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AbstractÐWe consider the problem of estimating a d-
dimensional, s-sparse discrete distribution from independent
samples subject to a joint b-bit communication constraint and
ε-local differential privacy constraint. As an intermediate step,
we introduce the Privatized Random Hashing (PRH) scheme,
which concatenates a hashing-based quantization strategy with
the randomized response privacy mechanism. Despite its sim-
plicity, PRH turns out to achieve the order-optimal minimax
estimation error and sample complexity in the standard (non-
sparse) estimation setting, for all communication and privacy
regimes. We then address the sparse case by developing a two-
stage, non-interactive estimation scheme based on PRH in which
the first half of samples are used to localize the unknown support
of the distribution, and the remaining samples are used to
obtain precise estimates of the individual probabilities. Using this
scheme, we characterize the minimax sample complexity of the
sparse case up to logarithmic factors, unifying existing results
in the literature that considered communication and privacy
constraints separately.

I. INTRODUCTION

Recent years have witnessed an exponential growth in the

volume of data generated from distributed sources at the

network edge, including smartphones, wireless sensors, and

wearable devices. For many machine learning tasks ± particu-

larly in federated learning and analytics [22] ± the devices are

required to transmit information over bandwidth-constrained

wireless links to a central server or data aggregator. The

resulting communication cost is often a major bottleneck to

achieving the desired level of utility or accuracy for the task

at hand. Moreover, when sensitive data is involved, it is critical

to protect the privacy of individual users. A widely adopted

notion of privacy is local differential privacy (LDP) [17], [25],

which ensures that the central server cannot learn too much

(in a statistical sense) about any individual’s data. A large

body of work studies the effects of imposing communication

[1]±[3], [8]±[11], [15], [19], [20] and privacy [1], [2], [5]±[7],

[13], [17], [18], [21], [26], [27] constraints on the statistical

problem of estimating a discrete distribution from its samples.

In many applications such as language modeling and ge-

nomics, the distribution of interest is supported on a small but

unknown subset (of size s) of the ambient domain (of size

d, where d ≫ s). Results from high-dimensional statistics

[24], compressed sensing [12], and group testing [16] show

that by exploiting such sparsity in the problem structure, the

ªeffective dimensionº of the problem can be made much

smaller than d (e.g., in compressed sensing, d is replaced

by s log(d/s)). Inspired by these works, recent papers have

demonstrated similar utility gains for sparse distribution esti-

mation under communication and privacy constraints [4], [14],

[26]. However, thus far, these constraints have largely been

studied separately.

This paper makes progress toward unifying the aforemen-

tioned works by studying the effect of imposing joint commu-

nication and privacy constraints on one’s ability to estimate

a sparse distribution from its samples. First, we introduce

the Privatized Random Hashing (PRH) scheme, which con-

catenates a hashing-based quantization strategy [4], [9] with

the randomized response privacy mechanism [25]. We show

that, surprisingly, PRH achieves the order-optimal minimax

estimation error and sample complexity in all communication

and privacy regimes, despite its apparent simplicity. For the

sparse case, we develop a two-stage, non-interactive estimation

scheme based on PRH in which the first half of samples

are used to localize the unknown support of the distribution,

and the remaining samples are used to obtain more precise

probability estimates. Our resulting characterization of the

sample complexity is tight up to logarithmic factors and

recovers existing results in the literature depending on which

constraint is more stringent. Furthermore, our upper bound

applies to all privacy levels, whereas prior results hold only

for ε = O(log d).

A. Notation and Setup

There are n clients, each of whom observes a sample Xi ∈
X drawn from an unknown discrete distribution p ∈ ∆d, where

∆d ≜

{

p = (p1, . . . , pd) ∈ [0, 1]d

∣

∣

∣

∣

∣

∑

j∈[d]

pj = 1

}

is the set of all d-dimensional discrete distributions. Given Xi,

the ith client generates a message Yi ∈ Y that it transmits to

the central server. The message is generated using an encoding

channel1 denoted by the conditional probability Qi(· |Xi),
which must satisfy two constraints:

1) Local differential privacy (LDP). A channel Q is said

to satisfy ε-LDP if

Q(y |x)

Q(y |x′)
≤ eε, ∀x, x′ ∈ X , ∀y ∈ Y.

1An encoding channel is a randomized mapping that can potentially depend
on shared randomness, i.e., a random variable U accessible to the clients and
server. Schemes which utilize shared randomness are also known as public-

coin schemes. In private-coin schemes, all channels are independent. For
simplicity, we suppress the dependence on U in our notation.
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2) b-bit communication constraint. The set of possible

messages, Y , satisfies the b-bit communication constraint

if |Y| ≤ 2b, i.e., every message Yi ∈ Y can be expressed

with b bits.

Given the n messages Y n ≜ (Y1, Y2, . . . , Yn) produced by

the encoding channels Qn ≜ (Q1, Q2, . . . , Qn), the server

generates an estimate p̂(Y n) of the underlying distribution p.

A common objective is to design a scheme (Qn, p̂(Y n)) to

achieve the minimax estimation error

r(ℓ, n, b, ε) ≜ min
(Qn,p̂)

max
p∈∆d

E

[

ℓ(p, p̂(Y n))
]

,

where ℓ = ∥·∥1 or ∥·∥
2
2.

A slightly different notion is the minimax sample complexity

n∗(α, ℓ,∆d, b, ε), which is the smallest n for which we can

achieve

Pr
(

ℓ(p, p̂(Y n)) ≤ α
)

≥ 0.9, ∀p ∈ ∆d,

where α ∈ (0, 1) is an accuracy parameter. It is com-

mon for ℓ to be the total variation distance, ℓTV(p, p̂) ≜

supA⊆[d] |p(A)− p̂(A)| = 1
2 ∥p− p̂∥1.

In this work, we also consider the task of estimating s-sparse

distributions:

∆d,s ≜

{

p = (p1, . . . , pd) ∈ [0, 1]d

∣

∣

∣

∣

∣

∑

j∈[d]

pj = 1, ∥p∥0 ≤ s

}

.

The minimax sample complexity in this case is denoted by

n∗(α, ℓ,∆d,s, b, ε).

B. Related Works

Distribution estimation under communication [1]±[3], [8],

[15], [19], [20] and LDP [1], [2], [5]±[7], [17], [18], [21],

[27] constraints has been studied extensively. The ℓ1 minimax

error scales as Θ(
√

d2/(nmin{2b, d})) under communication

constraints and Θ(
√

d2/(nmin{eε, (eε − 1)2})) under LDP

constraints. The ℓTV (equivalently, ℓ1) sample complexity is

Θ(d2/(α2 min{2b, d})) and Θ(d2/(α2 min{eε, (eε − 1)2})),
respectively. Joint communication and LDP constraints were

studied in [13], and it was shown that the Recursive Hadamard

Response (RHR) scheme achieves the minimax error of

Θ(
√

d2/(nmin{eε, (eε − 1)2, 2b, d})). This implies that the

convergence rate is determined by the more stringent of the

two constraints, allowing the other to be satisfied ªfor free.º

For sparse distribution estimation under commu-

nication constraints, [4] obtained an upper bound

of O
(

s2 max{log(d/s),1}
α2 min{2b,s}

)

and a lower bound of

Ω
(

max
{

s2

α2 min{2b,s}
, s2 max{log(d/s),1}

α2b

})

, which exhibit a

logarithmic gap in various parameter regimes. Subsequently,

[14] showed that the extra log(d/s) factor can be eliminated

from the convergence rate if the sample size is sufficiently

large. Under LDP constraints in the high-privacy regime

(ε = O(1)), [4] established a tight sample complexity of

Θ
(

s2 max{log(d/s),1}
α2ε2

)

using the 1-bit Hadamard Response

with a sparse projection. Similar results are reported in [26],

and their proposed scheme extends to the medium-privacy

regime (ε ∈ [1, log d]) with a resulting sample complexity

of O
(

s2 log(d/s)
α2eε

)

. However, their scheme requires Ω (log s)

bits of communication, which is strictly sub-optimal when

ε = O (log s), according to our results.

C. Overview of Results

Our first result establishes the somewhat surprising fact that

the Privatized Random Hashing (PRH) scheme achieves the

order-optimal minimax estimation error for all privacy and

communication regimes. The proof is provided in Section II-B.

Theorem 1 (Non-sparse estimation error). For all p ∈ ∆d,

the estimation error of Privatized Random Hashing (PRH)

satisfies

E

[

∥p̂− p∥
2
2

]

⪯
d

n ·min
{

eε, (eε − 1)2, 2b, d
}

E

[

∥p̂− p∥1

]

⪯
d

√

n ·min
{

eε, (eε − 1)2, 2b, d
}

.

Moreover, if n · min
{

eε, (eε − 1)2, 2b, d
}

≥ d2, then PRH

is order-optimal.

To the best of our knowledge, the only other scheme

with this performance guarantee is the Recursive Hadamard

Response (RHR) [13]. Our result demonstrates that a con-

ceptually simpler scheme achieves the same rate-optimal per-

formance2, and disproves a prior belief in the literature that

performing separate quantization and privatization is always

strictly sub-optimal. For instance, [13] shows that the concate-

nation of subset selection [27] (which is optimal under LDP

constraints) with grouping-based quantization [19] (which is

optimal under communication constraints) yields an ℓ2 error

rate that grows quadratically with d, in contrast to the linear

dependence exhibited by PRH and RHR. Another benefit of

our concatenated scheme is that any system which already

implements one of the components (either random hashing

or randomized response) can easily satisfy the ªmissingº

constraint with minimal modifications to the existing system.

Finally, it can be shown that the estimation error of PRH has

a strictly better leading constant than that of RHR, though we

focus on order-wise bounds in the present paper.

From Theorem 1, one can derive an upper bound on

the sample complexity n∗(α, ℓTV,∆d, b, ε). Using Markov’s

inequality, it follows that ∀p ∈ ∆d,

Pr
(

ℓ(p, p̂(Y n)) > α
)

≤
1

α
E

[

ℓTV(p̂, p)
]

⪯
1

α

d
√

n ·min
{

eε, (eε − 1)2, 2b, d
}

.

2However, we acknowledge that this simplicity comes at the cost of
requiring shared randomness (whereas RHR is strictly a private-coin scheme).
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Therefore, taking

n = C ·
d2

α2 ·min{eε, (eε − 1)2, 2b, d}

for a sufficiently large constant C > 0 ensures that

Pr(ℓ(p, p̂(Y n)) > α) is bounded above by 0.1. A match-

ing lower bound is obtained by combining existing sample

complexity lower bounds in the communication- [3] and LDP-

constrained settings (see [6] and references therein).

Corollary 1 (Non-sparse sample complexity). Privatized Ran-

dom Hashing (PRH) achieves the minimax sample complexity

for estimating distributions in ∆d under joint b-bit communi-

cation and ε-LDP constraints, given by

n∗(α, ℓTV,∆d, b, ε) = Θ

(

d2

α2 ·min
{

eε, (eε − 1)2, 2b, d
}

)

.

For the sparse setting, we derive an upper bound on the

sample complexity using a two-stage, non-interactive estima-

tion scheme based on PRH (described in Section III). Our

upper bound holds in all communication and privacy regimes,

extending prior results which hold only when ε = O(log d).
A lower bound for ε = O(1) (the high-privacy regime) is

obtained by combining Theorem 1 and Theorem 2 from [4].

Theorem 2 (Sparse sample complexity). The minimax sample

complexity for estimating distributions in ∆d,s under joint b-
bit communication and ε-LDP constraints satisfies

n∗(α, ℓTV,∆d,s, b, ε) = O

(

s2 max{log(d/s), 1}

α2 ·min
{

eε, (eε − 1)2, 2b, s
}

)

.

When ε = O(1) (the high-privacy regime),

n∗(α, ℓTV,∆d,s, b, ε) =

Ω

(

max

{

s2 max{log(d/s), 1}

α2ε2
,

s2 max{log(d/s), 1}

α2b
,

s2

α2 min{2b, s}

})

.

As in the non-sparse case [13], our upper bound in Theo-

rem 2 is dictated by the more stringent of the two constraints,

allowing the other one to be satisfied ªfor free.º The lower

bound is tight when ε2 ⪯ 2b, i.e., when the privacy level is

more stringent than the communication budget. In this case,

the sample complexity becomes Θ
(

s2 max{log(d/s),1}
α2ε2

)

, recov-

ering the result of [4, Theorem 1] from the LDP-constrained

setting. On the other hand, when ε2 ⪰ 2b, Theorem 2 recovers

[4, Theorem 2] from the communication-constrained setting,

and the upper and lower bounds are separated by at most a

logarithmic factor.

II. PRIVATIZED RANDOM HASHING

In this section, we introduce and analyze the Privatized

Random Hashing (PRH) scheme, culminating in the proof of

Theorem 1.

A. Algorithm Description

PRH comprises two distinct components. Each client first

quantizes its sample down to at most b bits using a random

hashing approach [4], [9]. Then, the randomized response

mechanism [25] is applied to the quantized sample to satisfy

the LDP constraint.

More precisely, let k ≜ min{b, ⌈ε log2 e⌉, ⌊log d⌋}, and let

{hi : [d] → [2k], i ∈ [n]} be independent hash functions

which are generated via public randomness and are known to

both the clients and the server. Each hash function satisfies

Pr(hi(j) = y) =
1

2k
, ∀j ∈ [d], ∀y ∈ [2k].

The ith client first maps its sample Xi to Ỹi = hi(Xi) ∈ [2k].
Next, it privatizes Ỹi using 2k-Randomized Response (2k-RR)

and sends the resulting message Yi to the server:

Yi =

{

Ỹi with probability eε

eε+2k−1
,

Ỹ ′
i ∈ [2k] \ {Ỹi} with probability 1

eε+2k−1
.

Note that each client’s message can be encoded in k ≤ b bits.

Moreover, each message satisfies the ε-LDP constraint due to

the privacy guarantees of 2k-RR.

Given all n messages, the server computes

N(j) ≜
∣

∣

∣

{

i ∈ [n] : hi(j) = Yi

}
∣

∣

∣

for each j ∈ [d], which is the number of messages Yi such

that symbol j lies in the pre-image of Yi under hi. The final

estimator is given by

p̂j =
1

2k − 1

(

eε + 2k − 1

eε − 1

)(

2k

n
N(j)− 1

)

. (1)

Lemma 1. N(j) is distributed as Binomial(n, γ · pj + β),

where γ =
(

1− 1
2k

)(

eε−1
eε+2k−1

)

and β = 1
2k

.

Proof. First, we calculate the probability that a symbol j ∈ [d]
lies in the pre-image of a non-privatized message Ỹi under

hash function hi:

Pr(Ỹi = hi(j)) = pj +
1

2k
(1− pj) =

(

1−
1

2k

)

· pj +
1

2k
.

Therefore, combining this with the definition of the 2k-RR

scheme, we have

Pr(Yi = hi(j)) =
( eε

eε + 2k − 1

)

[

(

1−
1

2k

)

· pj +
1

2k

]

+
1

eε + 2k − 1

[

1−
(

1−
1

2k

)

· pj −
1

2k

]

=
(

1−
1

2k

)( eε − 1

eε + 2k − 1

)

· pj +
1

2k
.

Given Lemma 1, it is straightforward to verify that the

estimator p̂ is unbiased for p.

Corollary 2. ∀j ∈ [d], the estimator p̂j given in (1) satisfies

E[p̂j ] = pj , i.e., it is unbiased for pj .
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B. Proof of Theorem 1

Note that (1) can be written as p̂j = 1
γnN(j) − β

γ , where

γ, β are as defined in Lemma 1. For each j ∈ [d], we have

E

[

(p̂j − pj)
2
]

= Var(p̂j) =
1

γ2n2
· Var(N(j))

≤
1

γ2n2
· E[N(j)]

=
1

γn
·
(

pj +
β

γ

)

, (2)

where the first equality follows from Corollary 2, the inequal-

ity follows from the fact that if U ∼ Binomial(n, q) then

Var(U) ≤ nq = E[U ], and the final equality uses Lemma 1.

Therefore, the overall estimation error can be bounded as

E

[

∥p̂− p∥
2
2

]

=
∑

j∈[d]

E

[

(p̂j − pj)
2
]

≤
1

γn

(

∑

j∈[d]

(

pj +
β

γ

)

)

=
1

γn

(

1 +
β

γ
· d
)

⪯
d

n
·
β

γ2

⪯
d

n · 2k

(eε + 2k

eε − 1

)2

,

where the second inequality uses the fact that β
γ =

1
2k−1

(

eε+2k−1
eε−1

)

≥ 1
d since 1 ≤ k ≤ log d. Taking k =

min{b, ⌈ε log2 e⌉, ⌊log d⌋} results in

E

[

∥p̂− p∥
2
2

]

⪯
d

n ·min{2b, eε, d}

( eε

eε − 1

)2

⪯ max

{

d

n ·min{2b, d}
,

d

n
·

eε

(eε − 1)2

}

≍
d

n ·min
{

eε, (eε − 1)2, 2b, d
} ,

where the second line follows from the observation that if

eε = O(2b) then E ∥p̂− p∥
2
2 ⪯ d

n · eε

(eε−1)2 , and if eε = Ω(2b)

then E ∥p̂− p∥
2
2 ⪯ d

n·min{2b, d}
.

The ℓ1 estimation error can be established using Jensen’s

inequality and the Cauchy-Schwarz inequality as follows:

E

[

∥p̂− p∥1

]

≤

√

E

[

∥p̂− p∥
2
1

]

≤

√

d · E
[

∥p̂− p∥
2
2

]

⪯
d

√

n ·min
{

eε, (eε − 1)2, 2b, d
}

.

We obtain matching lower bounds by combining the results

of [27], [8], [19].

Remark 1 (Amount of shared randomness). Note that

our analysis only requires the hash functions to be pair-

wise independent; that is, for any hash function h, sym-

bols j1 ̸= j2 ∈ [d], and bins y1, y2 ∈ [2k], we have

Pr (h(j1) = y1 ∧ h(j2) = y2) = 1/(2k)2. It is well known

that O (log d+ k) = O (log d) bits of random seeds suffice to

generate such pairwise independent hash functions, and hence

the amount of shared randomness used in our scheme can be

reduced to O (log d).

III. ESTIMATING SPARSE DISTRIBUTIONS

We are now interested in characterizing the minimax sample

complexity, n∗(α, ℓTV ,∆d,s, b, ε), for learning s-sparse distri-

butions. We consider an estimation scheme consisting of the

following two stages:

1) Localization: The messages Y n1 from the first group of

n1 ≜ n/2 clients are employed to produce an estimate, Ŝ ,

of the support of the distribution, S ≜ {j ∈ [d] : pj > 0}.

2) Estimation: Given the estimated support Ŝ from the local-

ization stage, the server estimates p using the second group

of messages Y n2 from n2 ≜ n/2 clients.

A similar approach was taken in [4], [14] to estimate sparse

distributions under only communication constraints. We now

describe each stage in more detail.
a) Localization Stage: The first group of n1 clients

encode their samples using the PRH scheme with k ≜

min{b, ⌈ε log2 e⌉, ⌈log s⌉} bits. The server collects the result-

ing messages and computes, for each j ∈ [d],

M(j) ≜
∣

∣

∣

{

i ∈ [n1] : hi(j) = Yi

}
∣

∣

∣
.

Finally, the estimated support Ŝ is taken to be the set of 2s
symbols with the largest values of the M(j)’s. The following

lemma says that for sufficiently large n, the estimated support

captures most of the probability mass.

Lemma 2. There exists a constant C1 > 0 such that for

n = C1 · s2 log(d/s)/(α2 ·min{eε, (eε − 1)2, 2b, s}), with

probability at least 0.95, we have p(Ŝ) ≜
∑

j∈Ŝ pj ≥ 1−α/2.

Proof Sketch. The proof is nearly identical to that of [4,

Lemma 7]. We outline the key steps here, and refer the reader

to that paper for further details.

We would like to show that Pr(p(Ŝc) > α
2 ) ≤ 1

20 . By

Lemma 1, M(j) ∼ Binomial(n/2, γ · pj + β), where γ =
2k−1
2k

(

eε−1
eε+2k−1

)

and β = 1
2k

. Let E be the event that at most

s symbols in [d] \ S appear at least M∗ times, where M∗ is

a threshold to be determined later.

By the law of total probability and Markov’s inequality,

Pr
(

p(Ŝc) >
α

2

)

≤
E[p(Ŝc) |E]

α/2
+ Pr(Ec).

Applying Markov’s inequality and the multiplicative Chernoff

bound [23] with M∗ = n
2β +

√

3nβ log(d/s) yields

Pr(Ec) ≤
1

s

∑

j∈[d]\S

Pr(M(j) ≥ M∗) ≤
s

d
≤

1

100

where we assume s
d ≤ 1

100 as in [4]. To prove the lemma, it

now suffices to show that E[p(Ŝc) |E] ≤ α
50 . We have

E[p(Ŝc) |E] =
∑

j∈S

pj · Pr(j ̸∈ Ŝ |E)

≤
∑

j∈S

pj · Pr(M(j) ≤ M∗) (3)
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where the inequality follows from the following two facts: 1)

conditioned on event E, j ̸∈ Ŝ only if M(j) ≤ M∗; 2) M(j)
is independent of event E for j ∈ S .

We then consider three different sets of symbols: A ≜ {j ∈
[d] : pj ≤ α

60s}, B ≜ {j ∈ [d] : α
60s < pj ≤ β

γ }, and

C ≜ {j ∈ [d] : pj >
β
γ }. For set A, it holds that

∑

j∈A

pj · Pr(M(j) ≤ M∗) ≤
∑

j∈A

pj ≤
α

60
. (4)

In what follows, we note that C1 can be set to a sufficiently

large constant such that the statements hold. For j ∈ B ∪ C,

one can show via the multiplicative Chernoff bound that

Pr(M(j) ≤ M∗) ≤ exp
(

−
γ2p2jn

8(γpj + β)

)

.

For j ∈ B, we have Pr(M(j) ≤ M∗) ≤ exp
(

−
γ2p2

jn

16β

)

, and

one can further show that
∑

j∈B

pj · Pr(M(j) ≤ M∗) ≤
α

500
. (5)

For j ∈ C, it holds that Pr(M(j) ≤ M∗) ≤ α
1000 , so

∑

j∈C

pj · Pr(M(j) ≤ M∗) ≤
α

1000
. (6)

Combining (3), (4), (5), and (6) proves that E[p(Ŝc) |E] ≤ α
50 .

b) Estimation Stage: The second group of n2 clients

again encode their samples using PRH. Given Ŝ , the server

computes

M ′(j) ≜
∣

∣

∣

{

i ∈ [n1 + 1 : n] : hi(j) = Yi

}∣

∣

∣
for j ∈ Ŝ.

The final estimator is given by

p̂j =

{

1
2k−1

(

eε+2k−1
eε−1

)(

2k

n/2M
′(j)− 1

)

if j ∈ Ŝ,

0 otherwise.

Although our scheme comprises two stages, note that all n
clients can encode and transmit their information simultane-

ously, without requiring knowledge of the estimated support,

Ŝ , beforehand. Once the server receives all n messages, it

produces its final estimate by performing the two stages of

decoding described previously. In the next lemma, we bound

the estimation error over Ŝ .

Lemma 3. There exists a constant C2 > 0 such that for n =
C2 · s2/(α2 ·min{eε, (eε − 1)2, 2b, s}), with probability at

least 0.95, we have
∑

j∈Ŝ |pj − p̂j | ≤ α/2.

Proof. M(j) and M ′(j) are identically distributed, so

M ′(j) ∼ Binomial(n/2, γ · pj + β). For each j ∈ Ŝ , we

have p̂j =
2
γnM

′(j)− β
γ . Therefore, for j ∈ Ŝ ,

E

[

(p̂j − pj)
2
]

= Var(p̂j) ≤
4

γ2n2
E[M ′(j)] =

2

γn

(

pj +
β

γ

)

.

Note that

∑

j∈Ŝ

(

pj +
β

γ

)

≤ 1 +
β

γ
|Ŝ| = 1 +

1

2k − 1

(eε + 2k − 1

eε − 1

)

|Ŝ|.

Hence,

E

[

∑

j∈Ŝ

(p̂j − pj)
2
]

≤
2

γn

∑

j∈Ŝ

(

pj +
β

γ

)

≤
2

n
·
( 2k

2k − 1

)2

·
(eε + 2k

eε − 1

)

(

1 +
1

2k

(eε + 2k

eε − 1

)

|Ŝ|

)

.

By Jensen’s inequality and the Cauchy-Schwarz inequality,

and the fact that |Ŝ| ≤ 2s, we have

E

[

∑

j∈Ŝ

|p̂j − pj |
]

≤

√

|Ŝ| · E
[

∑

j∈Ŝ

(p̂j − pj)2
]

≤

√

√

√

√

4s

n

( 2k

2k − 1

)2(eε + 2k

eε − 1

)

(

1 +
1

2k

(eε + 2k

eε − 1

)

2s

)

⪯

√

s2

n

1

2k

(eε + 2k

eε − 1

)2

⪯

√

s2

nmin{eε, (eε − 1)2, 2b, s}
.

Finally, by setting n = C2 · s2

α2·min{eε, (eε−1)2, 2b, s}
for a

sufficiently large constant C2 > 0 and invoking Markov’s

inequality, we establish the lemma.

The upper bound in Theorem 2 is obtained by taking a union

bound and combining Lemmas 2 and 3.

IV. CONCLUSION AND OPEN PROBLEMS

In this work, we studied sparse distribution estimation under

simultaneous b-bit communication and ε-LDP constraints. Our

proposed Privatized Random Hashing (PRH) scheme achieves

the order-optimal minimax convergence rate and sample com-

plexity in the non-sparse setting, despite its simplicity. In the

sparse case, an extended version of PRH achieves the order-

optimal sample complexity up to logarithmic factors. This

result unifies existing bounds in the literature, and the upper

bound extends prior results to all privacy regimes.

This work naturally leads to a number of open problems for

the sparse setting, including closing the gap between our upper

and lower bounds in Theorem 2 and extending the lower bound

beyond the high-privacy regime. It would also be interesting

to characterize the sample complexity and convergence rate

when restricted to private-coin schemes, or when permitting

sequential interaction between the clients and server.
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