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Abstract. In this paper, we explore the properties of proto-neutron star matter. The
relativistic finite-temperature Green function formalism is used to derive the equations which
determine the properties of such matter. The calculations are performed for the relativistic
non-linear mean-filed theory, where different combinations of lepton number and entropy have
been investigated. All particles of the baryon octet as well as all electrically charged states of
the ∆ isobar have been included in the calculations. The presence of all these particles is shown
to be extremely temperature (entropy) dependent, which should have important consequences
for the evolution of proto-neutron stars to neutron stars as well as the behavior of neutron stars
in compact star mergers.

1. Introduction

The proto-neutron star matter studied in this paper exists deep in the cores of proto-neutron
stars, which are the remnants of collapsed stars that form in the aftermath of supernova
explosions [1, 2, 3, 4]. The gravitational collapse of the core goes through several stages (see
figure 1) before stellar equilibrium is reached and a cold neutron star is formed [5, 6]. In the very
early stages, a proto-neutron star experiences a deleptonization stage where hot and lepton-rich
matter becomes lepton-poor over the course of about one minute. During this time, the entropy
(s) per baryon and lepton fraction (YL) of the matter change quickly, from around s = 1 and
YL = 0.4, to s = 2 and YL = 0.2, to s = 2 and Yνe = 0.4 [5, 7, 8, 9]. As neutrinos and photons
continue to diffuse out over the next several minutes and temperatures cool to less than 1 MeV,
a hot proto-neutron star becomes a cold neutron star. The equations of state describing these
stages and the associated baryon-lepton compositions will be studied in this paper.



Figure 1. Schematic
illustration of differ-
ent temporal stages in
the evolution of proto-
neutron stars to neutron
stars [5, 7].

2. The Non-Linear Nuclear Lagrangian

The nuclear Lagrangian of the theory is given by [7, 9, 10, 11, 12],
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where mB and mN stand for the baryon and nucleon masses, respectively. The quantity ψB

stands for the particle fields of the baryon octet (i.e., Σ±,Σ0,Λ,Ξ−,Ξ−) and the electrically
charged states of the ∆ isobar. The interactions among these particles are described by the
exchange of σ, ω, and ρ mesons. The quantities mσ, mω, mρ in equation (1) denote the masses of
mesons and gσB , gωB , and gρB are the meson-baryon coupling constants. In standard relativistic
mean-field theory, the meson-baryon coupling constants are independent of the baryon density.
This is different for the density-dependent relativistic mean-field theory, where the coupling
constants depend on density,

giB(n) = giB(n0)fi(x) . (2)

Here i ∈ (σ, ω, ρ) and fi(x) accounts for the functional form of the density dependence [12]. The
density dependent coupling constants are given by [13, 14]

giB(n) = giB(n0) ai

[

1 + bi(x+ di)
2

1 + ci(x+ di)2

]

, (3)

for i = (σ, ω). The quantity x is given by x = n/n0, where n0 denotes the nuclear saturation
density. For the ρ meson, the expression of the meson-baryon coupling constant reads

gρB(n) = gρB(n0) exp[−aρ(x− 1)] , (4)

with only one parameter aρ. The quantities ωµν and ρ
µν in equation (1) denote field strength

tensors for the vector mesons, which are given by [5, 12],

ωµν = ∂µων − ∂νωµ , ρµν = ∂µρν − ∂νρµ , (5)



where ρµ denotes the ρ-meson field. Additionally, b̃σ and c̃σ represent coupling parameters
associated with non-linear self-interactions among σ-meson fields. Additional scalar self-
interactions are included by

U(σ) =
1

3
b̃σmN (gσNσ)3 +

1

4
c̃σ(gσNσ)4 . (6)

In this paper we use the SWL nuclear model to study proto-neutron star matter [7, 9, 12], whose
parametrization reproduces the properties of symmetric as well as asymmetric nuclear matter
extremely well (see section 5). The relativistic mean-field equations of motion are derived by
evaluating the Euler-Lagrange equation for the fields X = ψB , ψL, σ, ω

µ, and ρµ. One obtains
for the baryons [7, 9, 10, 12],

(iγµ∂µ −mB)ψB =
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and for the mesons
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The relativistic mean-field limit of equations (8) through (10) is given by [7, 9, 10]
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where σ̄ ≡ 〈σ〉, ω̄ ≡ 〈ω〉, and ρ̄ ≡ 〈ρ〉 denote the meson-mean fields. The quantity I3B denotes
the 3-component of isospin. The scalar and particle number densities for each baryon B are
denoted by ns

B and nB, and are given by [10, 12]

ns
B = 〈 ψ̄BψB 〉 , (14)

nB = 〈 ψ†
BψB 〉 . (15)

3. Baryonic Field Theory at Finite Density and Temperature

To solve the field equations at finite temperatures and densities we use the finite-temperature
Greens function formalism. It is based on the spectral function representation of the two-point
Green function [10, 15],
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where µB denotes the chemical potential of a baryon and aB stands for the spectral function
of that particle. The effective baryon mass m∗

B and the single-baryon energy E∗
B are given by

[7, 10],

m∗
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B
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The expression for the baryon number density (15) in terms of the two-point Green function is
given by [7, 10]
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Transformation of equation (18) to momentum space gives
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We take note that the integration over p0 can be carried out analytically via contour integration
[10], which leads to
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where γB ≡ (2JB + 1) accounts for the spin-degeneracy of a given baryon. The Fermi-Dirac
distribution functions fB± in equations (20) to (22) are given by
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where µ∗
B denotes the effective baryon chemical potential [7]. The expression for the scalar

density (14) in terms of the two-point Green function is given by [7, 10]
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Transformation of equation (24) to momentum space leads to
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By making use of equations (20) and (21), the integration over p0 can be carried out analytically,
which leads to the final result for the scalar number density given by

ns
B = γB

∫

d3p

(2π)3
m∗

B

E∗
B(p)

(fB−(p)− fB+(p)) . (26)



The relations for the energy density ǫ and pressure P of the system follow from the energy-
momentum tensor as ǫ = 〈T 00〉 and P = 1

3
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which, after some algebra, can be written as [7, 10]
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The expression for the pressure of hot nuclear matter is given by [7, 10]
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This expression takes the following form after contour integration over p0 and some algebra
[7, 10]:
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4. Chemical Equilibrium and Charge Neutrality

When determining the equation of state of proto-neutron star matter, three constraints must
be taken into account. These are electric charge neutrality, baryon number conservation and
chemical equilibrium. The constraint of electric charge neutrality is given by [5, 7, 9]

∑

L

qLYL +
∑

B

qBYB = 0 , (31)

where qL and qB denote the lepton and baryon electric charges in units of the elementary
charge, and YL and YB represent the lepton and baryon fractions, respectively. Baryon number
conservation leads to

∑

B

nB − n = 0 . (32)

Lastly, the chemical equilibrium is fulfilled if

µB = µn + qB(µe − µνe) , (33)

where µB is the baryon chemical potential, and µn, µe and µνe are the neutron, electron and
neutrino chemical potentials, respectively. Finally we introduce the relative lepton numbers of
electrons and neutrinos at a given density

Ye =
ne + nνe

n
, Yµ =

nµ + nνµ

n
= 0 , (34)

where ne, nνe , nµ and nνµ represent the number densities of electrons, electron neutrinos, muons
and muon neutrinos.



5. Model Parameters

The results of this paper are computed for the nuclear parametrization named SWL [16]. The
parameter values of these sets are shown in table 1 and the corresponding saturation properties
of symmetric nuclear matter are compiled in table 2 [9]. These are the nuclear saturation
density n0, energy per nucleon E0, nuclear incompressibility K0, effective nucleon mass m∗

N/mN ,
asymmetry energy J , asymmetry energy slope L0, and the value of the nucleon potential UN

at n0. As already mentioned, the baryons considered in our calculations include all states of

Table 1. Parameters of the SWL [16, 17] parametrization.

Parameters Units SWL

mσ GeV 0.550
mω GeV 0.783
mρ GeV 0.763
gσN − 9.7744
gωN − 10.746
gρN − 7.8764

b̃σ − 0.003798
c̃σ − −0.003197
aρ − 0.3796

the spin-12 baryon octet comprised of the nucleons (n, p) and hyperons (Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−).

In addition, all states of the spin-32 delta isobar ∆(1232) (∆++,∆+,∆0,∆−) are taken into
account as well. A detailed discussion of the meson-baryon coupling constants can be found in

Table 2. Properties of symmetric nuclear matter at saturation density for the SWL [16, 17]
parametrization.

Saturation property Units SWL

n0 fm−3 0.150
E0 MeV −16.0
K0 MeV 260.0

m∗
N/mN − 0.70
J MeV 31.0
L0 MeV 55.0
UN MeV −64.6

[9, 12, 16, 18].

6. Results

Figure 2 shows the pressure as a function of the energy density of neutron star matter for
temperatures from 1 MeV to 50 MeV. The temperature dependence is relatively weak since
the energy density and pressure both increase at about the same rate with temperature. The
situation is different for matter with constant entropy, which is shown in figure 3. The equations
of state shown in this figure describe matter as it exists in the early phases (milliseconds to
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Figure 2. Equation of state at
different temperatures, T .
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Figure 3. Equation of state at
different entropies, s.

seconds) in the cores of proto-neutron stars. As can be seen, now temperature (i.e., entropy) has
a significant effect on both the pressure and energy density, as well as on the particle composition
of matter as shown in figures 4 through 6. The threshold densities for the production of new
particles in matter are very temperature sensitive, which is especially true for the ∆(1232)) isobar
states. The results of this work are not only of interest for proto-neutron stars, but also find their
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Figure 4. Particle population in
matter with YL = 0.4 and s = 1.
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Figure 5. Particle population in
matter with YL = 0.2 and s = 2.

application in numerical simulations of colliding neutron stars in binary systems (neutron star
mergers). After contact, large shocks develop inside of such neutron stars which considerably
increase their internal energy. Numerical simulations have shown that in such collisions the
densities reached in matter are several times higher than the nuclear saturation density and
that the temperature is on the order of 50 MeV or even higher [19, 20, 21]. The determination
of a comprehensive class of modern, self-consistent models for the equation of state of hot and
dense nuclear matter has therefore become a focal point of contemporary research on ultra-dense
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Figure 6. Particle population in
matter with YL = 0 and s = 2.

matter.

Acknowledgments

This research was supported by the National Science Foundation (USA) under Grant No. PHY-
2012152. MO and IFR-S thank CONICET, UNLP, and MinCyT (Argentina) for financial
support under grants PIP-0714, G157, G007 and PICT 2019-3662.

References

[1] Mezzacappa A 2005 Annual Review of Nuclear and Particle Science 55 467
[2] Janka H T 2012 Annual Review of Nuclear and Particle Science 62 407
[3] Foglizzo T 2016 Explosion Physics of Core-Collapse Supernovae (Cham: Springer International Publishing)

pp 1–21
[4] Burrows A and Vartanyan D 2021 Nature 589 29
[5] Prakash M, Bombaci I, Prakash M, Ellis P J, Lattimer J M and Knorren R 1997 Physics Reports 280 1
[6] Pons J A, Reddy S, Prakash M, Lattimer J M and Miralles J A 1999 ApJ 513 780
[7] Farrell D, Alp A, Spinella W, Weber F, Malfatti G, Orsaria M G and Ranea-Sandoval I F 2023 New

Phenomena and New States of Matter in the Universe: From Quarks to Cosmos ed C A Zen Vasconcellos,
P O Hess and T Boller (Singapore: World Scientific) chapter 5 (Preprint arXiv:2110.05189 [nucl-th])

[8] Strobel K, Schaab C and Weigel M K 1999 A&A 350 497
[9] Malfatti G, Orsaria M G, Contrera G A, Weber F and Ranea-Sandoval I F 2019 Phys. Rev. C 100(1) 015803

[10] Weber F 1999 Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (Series in High Energy
Physics, Cosmology and Gravitation) (CRC Press)

[11] Glendenning N 2012 Compact Stars: Nuclear Physics, Particle Physics and General Relativity Astronomy
and Astrophysics Library (Springer New York)

[12] Spinella W M and Weber F 2020 Topics on Strong Gravity ed C A Zen Vasconcellos (Singapore: World
Scientific) chapter 4 pp 85-152

[13] Typel S and Wolter H H 1999 Nucl. Phys. A 656 331
[14] Typel S 2018 Particles 1 3
[15] Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320
[16] Spinella W M 2017 A Systematic Investigation of Exotic Matter in Neutron Stars Ph.D. thesis Claremont

Graduate University & San Diego State University
[17] Spinella W M, Weber F, Orsaria M G and Contrera G A 2018 Universe 4 64
[18] Malfatti G, Orsaria M G, Ranea-Sandoval I F, Contrera G A and Weber F 2020 Phys. Rev. D 102(6) 063008
[19] Baiotti L and Rezzolla L 2017 Rep. Prog. Phys. 80 096901
[20] Hanauske M, Bovard L, Most E, Papenfort J, Steinheimer J, Motornenko A, Vovchenko V, Dexheimer V,
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