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Abstract—We consider the problem of estimating a d-
dimensional, s-sparse discrete distribution from independent
samples subject to a joint b-bit communication constraint and
e-local differential privacy constraint. As an intermediate step,
we introduce the Privatized Random Hashing (PRH) scheme,
which concatenates a hashing-based quantization strategy with
the randomized response privacy mechanism. Despite its sim-
plicity, PRH turns out to achieve the order-optimal minimax
estimation error and sample complexity in the standard (non-
sparse) estimation setting, for all communication and privacy
regimes. We then address the sparse case by developing a two-
stage, non-interactive estimation scheme based on PRH in which
the first half of samples are used to localize the unknown support
of the distribution, and the remaining samples are used to
obtain precise estimates of the individual probabilities. Using this
scheme, we characterize the minimax sample complexity of the
sparse case up to logarithmic factors, unifying existing results
in the literature that considered communication and privacy
constraints separately.

I. INTRODUCTION

Recent years have witnessed an exponential growth in the
volume of data generated from distributed sources at the
network edge, including smartphones, wireless sensors, and
wearable devices. For many machine learning tasks — particu-
larly in federated learning and analytics [22] — the devices are
required to transmit information over bandwidth-constrained
wireless links to a central server or data aggregator. The
resulting communication cost is often a major bottleneck to
achieving the desired level of utility or accuracy for the task
at hand. Moreover, when sensitive data is involved, it is critical
to protect the privacy of individual users. A widely adopted
notion of privacy is local differential privacy (LDP) [17], [25],
which ensures that the central server cannot learn too much
(in a statistical sense) about any individual’s data. A large
body of work studies the effects of imposing communication
(1131, [81-[11], [15], [19], [20] and privacy [1], [2], [5]-[7],
[13], [17], [18], [21], [26], [27] constraints on the statistical
problem of estimating a discrete distribution from its samples.

In many applications such as language modeling and ge-
nomics, the distribution of interest is supported on a small but
unknown subset (of size s) of the ambient domain (of size
d, where d > s). Results from high-dimensional statistics
[24], compressed sensing [12], and group testing [16] show
that by exploiting such sparsity in the problem structure, the
“effective dimension” of the problem can be made much
smaller than d (e.g., in compressed sensing, d is replaced
by slog(d/s)). Inspired by these works, recent papers have

demonstrated similar utility gains for sparse distribution esti-
mation under communication and privacy constraints [4], [14],
[26]. However, thus far, these constraints have largely been
studied separately.

This paper makes progress toward unifying the aforemen-
tioned works by studying the effect of imposing joint commu-
nication and privacy constraints on one’s ability to estimate
a sparse distribution from its samples. First, we introduce
the Privatized Random Hashing (PRH) scheme, which con-
catenates a hashing-based quantization strategy [4], [9] with
the randomized response privacy mechanism [25]. We show
that, surprisingly, PRH achieves the order-optimal minimax
estimation error and sample complexity in all communication
and privacy regimes, despite its apparent simplicity. For the
sparse case, we develop a two-stage, non-interactive estimation
scheme based on PRH in which the first half of samples
are used to localize the unknown support of the distribution,
and the remaining samples are used to obtain more precise
probability estimates. Our resulting characterization of the
sample complexity is tight up to logarithmic factors and
recovers existing results in the literature depending on which
constraint is more stringent. Furthermore, our upper bound
applies to all privacy levels, whereas prior results hold only
for ¢ = O(log d).

A. Notation and Setup

There are n clients, each of whom observes a sample X; €
X drawn from an unknown discrete distribution p € A,, where

z}

Adé{pZ(pl,---,pd € [0,1]¢
Jj€ld]

is the set of all d-dimensional discrete distributions. Given X,
the i client generates a message Y; € ) that it transmits to
the central server. The message is generated using an encoding
channel' denoted by the conditional probability Q;(-|X;),
which must satisfy two constraints:

1) Local differential privacy (LDP). A channel () is said
to satisfy e-LDP if

Q(y|x) < of ’
—_— , Vx,x' € X, Vye).
Qe = Thr et ey

! An encoding channel is a randomized mapping that can potentially depend
on shared randomness, i.e., a random variable U accessible to the clients and
server. Schemes which utilize shared randomness are also known as public-
coin schemes. In private-coin schemes, all channels are independent. For
simplicity, we suppress the dependence on U in our notation.
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2) b-bit communication constraint. The set of possible
messages, ), satisfies the b-bit communication constraint
if |V| < 2%, i.e., every message Y; € ) can be expressed
with b bits.

Given the n messages Y 2 (Y1,Ys,...,Y,) produced by
the encoding channels Q" £ (Q1,Qs,...,Qy,), the server
generates an estimate p(Y™) of the underlying distribution p.
A common objective is to design a scheme (Q", p(Y")) to
achieve the minimax estimation error
A . A
r(tnb,e) £ min max E[e(v, 50r)).

where €= |||, or ||-[.

A slightly different notion is the minimax sample complexity
n*(a, ¢, Ag,b,¢), which is the smallest n for which we can
achieve

Pr (z(p, HY™) < a) >09, Wpe A,

where o € (0,1) is an accuracy parameter. It is com-
mon for ¢ to be the total variation distance, ry(p, p) =
sup acia) Ip(A) ~ H(A)| = § Ip — 51l

In this work, we also consider the task of estimating s-sparse
distributions:

Ags = {pz (P1,---pa) € 10,1)7

Jjeld

The minimax sample complexity in this case is denoted by
n*(a,l,Ag s, b,€).

B. Related Works

Distribution estimation under communication [1]-[3], [8],
[15], [19], [20] and LDP [1], [2], [5]-[71, [17], [18], [21],
[27] constraints has been studied extensively. The ¢; minimax
error scales as ©(+/d?/(nmin{2?, d})) under communication
constraints and ©(+/d?/(nmin{e?, (e — 1)2})) under LDP
constraints. The {1y (equivalently, /1) sample complexity is
O(d?/(a?min{2°,d})) and O(d?/(a®min{e?, (e — 1)?})),
respectively. Joint communication and LDP constraints were
studied in [13], and it was shown that the Recursive Hadamard
Response (RHR) scheme achieves the minimax error of
O(y/d2/(nmin{es, (e — 1)2, 2b, d})). This implies that the
convergence rate is determined by the more stringent of the
two constraints, allowing the other to be satisfied “for free.”

For sparse distribution estimation under commu-
nication constraints, [4] obtained an upper bound

of O(m% and a bound of

2 s2 max{log(d/s),1 . 1o
— mifl{vas}, {(ﬁb( [s).1} , which exhibit a

logarithmic gap in various parameter regimes. Subsequently,
[14] showed that the extra log(d/s) factor can be eliminated
from the convergence rate if the sample size is sufficiently
large. Under LDP constraints in the high-privacy regime
(e = O(1)), [4] established a tight sample complexity of
(C] W%) using the 1-bit Hadamard Response
with a sparse projection. Similar results are reported in [26],

lower

Q( max

S by = 1, ol < }
]

and their proposed scheme extends to the medium-privacy
regime (¢ € [1,logd]) with a resulting sample complexity
of O g“zlg%(;j/s)) However, their scheme requires €2 (log s)
bits of communication, which is strictly sub-optimal when
e = O (log s), according to our results.

C. Overview of Results

Our first result establishes the somewhat surprising fact that
the Privatized Random Hashing (PRH) scheme achieves the
order-optimal minimax estimation error for all privacy and
communication regimes. The proof is provided in Section II-B.

Theorem 1 (Non-sparse estimation error). For all p € Ay,
the estimation error of Privatized Random Hashing (PRH)
satisfies

d
n - min {65, (es —1)2, 20, d}

E[llp—pl3] <

d

\/n - min {65, (es —1)2, 20, d}.

Moreover, if n - min{es7 (ef —1)2, 2%, d} > d?, then PRH
is order-optimal.

E[lp - pll, ] =

To the best of our knowledge, the only other scheme
with this performance guarantee is the Recursive Hadamard
Response (RHR) [13]. Our result demonstrates that a con-
ceptually simpler scheme achieves the same rate-optimal per-
formance?, and disproves a prior belief in the literature that
performing separate quantization and privatization is always
strictly sub-optimal. For instance, [13] shows that the concate-
nation of subset selection [27] (which is optimal under LDP
constraints) with grouping-based quantization [19] (which is
optimal under communication constraints) yields an ¢y error
rate that grows quadratically with d, in contrast to the linear
dependence exhibited by PRH and RHR. Another benefit of
our concatenated scheme is that any system which already
implements one of the components (either random hashing
or randomized response) can easily satisfy the “missing”
constraint with minimal modifications to the existing system.
Finally, it can be shown that the estimation error of PRH has
a strictly better leading constant than that of RHR, though we
focus on order-wise bounds in the present paper.

From Theorem 1, one can derive an upper bound on
the sample complexity n*(a, frv, Ag,b,€). Using Markov’s
inequality, it follows that Vp € Ay,

Pr (e(p, pY™) > a) < élE{ETv(ﬁ, p)}

1 d
< =

@ \/n~min{es, (es —1)2, 20, d}.

2However, we acknowledge that this simplicity comes at the cost of
requiring shared randomness (whereas RHR is strictly a private-coin scheme).
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Therefore, taking

d2
a2 -min{es, (ef — 1)2, 20, d}
for a sufficiently large constant C' > 0 ensures that
Pr(¢(p, p(Y™)) > «) is bounded above by 0.1. A match-
ing lower bound is obtained by combining existing sample

complexity lower bounds in the communication- [3] and LDP-
constrained settings (see [6] and references therein).

n=C

Corollary 1 (Non-sparse sample complexity). Privatized Ran-
dom Hashing (PRH) achieves the minimax sample complexity
for estimating distributions in Ay under joint b-bit communi-
cation and e-LDP constraints, given by

2
n*(a, bry, Ag, b, e) = @( d )
o2 - min {657 (es —1)2, 2 d}

For the sparse setting, we derive an upper bound on the
sample complexity using a two-stage, non-interactive estima-
tion scheme based on PRH (described in Section III). Our
upper bound holds in all communication and privacy regimes,
extending prior results which hold only when ¢ = O(logd).
A lower bound for ¢ = O(1) (the high-privacy regime) is
obtained by combining Theorem 1 and Theorem 2 from [4].

Theorem 2 (Sparse sample complexity). The minimax sample
complexity for estimating distributions in Ay s under joint b-
bit communication and e-LDP constraints satisfies

’I’L*(OC,ETV, Ad,57b7 5) = O(
o? - min {es, (es —1)2, 20, s}

When € = O(1) (the high-privacy regime),

TL* (Oé, gTV; Ad,sa b7 5) =

Q (max { 5?2 max{log(d/s), 1} ,

a2e?

s? max{log(d/s), 1} 52

o2b " o2 min{2?, s} }) '

As in the non-sparse case [13], our upper bound in Theo-
rem 2 is dictated by the more stringent of the two constraints,
allowing the other one to be satisfied “for free.” The lower
bound is tight when €2 < 2% ie., when the privacy level is
more stringent than the communication budget. In this case,
the sample complexity becomes © (W%
ering the result of [4, Theorem 1] from the LDP-constrained
setting. On the other hand, when £2 > 2%, Theorem 2 recovers
[4, Theorem 2] from the communication-constrained setting,
and the upper and lower bounds are separated by at most a
logarithmic factor.

), recov-

II. PRIVATIZED RANDOM HASHING

In this section, we introduce and analyze the Privatized
Random Hashing (PRH) scheme, culminating in the proof of
Theorem 1.

s? max{log(d/s), 1} )

A. Algorithm Description

PRH comprises two distinct components. Each client first
quantizes its sample down to at most b bits using a random
hashing approach [4], [9]. Then, the randomized response
mechanism [25] is applied to the quantized sample to satisfy
the LDP constraint.

More precisely, let k £ min{b, [¢log, e], |logd]}, and let
{h; : [d] — [2¥], @ € [n]} be independent hash functions
which are generated via public randomness and are known to
both the clients and the server. Each hash function satisfies

Pr(hi(j) =) = o

The i client first maps its sample X; to Y; = hi(X;) € [2¥].
Next, it privatizes Y; using 2¥-Randomized Response (2-RR)
and sends the resulting message Y; to the server:

Vi € [d], Yy € [2¥].

Y, — Y/z with probability
"7V €29\ {Y;} with probability

et
es+2F—1>
I
ec42k—1"
Note that each client’s message can be encoded in k < b bits.
Moreover, each message satisfies the e-LDP constraint due to
the privacy guarantees of 2¥-RR.
Given all n messages, the server computes

NG 2 |{i el s () = Vi

for each j € [d], which is the number of messages Y; such
that symbol j lies in the pre-image of Y; under h;. The final
estimator is given by

1 fe2h -1 2k

Lemma 1. N(j) is distributed as Binomial(n, v - p; + ),
where v = (1 — 2%) (651527761_1) and = 2%

Proof. First, we calculate the probability that a symbol j € [d]
lies in the pre-image of a non-privatized message Y; under
hash function h;:

= . 1 1 1
Pr(Yi = hi(j)) = pj + (L —pj) = (1 —~ 27;) P+ o

Therefore, combining this with the definition of the 2k_RR
scheme, we have

Pr(Y; = hi(j)) = (68_4_6272_1) [(1 — 271k> -p;+ 2%

1 1 1
terEo1 1=t 5) v
B 1 e —1 1
= (1= 50) (Gogrmt) w o

O

Given Lemma 1, it is straightforward to verify that the
estimator p is unbiased for p.

Corollary 2. Vj € [d], the estimator p; given in (1) satisfies
E[p;] = pj, i.e. it is unbiased for p;.
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B. Proof of Theorem 1
Note that (1) can be written as p; = %N(j) - g, where
7, B are as defined in Lemma 1. For each j € [d], we have

E[(ﬁj - pj)ﬂ = Var(p;) = ——

Z,yin'(pj-l—é) 2)

where the first equality follows from Corollary 2, the inequal-

ity follows from the fact that if U ~ Binomial(n,q) then

Var(U) < ng = E[U], and the final equality uses Lemma 1.
Therefore, the overall estimation error can be bounded as

E[llp—pll3] = > B[ —ps)?]

J€(d]

ef k
< ( +2 )
~n- 2k es —1
where the second inequality uses the fact that %

2k1_1(e jikl L) > Lsince 1 < k < logd. Taking k =

min{b, [elog, e], [logd|} results in
d s \2
SR HE (=1
Ip=pllz | = n-min{2b e d} \es —1

< max L é . L
- n-min{2% d}’ n (ef —1)2
d

n - min {ef, (ef —

1)2, 20, d}’
where the second line follows from the observation that if
ef = 0(2%) then E ||p — sz < 4. and if e = Q(2%)

n (ee 1)21
then E ||p p||2 — n- mln{Qb d}-
The ¢, estimation error can be established using Jensen’s
inequality and the Cauchy-Schwarz inequality as follows:

B[ l5—pl, ] < B[ 15— pI2] <\ fa-E[ I - pl2]

d

= .
\/n . min{ee7 (es —1)2, 20, d}

We obtain matching lower bounds by combining the results
of [27], [8], [19].

Remark 1 (Amount of shared randomness). Note that
our analysis only requires the hash functions to be pair-
wise independent; that is, for any hash function h, sym-
bols j1 # jo € [d], and bins yi,y2 € [2F], we have
Pr(h(j1) =1 ARh(j2) = y2) = 1/(2F)2. It is well known
that O (logd + k) = O (log d) bits of random seeds suffice to

generate such pairwise independent hash functions, and hence
the amount of shared randomness used in our scheme can be
reduced to O (log d).

III. ESTIMATING SPARSE DISTRIBUTIONS

We are now interested in characterizing the minimax sample
complexity, n*(«, {7y, Ag,s, b, €), for learning s-sparse distri-
butions. We consider an estimation scheme consisting of the
following two stages:

1) Locallzatlon The messages Y™ from the first group of
ny = n/2 clients are employed to produce an estimate, S,
of the support of the distribution, S £ {j € [d] : p; > 0}.

2) Estimation: Given the estimated support S from the local-
ization stage, the server estimates p using the second group
of messages Y2 from ny = n/2 clients.

A similar approach was taken in [4], [14] to estimate sparse

distributions under only communication constraints. We now

describe each stage in more detail.

a) Localization Stage: The first group of n; clients
encode their samples using the PRH scheme with k& £
min{b, [elog, e], [log s]} bits. The server collects the result-
ing messages and computes, for each j € [d],

M) 2 {ie ]+ () = v}

Finally, the estimated support S is taken to be the set of 2s
symbols with the largest values of the M (j)’s. The following
lemma says that for sufficiently large n, the estimated support
captures most of the probability mass.

Lemma 2. There exists a constant C1 > 0 such that for
= C; - s%log(d/s)/(a? - min{e®, (e —1)%, 2% s}), with
probablllty at least 0.95, we have p(S) £ 2jesPi = 1-a/2.

Proof Sketch. The proof is nearly identical to that of [4,
Lemma 7]. We outline the key steps here, and refer the reader
to that paper for further details. .

We would like to show that Pr(p(5¢) > §) < 5. By
Lemma 1, M(j) ~ Binomial(n/2, v - p; + ), where v =

2];;1 65152%) and 3 = ;. Let E be the event that at most
s symbols in [d] \ S appear at least M* times, where M* is
a threshold to be determined later.

By the law of total probability and Markov’s inequality,

Pr <p(gc) > %) < E[p(j/c;E]

Applying Markov’s inequality and the multiplicative Chernoff

bound [23] with M* = %5 + \/3nBlog(d/s) yields
1 ] 1
P N< = P 1) > N =< —
B < > PMG)= MY <5< 1
JEldN\S

where we assume 3 < L asin [4]. To prove the lemma, it

100
now suffices to show that E[p(S<) | E] < £ We have

+ Pr(E°).

E[p(S°) | E] = Zp] Pr(j ¢ S| E)
jJES
<ij Pr(M(j) < M*) (3)
JES
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where the inequality follows from the following two facts: 1)
conditioned on event E, j & S only if M (j) < M*; 2) M(j)
is independent of event E for j € S.

We then consider three different sets of symbols: A = {j €

[d]ipjﬁa}BA{JE[]1&<pyS}and
C2{jeld : ﬂ} For set A, it holds that
. < *
D Pr(M() M) <} pi < )
JEA jeA

In what follows, we note that C; can be set to a sufficiently
large constant such that the statements hold. For j € BUC,
one can show via the multiplicative Chernoff bound that

2,2
. Yp;n
Pr(M(j) < M* §exp(77j>.
(M(5) ) 50p; + 9)
. . % ~2p3n
For j € B, we have Pr(M(j) < M*) < exp(— 165 ) and
one can further show that
o
Pr( )< M* — 5
> i Pr( )< 200 5)
JEB
For j € C, it holds that Pr(M(j) < M*) < 1&5- s0
o
Pr( )< M* 6
D pi Pr(M )= Too0° ©

jec

Combining (3), (4), (5), and (6) proves that E[p(sc) |E] < 5.
O

b) Estimation Stage: The second group of no clients
again encode their samples using PRH. Given S, the server
computes

M(j) £

{ie [n14+1:n]: hi(j)zY;H for j € S.
The final estimator is given by

el ok _ Kk . L ~
ﬁ_{2k11(e ;2—1 1)(%/2M/(J)*1) if j €8,
;=

0 otherwise.

Although our scheme comprises two stages, note that all n
clients can encode and transmit their information simultane-
ously, without requiring knowledge of the estimated support,
S‘, beforehand. Once the server receives all n messages, it
produces its final estimate by performing the two stages of
decoding described previously. In the next lemma, we bound
the estimation error over &.

Lemma 3. There exists a constant Cy > 0 such that for n =
Co - 52/(a? -min{e®, (e —1)2, 2%, s}), with probability at
least 0.95, we have ), s |pj — bj| < a/2.

Proof. M(j) and M'(j) are identically distributeq, SO
M'(j) ~ Binomial(n/2, v - p; + (). For each j € S, we

have p; = 2 M'(j) — 2. Therefore, for j € S,
5 - 4 . 2 B
(3, — )] = Var(i)) < 3 EIG)) = (v 4 5).

Note that
Hence,
E[g(p - < jng(pfrf)

2 2k N2 et 42k s + 2%
<2 () () (7) 3
<o) (o) )
By Jensen’s inequality and the Cauchy-Schwarz inequality,
and the fact that |S| < 2s, we have

B[S 1hs il < \/|S| E[ Y65 -0
jes jes
4s 1 2k N2 /ec 4 2K e + 2k
. )
n(2k1)(esl)<+2k 1)
y ii(efs_‘_Qk)Q
—V n2k\e —1
52
< .
~ \/ nmin{es, (ef —1)2, 2%, s}
Finally, by setting n = C - e, (See T2 3% 5} for a

sufficiently large constant Co > 0 and invoking Markov’s
inequality, we establish the lemma. O

2

The upper bound in Theorem 2 is obtained by taking a union
bound and combining Lemmas 2 and 3.

IV. CONCLUSION AND OPEN PROBLEMS

In this work, we studied sparse distribution estimation under
simultaneous b-bit communication and e-LDP constraints. Our
proposed Privatized Random Hashing (PRH) scheme achieves
the order-optimal minimax convergence rate and sample com-
plexity in the non-sparse setting, despite its simplicity. In the
sparse case, an extended version of PRH achieves the order-
optimal sample complexity up to logarithmic factors. This
result unifies existing bounds in the literature, and the upper
bound extends prior results to all privacy regimes.

This work naturally leads to a number of open problems for
the sparse setting, including closing the gap between our upper
and lower bounds in Theorem 2 and extending the lower bound
beyond the high-privacy regime. It would also be interesting
to characterize the sample complexity and convergence rate
when restricted to private-coin schemes, or when permitting
sequential interaction between the clients and server.
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