — K, since they both involve the same ¢ — d
quark-level transition.
Decay Viy  pole JP =1~ pole JP =0t
D—K  Mp+Mg Df 2112.2(4) MeV DY, 2317.8(5) MeV
D — 7, Dy — K Mp+ M, D* 2006.85(05) MeV Df 2300(15) MeV

rapidly convergent expansion in the variable z(g?, to),

_ Vie — ¢ — Vi — o
Vi —@+ Vi =1y

where t, = (Mp + Mp)? denotes the start of the multiparticle cut, L € {m, K}, and
to € [0,t4] can be chosen for convenience. This map sends the branch cut onto the unit
circle, |2(¢? to)] = 1, and the rest of the first Riemann sheet onto the open unit disk,
|2(¢%,to)| < 1. Note that

2(¢%, to) (5.19)

2t ty) = —1, (5.20)
2(to, to) = 0, (5.21)
2(—00,ty) = +1. (5.22)

Further, Eq. (5.19) maps the physical region for semileptonic decay onto an interval on the
real axis. Similar considerations apply for the decay Dy, — K, except that the multiparticle
cut begins at ty = (Mp + M,)? [and not at (Mp, + My)?]. Below, we take to = 0, so
¢* € [0,¢%,.] is mapped to z € [0, —zmay). Because —zpax & 0.332, 0.190, and 0.192, for
D — 7w, D— K,and D; — K, respectively, one expects a series expansion in z to converge
within our precision in roughly four or fewer terms.

The form factors can be expressed in z in various ways [107, 108]. We follow Bourrely,
Caprini, and Lellouch [108] as,

1 M—-1
)= T & >:29)
fele) =12 q2<1z>/Mf Z (=" = o). (5.24)

In these expressions, M ;r refers to a possible sub-threshold (M;P < ty) pole, which requires
explicit removal. For the scalar or vector form factors, the pole corresponds to any sub-
threshold particle with quantum numbers J” = 07 or 17, respectively, corresponding to the
helicity of the virtual W boson. Such poles are present for the decays D — K and Dy — K
with J¥ = 17. No sub-threshold poles are present for D — 7, but the fits are more stable
if the nearby poles are nevertheless included, as shown previously for D — 7 [57].

Since the input data from the continuum results in Sec. V C spans the full kinematic range
of the decay, the z expansion amounts to a convenient change of variables. To carry out this
procedure, we evaluate each form factor at four evenly spaced points spread throughout the
physical ¢%-region: [0.1,0.37,0.63,0.9] x ¢2,,.. We then perform a joint correlated fit of these
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synthetic data to Eqs. (5.23) and (5.24), imposing the kinematic constraint f,(0) = fo(0)
by taking a common coefficient for n = 0: ay = by. The pole masses entering Eqs. (5.23)
and (5.24) are given in Table XII. Table XIII reports the correlated posterior values for
a, and b,, emerging from the preferred fits for the three decays analyzed. The preferred
fits have N = M = 4 terms for all three decays. As shown in Fig. 16, the posteriors for
the coefficients stabilize with these choices. In all cases, statistical uncertainties in the fit
parameters are determined via bootstrap resampling with 500 draws. These bootstrap fits
also furnish estimates of the 21 x 21 correlation matrix associated with the full set of form
factors (fy and fo for all three decays). The block-diagonal correlations for each decay are
also given in Table XIII, while the full correlation matrix is given in the supplementary
material. The results for f,(¢?) and fy(¢?) coming directly from the chiral-continuum fits
(before applying the z expansion) are compared with those from the z expansion in Fig. 17.
An alternative, common form of the z expansion uses [107]

Fo@®) = 5oy D ans" (5.25)

with P(¢*) = 1 for D — 7 or 2(¢* Mp,) for D — K and outer function ¢(¢*) given by

o) = [T, (LN (2t (2 Nt (5.26)
37°\ —¢ to — ¢2 to—q? (ty ——to)/*) 7
where tg =t (1 — /1 —t_/t.) and m. = 1.25 GeV. For comparison with the experimental

determination of the shapes in Sec. VII C below, we use Eq. (5.25) together with the refitting
procedure described in Ref. [62].

E. Spectator dependence

From the hadronic perspective, the decay channels D — 7 and D, — K are quite
similar, differing only by the mass of the valence spectator quark. As illustrated in Fig. 18,
we find that the vector and scalar form factors for these two transitions agree with with
each other at the level of < 2% throughout the full kinematic range of the D, — K decay.
The first experimental measurement of the decay Dy — K by BES III [109] confirms this
picture within experimental uncertainties while old, unpublished results by the HPQCD
collaboration [52, 53] are also consistent with our findings.

F. Comparison with existing results in the literature

The form factors under consideration have been computed previously using lattice QCD
with Ny =2+ 1+ 1 flavors of dynamical fermions by ETMC [57, 58] (for both D — 7 and
D — K) and by HPQCD (for D — K) [62, 63]. The more recent HPQCD calculation [63]
includes the same set of D — K correlators as the earlier one [62], but they are analyzed to-
gether with tensor-current three-point functions, data for heavier-than-charm quark masses,
and D; — nslv form factor data [110]. Both the correlator fits and the description of the
heavy-quark-mass dependence and discretization effects are thus different. Our D — 7 re-
sults for the form factors and the semimuonic differential decay rate are compared with those
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Figure 16. Stability analysis for the fit parameters appearing in the z expansion for the decays
D — m and D — K. The preferred fit uses N = M = 4 terms (i.e., up to and including az and
b3), at which point the coefficients’ central values and errors have stabilized and higher-order terms
are expected to contribute negligibly at the current level of precision. Results for Dy, — K are
qualitatively similar.

of ETMC in Fig. 19. At large ¢%, our results for the form factors are significantly larger than
those in Ref. [57]. Due to phase-space suppression, the difference is less visibly pronounced
in the differential decay rate dI"/dq?. In the low ¢* region, which is most relevant for extrac-
tions of |V,4|, good agreement is observed at the level of ~ 1. Similarly, our D — K results
are compared with those of ETMC and HPQCD in Fig. 20. Mild tension, at the level of
~ 20, is observed between our results and ETMC. Good agreement with HPQCD is observed
throughout the kinematic range. Our results for f1(0) = f5(0), fo(¢2..), and fi(¢3..) are
summarized in Table XIV alongside the published results of Refs. [57, 58, 62, 63].

VI. SYSTEMATIC ERROR ANALYSIS

The fits to the z expansion described in Sec. VD and given in Table XIII provide our
final results for the pure-QCD form factors at the physical point in isospin-symmetric QCD.
In this section, we examine and quantify the various statistical and systematic uncertainties
contributing to the calculations. The complete final error budget is summarized in Table XV
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Table XIII. Correlated posterior values for a,, and b,, for the coefficients of the z expansion for the
decays D — w, D — K, and Dy — K. The simultaneous fit to Egs. (5.23) and (5.24) constrains
ao = bg. The pole masses used in the fits are given in Table XII. The full correlation matrix is given
in the supplementary material. The supplementary material also contains a script, reconstuct. py,
which shows an example of how to read the z-expansion coefficients and recreate our final results
for the form factors as function of the momentum transfer, correctly including the full correlation
matrix.
D—7m ag=by al as as by b bs
0.6300(51) -0.610(99) -0.20(30) 0.30(19) 0.330(51) -0.31(25) -1.90(39)
1.0000 0.5670  0.5189 -0.2018 0.7547  0.3473  0.0861
1.0000  0.8912 -0.2826 0.5148  0.2529  0.0747
1.0000 -0.1482 0.5082 0.2782 0.1162
1.0000 -0.1728 -0.0496 0.0354
1.0000  0.8277  0.6066
1.0000  0.9442
1.0000
D— K ag=hby aq as as by by bs
0.7452(31) -0.948(97) 0.14(40) 0.07(12) 0.776(62) 0.14(34) 0.03(13)
1.0000 -0.0332  0.0747 -0.0201 0.7753 0.4920 -0.0189
1.0000 0.3272 -0.1586 -0.0909 -0.1090 0.0420
1.0000 -0.7543 0.2071 0.2565 0.1457
1.0000 -0.0594 -0.1119 -0.2259
1.0000 0.9087 0.1012
1.0000 0.2126
1.0000
Ds— K ag=b a1 as as by by b3
0.6307(20) -0.562(65) -0.19(20) 0.33(29) 0.347(27) 0.44(18) -0.21(43)
1.0000 0.1825  0.2612 -0.0266 0.8467 0.5197 0.0973
1.0000  0.9274 -0.2432 0.1899 0.1915 0.1180
1.0000 -0.0514 0.3243 0.3065 0.1764
1.0000 -0.0551 -0.1580 -0.2098
1.0000 0.8344 0.4260
1.0000 0.8442
1.0000

for £,(0) = fo(0), fi(q?..), and fo(g2,.) for all decay modes. As discussed in Secs. VIC
and VID, the very small corrections for the leading finite-volume shifts (< 0.01%) and
the effect of nonequilibrated topological charge (relevant for a &~ 0.042 fm only) have been
applied to the form factors prior to fitting and thus are not included as separate errors.
Systematic errors associated with isospin breaking effects and QED corrections, which are
external to our calculation in isospin-symmetric QCD but necessary for comparison with
experimental results, are discussed in Sec. VII B.
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Figure 17.  Final results for fi and fy for the decays D — n, D — K, and Dy — K in the
continuum limit and at the physical point before and after fitting to z expansion. The solid curves
show the results after the chiral-continuum fit, while the hatched curves show the result of the
z expansion. The left column shows the product (1 — ¢ /M;P) fo,+ as a function of z, while the
right column shows the form factors versus ¢>.

A. Chiral-continuum fits: stability analysis

The results in Sec. V are the product of several choices. In this section, we examine the
stability of the results under reasonable variations to these choices for the fiducial point ¢? =
0. First, the model for the EFT is varied. The staggered chiral logarithms are replaced with
their continuum counterparts, setting the known taste splittings to zero by hand. Another
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Table XIV. Final results for f1(0) = fo(0), f+(q2 ), and fo(q2,.y) for the decays D — 7, D — K,
and Ds; — K, together with comparisons with existing Ny = 2+ 1+ 1 results in the literature from
HPQCD [62, 63] and ETMC [57]. The results of the present work, denoted “Fermilab-MILC”, are
all given at the physical point and in the continuum limit in isospin-symmetric QCD. Included
in these results are all systematic errors discussed in Sec. VI and summarized in Table XV. Not
included are additional systematic uncertainties associated with QED, isospin, and electroweak
corrections (these effects are estimated in Sec. VIIB). The different groups use slightly different
conventions to define the isospin-symmetric point. Shifts from these differences are expected to be
small. Figure 24 suggests that the largest differences, perhaps amounting to a few percent, will be
present near qrznax.

process collaboration fo(0)  fo(¢Rm) S+ (dha)
D —m FNAL/MILC 0.6300(51) 1.2783(61) 3.119(57)
D—m ETMC17  0.612(35) 1.134(49) 2.130(96)
D — K FNAL/MILC 0.7452(31) 1.0240(21) 1.451(17)
D — K HPQCD 22 0.7441(40) 1.0136(36) 1.462(16)
D — K HPQCD 21  0.7380(40) 1.0158(41) 1.465(20)

(54)

(13)

D — K ETMC 17  0.765(31) 0.979(19) 1.336(54
D, — K FNAL/MILC 0.6307(20) 0.9843(18) 1.576(13

3.0 27(e?) /
0D—>7r(q2) [’
. /
L0 Do) /
g"‘ 504 ODHK(qQ) /I
3 ) //
To /
Q. /
~ 1.5
1.0
0.5 T T T I
0 1 2 3
¢* [GeV]

Figure 18. Comparison of the vector and scalar form factors between the decays D — 7 and
D, — K, which differ only by the mass of the valence spectator quark. The form factors agree
at the level of < 2% throughout the full kinematic range of the Dy — K decay. The long dashed
lines extending to ¢> ~ 3 GeV? correspond to D — , while the shorter solid lines correspond to
D, - K.
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Figure 19. Comparison of our results for the D — 7 form factors and semimuonic differential decay
rate (dI'/dg?®)(2473/G%)/|Vea|? with published results from ETMC [57]. No QED or electroweak
corrections [cf. ngw in Eq. (2.1)] or errors have been included. To account for differences in defining
the physical isospin-symmetric point, the errors in our curves have been inflated with an estimate
of SIB effects; see Sec. VII B below.
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Figure 20. Comparison of our results for the D — K form factors and semimunoic differential
decay rate (dI'/dg*)(2473/G%)/|Ves|* with published results from ETMC [57] and HPQCD [62].
No QED or electroweak corrections (cf. ngw in Eq. (2.1)) or errors have been included. To account
for differences in defining the physical isospin-symmetric point, the errors in our curves have been
inflated with an estimate of SIB effects; see Sec. VII B below.
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Table XV. Complete statistical and systematic error budget for the vector and scalar form factors
at ¢> = 0 and ¢2,,, for the decays D — 7, D — K, and D; — K. All values are given in percent.
The breakdown of the chiral-continuum fit errors is discussed in Sec. VIB. Corrections for finite-
volume and topological-charge effects, discussed in Secs. VIC and VID, are applied prior to the
chiral-continuum fit and are negligibly small (< 0.01%). Experimental uncertainties on the meson
masses are also negligible at our current level of precision.

Decay D—r D—K D — K
Source F1(0) fi(dmax) fo(dmax)| f+(0)  fi(dmax) Jo(dmax)| [+(0)  fi(dmax) fo(dmax)
Statistics f | 0.21 1.46 0.01 0.07 0.95 0.01 0.07 0.73 0.02
Statistics fy | 0.70 0.39 0.40 0.39 0.36 0.22 0.29 0.18 0.12
Ctm. wop 0.31 0.09 0.15 0.24 0.14 0.17 0.32 0.27 0.27
xEFT f| 0.12 0.46 0.01 0.03 0.50 0.00 0.03 0.39 0.01
xEFT fy 0.24 0.13 0.13 0.11 0.14 0.05 0.05 0.03 0.02
Discr. f| 0.08 0.73 0.00 0.06 0.41 0.01 0.03 0.41 0.01
Discr. fy 0.05 0.02 0.07 0.02 0.02 0.02 0.00 0.00 0.01
fDG 0.16 0.10 0.13 0.06 0.04 0.03 0.12 0.04 0.09
Total error 0.87 1.84 0.48 0.49 1.29 0.28 0.46 0.99 0.30

alternative is simply dropping the chiral logarithms §fpoes in Eq. (5.1). This variation
is reasonable, since the ensembles with physical-mass pions reduce the approach to the
physical point from an extrapolation to an interpolation. The final EFT variation consists
of augmenting the analytic terms in Eq. (5.1) to include all the N3LO terms (i.e., terms cubic
in the xy, xg, and xg). Second, we consider variations to the model for discretization effects
as given in Eqs. (5.16) and (5.17). Third, the widths of our Bayesian priors are increased,
and the fits are rerun. In one variation, the widths of the priors for the coefficients of the
leading-order analytic terms (¢, cg, and cg) are increased by a factor of ten. In another
variation, the widths of all the priors are increased by a factor of two. Fourth, the choice of
the linear shrinkage parameter is tested by fits varying it by a factor of 2 from its fiducial
value (A = 0.1). Finally, the choice of data used in the fits is varied, rerunning after dropping
the coarsest ensemble (a ~ 0.12 fm) and after dropping the finest ensemble (a ~ 0.042 fm).

As Fig. 21 shows, for D — m, that all variations are statistically consistent with the
preferred fit at the level of one standard deviation. Stability plots for D — K and Dy — K
are similar and given in Figs. 47 and 48 in Appendix D 2.

The discussion in Sec. V C demonstrates good agreement for the physical form factors
constructed in different ways, while the discussion above shows that alternative discretiza-
tion models, as well as continuum-xPT fit functions (without taste splittings in the chiral
logarithms), give consistent results.

B. Chiral-continuum fits: error breakdown

The form-factor results coming out of the chiral-continuum fits contain several sources of
uncertainty: statistical errors in the form factor on each ensemble (the correlated uncertainty
from the bare form factors and renormalization constants), scale-setting errors coming from
the continuum value of wq, choices in the fit function and chiral interpolation, discretization

38



chiral logs
Drop chiral logs

N3LO analytic _|

terms
(a®+h%+ht) - -
6fartifacts

Preferred fit - >—+—< - >—+—< - >_+_<
Continuum _|

(a®’+h%+a*) - -
5fartifacts

Leading-order _|
prior width x 10
Prior width x 2 {——@&+— - -

Shrinkage \/2 - -
Shrinkage A x 2 - -

Omit 0.12 fm | - - —o+—
Omit 0.042 fm - +H—&+— - 4 —e—
Drop my, /m, > 1.1 - {—et

Drop my,/m.> 1.5 - -
| I | I T T T

O O D> SO O DL H
NN 09(\ N NN

NTN
fP7(0) FP=m(0)v/wy FP77(0)/vwg

Figure 21. Stability of the D — 7 form factors f, /o at ¢*> = 0 under variations to the EFT
model, the model for discretization effects, to the choice of data included in the fit, and other
analysis choices as described in the main body. The central values have been normalized by the
central value of preferred fit in green. All variations are statistically consistent with the preferred
fit, highlighted by the green band in each panel. The statistical significance of the fits is indicated
by the marker size, with larger points denoting better fits.

effects, and errors in the input parameters (physical meson masses and f, in Table X).
The different sources of error are entangled in the total fit uncertainty; in particular, the
fit function, chiral interpolation and discretization errors are rather difficult to separate
unambiguously. Nevertheless, an estimate of each error can be obtained using the package
gvar [111] following the methodology described in Ref. [112]. The discretization error is
defined to be the error coming from the parametric uncertainty in ¢ féiifzgjs) from c,2 and
¢p2. The combined uncertainty from all other fit parameters in Eq. (5.1) is defined to be the
error in the fit function and chiral interpolation. This error includes the uncertainty from
the DD*m coupling, g, which turns out to have a small influence on the final results. The
experimentally measured values of the meson masses also contribute negligibly to the total
error.

Numerical results for the error breakdown are shown in Table XV for ¢*> = 0 and ¢?_,
and Figs. 22, 49 and 50 show the error budgets through the full kinematic range for D — ,
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Figure 22. Final error budget for the form factors f2~™ and fP~™ after the fit to the z expansion.
Contributions less than 0.01% are not shown.

D — K, and Dy, — K, respectively, after fits to the z expansion. The colored curves sum in
quadrature to give the total error in black. Not shown are contributions from uncertainties
less than 0.01%; this includes the experimental values for the input meson masses. Since
the lattice data span the full kinematic range in ¢?, errors from the z expansion are also
negligible.

Several important qualitative features are evident in the error budgets. For all three
decays, f, has the largest errors near ¢2_ , since this kinematic region involves an extrap-
olation (p — 0). Second, because the z-expansion analysis uses a correlated joint fit to fj
and f,, the final errors in each case include contributions from statistical uncertainties in
both fy and f,. Third, because the f| term vanishes in Eq. (2.8) at ¢*> = 0, the contribu-
tions from statistical errors in f, decrease for small ¢?. Fourth, although the form factors
are dimensionless, the scale-setting uncertainty is significant and tends to decrease for large
¢®>. At the physical point, the scale-setting uncertainties vanish identically for the chiral
logarithms and analytic terms. The full uncertainty comes from the leading-order term in
Eq. (5.1): since the posterior values for ¢y and A,,p are both implicitly in intermediate
units of wy, so must the energy be. The associated scale-setting uncertainty thus decreases
when the energy is small.

The error budgets for D — K and Dy — K are qualitatively similar as shown in Figs. 49
and 50. Over the whole kinematic range, statistics is the dominant source of error for all

three channels, except for 53 7K pear ¢, where the scale-setting uncertainty dominates.

C. Finite-volume corrections

In principle, the finite volume of our simulations is a systematic effect influencing the
results for the form factors. Within chiral perturbation theory, the leading corrections
amount to replacing loop integrals by discrete sums [113, 114]. The basic infinite-volume
loop integral appearing in the present analysis is

g 1 1
11 = /(M 1
o /(27r)4—6 ¢?— M? 1672 1(M), (6.1)
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Table XVI. Finite-volume corrections to the chiral logarithm I;(M;) for the ensembles given in
Table 1.

~ a [fm] my/ms L/a ML Iyy(My)/I1 (M) [%]

0120 1/27 48 3.9 1.32
0.088 1/10 48 4.7 0.65
0.088 1/27 64 3.7 2.06
0.057 1/5 48 4.5 1.31
0.057 1/10 64 4.3 1.25
0.057 1/27 96 3.7 1.91
0042 1/5 64 43 1.70

with I3 (M) = M?In(M?/A?) as in Eq. (5.8). In a finite volume, this integral becomes the

discrete sum
B =T Z/ o q—T = L(m) + 17 (m), (6.2)

where I7V (M) is the finite-volume correction that vanishes exponentially for large volumes.
The correction has the explicit form

1 Ki(nML)

FV o 2 1

(M) = 5 M 2 T nML (6:3)
Inl0

with the sum running over all nonzero lattice vectors n € Z3 in the finite volume, and where
K is a modified Bessel function of the second kind. As described in Sec. V, the effect of
this correction has already been included explicitly in our fits to Eq. (5.1). To quantify the
overall size of the finite-volume effect, it is useful to compute the dimensionless ratio:

FV (1m, (n
17V (m) 4 )ZK(ML). 6.4

I(m)  In(M2/A2 nML

|n|#0

As shown in Table XVI, the finite-volume corrections amount to < 2% shifts in ;(m). In
the chiral-continuum fits to Eq. (5.1), the overall contribution from the chiral logarithms
enter at the level of a few percent. The total size of finite-volume corrections to the form
factors may be estimated to be at the few permyriad level, 0(0.01)%. Since the leading
correction to the chiral logarithm has already been included in our fits to Eq. (5.1), and
since the effect is so small, we do not include any additional error for residual finite-volume
effects in our final systematic error budget.

D. Nonequilibrated topological charge

Efficiently sampling regions with different topological charges @) in lattice-QCD simula-
tions becomes slow in standard algorithms, which use a continuous updating procedure for
the gauge fields. Brower et al. [115] realized that chiral perturbation theory can be used
to study the @)-dependence of observables, and they showed how to extract physical results
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from numerical data at fixed topology. Their calculations confirmed the theoretical expecta-
tion that, due to locality and cluster decomposition, the effects from fixed topology should
be suppressed for large volumes. Subsequent calculations by Bernard and Toussaint [116]
extended these ideas to heavy-light decay constants and meson masses in the context of
heavy-meson chiral-perturbation theory. The analysis was extended to light form factors in
Ref. [27].

Following those works, we account for the effect of the difference between the correct
(Q?) and the simulation (Q*), .. in the extraction of heavy-light form factors by applying
a correction factor A fp, independent on ¢?, valid for all form factors considered in this
work, and given by

AQfP = fP,corrected - fP,sampley (65)
2 2
- 1 8 fP (1 . <Q >sample> : (66)
0=0 xrV

_QXTV 002
with fp sample the simulation value of a given form factor at any value of ¢%, 0 the vacuum
angle, yr the topological susceptibility, and V' the four-dimensional lattice volume. The
second derivative of the form factors with respect to the vacuum angle is obtained using LO
heavy-light xPT with 6 # 0

0 fre
62

_ _411 (mz<mlms ))2 IO (6.7)

m; + 2m,

0=0

where m; ; are the light and strange quark masses respectively, and m, is the mass of the
spectator quark in the transition, i.e., m; for D — w(K)lv, mg for Dy — K{lv. The value
of <Q2>sample is understood to be the measured value from the simulation. For the chiral
susceptibility, we take the prediction from leading-order staggered yPT [117],

1
xr = fM? (6.8)

where 1/M? =2 /Mfl ;+1/M 323, ; involves the taste-singlet non-Goldstone states. At leading
order, the only change from the familiar result [118] is the replacement of M? by M?.
The masses of the taste-singlet mesons are calculated using Eq. (5.10). Of the ensembles
considered in this work (cf. Table I), the effects of nonequilibrated topological charge are
relevant only for the finest ensemble (a = 0.042 fm), for which (Q?),, .. = 27.59 [116].
The resulting corrections, (Agfp)/fr S 0.0003, are applied to the form factor data on the
a ~ 0.042 fm ensemble prior to the chiral-continuum fit in Sec. V. Having accounted for
the effect explicitly, and given the smallness of the correction, no further systematic error is
assigned for nonequilibrated topological charge.

VII. PHENOMENOLOGY

The analysis of the preceding sections yields the semileptonic form factors for D — ,
D — K, and Dy — K in the idealized case of isospin-symmetric QCD. For phenomenological
applications, we have to consider the effects of strong isospin and QED, and then combine
corrected results with experimental data. In this section, we first (Sec. VIT A) explore several
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Table XVII. Summary of published measurements of semileptonic decays of D mesons to pseu-
doscalar light mesons. FOCUS 2005 [119] obtained shape information only and is omitted.

Decay Measurements Notes
D% — m=etr BaBar 2015 [122]
Belle 2006 [120] e* and ut averaged
BES III 2015 [124]
CLEO 2009 [123]
Dt — 7% Ty BES III 2017 [126]
CLEO 2009 [123]
D° — 7= utv  Belle 2006 [120] et and put averaged
BES III 2018 [127]
Dt — 7%uTv BES III 2018 [127]
D° — K~etv BaBar 2007 [121]
Belle 2006 [120] e™ and ut averaged
BES 111 2015 [124]
CLEO 2009 [123]
Dt — K%ty BES III 2017 [126]
CLEO 2009 [123]
DY — K—utv Belle 2006 [120] et and pt averaged
BES III 2019 [128]
Dt — K% v BES III 2016 [125]  total rate only
Df — KY*v BES III 2019 [109]

options for combining the experimental results with the lattice-QCD form factors and next
(Sec. VIIB) estimate QED and strong isopin-breaking effects. We are then in a position to
determine via Eq. (2.1) the CKM matrix elements |V,4| and |V.s| with a full error budget
(Sec. VIIC) and to carry out tests of CKM unitarity (Sec. VIID). We also compute the
Standard Model predictions for the LF'U ratios R, /..

A. Experimental measurements

The differential decay rates dI'/dg?* for semileptonic decays of D) mesons to pseudoscalar
light mesons have been measured by FOCUS (shape only) [119], Belle [120], BaBar [121, 122],
CLEO [123], and BES III [109, 124-127]. Table XVII summarizes the published measure-
ments according to decay channel. Due to the experimental challenge of reconstructing
muons in the final state, more measurements exist for the electron channels. The only
published data available for the semimuonic final states are from BES III, which measured
the rates for D — wuv [127) and D — Kpuv [125, 128]. Although Belle measured both
the semielectronic and semimuonic final states [120], numerical values for the rate were not
reported; instead, only values for the product |V, | ff%ﬂ/ K(q2) averaged over the lepton final
state are available [129, 130], without any correlation information. Since both experimental
data and lattice-QCD form factors have now reached a level of precision where the effects of
the scalar form factor (which are proportional to m?) are no longer negligible, as discussed
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Figure 23.  Fractional contributions from the scalar and vector form factors to the differential
decay rate dI"/dq? for D° — 7~ v for electronic and muonic final states. Scalar contributions enter
Eq. (2.1) with a factor of m%. In muonic decays, in general, scalar contributions are thus a factor
of (my/me)? &~ 10° larger than in the corresponding electronic decays.

below, we exclude Belle data from our subsequent analysis.

Besides the experimental difficulties associated with semimuonic final states, the extrac-
tion of the CKM matrix elements |V,4| and |V.s| poses an additional complication. Contri-
butions to the differential decay rate from the scalar form factor enter Eq. (2.1) with a factor
of m2. As Fig. 23 shows, the scalar form factor is negligible for semielectronic final states
everywhere except the lowest ¢? bin, where its contribution is roughly 1%. The situation
for semimuonic final states is entirely different, where contributions from f; are roughly
(m,,/m.)? ~ 10° times larger and, thus, contribute at the few-percent level throughout the
full kinematic range. Many extractions of |V,4| and |V,.,| have neglected the contributions
of the scalar form factor. But, with errors of < 1% both from experiment and from the
results of this paper, determinations of |V.4| and |V,| require the inclusion of both terms in
Eq. (2.1).

B. Systematic uncertainty from strong isospin effects and QED

The form-factor results reported in Table XIII are computed in isospin-symmetric QCD,
i.e., in simulations with degenerate light quarks of mass m; = (m, + mgy)/2 in the sea and
valence sectors. This theory is slightly different from nature, which includes corrections from
electromagnetic effects and strong isospin breaking (SIB). An estimate of these neglected
effects is necessary before combination with experimental data.

Consider first SIB. Isospin violation in the sea may be ignored at the current level of
precision. Because the matrix elements yielding the form factors are symmetric under ex-
change of the up and down sea quarks (m, <> my), the leading contributions from SIB in
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Figure 24. Systematic error envelopes 1— f_‘ﬁ?(‘)‘tral / ffjgrged estimating the effects of isospin breaking

from the variation in form factors using an alternative definition of the physical point with the
charged initial and final hadron masses (cf. Table X). The total errors on the theoretical prediction
for the form factor are increased, leaving the central value unchanged. Although the systematic

uncertainty from SIB increases with ¢?, its effect on |V..| and R,/ ends up being small due to

n/e
phase-space suppression.

the sea are of order (my—m,)?. This behavior appears in the yPT [83] expressions, showing
that sea SIB is smaller than the NNLO terms in the chiral expansion [32]. To estimate the
valence correction, we evaluate the form factors with a different definition of the physical
point, replacing the masses of the neutral initial and final hadrons that define the physi-
cal point, see Table X, with their charged counterparts, and then computing the fractional
shift 1 — (fytral/ ffjgfged) as a function of ¢>. To account for this systematic effect, we

increase our errors on the form factors by £(1 — f14"!/ f f,’[?rged), leaving the central value
unchanged. The systematic error profiles are shown as functions of ¢ in Fig. 24. Although
this treatment of SIB does not distinguish between SIB in the sea and valence sectors, it is
conservative insofar as both sea and valence effects contribute the variation with the hadron
masses. Guidance from EFT calculations or dedicated simulations with m, # mg would be
useful to help quantify this effect more precisely. Due to phase-space suppression at large
q?, isospin effects will turn out to be a small (and sometimes neglible) contribution to the
systematic error budgets for quantities of phenomenological interest.

Some effects of QED are taken into account in the experimental measurements. For
instance, final-state radiation tends to degrade the momentum resolution, which can lead
to mis-measurement of the positron momentum if background radiative events (e.g., D° —
7w~ etvy) are not handled correctly. Experimental groups correct for this effect using the
Monte Carlo tool PHOTOS [131, 132]. See Refs. [121, 123] for a discussion.

The long-distance electromagnetic corrections to the semileptonic decays themselves (dgym
in Eq. (2.1)) have not been calculated for the decays D,y — K /mlv. However, the analogous
corrections to the decay amplitudes for K — 7wfv have been computed in the framework
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Table XVIII. Long-distance electromagnetic corrections for the Ky3 decay amplitude, taken from
Ref. [41-43, 133, 134]. Since the shifts are computed for the amplitude, the factor of two is necessary
for use with the decay rate. Entries correspond to %5EM in %.

Decay Cirigliano et al. [133, 134] Seng et al. [41-43]
KO = ety 0.50 +0.11 0.580 & 0.016
K° — nmputy 0.70 £0.11 0.77 £ 0.04
Kt = a0ty 0.054+0.13 0.105 £ 0.024
Kt = 7n0%uty 0.08 £0.13 0.25 + 0.05

of xPT [133, 134] and more recently in a hybrid framework combining xPT and Sirlin’s
representation of SM radiative corrections [41-43]. The more recent calculations confirm
the older results but with smaller final uncertainties. The overall picture, substantiated
by Table XVIII, is that final states with a charged hadron (e.g., 77e™) tend to have shifts
of dgm ~ 1-1.5%, while the shifts for final states with a neutral hadron (e.g., 7’e") are
roughly a factor of 3-4 smaller. Differences between the decays with an e* or a u™ in the
final state are around an order of magnitude smaller. Since, as mentioned above, no similar
calculations exist for the decays at hand, we are unable to apply a concrete correction dgyp.
Instead, using the results for K — w/v as a rough guide, we include an additional systematic
uncertainty. For extractions of the CKM matrix elements, we add a conservative error of
+1% to the final value |V.4| or |V.|. In all cases, the uncertainty is inflated without shifting
the central values.

In the analysis below, we also report values for the correlated ratio |V.4|/|Ves| as well as
LFU ratios. A few additional remarks are necessary concerning the QED uncertainty for
these quantities.

Consider first the ratio |V.q|/|Ves|. As the results in Table XVIII show, QED corrections
for Kt decays are < 0.25%, which suggests similarly small corrections for Dt decays. For the
decays of D°, the QED corrections will be dominated by the Coulomb interaction between
the charged final-state particles. The Coulomb shift in the rate is approximately given by
1+ 7o/ B, where B = /1 — M2m2/(py, - pe)? is relative velocity between the charged final-
state particles [133, 135-138]. For the decays considered here, the kinematics are such that
B =~ 1. Therefore, within the uncertainties of our calculation, the Coulomb corrections for
DP decays are essentially constant over the kinematic range of the decays and would cancel
in the ratio. Overall, we take a conservative 0.5% QED systematic uncertainty for the ratio
Vel / Vi

Similar considerations apply for the LFU ratios. Again using K — 7wfr and Table XVIII
for guidance, the correlated [43] differences dgm(1) — dpm(e) are about 0.3-0.4%. As for the
ratio of CKM matrix elements, the Coulomb corrections are expected to introduce a factor,
(1 + amr), which cancels, within the precision of our calculation, in the ratio. For the same
reasons as above, we thus take a conservative 0.5% QED systematic uncertainty for the LFU
ratios.

C. CKM matrix elements

Our analysis extracts the CKM matrix elements using two different methods: the joint
z-expansion method and the binned method, discussed below.
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First, the joint z-expansion method fits experimental data for dI'/dq* together with syn-
thetic data for our lattice-QCD form factors f, (¢?) and fy(g?). More precisely, the expected
model for the decay rate is given by Eq. (2.1) using the four-parameter z expansions for
both f1(¢?) and fo(¢?) via Eq. (5.24) and Eq. (5.23). The CKM matrix element |V |joint
is treated as a free parameter in the fit which serves as a floating relative normalization
factor between the experimental data for the rate and synthetic data for the form factors.
The synthetic data are computed using our results for f (¢?) and fy(¢*) given in Table XIII,
evaluated for ¢ at [0.1,0.3,0.63,0.9] x ¢2,,... The locations of these points are the same as the
synthetic points used in Sec. V D. Since this method works directly with the full expression
for the differential decay rate, Eq. (2.1), it makes no assumptions about the relative size of
the vector and scalar contributions.

Joint z-expansion fits have been carried out including all experimental data for each decay
process. The corresponding differential decay rates (orange curves) are shown, together with
the experimental data, in Fig. 25 (D — 7 and D — K) and Fig. 26 (Ds — K). For com-
pleteness, the fit posteriors for the z-expansion coefficients are given in Appendix D 5. Mea-
surements from CLEO were reported including correlations between different decay chan-
nels [123]; these correlations are included in our analysis. The published results from BES 111
do not include correlations between different decays (e.g., D° — 7~ etv, D* — 7l Tv,
D° — = pfv, and DT — 7%utv). We have experimented with different models for the
missing off-diagonal blocks of the full correlation matrix, ranging from zero correlation to
100% correlation. Our results for |V,4| and |V.s| are extremely insensitive to the precise treat-
ment of these off-diagonal correlations and give statistically indistinguishable results. We
therefore report values from our preferred analysis, which uses a simple model for the corre-
lations in which the off-diagonal blocks are taken to be constant, with correlation coefficient
equal to the mean of the corresponding diagonal blocks.'?. Regarding the measurements of
D® — K~e'v coming from BaBar [121], our fits drop the largest ¢* bin, since it is con-
structed by a normalization constraint (one minus the sum of the other bins). Especially
when fitting dI"/dg? for semimuonic channels, including the scalar form factor is essential to
achieving a good description of the data at low ¢?>. However, the higher parameters b; and
by associated with the scalar form factor are constrained entirely by our precise synthetic
data for fy. The influence of neglecting fy is considered below.

The plots in Figs. 25 and 26 also include comparisons with the shape obtained from our
form factors, given by the parameters in Table XIII (lattice-QCD-only results), normalized
by |ch|j20mt. Those correspond to the blue curves in the plots. In addition, fits are also
conducted to the experimental data alone, although we do not use these results to extract
the CKM matrix elements. All those z-expansion fits, as well as the joint fit, enforce the
kinematic identity fi(0) = fo(0) by imposing ay = by [cf. Eq. (5.23) and Eq. (5.24)]. The
best-fist posterior values for those z-expansion fits are also given in Appendix D 5.

Another visualization of the form factors’ shapes, which is independent of the overall nor-
malization, comes from comparing the ratios r1 = a1/ag and ry = as/ag of the z-expansion
coefficients from Eq. (5.25) after applying the refitting procedure of Ref. [62]. These ratios
are displayed for D — mand D — K in Fig. 27. Our results, given by the black ellipses, show
good agreement with the experimental shapes. For D — K, we also find good agreement
with the lattice QCD calculation from HPQCD [62]. For D — 7, we find r; = —2.009(55)

12 We thank the BES III collaboration for providing us with the correlations for the differential rate dI"/dg>
for the decays D} — K% *tv, D — 7= utv, and DT — 7%t v as well as for information and guidance re-
garding the treatment of off-diagonal correlations between different decays (Lei Li, private communication,
22 July 2022; Hailong Ma, private communication, 11 Dec 2022)
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Figure 25.  The differential decay rates for D — = (top row) and D — K (bottom row) in
the semielectronic (left) and semimuonic (right) channels. The blue curves shows the result of
evaluating Eq. (2.1) using our lattice-QCD form factors, normalized by |ch|j20mt. The hatched
orange curves show the result of the joint fit of experimental data and synthetic lattice-QCD data
to the z expansion. The black data points indicate charged-hadron (K~ /7~ ¢1) final states, while
the green points indicate experimental measurements for neutral-hadron (K°/7%*) final states.
In the top row, D — 7 results come from BaBar [122], CLEO [123], and BES III [124, 126, 127].
In the bottom row, results come from BaBar [121], CLEO [123], and BES III [124, 126, 128|].
Results from different experiments have are distinguished by different markers. The points have

been slightly offset horizontally for readability.
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Figure 26. (Left) The differential decay rate for Dy — K%*v. The blue curve shows the result
of evaluating Eq. (2.1) using our lattice-QCD form factors, normalized by |Vcd|j201nt- The hatched
orange curve show the result of the joint fit of experimental data and synthetic lattice-QCD data to
the z expansion. The data points indicate experimental measurements from BES III [109]. (Right)

The binwise estimate of the CKM matrix element [|Veq(q?)|] from the decay D, — K.
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Figure 27. Comparing the shapes of the vector form factor f; between lattice QCD and ex-
periment for the decays D — 7 (left) and D — K (right) via ratios of z-expansion coefficients
from Eq. (5.25). Where published correlations are available, the ellipses show the 68% confidence
intervals. Systematic errors from QED and isospin breaking are not included in the lattice QCD
results.

and r = 0.14(36), with a correlation of p;2 = —0.58. For D — K, we find r; = —2.05(11)
and —0.59(52), with a correlation of p;o = —0.29.

The second method we use to extract CKM matrix elements, the binned method, combines
lattice-QCD results with experimental data for the rate dI'/dq? to give a binwise estimate
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of the CKM matrix element:

5 1/2
Ve (6] gpneq = [(j—;) 2 ! ) J , (7.1)

Expt G%n%w <( o )LQCD

where the quantity in the denominator is understood to be the binwise average (i.e., inte-
grated over the bin) of the lattice-QCD form factors together with the appropriate kinematic
factors appearing in Eq. (2.1),

(- Jqop = (L —€) (|p|3<1+e/2>f+<q2>+|p|Mz (1-32) gefom?)). (72)

This expression depends on the lepton mass via € = m7/q* as well as the experimentally
measured hadron masses My and M, for each mode (e.g., D% and 7~ or DT and 7° for
D — m). A weighted, correlated average (i.e., a fit to a constant) then gives |V.;|Binwise-
The binned method is entirely general and makes no assumptions about the relative size of
the vector and scalar contributions. Results for |V,4| from D — 7 and |V4| from D — K
for each ¢? bin and experiment, as well as the correlated average over bins including only
semielectronic (blue lines) or only semimuonic data (red lines), are shown in Fig. 28. The
semimuonic results lie roughly 1o below the semielectronic results for both |V,4| and |V.|, so
below we report the values in each channel as well as the combined results. Those combined
extractions, including all leptonic channels, lie between the two bands in Fig. 28, and are
statistically consistent with the individual determinations, as shown in Fig. 29. For |V,4| from
Dy, — K, results are shown in Fig. 26. As argued above, with present statistical precision,
the presence of the scalar form factor is quantitatively important for the differential rate
dl'/dq?, especially for semimuonic channels. Figure 30 shows the effect of dropping the
contribution from fy for D — Kpuv. Values for |V,,|P™°d are observed to shift by a few
percent and, when considered as a function of ¢?, become statistically inconsistent with a
constant. Similar few-percent shifts occur for D — mpuw.

Because the joint-fit and binned methods explicitly account for (potentially) percent-level
contributions from the scalar form factor, they constitute our main extractions for |V,,|. For
continuity with previous studies, we also consider the endpoint method, in which |V.,| is
defined according to

- [|Vez |new [+ (0)]Expt
H%azHEndpomt = 77EW[f+(0)]LQCD . (73)

The experimental values are taken from the HFLAV world averages: |V4|new fP7™(0) =

0.1426(18), |Ves|new 275 (0) = 0.7180(33) [44]. The resulting values for [|Vei|]gndpomt are
shown in Fig. 29 and given in Table XIX. Although these endpoint results give a statistical
precision comparable to our preferred extractions, it’s worth emphasizing that our precise
values for f,(0) were made possible by leveraging information about the form factor across
the full kinematic range of the decays. The final errors can potentially be much larger in a
simulation that works directly at the endpoint (¢*> = 0). For example, preliminary work by
our collaboration has focused on ¢? ~ 0 on many of the same ensembles and with comparable
statistics [60]. Using the preliminary values of f,(0) from these proceedings gives values for
|Vea| and |V.s| with errors that are roughly 2.5 to 3.5 larger than the final errors in the
present work.
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Figure 28. The binwise estimate of the CKM matrix element [|Ves(¢7)|] Binneq [rom the decays D —
7 (top rows) and D — K (bottom row) in the semielectronic (left) and semimuonic (right) channels.
The horizontal bands show the resulting values for |V..|®™"¢d from correlated fits to a constant
in each channel. The result for ]%dlgi;:;ﬁm (red) lies slightly below |Veq|2=7¢™ (blue). The
combined extraction using both channels lies between the two bands and is statistically consistent
with each. A comparison of the different extractions of |V,| is given in Fig. 29. For D — m,
experimental data are taken from BaBar [122], CLEO [123], and BES III [124, 126, 127]. For
D — K, experimental data are taken from BaBar [121], CLEO [123], and BES III [124, 126, 128].
Although all the correlated fits have good quality (x?/DOF =~ 1, p = 0.05), the residuals for
D — K are visually larger near ¢2,,, .
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Figure 29.  Determinations of |V,4| and |Vs| using experimental measurements of the decays

D — 7mand D — K. The outer and inner error bars and bands show the results with and without
QED uncertainties, respectively.
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Figure 30. The effect of neglecting the scalar form factor (setting fo(¢?) = 0 in Eq. (2.1)) when
computing |V,s|P™"ed for D — Kpv. The red and blue horizontal lines and the black data are
reproduced from the bottom-right panel of Fig. 28. Similar few-percent shifts occur for D — wuv.

The results for V4| and |V | from the different methods described above and for different
leptons in the final states are summarized in Fig. 29 and Table XIX. Since, as shown in the
plot, the binned and joint-fit extractions give statistically consistent values well within 1o,
we take the joint-fit extractions to define our preferred results:

Vg P = 0.2238(11)5%Pt(15)QCP (04)EBW (02)31B[22] *FP (7.4)
“/cd Ds—Ketv — 0258(15>Expt(01>QCD[03]QED7
V[P = 0.9589(23) %Pt (40)2CP (15) W (05)51B [95] QEP | (7.6)
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Table XIX. Summary of results for |V,4| and |V,| from different decays and different extraction
methods. The final column gives the result when errors from QED are neglected.

Process Method |Ver| |Vez| (no QED)
|Vea| D — metv z-expansion 0.2251(30) 0.2251(20)
|V.a| D — me™v  binned 0.2250(31) 0.2250(21
|Vea| D — ity z-expansion 0.2199(35) 0.2199(27
Voa| D — 7pty binned  0.2209(36) 0.2209(28
)
)
)

|Vea| D — 7ty z-expansion 0.2238(29) 0.2238(19
|Vea| D — 7ftv  binned 0.2238(30) 0.2238(19
|Vea| D — 7tr  endpoint  0.2243(41

(

(

(

(

(

(

(41) 0.2243(34

|Ves| D — Ketv  z-expansion 0.9653(110

(

(

(

(

(

(

(

(

(21)
(27)
(28)
(19)
(19)
(34)
) 0.9653(53)
V| D — Ketv binned  0.9631(113) 0.9631(58)
|Ves| D — Kutv z-expansion 0.9537(111) 0.9537(56)
Vis| D — Kputv binned  0.9543(116) 0.9543(65)
|Ves| D — K{Tv  z-expansion 0.9589(108) 0.9589(49)
V| D — K¢tv binned  0.9582(110) 0.9582(54)
V| D — K¢tu endpoint  0.9549(110) 0.9549(61)
|Vea| Ds — Ketv z-expansion 0.2582(155) 0.2582(153)
) (

Voa| Dy — Ketv binned 0.2583(157) 0.2583(155)

where the first error comes from the experimental differential decay rate uncertainty, the
second error comes from our form factor calculation (see Table XV), the third error shows the
uncertainty in ngy , and the fourth and fifth from our estimate of SIB and long-distance QED
corrections described in Sec. VIIB. The errors in these expressions combine in quadrature
to give the total errors in Table XIX. Since our preferred extraction of |V.| includes both
et and pt final states, the experimental contribution to the error is smaller by roughly a
factor of two than in Ref. [62].

We also repeated our analysis separating charged-hadron and neutral-final states (e.g.,
n~et versus ™). No statistically significant difference was observed within the uncertain-
ties, consistent with what was observed in Ref. [62].

For the first time, our calculation provides a value of |V,4| from D — 7 for which lattice
QCD errors are at the same level as the experimental errors, ~ 0.5% each. This represents
an improvement by roughly a factor of six from the existing state of the art [57, 139]. For
|V.q|Ps7 5 experimental errors dominate and are substantially larger than for D — 7. Since
the theoretical uncertainty is actually the smallest for Dy — K, additional experimental
measurements of this channel would be particularly welcome. On the other hand, theoretical
error exceeds the experimental error by roughly a factor of two in the extraction of |V
from D — K, leaving room for improvements in the theory side. Experimental errors also
dominate the CKM extractions from the semimuonic channels, where we have only included
recent results from BES-III. Another key ingredient for improved semileptonic extractions of
|Vea| and |V.s| would be the calculation of long-distance structure-dependent EM corrections
or a more robust estimate of their effect on these decays, since our lack of knowledge of these
corrections currently dominates the uncertainty of the most precise determinations.

A comparison of our final results for V4| and |V,s| with existing results in the literature
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appears in Fig. 31, including leptonic decays, global fits assuming CKM unitarity fits, and
scattering. Our determinations of |V.4| and |V.s| agree well, at the level of 1-2 standard
deviations, with previous leptonic [31, 32, 140-143] and semileptonic [48, 49, 57, 62, 139]
determinations reported in FLAG [36].

Our correlated results for |V 4| and |V,| also yield the ratio,

Veal/|Ves| = 0.2334(13)F¥P(16) QP (02)518[11)QEP (7.7)

where the correlation coefficient between |V.4| and |V 4|, neglecting QED, is 0.18. As de-
scribed in Sec. VIIB, we have taken a conservative 0.5% systematic uncertainty for QED
effects in the ratio.

Using the latest measurements fp+|Veq| and fp,|Ves| reported by HFLAV [44] and the ratio
of decay constants fp_/fp+ computed by our collaboration in a similar set of ensembles and
with the same action in Ref. [32], one finds [|V.4|/|Ves|]'P*om¢ = 0.2212(58), where the error is
dominated by the experimental uncertainty. Both values are plotted in Fig. 32 together with
previous leptonic [31, 32, 140-143] semileptonic [48, 49, 57, 62, 139] determinations combined
in averages by FLAG [36] and the result from the PDG global unitarity fit [25] (the global-fit
methodologies of CKMfitter [144] and UTfit [145] give very similar results). The leptonic
extraction above agrees with our semileptonic result within roughly 20, although, as plotted
in Fig. 32, leptonic determinations tend to give smaller values of the ratio. The error in our
result is more than a factor of two smaller than the leptonic one, with similar uncertainties
from lattice QCD and experiment. Results for |V.4|/|Ves| from the PDG global fit assuming
unitarity and from the ratio |V,s|/|Vua| (see Sec. VIID below for more details) are also shown
in Fig. 32. Our result agrees well with both of them.

D. Tests of CKM unitarity

Our results for |V 4| and |V,s| enable a test of unitary in the second row of the CKM matrix,
including theoretical correlations between |V.4| and |V.5|. Using our preferred extractions
in Eq. (7.4) and Eq. (7.6), and |V |mFexel = (40.8 & 1.4) x 1072 from a combined average
of inclusive and exclusive semileptonic B-decays [25]'3 yields the following result for the
deviation from unitarity in the second row:

[Vea 24| Vis|? + |Vip|? — 1 = —0.0286(44) 5Pt (78) QP [194] QP (28)EW — _0.029(22).  (7.8)

Because |V is so small compared to |V,4| and |V.,|, numerically indistinguishable results
are obtained (within current precision) if inclusive or exclusive values are taken for |V|.
This result is compatible with three-generation CKM unitary within approximately one
standard deviation. The precision of this test is roughly 2% and is limited by the systematic
uncertainty from QED in our extractions of V4| and |V.s|. We show the constraints on |V,4|
and |V.s| from our calculation in Fig. 33, together with constraints coming from leptonic
decays [32, 44] and second-row unitarity. The leptonic inputs used for the green ellipse
are summarized in Table XX. As the figure shows, semileptonic tests of second-row CKM
unitarity are now slighty more precise than leptonic tests. The leptonic and semileptonic
results are consistent at the level of roughly 1-2 standard deviations.

13 In particular, see the review “Semileptonic b-Hadron Decays, Determination of Vi, Vi’
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Figure 31. Comparison of our preferred determinations of |V,4|P~™ and |V.s|?7¥ (blue bands)
with existing results in the literature. The outer and inner error bands show our preferred result
with and without QED uncertainties, respectively. The world’s first determination |V q|Ps 7% is
also given. Results from FLAG are taken from Ref [36]. Results from the PDG appear in Ref. [25].
We emphasize that FLAG uses slightly different conventions for the semileptonic extraction of
ch(cs)| as we used here; for instance they do not include short-distance electroweak corrections to
GF or an error from QED. For the leptonic results, we combine the latest experimental averages
reported in HFLAV [44] with the FLAG averages for fp and fp, [36]. “CKM unitarity” denotes
the global fit result reported by the PDG, which includes all available measurements (for all nine

matrix elements) imposing three-generation unitarity.

One can perform further tests of the unitarity of the CKM matrix using the fact that in
the Standard Model, V4| = |Vis| + O(A%X5) and |Vs| = |Vaa| + O(A%2XY). Including the
dominant corrections [146] with the Wolfenstein parameters taken from global unitarity fits
by CKMFitter [144] (using values from the January 2022 update) gives

V.| = 0.97282(32) from |V,q|* %", (7.9)
[Veg| = 0.22317(53) from | V| 5%, (7.10)
Veal /| Vis| = 0.22941(55) from [V, /|[Via|* 07, (7.11)

using |V = 0.97367(32) from superallowed 0 — 0T nuclear § decays [17, 37] and |V,,| =
0.22330(53) from K3 decays [36, 37]. Alternatively, the ratio of Ky to mpm decays yields [36,
37]

[Veal/|Ves| = 0.23135(51) from |V, /Via|e2/me2. (7.12)

As shown in Fig. 32, our preferred value in Eq. (7.7) lies roughly 1o above the result coming
from |Vis/Via|¥2/™ and roughly 20 above that from |V /|V,q® =", Our preferred
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Figure 32. Comparison of different extractions of the ratio |V.4|/|Ves|- The blue point and band
show the value from the preferred extractions of the present work. Error bands with and without
QED error are indistinguishable. The red and green points denote semileptonic and leptonic
extractions given by FLAG [36]. The points below the dashed line are constraints from unitarity.
The orange point is computed using values from CKMFitter’s global fit (as reported in the PDG),
assuming CKM unitarity. The brown points comes from two different extractions of |Vys|/|Vudl
which, as explained in the text, are related to |V.4|/|Ves| by CKM unitarity.

Table XX. Leptonic inputs used for comparison in Fig. 33. HFLAV reports the product
NEW | Vez| fp, [44]. Following the prescription of the PDG [25], we include an EW+QED error
of 0.7% for the product ]ch|fD(S).

Value Source
nEw|Ved| fp+ = 46.2(1.0)(0.3)EWHQED MeV HFLAV [44]
nEw|Ves| fp, = 245.4(2.4)(1.7)EWFQED NeV HFLAV [44]

fp+ =212.7(0.6) MeV Fermilab-MILC 2018 [32]
fp, =249.9(0.4) MeV Fermilab-MILC 2018 [32]
o/ fo+ = 1.1749(16) Fermilab-MILC 2018 [32]

value for |V,4| in Eq. (7.4) shows excellent agreement with |V,4| from |V,|%%. Our preferred
value for |V,,| in Eq. (7.6) lies somewhat below |V.s| from |V,,4° %" but is consistent at 1-2
standard deviations.
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Figure 33. Constraints on |V,4| and | V.| from our results, D—meson leptonic decays, and unitarity.
The blue ellipse shows the preferred values of the present work from semileptonic decays in Eq. (7.4)
and Eq. (7.6). The green ellipse is the result of combining the latest results for the products
NEw |Ved| fp+ and new|Ves|fp, with leptonic decay constants from lattice-QCD calculations; the
inputs values are summarized in Table XX. The dotted line comes from assuming unitarity of the
second row, taking |V|texel = (40.8 + 1.4) x 1072 [25]. In all cases, the ellipses shows the
correlated 1o (68%) confidence intervals. The inner blue ellipse shows our result without the QED
uncertainty.

E. Lepton flavor universality

For a given semileptonic decay H — Lfv, the lepton flavor universality (LFU) ratio R,, .
is defined as the ratio of branching fractions into muon versus electron final states
wor _ B(H = Lpv) Ty,

£ (7.13)

e = B(H — Lev) T’

where the total rates to each final state are defined in the usual way,

Tax dr
my

In the SM, the LFU ratios are close but not identically equal to unity. This difference from
unity arises from at least three effects. First, the lower boundary of the integration region
in Eq. (7.14) depends on the lepton mass. Second, the differential decay rate in Eq. (2.1)
itself depends on the lepton mass, with the scalar form factor contributing more for larger
masses. Finally, QED corrections depend in principle on both the charges of the final state

and the lepton mass. The coefficients % (new|Vee|)? are independent of ¢ and cancel in
the ratio, meaning that predictions for R, . are entirely calculable using our lattice-QCD
form factors, up to corrections from QED and SIB. The rates dI"'/dq? for the decay D — T,
using as inputs our form factors fo(¢?) and f, (¢*) together with the estimates of systematic
uncertainties from QED and SIB (see Sec. VII B), are shown in Fig. 34 for both semielectronic
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Figure 34. Our prediction for the decay rates dI'/dq? for the decays D — m. The majority of
the total rate comes from small g2, where (dI'/dg?),, < (dI'/dg*)c. The Standard Model therefore
predicts R, /. < 1.

and semimuonic final states. When computing the rates, the meson masses were taken to be
the average of the experimentally measured masses for the charged and neutral states (e.g.,
D" and D or 7% and n*). The final results for the SM predictions of the ratios R, /. are

RY2™ = 0.98671(17)%°P[500]¥"P, (7.15)
RY2% = 0.97606(16) P [500]%", (7.16)
R = 0.98099(10) “P[500] P, (7.17)

The dominant error is the systematic uncertainty from QED corrections, which we conserva-
tively take to be 0.5%, as described in Sec. VII B. Our prediction for Rf/jK is in good agree-

ment with a recent calculation by HPQCD, which found RY;2% = 0.97594(19)%°P[500]¥"P

and used the same estimate of the QED uncertainty [62].!* We also find good agreement
with previous lattice QCD results by ETMC and experimental measurements of Rf/j” and
RZ?K , as shown in Fig. 35. The measurement of Rf/;’” by BES III for the channel D° — 7~
lies below our result but is consistent at the 20 level. Because the QED error is dominant for
the lattice-QCD predictions of the LFU ratios, the insets in Fig. 35 compare the lattice-QCD

results with the QED uncertainty removed.

14 The central value we quote here differs slightly from the published value in Ref. [62]. We thank HPQCD

for providing the correct central value (William Parrott, private communication, 16 Dec 2022).
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Figure 35. Comparison of Rl’? o and Ri) ;’K with experimental HFLAV averages [44], which are
dominated by measurements from BES III [125, 127, 128], and other SM predictions from lattice
QCD [62, 139]. In the main body of both figures, all lattice QCD results are presented with a QED
uncertainty of 0.5%. The results from ETMC 18 were reported in the isospin-symmetric limit of
QCD, without including QED or SIB uncertainties [139], so we have added the QED uncertainty
for a like-to-like comparison. The insets compare lattice QCD results when QED uncertainty is

removed.
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VIII. CONCLUSIONS

We have calculated the hadronic form factors f, (¢?) and fo(g?) relevant for the semilep-
tonic decays D — wlv, D — K/lv, and D, — K/{v using lattice QCD. These decays occur
at tree level in the SM and are important channels for determining the CKM matrix ele-
ments |V.4| and |Vs|. Our calculation uses Ny = 2 + 1 + 1 flavors of dynamical staggered
quarks and includes several ensembles with all quarks near their physical masses. The use of
the HISQ action permits all the quarks to be treated with the same relativistic light-quark
action and allows for nonperturbative renormalization using PCVC, Eq. (2.9). Our results
improve significantly on the previous precision for the form factors for D — 7 and D, — K,
and have precision comparable to that of recent Ny = 2 + 1 4 1 calculations by HPQCD
for D — K [62, 63]. We agree well with HPQCD’s D — K form factors over the entire
kinematic range, especially with their latest results in Ref. [63], while for both D — 7 and
D — K, our form factors are significantly larger near ¢2,, than the Ny = 2+ 141 results of
ETMC [57]. Table XIII shows the z-expansion parameters from which our final results for the
form factors, computed in isospin-symmetric QCD where m, = myg, can be reconstructed,
while a complete error budget, including all statistical and systematic uncertainties, is given
in Table XV for the edges of the kinematic range.

Our results suggest a very mild spectator dependence for D — 7 and Dy — K, with close
agreement at < 2% level throughout the kinematic range between the respective form factors
(cf. Fig. 18). This picture was also recently confirmed, within experimental uncertainty, by
the first measurement of the decay Dy — K by BES III [109].

When combined with the available experimental data for the corresponding decay rates,
summarized in Table XVII, our form factors enable the extraction of the CKM matrix ele-
ments | V4| and |V.s| with percent-level uncertainties. These extractions include correlations
between all the lattice form factors and between the different experimental channels.'® The
values obtained from our preferred extractions are

Vg P = 0.2238(11)%Pt (15)2CP (04) W (02)1B[22]QFP
H/cd Ds*)Ke‘*'U — 0258<15>Expt(Ol)QCD[O?)]QED7
|Vcs|D_>Ke+V = 0.9589(23)EXPt(40)QCD(15)EW(05)SIB [95]QED‘
[Veal/|Ves) = 0.2329(13)5%(16)2°P (02)3™B[11]9FP

For |V.4| we obtain the most precise determination to date, with lattice-QCD form factors
errors that, for the first time in a semileptonic extraction, are commensurate with experi-
mental uncertainties. The improved determination of D — 7 form factors, together with the
fact that we account for theoretical correlations among channels, also allows us to provide
the most precise determination of the ratio |V.4|/|Ves|, around a factor of two more precise
than the leptonic determination. The rate for D, — K was only recently measured for the
first time by BES III [109], and our calculation delivers the first extraction of |V q|P+7%.
Although this determination is not yet competitive with the one from D — 7, the error
is dominated by the statistics-limited experimental uncertainty. Our result for |V4|P:7%
lies roughly 20 above |V.q|P~™, albeit with large uncertainty. Experimental improvements
for this Cabibbo-suppressed decay would immediately give improved precision for |V4|P: =%
and help clarify the situation.

15 In the supplementary material, we provide correlated values for all the z-expansion coefficients needed to

reproduce our final results for all three decays.
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Our determinations of |V,4| and |V.s|, combined with the value of |V| from Ref. [25],
give a precise test of second-row CKM unitarity. We find consistency with unitarity at
the level of roughly 2% and one standard deviation, with an uncertainty dominated by the
systematic effect of QED. As shown in Fig. 33, the precision of the semileptonic constraint
is now slightly better than the corresponding leptonic one.

After demonstrating consistency between the form factor shapes from our calculations
and those measured in experiments, we computed the SM prediction for the lepton flavor
universality ratios R,/ with sub-percent precision for all three decays:

RPZ™ —0.98671(17)CP [500] %P

w/e
RY2% = 0.97606(16) P [500]%",
R = 0.98099(10) P [500] L.

These results agree with previous Ny = 2+1+1 lattice calculations, considerably improving
the precision for D — 7, and with experimental measurements within 20, for D — 7 and
D — K.

With the total precision for |V,4| and |V.s| approaching the subpercent level, the effects
of the scalar form factor in the differential rate, Eq. (2.1), become quantitatively important.
For semielectronic decays, contributions from fy enter at roughly the 1% level in the lowest
¢* bin. For semimuonic decays, the effect is much larger, a roughly 10% effect in the lowest
¢? bin and a few-percent effect throughout the rest of the kinematic range. Figure 30 showed
that naively neglecting contributions from fy can shift values for |Vs| by a few percent in
the case of D — Kpuv (similar results hold for D — wuv).

Future progress in the precision of V4|, |Ves|, and the LFU ratios will depend crucially
on improved understanding of QED corrections to these decays, which are already the dom-
inant source of uncertainty. The one exception is the decay |V D:=Kltv - for which the
experimental error is still large. One avenue for improvement is through EFT calculations
in the spirit of those for K' — wlv [41-43, 133, 134], which were used in Sec. VIIB to esti-
mate our systematic uncertainties (cf. Sec. VIIB). As usual, the intermediate mass of the
charm quark (which is simultaneously too heavy for xPT to apply and too light for reliable
application of HQET) may present a challenge for robust treatment with EFT. Another
possibility is carrying out lattice simulations to compute the structure-dependent QED cor-
rections to the semileptonic decay amplitudes. Such calculations have not yet reached a
mature state, but the field is progressing rapidly, particularly for the QED corrections to
leptonic decays [39, 40, 147-151].

Regarding the pure QCD calculation, it should be straightforward to improve the preci-
sion of our form factor results. A leading contribution to the error budget is statistics (cf.
Table XV and Figs. 22, 49 and 50), for which the physical mass ensembles at a ~ 0.06 fm
and 0.09 fm play the largest role. As part of our ongoing work toward B-meson semileptonic
decays, we are simulating on a finer physical-mass ensemble with a ~ 0.04 fm. We expect
that new data from this ensemble will reduce the uncertainties both from statistics and from
the continuum extrapolation. Future calculations will also benefit from ongoing work in the
community to improve scale-setting measurements (e.g., wy or the Q-baryon mass) on the
HISQ ensembles used in this work.
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Appendix A: Analysis of staggered correlation functions

As demonstrated in Ref. [154], averaging over adjacent time slices can dramatically sup-
press contributions from oscillating states. Consider a two-point correlation function Cs(t)
Let E denote the ground state energy. Then the averaged two-point function is Cy(t):

— G_Et 02 (t) 202 (t + 1) Cg(t -+ 2)
Co(t) = 4 | Bt o E(t+1) e—E(t+2) |7
(0] O|E)|”

_ WY B e 2
= g ¢ + O(AFE?), (A2)

(A1)

where O is an interpolating operator as given in Table III and |()) is the QCD vacuum.
Similarly, consider a three-point correlation function C3(¢,7") with ground states F; and
Ep at the source and sink, respectively, and connected by the current J. The averaged
three-point function is C3(t, T):

—Ept,—Eg(T—t)

Cy(t, T) == 68 x
Cs(t,T) 2C5(t+1,7) Cs(t+2,T) A3
e*ELtefEH(Tft) e*EL(lH’l)e*EH(Tftfl) + e*EL(t+2)€7EH(T*t*2) ( )
Cs(t, T +1) 205(t+1,T+1) Cs(t+2,T+1)

+

e—Brte—Ep(T+1-t) ' o—Ep(t+1)p—Ep(T—t) ' o—Er(t+2)o—Ey(T—t-1)

_ O[O |EL) (EL| T |En) (En| On [0) e Fule-Eu(T-0 | O(AE% AE2).  (Ad)
4E1 FEy

These averaged two- and three-point functions are used in Eqgs. (4.10)—(4.12).

Appendix B: Discretization errors for HISQ
Several of the results in this appendix were first derived in Ref. [155]. Our discussion

follows closely that of Ref. [32]. Let amgy and am; denote a quark’s bare and rest masses,
respectively. The two quantities are related by the transcendental equation

amy = agﬁ(aml) = sinh(am, ) (1 — éN(aml) sinhQ(aml)) . (B1)

In this expression, N(am;) denotes the coefficient of the Naik improvement term appearing
in the HISQ action

4 —24/143X(am,)

N(am.) = , sinh?(am; ) ’ (B2)
X(am,) = m. (B3)

When bare masses are not small, amy € 1, quark bilinears can lose their conventional
normalization. This phenomenon has been discussed in the literature for both Wilson [156,
157] and staggered fermions. Consider a quark bilinear containing a heavy quark h and a
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generic (heavy or light) quark z. Arguments from leading-order HQET [32] show that the
conventional normalization can be restored, at leading order, by multiplying matrix elements

containing the bilinear by the factor Z}?IQET’ LO

El/z(aml) = cosh(am,) (1 — %N(aml) sinhQ(aml)) : (B4)

ZHQET,LO _ \/Ef/z(aml,h) é?t(aml,z), x nonrelativistic
hx - —

. (B5)
\/Ch(amip), x ultrarelativistic

Residual discretization effects from next-to-leading HQET appear at order z} and a7,
where z;, is the parameter linear in the heavy quark mass defined in Eq. (5.14).

Appendix C: Shrinkage of covariance and correlation matrices

Analysis of highly correlated Monte Carlo data encountered in lattice gauge theory
presents a formidable statistical challenge. Many problems are phrased in terms of least-
squares minimization of a suitable y? function. Examples in the present work include the cor-
relator analysis in Sec. IV to extract energies and matrix elements and the chiral-continuum
fits of Sec. V. The essential difficulty is that covariance matrix appearing in the y? functions
can be nearly singular, and the small eigenvalues in the sample covariance matrix are poorly
determined. Shrinkage estimators, which we review here, are a class of tools for improving
the sample covariance matrix by “regulating” the small eigenvalues. For motivation, we
follow closely the discussion and notation of Ref. [158], beginning with a technical result.

Lemma C.1 (Ledoit and Wolf). Let M be a real, symmetric matriz. The eigenvalues are
the most dispersed diagonal elements obtainable by rotation.

Proof. Consider a real, symmetric p X p matrix M. Let R € SO(p) be a rotation, under
which M transforms into R M R. The average of the eigenvalue spectrum () = (1/p) Tr[M]
is clearly invariant under rotations. Let v; denote the i*" column of the rotation R. The ‘"
diagonal element of RT MR is v} Mwv;, and the dispersion of the diagonal elements around
the average of the spectrum is defined via

1 p
=3 (v Mu - () (C1)
P

This expression is not invariant under rotations, but a closely related quantity is:

Tr[(RTMR — (\) I)?] = }9 Z (v Mo, — (\)” + Z Z (v Mv;)*. (C2)

J#
The second term on the right-hand side is non-negative and vanishes precisely when the
rotation R diagonalizes M. In other words, since the left-hand side is constant, the dispersion
is maximized when the eigenvalues of M appear on the diagonals of RT M R, which was to
be shown. O
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This result has important consequence for the near-singular covariance matrices encoun-
tered in practical problems. Let diag(A) = UTXU denote the spectral decomposition of
the “true” population covariance matrix of a statistical distribution, where U contains the
eigenvectors and A are the eigenvalues. The corresponding sample covariance matrix has
decomposition diag(A,,) = Ug S,U,. As usual, S, is an unbiased estimator of X. Therefore,
UTS,U is also an unbiased estimator of diag A. Unfortunately, one does not typically have
access to the population eigenvectors of U and is instead obliged to work with the sample
estimates of U,. As the preceding lemma makes clear, the sample eigenvalues A, will be
more widely dispersed than those of the population A. Indeed, A, is not an unbiased esti-
mator of UTXU due to correlations between the eigenvectors in U, and the eigenvalues in
A,. The general idea behind shrinkage estimators is to apply some function which decreases
the dispersion of the sample eigenvalues \,, to better approximate the population .

The remainder of this appendix is organized as follows. Appendix C1 describes lin-
ear shrinkage, which is used in the chiral-continuum analysis (cf. Sec. V B). Appendix C2
describes nonlinear shrinkage, which is used in the correlator fits (cf. Sec. IV).

1. Linear shrinkage

Linear shrinkage was introduced by Ledoit and Wolf in Ref. [158]. There seems to be
some knowledge of this technique in the recent lattice-gauge-theory literature [159]. Because
lattice data often vary over many orders of magnitude, it is common to invert the correlation
matrix instead of the covariance matrix, with shrinkage techniques being applied to them
instead. R

The linear shrinkage estimator C), is defined as the convex sum of two matrices:

C’n = (1 - A)Cn + )\Ctargeta (CS)

with A € [0, 1]. As the parameter X is varied, the shrinkage estimator smoothly interpolates
between the sample correlation matrix C,, and the target matrix Ciarger. Many options are
possible for Ciarger. Examples in the literature [158, 159] advocate using the identity matrix
as the shrinkage target. The idea is that suppressing the correlations by a small amount (say,
A =0.05 or 0.1) will correct the small eigenvalues while preserving the rest of the correlated
structure to the data.'® Besides using the identity matrix, our analysis also experimented
with block-diagonal matrices (e.g., to retain the full correlations between different momenta
at fixed valence mass). The more complicated choices did not improve fit results compared
with the simpler choice of the identity matrix. The preferred chiral-continuum analysis of
Sec. V therefore uses only the identity matrix. Once a shrinkage estimator for the correlation
matrix has been chosen, the corresponding covariance matrix follows in the usual way,

S, = diag(o)C,, diag(o), (C4)

where o is a vector containing the standard deviations. The shrinkage estimator, which
enjoys a smaller condition number and approximates the population covariance matrix better
than the sample estimate, is then inverted to give S, !, which is used in our fits.

16 As discussed in the main text, the preferred value of A = 0.1 was chosen to regulate the small eigenvalues
(thus giving good fits) with unnecessarily discarding correlations, which can also cause fit quality to

degrade. Ultimately, our results are insensitive to the precise choice of A, as shown in Figs. 21, 47 and 48.
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2. Nonlinear shrinkage

Nonlinear shrinkage has been described by Ledoit and Wolf [79], whose notation and
presentation we follow closely. A complete theoretical justification exceeds the scope of the
work; the interested reader is invited to consult the original paper for proofs, additional ref-
erences, and numerical evidence supporting the applicability in realistic finite data. To keep
the present work self-contained, we restrict ourselves to reproducing the required formulae
with some discussion.

Suppose the sample covariance matrix S,, is computed from n observations of p total
random variables. Consider the diagonalization of this matrix, .S, = Ug diag(A,)U,. Indi-
vidual eigenvalues are denoted A, ;, ¢ € {1,...,p} and, without loss of generality, may be
supposed to be sorted in ascending order. For large p and n, suppose the eigenvalues fol-
low some asymptotic cumulative distribution function F'(x) with associated spectral density
f(z) = F'(z). Nonlinear shrinkage is a method for adjusting the empirical spectral density
locally to improve the spread in eigenvalues for finite n.

Nonlinear shrinkage is based on the Hilbert transform, which maps continuous real func-
tions g(x) to Hy(z) via

o0 /
HA@E%PV/‘dfjgl, (C5)

oo r—x

where PV denotes the Cauchy principal value. Conceptually, and as described at length
in Ref. [79], the Hilbert transform acts like a local attractor, pulling eigenvalues towards
regions of greater density. Define the oracle function

X

[mex f(x)]2 + [1 — ¢ — meaH ()]
T 1+ () + Ho@)] - 20H (@) (C6)

d(x)

where ¢ = p/n is the concentration ratio, p(x) = mxf(x) and H,(x) = 1 + maH(x)
is its Hilbert transform. Given a set of sample eigenvalues A, d(\,) provides a shrinkage
estimator. To see this, first observe that as the number of samples becomes large (¢ — 0), no
shrinkage occurs (d(z) — ), in agreement with intuition. For small but finite concentration,
the linear term in the denominator will dominate:

d(z) ~ x [14 2cH,(z) + O(?)] . (CT7)

Since the Hilbert transform attracts eigenvalues, anomalously large or small eigenvalues
will be pulled locally toward regions of higher density, shrinking the spectrum. The same
qualitative behavior is also present for generic ¢, as described in Ref. [79]. For some given
finite data set, the underlying distributions F'(x) and f(x) are typically unknown. Moreover,
since neither the empirical density nor the empirical CDF are continuous (the former is a
sum of § functions, one at each eigenvalue), the necessary Hilbert transform does not exist.
Instead, one works with a kernel estimator for f(z), for which the necessary derivatives do
exist:

= by (). (©8)

p i=1 n,i
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" (@) 1i L, A (C9)
() = =

fn p i—1 hn,i g hn,i 7

where h,,; = A, ;h,, for some suitable choice of bandwidth h,,. In principle, many possibilities
exist for the choice of the kernel function k. In practice, it is advantageous to take a kernel
with finite support and an analytically calculable Hilbert transform. Reference [79] advocates

choosing the Wigner semicircle distribution,

T
2w ’
Hy(x) = sgn(z) [Z;r— 2]t — :z:7

k(z) = (C10)

(C11)

where [z]t = max{0,z} for any z € R. With this choice, the kernel estimators f, and H 7
take the following form when evaluated at the eigenvalues:

) \/4Ag]hg — Anj)?
fn( nz p 271')\2 h2 )

i=1 n,j'‘n

(C12)

1 & 5810 = M)y [ = Aug)? = 402 1215 = A+ Ay
an@\m):_z ST . (C13)

i=1 n,jon

Likewise, the sample estimator for the oracle function becomes

dpi = A . (C14)

|:7TC/\n7if~‘n(/\n7i)] ’ + [1 —c+mehiHy, ()\mﬂ 2

Some freedom exists in the choice of bandwidth. For reasons of statistical convergence,
i.e., so that f,(z) — f(z) and H; (v) — H;(z) uniformly in probability, Ref. [79] argues
that the bandwidth should vanish for large n (lim,,_,o h, = 0) but not decrease too quickly
(lim,, o0 nh2/? = 0). We follow their recommendation of choosing h,, = n=93.

After shrinkage is applied, the new “eigenvalues” Jm computed from ), ; are not guar-
anteed to maintain their ascending order. For this reason, the penultimate step is to restore
ascending order by applying the pool adjacent violators (PAV) algorithm [79, 160]. Finally,
the shrinkage estimator for the sample covariance matrix is given by

d,
Sn

PAV(d,,), (C15)

U, diag(d,,)U"". (C16)

As above, the shrinkage estimator is then inverted, and S”; lis used in our fits.

The PAV algorithm is as follows. Given an input set of data d, the algorithm iteratively
updates the values, locally pooling adjacent values which violate d; > d;,1, and replacing
them with their average. The process is repeated until the monotonicity condition is satisfied
everywhere, yielding PAV(d).

Included in the supplementary material (in shrink.py) is a python implementation of
the nonlinear shrinkage algorithm.
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Figure 36. Comparison of eigenvalue spectra resulting before and after shrinkage or an SVD cut,
for the correlation matrices for Cf (t) (left) and C'§(t,0) (right) on the physical-mass a ~ 0.06 fm
ensemble. Linear shrinkage was applied with A = 0.1. An SVD cut of 102 was chosen to have an
effect on the spectrum similar to shrinkage.

3. Numerical examples of shrinkage

In this section, we present representative examples of correlation matrices appearing
in our analysis. For concreteness, we consider the correlation matrices for the two-point
functions CF (t) and C{(t,0) (cf. Egs. (4.1) and (4.3)) associated with the D, and K
mesons on the physical-mass a =~ 0.06 fm ensemble. The eigenvalue spectra associated
with the correlation matrices are shown in Fig. 36, for raw data, nonlinear shrinkage, linear
shrinkage with A\ = 0.1, and an SVD cut of 1073. ! The raw spectra, shown in blue,
span a range of roughly eight orders of magnitude. (In fact, not displayed are the last few
eigenvalues, which are consistent with zero at double precision). For the given parameter
choices, linear shrinkage and the SVD cut give similar results. With nonlinear shrinkage, the
shape of the small-eigenvalue region of the spectrum retains some of its original curvature.
In the case of the kaon (left in Fig. 36), the small eigenvalues from nonlinear shrinkage vary
by approximately an order of magnitude over the region where they are roughly constant
for linear shrinkage and SVD cut.

These methods all alter the covariance between pairs of data. Figures 37 and 38 show
heat maps for the corresponding correlation matrices. As with the eigenvalue spectra in
Fig. 36, the results for linear shrinkage and SVD cut are qualitatively similar. Compared
with the other methods, nonlinear shrinkage tends to smooth the far off-diagonal correlation
coefficients. All three correction methods suppress the near-diagonal correlations which are
nearly unity in the raw data.

17 Some freedom exists in the implementation of an SVD cut. One possibilty is setting to zero all eigenvalues
below some threshold. Instead, the method used for comparison in this appendix compares all the eigen-
values to the largest eigenvalue, Apax. All eigenvalues below the threshold svdcut x Ay, are replaced by

this value. Theoretical and practical aspects of this convenction for SVD cuts are described in Ref. [105].
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Figure 37. Comparison of correlation matrices resulting from different correction techniques applied
to the zero-momentum K two-point function C}?(t, 0) on the physical-mass a ~ 0.06 fm ensemble.

Linear shrinkage

The associated eigenvalue spectra are shown in Fig. 36.

Reference [105] has argued that applying an SVD cut is a statistically conservative analy-
sis choice, amounting to adding uncertainty to the data. However, care must be given when
interpreting the x?/DOF when SVD cuts have been applied, since such cuts can result in
artificially low values for the x?/DOF. As described in Ref. [105], the standard diagnostic
for this potential problem is to rerun fits with additional noise in the means, checking for the
stability of posterior values and for the x?/DOF to increase slightly but (at least for good
fits) to remain of order unity. Our analysis has carried out this check, with good stability
observed.
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Uncorrected data

Linear shrinkage

Figure 38. Comparison of correlation matrices resulting from different correction techniques applied
to the D, two-point function Cgs (t) on the physical-mass a ~ 0.06 fm ensemble. The associated
eigenvalue spectra are shown in Fig. 36.
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Appendix D: Fits: additional details and figures

This appendix gives additional details concerning the correlator, chiral-continuum, and
z expansion fits described in Secs. IV, VB and V D, and compiles figures that illustrate the
robustness of our chiral-continuum analysis for D — K and D, — K decays. Analogous
figures are included in the main text for D — 7.

1. Correlator fits

As introduced in Sec. IV, the correlator fits must satisfy checks related to the ratios
Egs. (4.10)—(4.12). Figure 10 shows tests based on the ratio RY~™ for the physical-mass
0.12 fm ensemble with the charm-quark mass approximately tuned to its physical value.
Similar figures are shown for the other decays and form factors in Figs. 39-44. The first test
concerns the approach of the ratios Ry 1 (¢,7,p) to the asymptotic plateau region. This
behavior is examined in the top row of Fig. 10 (and in Figs. 39-41) by considering the ratios
at fixed momentum as the source-sink separation is increased. As T increases, the data tend
to flatten out as the ratio approaches the asymptotic limit. In the right-hand panes, the
data show the highest point,

m?‘XRO,||,L(t7T7p = 271'(170,0)/]\7501), (D1>

as a convenient proxy for the value of “plateau.” As T is increased, theses points gradually
approach the form factor’s fit posterior value, indicated by the horizontal band in both the
left and right panes. It bears emphasizing that the value of the form factor itself emerges
from a fit to the spectral decomposition, Eqs. (4.7)—(4.9), and therefore explicitly includes
excited-state effects.

The third visual test checks the momentum dependence and is shown in the bottom
row of Fig. 10 (and in Figs. 42-44). The left panel shows the ratio RY~™, with each color
corresponding to a different momentum. The horizontal lines with matching colors show
the central values of the posteriors for fP=™(p?). For visual clarity, data are only shown
for fixed T,,.x, but all available source-sink separations T" were included in the fits. Moving
from top to bottom, the form factors fall monotonically with momentum, and the effects of
excited states tend to decrease. The bottom right panel shows the corresponding posterior

values for fP7™(p?), which exhibit smooth dependence on the momentum.
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Figure 39. Comparing the ratios R(j):?”_,lﬂa Eqgs. (4.10)—(4.12), with the form factor’s fit posterior
result at fixed momentum p = (1,0,0) on the physical-mass 0.12 fm ensemble. Left: The data are
the ratios Rg Wf (t,T,p*> = 1), with each color corresponding to a different source-sink separation
T. Right: The approach to the asymptotic plateau. Each point corresponds to the maximum point
in the curves on the left, max;, Rg ”_T (t,T,p*> = 1). As the source-sink separation is increased, the
data gradually approaches the form factor’s posterior value given by the band.
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Figure 40. Comparing the ratios R(?II_> 'K, Eqgs. (4.10)~(4.12), with the form factor’s fit posterior
result at fixed momentum p = (1,0,0) on the physical-mass 0.12 fm ensemble. See the caption of
Fig. 39 for a detailed explanation.
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Figure 41. Comparing the ratios RéjﬁzK Eqs. (4.10)—(4.12), with the form factor’s fit posterior
result at fixed momentum p = (1,0,0) on the physical-mass 0.12 fm ensemble. See the caption of

Fig. 39 for a detailed explanation.
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2. Chiral-continuum fits: Results for D - K and D, —» K
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Figure 45. The result of the chiral-continuum fit for the D — K form factors constructed using
Eqs. (2.5)—(2.7) in units of the gradient-flow scale wg. For visual clarity, only the physical-mass
ensembles with heavy valence masses my/m. € {0.9,1.0,1.1} are shown, although all ensembles in
Table I were included in the fit. Points with my/m. =~ 1.1 were only simulated on the a ~ 0.06 fm
ensemble.
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Figure 46. The result of the chiral-continuum fit for the Dy — K form factors constructed using
Egs. (2.5)-(2.7) in units of the gradient-flow scale wg. For visual clarity, only the physical-mass
ensembles with heavy valence masses myp,/m. € {0.9,1.0,1.1} are shown, although all ensembles in
Table I were included in the fit. Points with myp/m. ~ 1.1 were only simulated on the a ~ 0.06 fm

ensemble.
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3. Chiral-continuum fits: Stability plots for D - K and D; —» K
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Figure 47.  Stability of the D — K form factors f /0 at ¢*> = 0 under variations to the EFT
model, the model for discretization effects, to the choice of data included in the fit, and other
analysis choices as described in the main body. The central values have been normalized by the
central value of preferred fit in green. All variations are statistically consistent with the preferred
fit, highlighted by the green band in each panel. The statistical significance of the fits is indicated
by the marker size, with larger points denoting better fits.
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Figure 48.  Stability of the Dy — K form factors f, /o at ¢*> = 0 under variations to the EFT
model, the model for discretization effects, to the choice of data included in the fit, and other
analysis choices as described in the main body. The central values have been normalized by the
central value of preferred fit in green. All variations are statistically consistent with the preferred
fit, highlighted by the green band in each panel. The statistical significance of the fits is indicated
by the marker size, with larger points denoting better fits.
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4. Chiral continuum fits: Error breakdowns for D — K and D, — K

— _ 0.5
X < —— Total
M = 0.4 —.— Statistics, f,
e o L .
= I Statistics, fy
- =
= 2 034 — w
g g —-~ Chiral
g =i iral EFT, f,
b= 2 0.2 ~-- Chiral EFT, f,
§ § —— Discretization, f,
: : 0.1 -—-- Discretization, f,
£+ go fWPDG
- 0.0
T T T T
0.0 0.5 1.0 1.5
¢* [GeV?]

Figure 49. Final error budget for the form factors fP=5 and fP~X after the fit to the 2 expansion.
Contributions less than 0.01% are not shown.
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Figure 50. Final error budget for the form factors f +5_’K and f; s7K after the fit to the
z expansion. Contributions less than 0.01% are not shown.
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5. z-expansion fits: Joint fits to lattice-QCD form factors and experimental data

Tables XXI to XXIII compare the results of the z-expansion fits for the decays D — ,
D — K, and Dy — K. The fits enforce the kinematic identity f,(0) = fo(0) by imposing
ap = by [cf. Egs. (5.23) and (5.24)]. For the scalar form factor, the higher parameters by,
by, and bs are unconstrained by the fits including experimental data. In the joint fit, the
lattice QCD form factors include a systematic from SIB, as described in Sec. VIIB. No
uncertainty from QED is included in the fit, since this is applied directly to |V..| as a final

1% uncertainty.

Table XXI. Comparison of z-expansion fit results for the decay D — 7.
D—r ‘LQCD only‘Joint LQCD and Expt‘ Expt only

ag = b()
ay
as
as
by
ba
b3

0.6300(51)
—0.610(99)
—0.20(30)
0.30(19)
0.330(51)
—0.31(25)
—1.90(39)

0.6306(47)
—0.574(83)
—0.009(393)
0.32(94)
0.379(52)
0.22(36)
—0.54(84)

0.1426(17)

—0.157(45)

—0.15(32)
0.12(94)

Table XXII. Comparison of z-expansion fit results for the decay D — K.
D — K|LQCD only|Joint LQCD and Expt| Expt only

ag = b()
a
a2
as
b1
by
b3

0.7452(31)
—0.948(97)
0.14(40)
0.07(12)
0.776(62)
0.14(34)
0.03(13)

0.7450(31)
—1.036(73)
0.18(73)
—0.03(1.00)
0.772(66)
0.08(56)
—0.02(99)

0.7246(26)
—1.049(89)
0.10(92)
—0.03(1.00)

Table XXIII. Comparison of z-expansion fit results for the decay Dy — K.
D, — K|LQCD only|Joint LQCD and Expt| Expt only

ag = bo
a
a2
as
by
ba
b3

0.6307(20)
—0.562(65)
—0.19(20)
0.33(29)
0.347(27)
0.44(18)
—0.21(43)

0.6306(20)
—0.557(72)
—0.20(42)
0.04(98)
0.346(35)
0.45(30)
—0.11(96)

0.164(18)

—0.14(29)

—0.03(98)
0.008(1.000)
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