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Abstract

We introduce a novel anytime batched Thompson sampling policy for multi-armed
bandits where the agent observes the rewards of her actions and adjusts her policy
only at the end of a small number of batches. We show that this policy simulta-
neously achieves a problem dependent regret of order O(log(7")) and a minimax

regret of order O (/71 log(T")) while the number of batches can be bounded by
O(log(T")) independent of the problem instance over a time horizon 7. We also
prove that in expectation the instance dependent batch complexity of our policy is
of order O(loglog(T')). These results indicate that Thompson sampling performs
competitively with recently proposed algorithms for the batched setting, which
optimize the batch structure for a given time horizon 7" and prioritize exploration
in the beginning of the experiment to eliminate suboptimal actions. Unlike these
algorithms, the batched Thompson sampling algorithm we propose is an anytime
policy, i.e. it operates without the knowledge of the time horizon 7', and as such
it is the only anytime algorithm that achieves optimal regret with O(loglog(T'))
expected batch complexity. This is achieved through a dynamic batching strategy,
which uses the agents estimates to adaptively increase the batch duration.

1 Introduction

The multi-armed bandit problem models the scenario where an agent plays repeated actions and
observes rewards associated with her actions. The agent aims to accumulate as much reward as
possible, and consequently, she has to balance between playing arms that generated high rewards
in the past, i.e. exploitation, and selecting under-explored arms that could potentially return better
rewards, i.e. exploration. In the ideal scenario, the agent can adjust her policy once she receives
feedback, e.g a reward, before the next action instance. However, many real-world applications limit
the number of times the agent can interact with the system. For example, in medical applications
[26], many patients are treated simultaneously in each trial, and the experimenter has to wait for the
outcome of one trial before planing the next. In online marketing [25], there may be millions of
responses per second, and as a result, it is not feasible for the advertiser to update her algorithm every
time she receives feedback.

Recently, Perchet et al. [19] proposed to model this problem as the batched multi-armed bandits. Here,
the experiment of duration 7" is split into a small number of batches and the agent does not receive any
feedback regarding the rewards of its actions until the end of each batch. For the two-armed bandit
problem, they proposed a general class of batched algorithms called explore-then-commit (ETC)
policies, where the agent plays both arms the same number of times until the terminal batch and
commits to the better performing arm in the last round unless the sample mean of one arm sufficiently
dominates the other in earlier batches. They show that this algorithm achieves the optimal problem-
dependent regret O(log(T')) and the optimal minimax regret O(+/T'), matching the performance
in the classical case where the agent receives instantaneous feedback about her actions, by using
only O(log(T/1og(T))) and O(loglog(T)) batches respectively. Their algorithm takes the time
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horizon T" and divides it into a fixed number of batches before the experiment where the specific batch
structure is tuned to the target performance criteria, i.e. problem-dependent or minimax regret. Gao
et al. [10] later generalized this result to the setting where the agent had more than two arms to choose
from and she could adaptively adjust the batch sizes based on the past data. Their algorithm, called
BaSE, is similar to the ETC algorithm in that in each batch the agent plays each of the remaining
actions in a round robin fashion, and eliminates the underperforming arms at the end of each batch.
They showed that this algorithm required O(log(7")) and O(log log(T")) number of batches to achieve
the optimal problem-dependent and the optimal minimax regret respectively, with batching strategies
that were again tailored to the specific objective. More recently several other batched algorithms
appeared in the context of asymptotic optimality [13], stochastic and adversarial bandits [9], and
linear contextual bandits [11, 22, 20, 21], where the authors provided optimal algorithms in their
respective settings. We note that there are also some earlier algorithms developed in the context of
the classical bandit setting or bandits with switching cost that even-though not specially developed
for the batched setting can be applied in a batched fashion [4, 6].

In this paper, we aim to study whether Thompson sampling, an algorithm that has been developed in
1933 [26] and since then successfully applied to a broad range of online optimization problems [7, 25],
can achieve a similar performance in the batched setting. In the Thompson sampling algorithm, the
agent chooses an action randomly according to its likelihood of being optimal, and after receiving
feedback, i.e. observing rewards, updates its beliefs about the optimal action. The performance of
Thompson sampling has been thoroughly analyzed in the literature [16, 17, 1, 2, 23, 24] and is known
to achieve the optimal problem-dependent and minimax regret in the classical case. Our goal is to
understand whether Thompson sampling can be combined with an adaptive batching strategy and
maintain its regret performance when allowed to update its beliefs only at the end of a small number
of batches. Note that the earlier algorithms developed specifically for the batched setting [19, 10]
heavily prioritize exploration in the initial batches to eliminate the possibility that a suboptimal arm
is played in the final exponentially larger batches, while Thompson sampling inherently balances
between exploration and exploitation by randomly sampling actions according to their probability
of being optimal. A first result in this direction has appeared in [14], which presents a batched
Thompson sampling strategy called iPASE. However, [14] provides almost sure guarantees on the
asymptotic regret which do not imply the guarantees on expected finite-time regret of interest in this
paper and the previously mentioned literature.

Our main contribution in this paper is to show that Thompson sampling, combined with a novel
adaptive batching scheme, achieves the optimal problem-dependent performance O(log(T")) and at

the same time a minimax regret of order O(+/T log(T')) by using O(log(T)) batches independent
of the problem instance. This performance is achieved simultaneously by a single strategy without
the need to tune the batching structure according to the target criteria, i.e. problem-dependent or
minimax regret. Moreover, unlike most of the previously mentioned batched algorithms where 7' is
used both in action selection and the optimization of the batch structure, our strategy is an anytime
strategy, i.e. it operates without the knowledge of the time horizon 7". We note that policies designed
for minimizing the problem-dependent regret can indeed be turned into anytime algorithms while
retaining their O(log(T")) regret and O(log(7T')) batch complexities with the help of the so called
doubling trick in [5], but the same extension does not hold for minimax policies. This is because
even with the best known doubling schemes (exponential or geometric), the minimax policies either
suffer a regret significantly larger than v/T or have their batch complexity increase to Q(log(T)))
(exponential doubling leads to the first conclusion and geometric doubling leads to the second).
This implies that our anytime Thompson sampling strategy matches the batch size of O(log(T))
needed for these anytime extensions. In addition, we develop a problem-dependent bound on the
expected number of batches used by our strategy which is O(loglog(T")). This shows that while
our strategy uses O(log(T')) batches in the worst case, similar to previous algorithms, in a given
instance of the problem with fixed reward distributions we only need O(loglog(T)) batches on
average. To the best of our knowledge, our scheme is the only strategy that can reduce the number of
batches to O(loglog(T")) without the knowledge of the time horizon T'. This corresponds to a doubly
exponential reduction in the interaction needed with the environment as compared to the classical
case. We achieve this with a two-fold adaptive batching scheme that allows the batch sizes to increase
doubly exponentially as the agent becomes more confident in its decisions. The scheme consists of
two layers comprising of batches and multiple cycles inside each batch: the number of cycles per
batch is increased exponentially, while at the same time each cycle becomes longer as the agent learns
the environment and a suboptimal action is played less and less frequently. This notion of cycles is



key to allowing the batching scheme to dynamically adopt to each instance of the problem, which
enables the O(loglog(T')) guarantee on its expected problem-dependent batch complexity.

Finally, we would like to mention a concurrent and independent work by Karbasi et al. [15], also
accepted to NeurIPS 2021. They consider the same problem and also develop a batch Thompson
sampling strategy for the multi-armed bandits setting. While their results have some overlap with
ours, there are also some differences. For example, they establish a O(log(T')) worst-case guarantee
on the batch complexity of their algorithm as we do in our paper, however their algorithm lacks a
O(loglog(T)) guarantee on its expected batch complexity. In contrast, they generalize their batch
Thompson sampling strategy to the linear contextual setting, while we restrict our attention to
multi-armed bandits.

2 Problem Formulation

2.1 Notations

We denote the natural logarithm as log(-) while a logarithmic function of base @ > 1 is log,(-). For
the non-negative sequences of {a, } and {b, }, a, = O(by,) if and only if lim sup,,_,, 3* < co and
an = Q(by,) if and only if b,, = O(a,). We also denote by Q)(+) the probability of a standard normal
random variable X being bigger than a certain threshold z, i.e. Q(z) = P(X > z) forany z € R.
Finally 1(-) is defined as the indicator function.

2.2 Batched Multi-Armed Bandit

We consider the batched multi-armed bandit setting. Here there are K arms, where each consecutive
pull of the 7** arm produces bounded i.i.d. rewards {Y; ;}9°, such that

}/;,1 S [07 1]1
ElYi1] = pmi € R.

These mean rewards {u; }X | are assumed to be deterministic parameters unknown to the agent,
whose goal is to accumulate as much reward as possible by repeatedly pulling these arms. Therefore,
at each time instance ¢, the agent plays an arm A; € {1,2, ..., K'} and receives the reward Y4, ;.
Since she can only act causally and does not know {;} £, she can only use the past observations,
Hy={A1,Ya,1, .., Ar, Ya, 1} where Ho = 0, to select the next action A ;.

In this paper, we study the batched version of this multi-armed bandit problem, where the agent has
to play these arms in batches and can only incorporate the feedback from the system, i.e. her rewards,
into her algorithm at the end of a batch. In other words, there are batch end points 0 = Ty < 71 < ...,
and the actions the agent plays in the j" batch [T;_; + 1,T}] as well as the size of the batch itself,
ie. Tj — Tj_1, can depend only on the information present in Hr,_, for any j € 7+ and some
external randomness that is independent of the system. Note that in this setting, the agent is allowed
to adaptively choose the batch sizes depending on the past observations.

Finally, we let ;13 > p; for any ¢ > 2. Given that the agent aims to maximize her cumulative reward,
she would only play the first arm if she knew the hidden system parameters {; } X ;. This observation
naturally leads to the cumulative regret term, R(7'):

E[R(T)] = Z A;E[N;(T)] 1)

where p1 — p; = A; and

forie {1,2,..,K}.



3 Batched Thompson Sampling

In this section, we describe our Batched Thompson sampling strategy for the batched multi-armed
bandit setting described in the previous section. This policy uses Gaussian priors in the spirit of [2]
and each arm is sampled randomly according to its likelihood of being optimal under this prior and
the observations from previous batches. We combine this strategy with an batching mechanism which
relies on the notion of cycles. A cycle is defined as follows. The first cycle starts in the beginning
of the experiment and ends when the agent selects an action different from the previous actions,
i.e. it corresponds to the shortest time interval starting from the beginning of the experiment where
two different actions are selected. Then the j** cycle for j > 1 is defined recursively as the time
interval from the end of the j — 1% cycle to the first time step where the agent selects an action
different from the first action in the cycle. In other words, in each cycle the agent plays exactly two
different actions. Consider the following example. Assume that the first seven actions played by
the agent are as follows: A; =1, Ay =1, A3 =2, A4, =1, A5 = 3, Ag = 2, A; = 2. Then the
first cycle is [1, 3] because only at the third time step the agent selected an arm different from the
earlier actions. Similarly, the second cycle is [4, 5] where the agent played the first and the third
actions. The third cycle that started on ¢ = 6 has not ended yet because only a single action has been
played so far. We use the concept of a cycle to adaptively decide on the batch size. At the beginning
of the j** batch, the Thompson sampling agent checks the number of cycles in which each action
i has been played since the beginning of the experiment, denoted M;(T};_1), and sets upper limits
Ui ;j = max{1, [ao x M;(Tj_1)]} for the cycle count of each action. Here o > 1 is a batch growth
factor to be chosen. Throughout the ;j** batch, the agent employs Thompson sampling, and at the end
of each cycle checks whether or not the number of cycles in which a certain arm has been selected
since the beginning of the experiment has reached its upper limit U; ; set for the current batch. The
batch ends if there is one such action hitting its upper limit. After the j*" batch, the agent observes
the rewards of its actions and repeats the same process in the next batch. Note that as the algorithm
proceeds the batch size increases due to two different reasons. First, the cycle count of each action
is increased at the end of each batch. This alone leads to an exponential increase in the number of
cycles per batch with base a. However, in addition to this, the length of each cycle becomes longer
as the agent becomes more confident about its decisions and the probability of playing an optimal
arm decreases. Note that the exponential increase in the number of cycles per batch is there even
if the algorithm does not make progress in learning its environment, e.g. always plays arms with
equal or near-equal probability due to a very noisy environment. However, the increase in the cycle
duration is tightly coupled with the confidence of the agent and the cycle duration increases only if
the agent becomes more confident. Therefore, this notion of cycles allows us to adopt the batch size
much more dynamically to the current progress of the agent in a given instance of the problem.

We now introduce the following notation to denote the beginning and end of the k'* cycle, Cj, ;. and
C. i, respectively:

Coi =

1 ifk=1
Cep—1+1 ifk>1

and
Cep =min{t € Z*|A; # Ar_1 and t > Cp 1.}

for any positive integer k. As can be seen from these definitions, the interval [C} 1, Ce 1] describes
the k" cycle. We also define M;(T) and S;(T) as follows

T
M(T) = Z 1(A, = i,t = Cyj, or Ce y, for some k)
t=1

and

[M]=

Si(T) = 1(A; =i,t = Cy, or C, y, for some k)Y ;.

t=1

Here M;(T') denotes the number of cycles in which the i*? action has been selected, while S;(T")
is the sum of rewards the agent received from playing the i*" action at either the beginning or
the end of a cycle over the duration T of the experiment. Note that whether the condition {t =
Ch, 1 or C, i for some k} is satisfied or not can be verified by checking the actions taken until the
time step ¢, i.e. {A;}5_;. We also define b(t) = max{j € Z>o[t —1 > T}} as the index of the



last batch, and B(t) = min{j € Z*|t < T}} as the batch index of the t* time step. We provide a
pseudo-code for our Batched Thompson Sampling policy in Algorithm 1.

Algorithm 1: Batched Thompson Sampling

Input: Batch growth factor o > 1, Gaussian variance o2

Initialization: ¢t = 1, M;(0) =0, S;(0) =0,U;1 =1, =1,Tp = 0.
while Experiment Run do

Sample for Each Arm: ¢;(t) ~ N/ ( 15&?{5]1_)1) , 1+M:"épj_l))

Play an Arm: A; = argmax; 0;(t)

Update the Pull Count: M;(t) < M;(t — 1) + 1(A; = i,t = Cp, or C, y, for some k)
ift = C. , for some k & M;(t) = U, ; for some i then

End the Current Batch: 7; =t

Receive the Rewards: {YAht}tTiT],_1 41

Update the Cumulative Rewards for Each Arm:

SZ(TJ) = Si(Tj_l) + ZﬁTj,H—l ]1(141 = i,l = Ob,k or Oe,k for some k)}/i,l
Update the Upper Limites for the Cycle Counts: U, ;1 = max{1, [a x M;(T};)]}
Update the Batch Index: j < 7+ 1

end
Update the Time Index: ¢ < t + 1

end

Note that in Algorithm 1, the posterior distribution from which each arm is selected depends only on
{M;(Tyr)), Si(Tory) Y, . that is we only use the rewards from the first and last action selected in
each cycle and ignore the rest of the observed rewards. This is to simplify the analysis in the following
sections. However, we can also apply the algorithm by incorporating all the observed rewards, which
in general can yield better performance while still maintaining the same batch structure. In that case,
6;(t) for any t in the j*" batch is drawn instead as

T;_ .
I 1(A =4)Yy o?

Qit ~ t=1 —,
( ) N( 1+Ni(Tj—1) 1+Ni(Tj_1))

4 Main Results

In this section, we state the main results of our paper. We start with the regret performance of Batched
Thompson sampling.
Theorem 1. Consider the batched multi-armed bandit setup described in Section 2. If T' > 2 and the

batch growth factor « satisfies 1 < o < %, then Batched Thompson sampling obeys the following
inequalities

log(T
E[N;(T)] < Crao? OgA(g ) ()
for any v > 2, which lead to
(-~ log(7)
2
E[R(T)] < Crac ;:2 A (3)

and
E[R(T)] < Coov/aKTlog(T) 4)

where Cy,Cy > 1 are absolute constants independent of the system parameters.

We provide the proof of this theorem for the special case of K = 2, a = 2, 02 = 1 in Section 6.1,
and defer the proof of the general version to the supplementary materials.

Theorem 1 states that Batched Thompson sampling achieves O(log(T") ZZK:2 A;') problem-
dependent regret and O(+/ KT log(T")) minimax regret, which match the asymptotic lower bound of
Q(log(T)) [18] and the minimax lower bound of (v KT') [3] up to a y/log(T") term respectively.



We next compare our bounds with the results on classical Thompson sampling [2]. As described in the
previous section, we use Gaussian priors for Thompson sampling following the work of Agrawal and
Goyal [2]. This is one of the two priors considered in that work for Thompson sampling: beta priors
and Gaussian priors. For Thompson sampling with Beta priors, Agrawal and Goyal [2] provides two
different bounds on the expected regret:

A, +0(§), )

for any € € (0,1), and

E[R(T)] < O(VKTlog(T)), ©)

where d(u;, 1) = p; 1og(l%) + (1 — py) log( i:ﬁ: ). In addition, they show that with Gaussian

priors the expected regret of the classical Thompson sampling is bounded by O(y/ KT log(K))
if T > K. Considering that d(u;,p1) > 2A? by Pinsker’s inequality, (5) provides a tighter
performance guarantee than (3) in terms of the dependence on the reward distributions, but we note
that the minimax performance of Batched Thompson sampling, (4), matches the performance of
classical Thompson sampling when the agent receives instantaneous feedback about rewards and
can update its policy after each action. These results show that Batched Thompson sampling, apart
from the dependence on the reward distributions in the problem dependent bound, matches the regret
performance in the classical case.

We note that the regret bounds in the theorem depend on the batch growth factor a. The regret
increases linearly as o grows bigger; this is not surprising since bigger batch sizes mean fewer updates
for Batched Thompson sampling.

We now present the batch complexity results for our algorithm.

Theorem 2. Consider the batched multi-armed bandit setup described in Section 2. If T' > 2 and
l<a< 5+:2, then the batch complexity B(T') of Batched Thompson sampling satisfies the following:

B(T)Sl—&-K—i—Kloga(l—i—%), )
X log(T) K log(T)
E[B(T)] <1+ K +log, (1 + Cac? Z gAQ ) + Zloga(l + Cac? gAQ ), and  (8)
i=2 @ i=2 i
X log(T)
E[B(T)] < 1+2Ca0® gAQ , )
i=2 i

where C'is an absolute constant independent of the system parameters.

Theorem 2 states three different batch complexity guarantees; the first is a deterministic guarantee on
the number of batches while the last two bound the number of batches in expectation. If we consider
(7), we see that Batched Thompson sampling uses at most O(log(7")) many batches regardless of
the reward distributions. This result and Theorem 1 indicate that Batched Thompson sampling
matches the regret performance and the batch complexities of optimal problem-dependent batched
algorithms developed in [4, 10, 9, 15], which also achieve O(K log(T)) problem-dependent regret
with O(log(T')) batch complexity. However, compared with the other optimal algorithms, we show
that we can further reduce the expected batch complexity down to O(K loglog(T')) in (8). This is
because our batching strategy uses the information it gathers about the system (through the notion of
cycles) to adaptively decide on the sizes of the batches while most prior batched algorithms use a
static batch structure. We note that Algorithm 1 of Esfandiari et al. [9] does use an adaptive batching
strategy however that strategy appears to be geared towards obtaining a tighter regret bound rather
than reducing the batch complexity.

We note that the bounds on the number of batches in (7) and (8) diverge to infinity as « | 1. The
bound in (9) on the other hand decreases with o and can be relevant when « is chosen very small. We
also note thatif a < 1+ % for a fixed T, then Batched Thompson sampling will only allow one cycle
per batch throughout the experiment of duration 7" and the notion of a batch will coincide with the



notion of a cycle. In this extremal case with one cycle per batch, (9) shows that Batched Thompson
sampling will have O(log(T")) batch complexity, while still satisfying the regret bounds stated in
Theorem 1. The O(K loglog(T")) bound on the expected batch complexity in (8) is enabled by the
fact that for larger o we allow for exponentially more cycles in each batch. As the algorithm proceeds
and becomes more confident about the system, choosing a suboptimal arm becomes less likely and
as a result the cycle durations become inherently larger. At the same time, the algorithm allows
for exponentially more cycles in each batch. This double batching strategy in our algorithm, via
cycles and batches is key to obtain O(K loglog(T')) guarantee in (8) with an anytime strategy. Note
that the best previously available guarantee on batch complexity for an anytime batching strategy is
O(log(T)).

The proof of these theorems are provided in Section 6. The main technical novelty in the proof
comes from the fact that the notion of cycles leads to a random duration for each batch without any
deterministic upper bound on the number of times each arm is played in the batch. This makes it
more difficult to control the regret accumulated during a given batch. We note that without the notion
of cycles (e.g. when a cycle corresponds to a pull of an arm) the exponential increase in the number
of arms per batch is relatively easy to deal with, as in this case we have a deterministic upper bound
on the number of times each arm can be played in a given batch.

5 Experiments

In this section, we provide some experimental results on the performance of Batched Thompson
sampling where we do not skip samples, i.e. the variant mentioned at the end of Section 3, for different
values of i, {1.00001, 1.25, 1.5, 2}, and how they perform against normal Thompson sampling under
different reward distributions and action counts when time horizon 7' = 5 x 10* and the sampling
variance 02 = 1. We mainly consider four setups: Bernoulli rewards when K = 2, Figure 1 (a);
Bernoulli rewards when K = 5, Figure 1 (b); Gaussian rewards when K = 2, Figure 1 (c¢); Gaussian
rewards when K = 5, Figure 1 (d). Finally each figure is the result of an experiment averaged over
10* repeats and the average number of batches used throughout the experiment is rounded up to the
nearest integer and reported in the parenthesis to the right of the algorithm names on the figures. The
figures show that our batching strategy matches the performance of classical Thompson sampling by
using roughly 100 batches over a time horizon of T = 5 x 10

As can be seen from Figure 1, Batched Thompson sampling achieves almost the same empirical
performance as the normal Thompson sampling when we set o small enough so that there is only one
cycle per batch, i.e. a = 1.00001. We also observe that this Batched Thompson sampling version
a = 1.00001, can have a batch count as small as 15. However when « is very small, the problem
independent guarantees in (7) and (8) become very loose and the number of batches can vary more
with the reward distributions. This can be partly observed in the figures: for « = 1.00001, there is
larger variation in the average batch complexity across different reward distributions though in all
cases the average numbe of batches remain very small. Increasing « leads to a more stable batch
complexity behavior, at the cost of a small multiplicative regret factor; we observe that the batch count
almost remains constant for o = 2 across different reward distributions. The source codes of the
experiment can be found in https://github.com/incsmi/BatchedThompsonSampling.git.

6 Technical Analysis

In this section we provide technical proofs for our results. We start with the proof of Theorem 1 for a
special case and at the end prove Theorem 2.

6.1 Proof of Theorem 1 when K =2, = 2,and 02 =1

We first introduce N, ;(t) as the number of times the second arm is pulled if Batched Thompson
sampling is employed for ¢ many round with the past knowledge of Hr, ,. In this case, Ny ;(T; —
Tj—1) = No(T;) — N2(Tj—1). We know that in the first 7" rounds, there can be no more than 7" many
batches, and each batch can not last longer than 7" rounds. As a result, we have the following bound
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Figure 1: Empirical Regret Performance of Batched and normal Thompson sampling

on Ny (T):

T
No(T) <> min(Npj(T; — Tj—1), Na;(T)).
j=1

Now we first analyze the expected number of times the second is pulled in the first cycle of the jt*
batch. It is easy to see the time the first arm is selected in this cycle is an upper bound on the number
of times the second arm is picked. This observation follows from the fact that if the first action is
selected in the first round, then the second is selected only once in the current cycle, if not the time
the first arm is selected becomes one more than the number of times the second arm is picked. As a
result, conditioned on the past ’HTF1 , the expected number of times the second arm is picked in a

. . 1 . .
single cycle is upper bounded by Bz, =1z, ) Also note that since there are only two actions,

each cycle will contain both of them, and in the first j batches, there will be 2/~! many cycles by
the construction of Algorithm 1. This observation means that there are no more than 2/~! many
identically distributed such cycles in the j** batch, and we have the following bound for any j:

1
(ATJ'—1+1 = 1‘HTJ'—1)
where C' > 2 is a constant independent of j. The last inequality in (10) follows from the following
Lemma 3 and the fact that in the first batch P(A7,_, 41 = 1|Hy,_,) =P(A; = 1) = 4.
Lemma3. If K =2, a =2, ando? =1, thenany j > 2:
1

E <c 1
]P)(AT]'71+1 = 1|HT]'71):| N (b

E[Ny ;(T; — Tj_1)] <2~ Elp | <co! (10)

Jj—4

2
P(ATj—1+l = 2) < eXp(_ 3

A3), (12)



where C > 2 is a constant independent of j.

In addition, we also have:

274

E[N2;(T)] = TP(Ar, 11 =2) < Texp(———A3) (13)

for j > 2 by the same lemma. The overall analysis shows that for any positive integer k, we have:

T k T
E[No(T)] < B[ min(Ny;(Tj = Tj1), Nojy (T)] < > _E[Noj(Tj = Tj-1)| + > E[No(T)]
j=1 j=1 j=k+1
27—4
< C(2 —1—|—TZeXp A2) (14)

j=k+1

where the last step follows from (10) and (13). Let k£ be the smallest positive integer such that
2 > 8l2l) Then weh
3 = Tz €n we nave

T k—
T Z exp(— <TZexp A2 <TZexp —2'log(T))
Jj=k+1 =0 =0
= ZW S g s2
i=0 i=0

where the last inequality follows from the assumption that 7' > 2. This analysis bounds the last
summation term in (14). To bound C(2* — 1), note that k is the smallest positive integer bigger

than log2(24l°g(T)) Since A2 < 1and T > 2, we know 24l°g(T) > 1. This analysis shows that

k < log, (241°g(T))—|—1 = log, (4875 21 Asaresult, C(2F —1) < < 480102#. The overall analysis
2 2

shows that E[R( )] = A E[No(T)] < 480% + 2/, by (14). This finishes the proof of (3).

Finally (4) is proven by (3) if Ay > %. If not, then E[R(T)] < TAy < /Tlog(T), and this
proves (4).

6.2 Proof of Theorem 2

Let us consider the case where the agent has already employed the Batched Thompson sampling,
Algorithm 1, for T many steps and denote i; € {1,2,..,B(T) — 1} for j € {1,2,...,k;} as
the indices where Mi(Ti].) = U,,;,. Since each batch end point T} has to satisfy the condition
M(T;) = U, ; for some [, we have

K
< Zk (15)
=1

By the deﬁnition of UZ j» we know that M;(T;,) = 1. In addition, note that there may be batches in
between i i1 and 3} i " ones and the agent may have picked the 7*" arm while the condition M,(T;) =
U;,; is not satlsﬁed These observations lead to max{aM;(T;,_,), M;(Ti;_,) + 1} < M;(T;;) for
j > 2. The overall analysis shows that if k; > 1, then o*=1 < M;(T;, ) < My(Tg(r)-1) due to
the fact that 7;, < Tg(r)_1, which leads to k; < 1 + log, (1 + M; (TB( 1)-1)) forany k; > 0. In
addition, we also have the following trivial bound k; < M;(T}, ) < M;(Tp(7)-1). As aresult of

these inequalities and (15), we have

K
B(T) <1+ K+ log,(1+ Mi(Tpr)-1)) (16)
1=1
and
K
B(T) <1+ Mi(Tp(r)-1)- (17)

i=1



First of all, since log(-) is a concave function, Jensen’s inequality and (16) lead to

K

B(T) < 1+K+KlOga(1+%;Mi(TB(T)—l))' (18)
Considering that each cycle has to contain at least two action steps, there can be no more than %
many cycles in the first B(T) — 1 batches. In addition, each cycle can only be recorded once by
two different actions. This observation leads to Zfil M;(Tg(ry—1) < T, which proves (7) by (18).
To prove (8), we first note that M (Tp(r)—1) < ZZKZQ M;(Tg(ry—1) because each cycle of the
first arm has to be accompanied by another arm. Since M;(Tg(ry—1) < N;(T') for any i, we have
B(T) <1+ K +1log,(1+ X5, Ny(T)) + 325, log,, (1 + Ni(T)) by (16), which shows that

K K
E[B(T)] <E[l + K +log,(1+ Y Ni(T))+ Y _log, (1 + N;(T))]

K K
<1+ K +log,(1+ Y E[N;(T)]) + Y _log, (1 + E[N;(T)]).

=2 =2

The last inequality follows from Jensen’s inequality. This leads to (8) by the fact that E[N;(T)] <
COZ(]Q% from (2). Finally, the previous analysis also implies that B(T') < 1+ 2 Zf; N;(T) by

(17). This inequality and (2) prove (9).

7 Conclusion

We proposed an anytime Batched Thompson sampling algorithm and proved that it achieves the
optimal problem-dependent and minimax regret with only O(log(7')) instance-independent batch
complexity, matching the state-of-the-art anytime batched algorithms. More interestingly, we showed
that in a given instance of the problem our algorithm requires only O (log log(T')) batches on average,
which corresponds to a doubly exponential decrease in the interaction needed with the environment
as compared to the classical case. To the best of our knowledge, previous anytime algorithms only
satisfy a worst-case O(log(T)) guarantee on the batch complexity. Finally, simulations show that
Batched Thompson sampling performs empirically close to classical Thompson sampling by using
drastically fewer batches.
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