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Information Constrained Optimal Transport:
From Talagrand, to Marton, to Cover
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Abstract— The optimal transport problem studies how to
transport one measure to another in the most cost-effective way
and has wide range of applications from economics to machine
learning. In this paper, we introduce and study an informa-
tion constrained variation of this problem. Our study yields
a strengthening and generalization of Talagrand’s celebrated
transportation cost inequality. Following Marton’s approach,
we show that the new transportation cost inequality can be used
to recover old and new concentration of measure results. Finally,
we provide an application of this new inequality to network
information theory. We show that it can be used to recover almost
immediately a recent solution to a long-standing open problem
posed by Cover regarding the capacity of the relay channel.

Index Terms— Optimal transport (OT), information constraint,
transportation inequality, isoperimetric inequality, concentration
of measure, network information theory, relay channel.

I. INTRODUCTION

THE optimal transport (OT) theory, pioneered by
Monge [2] and Kantorovich [3], studies how to distribute

supply to meet demand in the most cost-effective way. It has
many known connections with, and applications to areas
such as geometry, quantum mechanics, fluid dynamics, optics,
mathematical statistics, and meteorology. More recently, it has
received renewed interest due to its increasingly many appli-
cations in imaging sciences, computer vision and machine
learning.

A. Optimal Transport Problem

The basic OT problem in Kantorovich’s probabilistic for-
mulation can be described as follows. Let Z and Y be two
measurable spaces, P(Z) and P(Y) be the sets of all Borel
probability measures on Z and Y respectively, and P(Z ×Y)
be the set of all joint probability measures on Z × Y . Let

Manuscript received 24 August 2020; revised 21 July 2021; accepted
26 October 2021. Date of publication 16 January 2023; date of current
version 17 March 2023. This work was supported by NSF under Award CIF-
1704624, Award CIF-2213223, and Award NeTS-1817205. An earlier ver-
sion of this paper was presented in part at the 2020 IEEE International
Symposium on Information Theory [DOI: 10.1109/ISIT44484.2020.9174478].
(Corresponding author: Xiugang Wu.)

Yikun Bai was with the Department of Electrical and Computer
Engineering, University of Delaware, Newark, DE 19716 USA.
He is now with the Department of Computer Science, Vanderbilt University,
Nashville, TN 37212 USA (e-mail: yikun.bai@vanderbilt.edu).

Xiugang Wu is with the Department of Electrical and Computer
Engineering, University of Delaware, Newark, DE 19716 USA (e-mail:
xwu@udel.edu).

Ayfer Özgür is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: aozgur@stanford.edu).

Communicated by M. Raginsky, Associate Editor for Probability and
Statistics.

Digital Object Identifier 10.1109/TIT.2023.3237073

c : Z×Y → R+ be a non-negative measurable function, which
is called the cost function. Given two probability measures
PZ ∈ P(Z) and PY ∈ P(Y), the set of couplings of PZ

and PY , denoted by Π(PZ , PY ), refers to the set of all joint
probability measures P ∈ P(Z × Y) such that their marginal
measures are PZ and PY . The OT problem is to find the
optimal coupling in Π(PZ , PY ) that minimizes the expected
cost:

inf
P∈Π(PZ ,PY )

EP [c(Z, Y )]. (1)

A special case of particular interest is when both Z and
Y are the Euclidian space and the cost function is given by
the Euclidian distance. For simplicity, let us for now consider
the one-dimensional case where Z = Y = R and c(z, y) =
|z − y|p; the generalization to arbitrary dimensions will be
formalized and discussed in the subsequent sections. In this
case, the quantity

Wp(PZ , PY ) ≜

{

inf
P∈Π(PZ ,PY )

EP [|Z − Y |p]
}1/p

(2)

defines a metric between two probability measures PZ and
PY and is called the p-th order Wasserstein distance. Various
transportation cost inequalities have been developed that upper
bound the Wasserstein distance between two measures PZ and
PY . For example, the celebrated Talagrand’s transportation
inequality [4] states that

W 2
2 (PZ , PY ) ≤ 2D(PZ∥PY ) (3)

when PY is standard Gaussian N (0, 1) and PZ ≪ PY .

B. Information Constrained Optimal Transport

In this paper, we propose to study a variation of the OT
problem which we call the information constrained OT prob-
lem. Here, we want to find the coupling P in Π(PZ , PY ) that
minimizes the expected cost while ensuring that the mutual
information IP (Z;Y ) between Z and Y under the coupling
P does not exceed some pre-specified value R:

inf
P∈Π(PZ ,PY ):IP (Z;Y )≤R

EP [c(Z, Y )]. (4)

There are several reasons for us to study this extension of
the classical OT problem, which will become clear in the
sequel. For now, note that when the infimum in (1) is achieved
by a deterministic mapping between Z and Y , the mutual
information IP (Z;Y ) will be maximal and can be potentially
unbounded. For example, according to Brenier’s theorem [5],
this is known to be the case in (2) when p = 2 and PZ or
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PY are absolutely continuous with respect to the Lebesgue
measure. The mutual information constraint in (4) can be
viewed as enforcing a certain amount of randomization in the
mapping between Z and Y . On a related note, formulation
(4) has also been considered in the context of rate-distortion
theory when one is interested in the distortion-rate function
for fixed source and output distributions PZ and PY ; see [6],
where the authors call such problems ‘output-constrained
distortion-rate function.’

It is also worth mentioning that an equivalent formulation of
the information constrained OT problem has received signif-
icant recent interest in the machine learning literature, where
one seeks to minimize the cost-information Lagrangian:

inf
P∈Π(PZ ,PY )

{EP [c(Z, Y )] + λIP (Z;Y )} . (5)

The problem (5) generally appears under the name entropy
regularized OT. In the machine learning literature, the interest
in (5) has been mainly motivated by computational consid-
erations; in many cases computing the regularized OT in (5)
from data turns out to be easier than computing the classical
OT in (1), which motivates the use of (5) instead of (1)
as a discrepancy measure between probability measures [7].
For certain inference tasks, (5) also appears to be a more
suitable discrepancy measure than (1), leading to superior
empirical performance [8]. Moreover, it is also shown in [9]
and [10] that (5) can be estimated with much fewer samples as
compared to (1). In contrast to these works which focus on the
computational and statistical aspects of (5), our interest in this
paper mainly lies in understanding the solution of the problem
(4) as well as its fundamental connections to concentration of
measure and network information theory.

C. Summary of Results

In the information constrained OT setup, one can similarly
define the Wasserstein distance between two measures PZ and
PY subject to the information constraint R:

Wp(PZ , PY ;R) ≜











inf
P∈Π(PZ ,PY ):
IP (Z;Y )≤R

EP [|Z − Y |p]











1/p

. (6)

Note that when R = ∞, (6) reduces to the unconstrained
Wasserstein distance in (2). The main result of this paper,
proved in Section II, is an upper bound on W2(PZ , PY ;R) for
any R ∈ R+ when PY is standard Gaussian and PZ ≪ PY :

W 2
2 (PZ , PY ;R) ≤ E[Z2] + 1 − 2

√

1

2πe
e2h(Z) (1 − e−2R).

(7)

This new transportation inequality captures the trade-off
between information constraint and transportation cost, and
is tight when PZ is Gaussian. It can be regarded as a
generalization and sharpening of Talagrand’s inequality in (3).
Note that when we take R → ∞ in (7), we get the following
bound on the unconstrained Wasserstein distance:

W 2
2 (PZ , PY ) ≤ E[Z2] + 1 − 2

√

1

2πe
e2h(Z). (8)

It is easy to check that the R.H.S. of (8) is smaller than or
equal to that of Talagrand’s inequality in (3) for any PZ , and
therefore (8) is uniformly tighter than (3).

Since the pioneering work of Marton [11], [12], it has
been known that Talagrand’s transportation inequality captures
essentially the same geometric phenomenon as the Gaussian
isoperimetric inequality, both of which can be used to derive
concentration of measure in Gaussian space. Do the new trans-
portation inequalities in (7) and (8) also have natural geometric
counterparts? In Section III, we show that the strengthening (8)
of Talagrand’s inequality can be used to prove concentration
of measure on the sphere, which can be shown to imply con-
centration of measure in the Gaussian space. In other words,
the strengthening of Talagrand’s inequality in (8) captures a
stronger isoperimetric phenomenon, the one on the sphere
rather than that in Gaussian space. Furthermore, we show
in Section III that the information constrained transportation
inequality in (7) captures a new isoperimetric phenomenon
on the sphere that has not been known before the recent
work [13], [14]. Different from the standard isoperimetric
inequality on the sphere where one is interested in the extremal
set that minimizes the measure of its neighborhood among
all sets of equal measure, this new isoperimetric result deals
with the set that has minimal intersection measure with the
neighborhood of a randomly chosen point on the sphere.

Finally, in Section IV we demonstrate an application of
the information constrained transportation inequality (7) to
network information theory. In particular, we show that it
can be used to understand and simplify the recent solution
of a long-standing open problem on communication over
the three-node relay channel. Specifically, this problem, ªThe
Capacity of the Relay Channelº, was posed by Cover in the
book Open Problems in Communication and Computation,
Springer-Verlag, 1987 [15]. The recent works [14], [16] solved
this problem in the canonical Gaussian case by developing a
new converse for the relay channel.1 The proof in [14] and [16]
is geometric: the communication problem is recast as a prob-
lem about the geometry of typical sets in high-dimensions, and
then solved using the new isoperimetric result on the sphere
mentioned above. The new transportation inequality (7) allows
us to recover the same result almost immediately, which also
enables an interpretation of the previous geometric proof in
terms of auxiliary random variables.

II. NEW TRANSPORTATION INEQUALITIES

Before stating and proving our new transportation inequali-
ties, let us first formalize the definition of the Wasserstein dis-
tance and Talagrand’s transportation inequality; see also [18].
Let (Ω, d) be a Polish metric space. Given p ≥ 1, let Pp(Ω)
denote the space of all Borel probability measures ν on Ω
such that the moment bound

Eω∼ν [dp(ω, ω0)] < ∞ (9)

holds for some (and hence all) ω0 ∈ Ω.
Definition 2.1 (Wasserstein Distance): Given p ≥ 1, the

Wasserstein distance of order p between any pair PZ ,

1See also [17] for the solution in the case of binary symmetric channels.
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PY ∈ Pp(Ω) is defined as

Wp(PZ , PY ) ≜

{

inf
P∈Π(PZ ,PY )

EP [dp(Z, Y )]

}1/p

(10)

where Π(PZ , PY ) is the set of all probability measures on the
product space Ω × Ω with marginals PZ and PY .

Indeed, the function Wp(PZ , PY ) of (PZ , PY ) in (10)
satisfies all the metric axioms [19] and defines a metric on
the space Pp(Ω) of distributions. If p = 2, Ω = R with
d(z, y) = |z − y|, and PY is atomless, then the optimal
coupling that achieves the infimum in (10) is given by the
deterministic mapping

Z = F−1
Z ◦ FY (Y ) (11)

where FY is the cdf of PY , i.e. FY (y) = PY (Y ≤ y) and
F−1

Z is the quantile function of PZ , i.e. F−1
Z (α) = inf{z ∈

R : FZ(z) ≥ α}. Building on this optimal coupling and
tensorization [18], one can prove the following result for the
case when Ω = R

n and d(zn, yn) = ∥zn − yn∥2, known as
Talagrand’s transportation inequality.

Proposition 2.1 (Talagrand [4]): For two probability mea-
sures PZn ≪ PY n on R

n with PY n being standard Gaussian
N (0, In), we have

W 2
2 (PZn , PY n) ≤ 2D(PZn∥PY n), (12)

where the inequality is tight if and only if PZn is a shifted
version of PY n , i.e. PZn = N (µ, In) for some µ ∈ R

n.
Note that Talagrand’s transportation inequality connects the

Wasserstein distance to another fundamental discrepancy mea-
sure between two probability measures, i.e. the KL divergence.
This observation can be utilized to derive, via Marton’s pro-
cedure [11], [12], the concentration of measure phenomenon
in the Gaussian spaceÐthat is, for all subsets with a given
measure in the Gaussian space, blowing up the set with
a minimum needed radius will increase its probability to
nearly 1. The rigorous Marton’s argument for connecting
transportation and concentration in this case will be briefly
illustrated in Section III-A. Here, it is of interest to point
out the intuition behind this connection from an information
theoretic point of view: if we think of a subset in the Gaussian
space as the typical set generated by PZn , then the Wasserstein
distance on the L.H.S. of (12) will translate to the minimum
needed blowing-up radius and knowing D(PZn∥PY n) on the
R.H.S. of (12) is equivalent to fixing the measure of the subset
in the Gaussian space, and hence the transportation inequality
(12) establishes a relationship between the minimum needed
blowing-up radius for increasing the probability of the set to
nearly 1 and the measure of the set.

A. Sharpening Talagrand’s Transportation Inequality

Talagrand’s transportation inequality can be sharpened to
the following; see also [20] and [21] for related results.

Theorem 2.1: For PY n = N (0, In) and PZn ≪ PY n ,
we have

W 2
2 (PZn , PY n) ≤ E[∥Zn∥2] + n − 2n

√

1

2πe
e

2
n h(Zn), (13)

where the inequality is tight when PZn is isotropic Gaussian,
i.e. PZn = N (µ, σ2In) for some µ ∈ R

n and σ > 0.
The above theorem provides an upper bound (13) on the

Wasserstein distance between PY n = N (0, In) and PZn ≪
PY n in terms of the second moment E[∥Zn∥2] and entropy
h(Zn) of Zn, instead of in terms of the KL divergence
D(PZn∥PY n) as in Talagrand’s transportation inequality. Note
that given PY n = N (0, In) and PZn ≪ PY n , one can always
use E[∥Zn∥2] and h(Zn) to synthesize D(PZn∥PY n) via

D(PZn∥PY n) = −h(Zn) +
n

2
ln 2π +

n

2
E[∥Zn∥2]

but not vice versa. In other words, compared to knowing only
D(PZn∥PY n), one has more information about PZn knowing
both E[∥Zn∥2] and h(Zn), and a natural question to ask now is
whether one can better bound W2(PZn , PY n) using E[∥Zn∥2]
and h(Zn). To this end, we show in Appendix A that the
transportation inequality (13) is indeed generally stronger than
Talagrand’s, i.e. R.H.S. of (13) ≤ R.H.S. of (12), for any
PZn ≪ PY n . Moreover, note that compared to Talagrand’s
transportation inequality, which is tight only when PZn =
N (µ, In), the inequality (13) is tight for a wider class of PZn ,
i.e. when PZn is isotropic Gaussian.

Just like Talagrand’s transportation inequality implies con-
centration of measure in the Gaussian space, the transportation
inequality (13) also has its own geometric interpretation.
In particular, we will show in Section III-B that (13) can be
used to prove concentration of measure on the sphere, instead
of in the Gaussian spaceÐthat is, for all subsets with a given
measure on the sphere, blowing up the set with a minimum
needed angle will increase its probability to nearly 1. Note that
the concentration on the sphere is known to be stronger than
that in the Gaussian space, and this should not be surprising as
alluded by the fact that (13) implies Talagrand’s transportation
inequality. An intuitive explanation for why (13) corresponds
to the concentration on the sphere is because if we think of
the subset as the typical set generated by PZn , then knowing
both the second moment E[∥Zn∥2] and entropy h(Zn) of Zn

amounts to restricting the subsets to those on the sphere with
a fixed measure.

B. Information Constrained OT

We next focus on bounding the information constrained OT.
Definition 2.2 (Information Constrained Wasserstein Diver-

gence): Given p ≥ 1, the Wasserstein divergence of order
p between any pair PZ , PY ∈ Pp(Ω) subject to information
constraint R is defined as

Wp(PZ , PY ;R) ≜











inf
P∈Π(PZ ,PY ):
IP (Z;Y )≤R

EP [dp(Z, Y )]











1/p

. (14)

It can be verified that the function Wp(PZ , PY ;R) of
(PZ , PY ) in (14) is nonnegative, symmetric in (PZ , PY ),
and satisfies the triangle inequality (see [7]). However, it is
not a metric (and hence is called a ‘divergence’ instead
of a ‘distance’) because it violates the coincidence axiom,
i.e., Wp(PZ , PY ;R) in general is not equal to zero when
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Fig. 1. Information constraint-Wasserstein divergence tradeoff.

PZ = PY . For the case when Ω = R
n and d(zn, yn) =

∥zn − yn∥2, we can prove the following bound on it.
Theorem 2.2: For PY n = N (0, In) and PZn ≪ PY n ,

we have

W 2
2 (PZn , PY n ;R)

≤ E[∥Zn∥2] + n − 2n

√

1

2πe
e

2
n h(Zn)

(

1 − e−
2R
n

)

. (15)

The above theorem characterizes a trade-off between
the information constraint and the Wasserstein divergence,
as depicted in Fig. 1. This includes Theorem 2.1 as an extreme
case by letting R → ∞. The other extreme case is when
R = 0, where now Zn and Y n are forced to be indepen-
dent, and therefore the information constrained Wasserstein
divergence simply reduces to E[∥Zn∥2] + n. In Appendix B,
we show that the new transportation inequality (15) is tight
when PZn is isotropic Gaussian; that is, when PZn =
N (µ, σ2In) for some µ and σ2, the inequality in (15) is
achieved with equality. Therefore, the trade-off characterized
in Theorem 2.2 is indeed tight when PZn

is isotropic Gaussian.
Geometrically, the information constrained transportation

inequality (15) turns out to capture a new concentration
phenomenon on the sphere that is recently proved in [14]. This
new concentration result extends the classical concentration
result on the sphere mentioned in Section II-A, and provides
a lower bound on the measure of the intersection between a
subset with a given measure on the sphere and the neighbor-
hood of a randomly chosen point on the sphere. Intuitively,
(15) allows one to control the intersection measure because
the information constraint IP (Zn;Y n) ≤ R is equivalent to
the conditional entropy constraint HP (Zn|Y n) ≥ H(Zn)−R,
and the latter can be thought of as putting a lower bound
on the measure of the conditional typical set of Zn given
a typical sequence of Y n, which is further a lower bound on
the intersection measure between the typical set of Zn and the
neighborhood of a randomly chosen point on the sphere given
PY n = N (0, In). Rigorously, to derive this new concentration
result from the transportation inequality, we need a more
technical version of (15), namely an information density
constrained transportation inequality. We will introduce this
information density constrained transportation inequality in
the sequel and use it to prove the new concentration result
in Section III-C.

C. Conditional Transportation Inequality

Both Theorems 2.1 and 2.2 have their conditional ver-
sions. We start by defining the conditional Wasserstein dis-
tance and the conditional information constrained Wasserstein
divergence.

Definition 2.3 (Conditional Wasserstein Distance): Fix a
probability measure PT and two conditional probability mea-
sures PZ|T and PY |T with PZ|T=t, PY |T=t ∈ Pp(Ω) for any
t. Given p ≥ 1, the conditional Wasserstein distance of order
p between PZ|T , PY |T given PT is defined as

Wp(PZ|T , PY |T |PT )

≜

{

inf
P∈Π(PZ|T ,PY |T |PT )

EP [dp(Z, Y )]

}1/p

(16)

where

Π(PZ|T , PY |T |PT )

≜ {PZ̄,Ȳ |T · PT : PZ̄|T = PZ|T , PȲ |T = PY |T }. (17)

Theorem 2.3: For any probability measure PT and condi-
tional probability measures PZn|T and PY n|T such that for
any t, PY n|T=t = PY n = N (0, In) and PZn|T=t ≪ PY n ,
we have

W 2
2 (PZn|T , PY n|T |PT ) ≤ E[∥Zn∥2]+n−2n

√

1

2πe
e

2
n h(Zn|T ).

(18)
Definition 2.4 (Conditional Information Constrained

Wasserstein Divergence): Fix a probability measure PT

and two conditional probability measures PZ|T and PY |T

with PZ|T=t, PY |T=t ∈ Pp(Ω) for any t. Given p ≥ 1,
the conditional Wasserstein divergence of order p between
PZ|T , PY |T given PT subject to information constraint R is
defined as

Wp(PZ|T , PY |T |PT ;R)

≜











inf
P∈Π(PZ|T ,PY |T |PT ),

IP (Z;Y |T )≤R

EP [dp(Z, Y )]











1/p

. (19)

Theorem 2.4: For any probability measure PT and condi-
tional probability measures PZn|T and PY n|T such that for
any t, PY n|T=t = PY n = N (0, In) and PZn|T=t ≪ PY n ,
we have

W 2
2 (PZn|T , PY n|T |PT ;R)

≤ E[∥Zn∥2] + n − 2n

√

1

2πe
e

2
n h(Zn|T )

(

1 − e−
2R
n

)

. (20)

D. Information Density Constrained OT

We now introduce an OT setup with information density
constraint, and present a transportation inequality for this new
setup. As we will see, the information density constraint is
more stringent than the information constraint, and therefore
our previous transportation inequality in Theorem 2.2 can be
viewed as a special case of this new inequality that we are
going to present. This new inequality will be used to prove
a new concentration of measure result on the sphere, which
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has not been known before the recent work [13], [14]; see
Proposition 3.3 and its proof in the next section.

Recall that for a given joint distribution P ∈ P(Z × Y)
with marginals PZ and PY , the information density function
iP (z; y) is defined as

iP (z; y) = ln
dP

dPZ ⊗ PY
(z, y),

whose expectation gives rise to the mutual information
IP (Z;Y ), i.e.,

IP (Z;Y ) = EP [iP (Z;Y )].

We say that a distribution P satisfies (R, τ, δ)-information
density constraint for some R ≥ 0 and τ, δ > 0, if the
following two conditions hold:

1) the expectation of the information density, i.e. the mutual
information, is upper bounded by R,

IP (Z;Y ) ≤ R;

2) with probability at least 1 − δ, the deviation between
the information density and mutual information is upper
bounded by τ ,

P(Z,Y )∼P (|iP (Z;Y ) − IP (Z;Y )| ≤ τ) ≥ 1 − δ.

Definition 2.5: (Information Density Constrained Wasser-

stein Divergence): Given p ≥ 1, the Wasserstein divergence of
order p between any pair PZ , PY ∈ Pp(Ω) subject to (R, τ, δ)-
information density constraint is defined as

Wp(PZ , PY ;R, τ, δ)

≜











inf
P∈Π(PZ ,PY ):IP (Z;Y )≤R,

P(Z,Y )∼P (|iP (Z;Y )−IP (Z;Y )|≤τ)≥1−δ

EP [dp(Z, Y )]











1/p

.

(21)

Compared to the information constrained case, the def-
inition of the information density constrained Wasser-
stein divergence in (21) involves an additional constraint
P(Z,Y )∼P (|iP (Z;Y ) − IP (Z;Y )| ≤ τ) ≥ 1 − δ in the
infimization and therefore given arbitrary PZ , PY and R we
have

Wp(PZ , PY ;R) ≤ Wp(PZ , PY ;R, τ, δ)

for any τ, δ > 0. As in the information constrained case,
the quantity Wp(PZ , PY ;R, τ, δ) is not a metric because
Wp(PZ , PY ;R, τ, δ) in general is not equal to zero when
PZ = PY .

For this OT setup with information density constraint,
we have the following bound when Ω = R

n and d(zn, yn) =
∥zn − yn∥2.

Theorem 2.5: For PY n = N (0, In) and PZn ≪ PY n ,
we have that for any R, τ ≥ 0

W 2
2 (PZn , PY n ;R, τ, 6n/τ2)

≤ E[∥Zn∥2] + n − 2n

√

1

2πe
e

2
n h(Zn)

(

1 − e−
2R
n

)

(22)

It is easy to see that the above theorem includes Theorem 2.2
as a special case by noting that

W 2
2 (PZn , PY n ;R) ≤ W 2

2 (PZn , PY n ;R, τ, 6n/τ2)

for any R, τ ≥ 0.

E. Proofs of New Transportation Inequalities

In this subsection, we provide the proofs of
Theorems 2.1±2.5. Recall that Theorems 2.1, 2.2 and 2.5
are unconditional transportation inequalities, while
Theorems 2.3 and 2.4 are the conditional versions.
In particular, Theorem 2.1 follows from Theorem 2.2,
which in turn follows from Theorem 2.5 as a special case.
Thus, in the following we first focus on proving Theorem 2.5
to establish all the unconditional transportation inequalities
stated in the paper. Then we show how to obtain the
conditional versions, in particular Theorems 2.3 and 2.4;
for this, it suffices to show how to extend Theorem 2.2 to
Theorem 2.4.

Proof of Theorem 2.5: To show Theorem 2.5, it suffices
to construct a coupling P of PZn and PY n such that the
(R, τ, 6n/τ2)-information density constraint is satisfied, i.e.,

IP (Zn;Y n) ≤ R

and

P(Zn,Y n)∼P (|iP (Zn;Y n) − IP (Zn;Y n)| ≤ τ) ≥ 1 − 6n/τ2,

and simultaneously EP [∥Zn−Y n∥2] is upper bounded by the
R.H.S. of (22). For this, let

Y n =

√

1 − e−
2R
n Y n

1 + e−
R
n Y n

2 ,

where Y n
1 , Y n

2 ∼ N (0, In) are independent of each other, and
let Zn satisfy

Zn = g(Y n
1 )

for some g : R
n → R

n that pushes PY n
1

= N (0, In) forward
to PZn , where g is a differentiable one-to-one mapping whose
Jacobian matrix Jg has only nonnegative eigenvalues. Note
that such a mapping g always exists provided that PY n

1
=

N (0, In) is absolute continuous with respect to the Lebesgue
measure and PZn ≪ PY n

1
, and examples include the Brenier

mapping [5] and the Knothe-Rosenblatt mapping [19]; see also
Lemma 1 of [21].

It is easy to verify that the joint distribution P of (Zn, Y n)
defined by the above is indeed a coupling of PZn and PY n .
(In fact, this coupling is closely related to the concepts
of Ornstein±Uhlenbeck semi-group and Ornstein±Uhlenbeck
process [22] as we illustrate in Appendix C.2) To see that this
coupling satisfies the information density constraint, first note
that

IP (Zn;Y n) = h(Y n) − h(

√

1 − e−
2R
n Y n

1 + e−
R
n Y n

2 |Zn)

= h(Y n) − h(e−
R
n Y n

2 |Zn) (23)

2On a related note, see [23] for the application of reverse hypercontractivity
results for the Ornstein±Uhlenbeck process to the relay channel problem,
though both the proof techniques and the results in [23] are different (and
significantly weaker) than those to be presented in Section IV of the current
paper.
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= h(Y n) − h(e−
R
n Y n

2 ) (24)

= h(Y n) − n ln(e−
R
n ) − h(Y n

2 )

= R

where (23) holds because g is a one-to-one mapping and
thus Y n

1 is determined given Zn, and (24) follows from the
independence between Y n

2 and Zn. Also we have

P(|iP (Zn;Y n) − IP (Zn;Y n)| ≤ τ)

= P

(∣

∣

∣

∣

ln

(

fY n|Zn(Y n|Zn)

fY n(Y n)

)

− R

∣

∣

∣

∣

≤ τ

)

= P

(
∣

∣

∣

∣

∣

ln

(

fe−R/nY n
2

(e−R/nY n
2 )

fY n(Y n)

)

− R

∣

∣

∣

∣

∣

≤ τ

)

= P(|∥Y n∥2 − ∥Y n
2 ∥2| ≤ 2τ)

≥ P(|∥Y n∥2 − n| ≤ τ, |∥Y n
2 ∥2 − n| ≤ τ)

≥ 1 − (P(|∥Y n∥2 − n| ≥ τ) + P(|∥Y n
2 ∥2 − n| ≥ τ))

≥ 1 − 6n

τ2
(25)

where (25) holds by Chebyshev’s inequality.
Now it remains to show EP [∥Zn −Y n∥2] ≤ R.H.S of (22).

For this, we will lower bound EP [Zn · Y n] in the sequel.
In particular, letting gi denote the ith coordinate of g, we have

EP [Zn · Y n
1 ] =

n
∑

i=1

EP

[

∂gi

∂y1i
(Y n

1 )

]

(26)

= EP [trace(Jg(Y
n
1 ))]

≥ EP [n(det(Jg(Y
n
1 )))1/n] (27)

= nEP [eln(det(Jg(Y n
1 )))1/n

] (28)

≥ ne
1
n EP ln[det(Jg(Y n

1 ))] (29)

= ne
1
n (h(Zn)−h(Y n

1 )) (30)

= n

√

1

2πe
e

2
n h(Zn)

where (26) follows from Stein’s lemma for PY n
1

= N (0, In),
which says that if Y n

1 ∼ N (0, In) and f : R
n → R is

differentiable, then E[f(Y n
1 )Y1i] = E[ ∂

∂yi
f(Y n

1 )]; (27) holds
by the fact that for any matrix A whose eigenvalues are all
nonnegative, 1

n trace(A) ≥ (det(A))1/n; (28) follows from
the nonnegativity of det(Jg(Y

n
1 )); (29) is due to Jensen’s

inequality; and (30) holds because Zn = g(Y n
1 ) and therefore

fZn(g(yn
1 )) det(Jg(y

n
1 )) = fY n

1
(yn

1 ),∀yn
1 .

Therefore, EP [Zn · Y n] is lower bounded by

EP [Zn · Y n] =

√

1 − e−
2R
n EP [Zn · Y n

1 ]

≥ n

√

1 − e−
2R
n

√

1

2πe
e

2
n h(Zn),

and hence

EP [∥Zn − Y n∥2]

= E[∥Zn∥2] + n − 2EP [Zn · Y n]

≤ E[∥Zn∥2] + n − 2n

√

1

2πe
e

2
n h(Zn)

(

1 − e−
2R
n

)

.

This completes the proof of Theorem 2.5. ■

We now show how to obtain Theorem 2.4 based on
Theorem 2.2.

Proof of Theorem 2.4: By Theorem 2.2, there exists some
PZ̄n,Ȳ n|T such that for any t

PȲ n|T=t = N (0, In), PZ̄n|T=t = PZn|T=t, (31)

I(Z̄n; Ȳ n|T = t) ≤ R, (32)

and E[Z̄n · Ȳ n|T = t] ≥ n

√

1 − e−
2R
n

√

1

2πe
e

2
n h(Zn|T=t).

(33)

Since (31) holds for any t, we have PȲ n|T = N (0, In) and
PZ̄n|T = PZn|T , and hence

PZ̄n,Ȳ n|T ∈ Π(PZn|T , PZn|T |PT ). (34)

From (32), we get

I(Z̄n; Ȳ n|T ) = ES∼PT
[I(Z̄n; Ȳ n|T = S)]

≤ ES∼PT
[R]

= R. (35)

Moreover, using (33) we can lower bound E[Z̄n · Ȳ n] by

E[Z̄n · Ȳ n] = ES∼PT
[E[Z̄n · Ȳ n|T = S]]

≥ ES∼PT

[

n

√

1 − e
2R
n

√

1

2πe
e

2
n h(Zn|T=S)

]

≥ n

√

1 − e
2R
n

√

1

2πe
e

2
n ES∼PT

[h(Zn|T=S)] (36)

= n

√

1 − e
2R
n

√

1

2πe
e

2
n h(Zn|T ),

where (36) follows from Jensen’s inequality, and therefore
E[∥Z̄n − Ȳ n∥2] can be upper bounded by

E[∥Z̄n − Ȳ n∥2]

= E[∥Zn∥2] + n − 2n

√

1 − e
2R
n

√

1

2πe
e

2
n h(Zn|T ). (37)

Combining (34), (35) and (37) completes the proof of
Theorem 2.4. ■

III. GEOMETRY: CONCENTRATION AND ISOPERIMETRY

Since the pioneering work of Marton [11], [12], it has
been known that transportation cost inequalities can be used
to derive concentration of measure, an inherently geometric
phenomenon tightly coupled with isoperimetric inequalities.
For example, Talagrand’s transportation inequality (12) can
be shown to imply concentration of measure in the Gaussian
space. In this section, we will discuss the geometric impli-
cations of the new transportation inequalities introduced and
proved in the last section. In particular, we will show that the
transportation inequalities stated in Theorem 2.1 and 2.5 can
be used to prove the classical and new concentration results on
the sphere. This leads to a more complete view on the interplay
between transportation and concentration, as summarized in
Fig. 2. We now begin the detailed discussion with the geometry
of Talagrand’s transportation inequality.

Authorized licensed use limited to: Stanford University. Downloaded on June 09,2023 at 22:12:53 UTC from IEEE Xplore.  Restrictions apply. 



BAI et al.: INFORMATION CONSTRAINED OPTIMAL TRANSPORT: FROM TALAGRAND, TO MARTON, TO COVER 2065

Fig. 2. Transportation and concentration.

A. Concentration and Isoperimetry in Gaussian Space

Consider a Gaussian space (Rn, γ), where γ = N (0, In) is
the standard Gaussian measure on R

n. For any A ⊆ R
n and

t > 0, let At denote the t-blowup set of A:

At = {xn ∈ R
n : ∥xn − an∥ ≤ t for some an ∈ A}.

The following concentration of measure result is generally
known as the blowing-up lemma in Gaussian space [18].

Proposition 3.1: For any A ⊆ R
n with γn(A) ≥ e−na,

γn(At) → 1 as n → ∞

when t ≥
√

2n(a + ϵ) for some ϵ > 0.
Roughly, the above result states that under the product

Gaussian measure, slightly blowing up any set with a small
but exponentially significant probability suffices to increase its
probability to nearly 1; hence the name blowing-up lemma.
This lemma can be thought of as a consequence of the
isoperimetric inequality in Gaussian space, which says that
among all sets with equal Gaussian measure, a halfspace
minimizes the measure of its t-blowup. Therefore, if we start
with two sets A and H , where γ(A) = γ(H) and H is a
halfspace, then γ(At) ≥ γ(Ht) and hence it suffices to check
that γ(Ht) → 1, which follows from a simple calculation.

An alternative approach to proving the above blowing-up
lemma, pioneered by Marton [11], [12], is through Talagrand’s
transportation inequality. A formal proof via this approach
can be found in [18]. The key observation here is that for
any measure ν and set A, ν(A) can be related to the KL
divergence as

D(νA∥ν) = ln
1

ν(A)
,

where νA is the conditional probability measure defined as
νA(C) ≜ ν(C ∩ A)/ν(A) for any C. Together with the
triangle inequality for the Wasserstein distance, this allows
us to conclude that, for any A, B ⊆ R

n,

W2(γA, γB) ≤ W2(γA, γ) + W2(γB , γ)

≤
√

2D(γA∥γ) +
√

2D(γB∥γ)

=

√

2 ln
1

γ(A)
+

√

2 ln
1

γ(B)
,

where the second inequality follows from Talagrand’s trans-
portation inequality in (12). The proof of Proposition 3.1
follows by taking B = Ac

t ≜ R
n \ At and noting that

W2(γA, γAc
t
) ≥ t.

B. Concentration and Isoperimetry on the Sphere

We next show that the stronger transportation inequality
(7) also has a natural geometric counterpart. In particular,
it implies the following concentration result on the sphere:
Consider a unit sphere S

n−1 ⊆ R
n equipped the uniform

probability measure µ on S
n−1, denoted by (Sn−1, µ), where

S
n−1 = {zn ∈ R

n : ∥zn∥ = 1} .

Recall that a spherical cap with angle θ on S
n−1 is defined as

a ball on S
n−1 in the geodesic metric (or simply the angle)

∠(zn, yn) = arccos(⟨zn, yn⟩), i.e.,

Cap(zn
0 , θ) ≜

{

zn ∈ S
n−1 : ∠(zn

0 , zn) ≤ θ
}

.

Using the formula for the area of a spherical cap (see
[14, Appendix C]), we can show that as n → ∞

µ(A)1/n → sin θ. (38)

Proposition 3.2: Let A ⊆ S
n−1 be an arbitrary set with

µ(A) = µ(Cap(zn
0 , θ)) for some arbitrary zn

0 ∈ S
n−1 and

θ ∈ (0, π/2]. Then for any ω > π/2 − θ,

µ(Aω) → 1 as n → ∞, (39)

where Aω is the ω-blowup of A defined as

Aω ≜ {xn ∈ S
n−1 : ∠(zn, xn) ≤ ω for some zn ∈ A}.

As in the case of Gaussian measure concentration, the
result in Proposition 3.2 is tightly related to the isoperimetric
inequality on the sphere. It is easy to see that when A is
a spherical cap with angle θ, its blowup Aπ

2 −θ+ϵ is also
a cap (slightly bigger than a halfsphere) whose probability
approaches 1 in high dimensions. Therefore, when A is a
spherical cap of angle θ, ω = π/2 − θ + ϵ is precisely
the blowup angle needed for Aω to approach probability 1.
According to the isoperimetric inequality on the sphere [24],
among all sets on the sphere with a given measure, the
spherical cap is the extremal set for minimizing the measure
of its blowup; therefore, the same blowup angle must be
sufficient for any other set A with the same measure, and
this is precisely what Proposition 3.2 asserts. We next show
that Proposition 3.2 can be derived by properly combining
the strengthening (13) of Talagrand’s transportation inequality
with an argument similar to Marton’s procedure.

We next show that Proposition 3.2 can be derived by
properly combining the strengthening (13) of Talagrand’s
transportation inequality with an argument similar to Marton’s
procedure.

Proof of Proposition 3.2: Fix two sets A, B ⊆ S
n−1 with

µ(A), µ(B) > 0. Define the cone extension Ā of A as

Ā ≜

{

zn ∈ R
n :

zn

∥zn∥ ∈ A

}

Authorized licensed use limited to: Stanford University. Downloaded on June 09,2023 at 22:12:53 UTC from IEEE Xplore.  Restrictions apply. 



2066 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

and define the cone extension B̄ of B similarly. It can be easily
seen that the measure of A, B under µ are the same as the
measures of their cone extensions Ā, B̄ under any rotationally
invariant probability measure on R

n, and in particular, under
the standard Gaussian measure γ, i.e.,

γ(Ā) = µ(A) and γ(B̄) = µ(B).

Now define two conditional probability measures on R
n

based on Ā, B̄:

γA(C) ≜
γ(Ā ∩ C)

γ(Ā)
and γB(C) ≜

γ(B̄ ∩ C)

γ(B̄)
(40)

for arbitrary C ⊆ R
n. Then γA, γB ≪ γ and we have

W2(γA, γB) ≤ W2(γA, γ) + W2(γB , γ) (41)

≤

√

E[∥Xn
A∥2] + n − 2n

√

1

2πe
e

2h(Xn
A

)

n

+

√

E[∥Xn
B∥2] + n − 2n

√

1

2πe
e

2h(Xn
B

)

n (42)

where Xn
A ∼ γA and Xn

B ∼ γB , and (41) follows from the
triangle inequality and (42) follows from Theorem 2.1. Note
that the density function of Xn

A can be expressed as

dγA

dxn
(xn) =

1(xn ∈ Ā)

γ(Ā)

dγ

dxn
(xn),

and therefore the second moment E[∥Xn
A∥2 is given by

EγA
[∥Xn

A∥2] =
1

γ(Ā)

∫

Rn

∥xn∥2
1(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ [∥Xn∥2

1(Xn ∈ Ā)]

=
1

γ(Ā)
Eγ [1(Xn ∈ Ā)]Eγ [∥Xn∥2] (43)

= n (44)

and the differential entropy h(Xn
A) is given by

h(Xn
A) = −EγA

[

ln

(

dγA

dxn

)]

= − 1

γ(Ā)

∫

Rn

ln

(

1

γ(Ā)

dγ

dxn
(xn)

)

1(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ

[

(

n

2
ln(2π) +

1

2
∥Xn∥2 + ln(γ(Ā))

)

× 1(Xn ∈ Ā)

]

=
Eγ [1(Xn ∈ Ā)]

γ(Ā)
Eγ

[

n

2
ln(2π) +

1

2
∥Xn∥2 + ln(γ(Ā))

]

(45)

=
n

2
ln 2πe(γ(Ā))2/n

=
n

2
ln 2πe(µ(A))2/n (46)

where both (43) and (45) hold because 1(Xn ∈ Ā) is indepen-
dent of ∥Xn∥2 (except when Xn = 0). Similar expressions

for E[∥Xn
B∥2] and h(Xn

B) can also be obtained and thus (42)
simplifies to3

W2(γA, γB)

≤
√

2n(1 − (µ(A))1/n) +
√

2n(1 − (µ(B))1/n). (47)

On the other hand, we can also obtain a lower bound on
W2(γA, γB). Let ∠(A, B) be the angle distance between A
and B, defined as

∠(A, B) ≜ inf{∠(xn, yn) : xn ∈ A, yn ∈ B},

and assume that ∠(A, B) ∈ [0, π/2] so cos(∠(A, B)) ≥ 0.
To lower bound on W2(γA, γB), note that for any coupling P
of γA and γB we have

EP [∥Xn
A − Xn

B∥2] = EγA
[∥Xn

A∥] + EγB
[∥Xn

B∥]
− 2EP [∥Xn

A∥∥Xn
B∥ cos(∠(XA, XB))]

≥ 2n − 2EP [∥Xn
A∥∥Xn

B∥] · cos(∠(A, B))

≥ 2n − 2n cos(∠(A, B)) (48)

where (48) follows from the Cauchy-Schwarz inequality,
and therefore we can get the following lower bound on
W2(γA, γB)

W2(γA, γB) ≥
√

2n − 2n cos(∠(A, B)). (49)

Combining this with (47) gives the following inequality:

√

1 − cos(∠(A, B)) ≤
√

1 − (µ(A))1/n +
√

1 − (µ(B))1/n.

(50)

To finish the proof of Proposition 3.2, fix an arbitrary set
A ⊆ S

n−1 with µ(A) = µ(Cap(zn
0 , θ)) for some arbitrary

zn
0 ∈ S

n−1 and θ ∈ (0, π/2], and choose B = Ac
ω = S

n−1 \
Aω for ω ∈ (π/2 − θ, π/2]. We will use (50) to show that
µ(Ac

ω) → 0 as n → ∞. The proof of the proposition for larger
ω, follows from the fact that µ(Aω) is increasing in ω. Note
that by definition, we have

∠(A, Ac
ω) = ω. (51)

Plugging this into (50), and also using (38) we obtain

√
1 − cos ω ≤

√
1 − sinθ + lim inf

n→∞

√

1 − (µ(Ac
ω))1/n. (52)

Therefore, given cos ω < sin θ, i.e. ω > π/2 − θ, we have

lim inf
n→∞

√

1 − (µ(Ac
ω))1/n > 0. (53)

This in turn implies that

µ(Ac
ω) → 0 (54)

as n → ∞, which completes the proof of Proposition 3.2. ■

3Note that applying the original Talagrand’s inequality (12) to γA and γB

here would yield W2(γA, γB) ≤
√

2 ln 1
µ(A)

+
√

2 ln 1
µ(B)

instead of (47).

This inequality is weaker than (47) and follows from (47) by using the fact
that ln x + 1 ≤ x.
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C. A New Measure Concentration Result on the Sphere

We next show that the transportation inequality for informa-
tion constrained OT leads to a new concentration of measure
result on (Sn−1, µ), which recovers Proposition 3.2 as a
special case. This new result was recently proved in [13] and
[14] by using Riesz’ rearrangement inequality [25] and can be
stated as follows:

Proposition 3.3: Let A ⊆ S
n−1 be an arbitrary set with

µ(A) = µ(Cap(zn
0 , θ)) for some arbitrary zn

0 ∈ S
n−1 and

θ ∈ (0, π/2]. Then for any ω ∈ (π/2 − θ, π/2] and ϵ > 0,

µ({yn : lnµ(A∩Cap(yn, ω)) > lnV (θ, ω)−nϵ}) → 1, (55)

in which V (θ, ω) is defined as

V (θ, ω) = µ(Cap(zn
0 , θ) ∩ Cap(yn

0 , ω)), (56)

where zn
0 , yn

0 are perpendicular to each other, i.e.
∠(zn

0 , yn
0 ) = π/2.

In the proposition, V (θ, ω) corresponds to the intersection
measure of two spherical caps with poles perpendicular to each
other. By using the surface area formula for the intersection
of two spherical caps in [14, Appendix C-B], one can provide
an asymptotic characterization of lnV (θ, ω),

1

n
lnV (θ, ω) → 1

2
ln(sin 2θ − cos ω2), as n → ∞. (57)

Note that an equivalent way to state the blowing-up lemma in
Proposition 3.2 is the following: Let A ⊆ S

n−1 be an arbitrary
set with µ(A) = µ(Cap(zn

0 , θ)) for some arbitrary zn
0 ∈ S

n−1

and θ ∈ (0, π/2]. Then for any ω ∈ (π/2 − θ, π/2],

µ({yn : A ∩ Cap(yn, ω) ̸= ∅}) → 1.

This is true because A ∩ Cap(yn, ω) ̸= ∅ if and only if
yn ∈ Aω. Proposition 3.3 extends Proposition 3.2 by providing
a lower bound on µ(A∩ Cap(yn, ω)) for ω ∈ (π/2− θ, π/2].
When A itself is a cap, (55) is straightforward and follows
from the fact that Y n w.h.p. concentrates around the equator
at angle π/2 from the pole of A, and therefore the intersection
of the two spherical caps is given by V w.h.p. Proposition 3.3
asserts that this intersection measure is w.h.p. lower bounded
by V for any arbitrary A with the same measure. In other
words, the spherical cap not only minimizes the measure of
its neighborhood as captured by Proposition 3.2, but roughly
speaking, also minimizes its intersection measure with the
neighborhood of a randomly chosen point on the sphere.

Proof of Proposition 3.3: Fix two sets A, B ⊆ S
n−1

with µ(A), µ(B) > 0. Consider their cone extensions Ā, B̄
and the induced conditional probability measures γA, γB as
defined in (40). Since γB ≪ γ and γ is absolutely con-
tinuous with respect to the Lebesgue measure, the optimal
coupling that attains W2(γB , γ) is a one-to-one mapping
that pushes γ forward to γB . We will now upper bound
W2(γA, γB ;R, τ, 6n/τ2) by using a triangle inequality as
stated in the following lemma, whose proof is included in
Appendix D.

Lemma 3.1: Consider three measures µ1, µ2, µ3 ∈ Pp(Ω)
such that there exists a one-to-one mapping g : Ω → Ω
satisfying that

1) µ1 is the push-forward measure of µ2 under g, i.e.,
µ1(A) = µ2(g

−1(A)) for every Borel set A ⊆ Ω;
2) g induces one optimal coupling that attains Wp(µ1, µ2),

i.e.,

Wp(µ1, µ2) = {EY ∼µ2 [d
p(g(Y ), Y )]}1/p

.

Then the following triangle inequality holds:

Wp(µ1, µ3;R, τ, δ) ≤ Wp(µ1, µ2) + Wp(µ2, µ3;R, τ, δ).

(58)

From the above lemma, for any R ≥ 0 and τ > 0 we have

W2(γA, γB ;R, τ, 6n/τ2) (59)

≤ W2(γA, γ;R, τ, 6n/τ2) + W2(γB , γ)

≤

√

E[∥Xn
A∥2] + n − 2n

√

1

2πe
e

2h(Xn
A

)

n

(

1 − e−
2R
n

)

+

√

E[∥Xn
B∥2] + n − 2n

√

1

2πe
e

2h(Xn
B

)

n (60)

=

√

2n
(

1 − (µ(A))1/n
√

1 − e−2R/n
)

+
√

2n(1 − (µ(B))1/n) (61)

where Xn
A ∼ γA and Xn

B ∼ γB ; (60) follows from
Theorem 2.5 and Theorem 2.1; and (61) follows because
E[∥Xn

A∥2] = n and h(Xn
A) = n

2 ln 2πe(µ(A))2/n as respec-
tively stated in (44) and (46), and similar expressions hold for
E[∥Xn

B∥2] and h(Xn
B).

On the other hand, we can also obtain a lower bound
on (59). For any η ∈ [0, π], let the function α(η) be defined as

α(η) ≜
1

n

(

lnµ(A) − R − sup
yn∈B

{lnµ(Cap(yn, η) ∩ A)}
)

(62)

and for any ϵ > 0 define the parameter η∗
ϵ as

η∗
ϵ ≜ sup{η : α(η) ≥ ϵ}. (63)

The following lemma states a lower bound of (59) in terms of
η∗

ϵ that will be useful for proving Proposition 3.3. The proof
of this lemma will be presented after we finish the proof of
Proposition 3.3.

Lemma 3.2: For any ϵ > 0,

W2(γA, γB ;R, τ, 6n/τ2) ≥
√

2n(1 − cos η∗
ϵ − σ(n, τ))

where σ(n, τ) → 0 as τ/n, n/τ2 → 0 and n → ∞.
By lemma 3.2 and (61), we get

√

1 − cos η∗
ϵ − σ(n, τ) ≤

√

1 − (µ(A))1/n
√

1 − e−2R/n

+
√

1 − (µ(B))1/n, (64)

for any ϵ > 0. To finish the proof of Proposition 3.3, fix an
arbitrary set A ⊆ S

n−1 with µ(A) = µ(Cap(zn
0 , θ)) for some

arbitrary zn
0 ∈ S

n−1 and θ ∈ (0, π/2], and let

B≜{yn ∈ S
n−1 : lnµ(A ∩ Cap (yn, ω)) ≤ lnV (θ, ω) − nβ},
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for some arbitrary ω ∈ (π/2 − θ, π/2] and β > 0, where
V (θ, ω) is as defined in (56). In the sequel, we will use (64)
to show that µ(B) → 0 as n → ∞.

To do this, we will apply (64) for a particular choice of
R > 0 and ϵ = β

4 . Note that (38) combined with the fact that
sin θ > cos ω implies that

lim
n→∞

(µ(A))1/n > cos ω.

This implies that there exists a fixed ϕ > 0 such that for
sufficiently large n

(µ(A))1/n ≥ cos(ω − ϕ). (65)

Therefore, letting R be

R =
n

2
ln

(µ(A))2/n

(µ(A))2/n − cos2(ω − ϕ)
, (66)

we have that R > 0 for n sufficiently large. We will also
assume that ϕ > 0 is chosen sufficiently small so that

R ≤ n

2
ln

(µ(A))2/n

(µ(A))2/n − cos2 ω
+ n

β

8
. (67)

Note that this is always possible since choosing ϕ smaller
makes it easier to satisfy (65). With the choice of R in (66),
the first term on the R.H.S. of (64) reduces to
√

1 − (µ(A))1/n
√

1 − e−2R/n =
√

1 − cos(ω − ϕ). (68)

Now we will focus on the L.H.S. of (64) and show that it
can be lower bounded by

√

1 − cos η∗
ϵ − σ(n, τ) ≥

√

1 − cos ω − σ(n, τ)

by choosing ϵ = β
4 . For this, we evaluate α(η) at η = ω under

our choice of A, B and R:

α(ω) =
1

n

(

− sup
yn∈B

{lnµ(Cap(yn, ω) ∩ A)} + lnµ(A) − R

)

≥ 1

n
(nβ − lnV (θ, ω) + lnµ(A) − R). (69)

In (69), we can easily lower bound lnµ(A) by

lnµ(A) ≥ n ln sin θ − n
β

4
(70)

for n sufficiently large. Also, by using (57), we have

lnV (θ, ω) ≤ n

2
ln(sin 2θ − cos2 ω) + n

β

4
(71)

for n sufficiently large. Moreover, using (38) in (67), R can
be further bounded by

R ≤ n

2
ln

sin 2θ

sin 2θ − cos2 ω
+ n

β

4
, (72)

for n sufficiently large. Plugging (70)±(72) into (69), we obtain

α(ω) ≥ β

4
,

and therefore

ω ≤ η∗
β/4 (73)

by the definition of η∗
ϵ and the nonincreasing property of α(η).

Hence, by setting ϵ = β/4 on the L.H.S. of (64) and using
(73), we obtain
√

1 − cos η∗
β/4 − σ(n, τ) ≥

√

1 − cos ω − σ(n, τ). (74)

Combining (64), (68) and (74) yields
√

1−cos ω−σ(n, τ)≤
√

1−cos(ω − ϕ) +
√

1 − (µ(B))1/n.

Setting τ = n3/4, we have τ/n, n/τ2 → 0 as n → ∞, and
thus σ(n, n3/4) → 0 as n → ∞. Therefore, given cos ω <
cos(ω − ϕ) and for sufficiently large n, we have

µ(B) ≤
(

1 −
(

√

1 − cos ω − σ(n, n3/4)

−
√

1 − cos(ω − ϕ)
)2
)n

, (75)

which tends to zero as n → ∞. This completes the proof of
Proposition 3.3. ■

Proof of Lemma 3.2: Consider an arbitrary coupling P
of (γA, γB) that satisfies the (R, τ, 6n/τ2)-information density
constraint. To find a lower bound on W2(γA, γB ;R, τ, 6n/τ2),
it suffices to lower bound EP [∥Xn

A −Xn
B∥2], or equivalently

to upper bound EP [Xn
A · Xn

B ]. Fix ϵ > 0 and define

F = {∠(Xn
A, Xn

B) ≥ η∗
ϵ , (Xn

A, Xn
B) ∈ S}

where

S =
{

(xn
A, xn

B) : ∥xn
A∥2 − n| ≤ τ, |∥xn

B∥2 − n| ≤ τ,

iP (xn
A;xn

B) ≤ R + τ
}

.

Then EP [Xn
A ·Xn

B ] can be upper bounded by conditioning on
F and F c respectively, i.e.,

EP [Xn
A · Xn

B ]

= EP [Xn
A · Xn

B |F ]P(F ) + EP [Xn
A · Xn

B |F c]P(F c)

≤ EP [Xn
A · Xn

B |F ] + EP [Xn
A · Xn

B |F c]P(F c).

In the sequel, we will upper bound EP [Xn
A · Xn

B |F ] and
EP [Xn

A · Xn
B |F c]P(F c) respectively.

First, from the definition of F , we have

EP [Xn
A · Xn

B |F ] = EP [∥Xn
A∥∥Xn

B∥ cos(∠(Xn
A, Xn

B))|F ]

≤ (n + τ) cos(η∗
ϵ ). (76)

Also, by the Cauchy-Schwarz inequality, we have

EP [Xn
A · Xn

B |F c]P(F c)

≤
√

EP [∥Xn
A∥2|F c]P(F c)

√

EP [∥Xn
B∥2|F c]P(F c)

=
√

E[∥Xn
A∥2] − EP [∥Xn

A∥2|F ]P(F )

×
√

E[∥Xn
B∥2] − EP [∥Xn

B∥2|F ]P(F )

≤ n − (n − τ)P(F ). (77)

To continue with (77), we need to lower bound P(F ). Since
P(F ) can be written as

P(F ) = P((Xn
A, Xn

B) ∈ S)

− P(∠(Xn
A, Xn

B) ≤ η∗
ϵ , (Xn

A, Xn
B) ∈ S),
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we will bound P((Xn
A, Xn

B) ∈ S) and P(∠(Xn
A, Xn

B) ≤
η∗

ϵ , (Xn
A, Xn

B) ∈ S) respectively.
To bound P((Xn

A, Xn
B) ∈ S), note that

P(|∥Xn
A∥2 − n| ≤ τ)

=

∫

Ā

1(|∥xn
A∥2 − n| ≤ r)γA(dxn

A)

=
1

γ(Ā)

∫

Rn

1(|∥xn∥2 − n| ≤ τ)1(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ [1(|∥Xn∥2 − n| ≤ τ)1(Xn ∈ Ā)]

=
1

γ(Ā)
Eγ [1(|∥Xn∥2 − n| ≤ τ)]Eγ [1(Xn ∈ Ā)] (78)

= P(|∥Xn∥2 − n| ≤ τ)

≥ 1 − 3n/τ2, (79)

where Xn ∼ γ, (78) holds because 1(|∥Xn∥2 − n| ≤ τ) and
1(Xn ∈ Ā) are independent (except when Xn = 0), and (79)
follows from Chebyshev’s inequality. Similarly, P(|∥Xn

B∥2 −
n| ≤ τ) ≥ 1 − 3n/τ2. In addition, since P satisfies the
(R, τ, 6τ2/n)- information density constraint, we have

P(iP (Xn
A;Xn

B) ≤ R + τ) ≥ 1 − 6n/τ2.

Therefore, by the union bound we have

P((Xn
A, Xn

B) ∈ S) ≥ 1 − 12n/τ2. (80)

To upper bound P(∠(Xn
A, Xn

B) ≤ η∗
ϵ , (Xn

A, Xn
B) ∈ S),

we have

P(∠(Xn
A, Xn

B) ≤ η∗
ϵ , (Xn

A, Xn
B) ∈ S)

=

∫

B̄

∫

Ā

fXn
A|Xn

B
(xn

A|xn
B)1 ((xn

A, xn
B)∈S, ∠(xn

A, xn
B)≤η∗

ϵ )

dxn
AfXn

B
(xn

B)dxn
B

≤
∫

B̄

∫

Ā

eR−h(γA)+ 3
2 τ

1((xn
A, xn

B) ∈ S, ∠(xn
A, xn

B) ≤ η∗
ϵ )

dxn
AfXn

B
(xn

B)dxn
B

(81)

≤
∫

B̄

eR−h(γA)+ 3
2 τe−nϵ+h(γA)−R+ 1

2 τ+nϵ1fXn
B
(xn

B)dxn
B

(82)

= e−n(ϵ− 2τ
n −ϵ1)

≤ ϵ2, (83)

where ϵ1 → 0 as n → ∞, and ϵ2 → 0 as n → ∞ and
τ
n → 0. In the above, (81) holds because for each (xn

A, xn
B) ∈

S∩(Ā× B̄), the conditional density fXn
A|Xn

B
(xn

A|xn
B) satisfies

fXn
A|Xn

B
(xn

A|xn
B) = eiP (xn

A;xn
B)fXn

A
(xn

A)

≤ eR+τe−
n
2 ln(2πeµ(A)2/n)+ 1

2 (n−∥xn
A∥2)

(84)

≤ eR−h(γA)+ 3
2 τ , (85)

where (84) and (85) follows from the facts that iP (xn
A;xn

B) ≤
R + τ and |∥xn

A∥2 − n| ≤ τ respectively by the definition

of S. Inequality (82) holds because for each xn
B ∈ B̄,

we have
∫

Ā

1((xn
A, xn

B) ∈ S, ∠(xn
A, xn

B) ≤ ηn
ϵ )dxn

A

≤ µ(A ∩ Cap(xn
B , η∗

ϵ ))|B(0,
√

n + τ)|
≤ µ(A ∩ Cap(xn

B , η∗
ϵ ))e

n
2 ln(2πe)+ 1

2 τ+nϵ1 (86)

≤ e−nα(η∗
ϵ )+ln(µ(A))−Re

n
2 ln(2πe)+ 1

2 τ+nϵ1 (87)

≤ e−nϵ+ln(µ(A))−Re
n
2 ln(2πe)+ 1

2 τ+nϵ1 (88)

= e−nϵ+h(γA)−R+ 1
2 τ+nϵ1 ,

where |B(0,
√

n + τ) = {xn : ∥xn∥ ≤ √
n + τ}| denotes the

volume of the Euclidean ball with center 0 and radius
√

n + τ .
Here, (86) holds because from [14, Lemma 13], we have

|B(0,
√

n + τ)| ≤ e
n
2 ln(2πe(1+ τ

n ))+nϵ1 ≤ e
n
2 ln 2πe+ 1

2 τ+nϵ1 ,

where the last inequality uses the fact ln(1 + a) ≤ a for any
a ≥ 0, (87) follows from the definition of α(η), and (88)
holds because α(η) is continuous in η by Lemma 5.1 and
hence α(η∗

ϵ ) ≥ ϵ.
Combining (80) and (83), we have

P(F ) ≥ 1 − 12n/τ2 − ϵ2

≥ 1 − ϵ3 (89)

where ϵ3 → 0 as n → ∞, n/τ2 → 0 and τ/n → 0.
Combining (76), (77) and (89), we have

EP [Xn
A · Xn

B ] ≤ n(cos η∗
ϵ + σ(n, τ)) (90)

where σ(n, τ) → 0 as n → ∞, n/τ2 → 0 and τ/n → 0, and
therefore

EP [∥Xn
A − Xn

B∥2] ≥ 2n(1 − cos η∗
ϵ − σ(n, τ)).

Since the above inequality holds for any coupling P of
(γA, γB) that satisfies the (R, τ, 6n/τ2)-information con-
straint, we can conclude that

W2(γA, γB ;R, τ, 6n/τ2) ≥ 2n(1 − cos η∗
ϵ − σ(n, τ)).

This completes the proof of Lemma 3.2. ■

IV. AN APPLICATION TO NETWORK

INFORMATION THEORY

We next demonstrate an application of our transporta-
tion inequalities in network information theory. In particu-
lar, we show that the information constrained transportation
inequality can be used to recover the recent solution of a
problem posed by Cover in 1987 [15] regarding the capacity
of the relay channel.

To describe Cover’s problem, consider a Gaussian primitive
relay channel given by

{

Z = X + W1

Y = X + W2

where X denotes the source signal constrained to average
power P , Z and Y denote the received signals of the relay
and the destination respectively, and W1 ∼ N (0, N) and
W2 ∼ N (0, 1) are Gaussian noises that are independent of
each other and X . The relay channel is ªprimitiveº in the sense
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that the relay is connected to the destination with an isolated
bit pipe of capacity C0. Let C(C0) denote the capacity of this
relay channel as a function of C0. What is the critical value
of C0 such that C(C0) first equals C(∞)? This is problem
posed by Cover in Open Problems in Communication and

Computation, Springer-Verlag, 1987 [15], which he calls ªThe
Capacity of the Relay Channelº.

This question was answered in a recent work [14], [16],
which shows that C(C0) can not be equal to C(∞) unless
C0 = ∞, regardless of the SNR of the Gaussian channels. This
result follows as a corollary to a new upper bound developed
in [14] and [16] on the capacity of this channel, which builds
on a strong data processing inequality (SDPI) for a specific
Markov chain. The proof of this SDPI in [14] and [16] is
geometric and relies on a packing argument combined with
the new measure concentration result stated in Proposition 3.3.
We next show that the transportation inequality we develop
in the current paper can also be used to establish this SDPI
providing a much shorter and simpler proof. In particular,
the main idea is to construct an n-letter auxiliary random
variable that shares the same marginal distribution with a
certain random variable in the relay channel problem but has
a different joint distribution (i.e. is coupled differently) with
the other random variables in the problem. It is interesting
to contrast this converse approach to single-letterization in
standard converse programs for network information theory
problems. Classically, one uses information measure calculus
(e.g., chain rules, non-negativity of divergence) to arrive at
single-letter random variables that can be identified as aux-
iliary random variables. Here, we construct high-dimensional
auxiliary random variables whose existence and properties are
ensured by the transportation inequality. As we will see in
the sequel, this allows us to capture the packing argument
employed in [14] and [16] using auxiliary random variables,
without the explicit use of geometry or the concentration result
in Proposition 3.3. The current method is simpler and may be
easier to generalize to other problems.

We now state the above mentioned SDPI and briefly illus-
trate how it leads to a new upper bound on the relay channel.
We then prove it by using the conditional version of the
information constrained transportation inequality as stated in
Theorem 2.4.

A. A Strong Data Processing Inequality

Consider a long Markov chain

Y n − Xn − Zn − Un, (91)

with Zn = Xn + Wn
1 and Y n = Xn + Wn

2 , where
E[∥Xn∥2] = nP , Wn

1 ∼ N (0, N In), Wn
2 ∼ N (0, In), and

Xn, Wn
1 , Wn

2 are mutually independent. For this long Markov
chain, the following SDPI was established in [14] and [16] and
is the key step in resolving Cover’s problem.

Proposition 4.1: For the Markov chain described in (91),
if I(Zn;Un|Y n) ≤ nC0, then I(Xn;Un|Y n) is upper
bounded by (92), shown at the bottom of the page.

Proposition 4.1 allows us to derive a new upper bound on
the relay channel. In particular, if we use Un to denote the
relay’s transmission over the bit pipe, then it is easy to see
that Y n − Xn − Zn − Un for the relay channel satisfies the
conditions of the Markov chain described in (91), and

I(Zn;Un|Y n) = H(Un|Y n) − H(Un|Zn, Y n)

≤ H(Un) ≤ nC0.

Therefore, by Fano’s inequality and Proposition 4.1 we can
bound C(C0) by (93), shown at the bottom of the page, where
we have used the simple fact that I(Xn;Y n) ≤ n

2 ln(1 + P ).
The upper bound in (93) resolves Cover’s problem as one can
easily verify that it is strictly smaller than n C(∞) for any
finite C0.

B. Proof of SDPI via Transportation Inequality

To prove Proposition 4.1, we need the following lemma,
which is a consequence of the conditional transportation
inequality stated in Theorem 2.4.

Lemma 4.1: For the Markov chain (91),
if I(Zn;Un|Xn) = nC ′ for some C ′ ≥ 0, then for
any r > 0 there exists a random vector Z̄n such that:

1) PXn,Z̄n,Un
= PXn,Zn,Un ;

2) E[Z̄n · Y n] ≥ n(P +
√

N(1 − e−2r)e−C′

);
3) I(Z̄n;Y n|Xn, Un) ≤ nr.

Proof: Lemma 4.1 follows immediately from Theo-
rem 2.4 by setting T = (Xn, Un). In particular, noting that
the random vector Wn

2 = Y n − Xn ∼ N (0, In) and is
independent of (Xn, Un), we have by Theorem 2.4 that

W 2
2 (PZn|Xn,Un

, PY n−Xn|Xn,Un
|PXn,Un ;nr)

≤ E[∥Zn∥2] + n − 2n
√

1 − e−2r

√

1

2πe
e

2
n h(Zn|Xn,Un).

Therefore, there exists a random vector Z̄n such that

(Z̄n, Xn, Un) ∼ PZn,Xn,Un
,

I(Z̄n;Y n|Xn, Un) ≤ nr,

I(Xn;Un|Y n) ≤ max
C′∈[0,C0]

min
r>0

n

2
ln

P (N + 1 − 2e−C′√

N(1 − e−2r)) + N(1 − e−2C′

(1 − e−2r))

(P + 1)Ne−2r
(92)

nC(C0) ≤ I(Xn;Y n, Un) + nϵ

= I(Xn;Y n) + I(Xn;Un|Y n) + nϵ

≤ max
C′∈[0,C0]

min
r>0

n

2
ln

P (N + 1 − 2e−C′√

N(1 − e−2r)) + N(1 − e−2C′

(1 − e−2r))

Ne−2r
+ nϵ (93)
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E[Z̄n · (Y n − Xn)] ≥ n
√

1 − e−2r

√

1

2πe
e

2
n h(Zn|Xn,Un).

(94)

This proves 1) and 3) of Lemma 4.1. To show 2) of
Lemma 4.1, note that

E[Z̄n · Y n] = E[Z̄n · (Y n − Xn)] + E[Z̄n · Xn]

≥ n
√

1 − e2r

√

1

2πe
e

2
n h(Zn|Xn,Un) + E[Zn · Xn] (95)

= n
√

1 − e2r
√

Ne−2C′ + nP (96)

= n(P +
√

N(1 − e−2r)e−C′

)

where (95) follows from (94) and the fact that (Z̄n, Xn) ∼
PZn,Xn , and (96) holds because

h(Zn|Xn, Un) = h(Zn|Xn) − I(Zn;Xn|Un)

=
n

2
ln 2πeNe−2C′

.

This completes the proof of Lemma 4.1.
We now use Lemma 4.1 to prove Proposition 4.1. Assuming

that for the Markov chain (91),

I(Zn;Un|Xn) = nC ′

for some C ′ ≥ 0, we can create an auxiliary random vector
Z̄n coupled with Xn, Un, Y n so as to satisfy the properties
in Lemma 4.1. Therefore, we have

I(Xn;Un|Y n)

= I(Z̄n;Un|Y n) + I(Xn;Un|Y n, Z̄n) − I(Z̄n;Un|Y n, Xn)

= I(Z̄n;Un|Y n) + h(Un|Y n, Z̄n) − h(Un|Y n, Xn)

≤ I(Z̄n;Un|Y n) + h(Un|Z̄n) − h(Un|Xn)

= I(Z̄n;Un|Y n) − I(Z̄n;Un|Xn) (97)

= h(Z̄n|Y n) − h(Z̄n|Y n, Un) − I(Z̄n;Un|Xn) (98)

where (97) follows because PXn,Z̄n,Un
= PXn,Zn,Un

by 1)
of Lemma 4.1 and thus Xn − Z̄n − Un forms a Markov
chain. In the following, we will bound the first two terms
in (98) respectively. Note that this bounding process precisely
mirrors the packing argument used in the geometric proof of
[14] and [16], and provides an interpretation of the packing
argument in terms of auxiliary random variables.

To bound the first term in (98), we have for any r > 0,

h(Z̄n|Y n) = h

(

Z̄n − E[Z̄n · Y n]

E[∥Y n∥2]
Y n
∣

∣

∣
Y n

)

≤ h

(

Z̄n − E[Z̄n · Y n]

E[∥Y n∥2]
Y n

)

≤ n

2
ln

2πe

n
E

[

∥

∥

∥

∥

Z̄n − E[Z̄n · Y n]

E[∥Y n∥2]
Y n

∥

∥

∥

∥

2
]

=
n

2
ln

2πe

n

(

E[∥Z̄n∥2] − E[Z̄n · Y n]2

E[∥Y n∥2]

)

≤ R.H.S. of (99)

where in the last step we have used 2) of Lemma 4.1. To bound
the second term in (98), we have for any r > 0,

h(Z̄n|Y n, Un) ≥ h(Z̄n|Y n, Un, Xn)

= h(Z̄n|Un, Xn) − I(Z̄n;Y n|Un, Xn)

= h(Z̄n|Xn) − I(Z̄n;Un|Xn) − I(Z̄n;Y n|Un, Xn)

≥ n

2
ln 2πeN − nC ′ − nr

=
n

2
ln 2πNe1−2(C′+r) (100)

where the second inequality follows from 3) of Lemma 4.1.
Plugging (99), shown at the bottom of the page, (100) into

(98) gives a bound on I(Xn;Un|Y n) in terms of the value of
I(Zn;Un|Xn) = nC ′ that holds for any r > 0. Therefore, the
bound can be tightened by minimizing over r > 0. The value
C ′ is unknown, but due to the Markov chain (91) we have

I(Zn;Un|Xn) ≤ I(Zn;Un|Y n) ≤ nC0.

The bound in Proposition 4.1 follows by taking a maximum
over C ′ ∈ [0, C0].

APPENDIX A
COMPARISON OF (12) AND (13)

Given PY n = N (0, In) and PZn ≪ PY n , let fY n and fZn

denote their respective densities. Then we have

R.H.S. of (12) = 2E

[

ln
fZn(Zn)

fY n(Zn)

]

= 2E[ln fZn(Zn)] − 2E

[

ln
1

(2π)n/2
exp

(

−∥Zn∥2

2

)]

= −2h(Zn) + n ln 2π + E[∥Zn∥2]

= E[∥Zn∥2] + n − 2 n

[

1

2

(

2

n
h(Zn) − ln 2πe

)

+ 1

]

= E[∥Zn∥2] + n − 2 n

[

ln

√

1

2πe
e

2
n h(Zn) + 1

]

≥ E[∥Zn∥2] + n − 2 n

√

1

2πe
e

2
n h(Zn)

= R.H.S. of (13)

where the inequality follows from ln a+1 ≤ a and holds with

equality iff
√

1
2πee

2
n h(Zn) = 1, i.e. h(Zn) = n

2 ln 2πe.

APPENDIX B
ON THE TIGHTNESS OF (15)

Here we show that the inequality in (15) is achieved with
equality when PY n = N (0, In) and PZn = N (µ, σ2In)

h(Z̄n|Y n) ≤ n

2
ln 2πe

P (N + 1 − 2e−C′√

N(1 − e−2r)) + N(1 − e−2C′

(1 − e−2r))

P + 1
(99)
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for some µ and σ2. Specifically, for any coupling P ∈
Π(PZn , PY n) with IP (Zn;Y n) ≤ R, we have

R ≥ h(Zn) − hP (Zn|Y n)

= h(Zn) − hP

(

Zn − EP [Zn · Y n]2

E[∥Y n∥2]
Y n
∣

∣

∣
Y n

)

≥ h(Zn) − hP

(

Zn − EP [Zn · Y n]2

E[∥Y n∥2]
Y n

)

≥ h(Zn) − n

2
ln

2πe

n
EP

[

∥

∥

∥

∥

Zn − EP [Zn · Y n]

E[∥Y n∥2]
Y n

∥

∥

∥

∥

2
]

= h(Zn) − n

2
ln

2πe

n

(

E[∥Zn∥2] − EP [Zn · Y n]2

E[∥Y n∥2]

)

=
n

2
ln(2πeσ2) − n

2
ln 2πe

(

σ2 − EP [Zn · Y n]2

n2

)

= −n

2
ln

(

1 − EP [Zn · Y n]2

n2σ2

)

i.e.,

EP [Zn · Y n] ≤ n

√

(1 − e−
2R
n )σ2

= n

√

1

2πe
e

2
n h(Zn)(1 − e−

2R
n ).

Therefore, for any coupling P ∈ Π(PZn , PY n) with
IP (Zn;Y n) ≤ R, we have

EP [∥Zn − Y n∥2] = E[∥Zn∥2] + E[∥Y n∥2] − 2EP [Zn · Y n]

≥ R.H.S of (15),

and thus,

W 2
2 (PZn , PY n ;R) = inf

P∈Π(PZn ,PY n ):
IP (Zn;Y n)≤R

EP [∥Zn − Y n∥2]

≥ R.H.S. of (15).

Combining with inequality (15) itself, we can conclude that

W 2
2 (PZn , PY n ;R) = R.H.S. of (15)

when PY n = N (0, In) and PZn = N (µ, σ2In) for some µ
and σ2.

APPENDIX C
THE ORNSTEIN-UHLENBECK SEMI-GROUP AND PROCESS

The coupling used in the proof of Theorem 2.5 is closely
related to the concepts of Ornstein±Uhlenbeck semi-group
and Ornstein±Uhlenbeck process. In particular, recall that the
Ornstein±Uhlenbeck semi-group is defined as a family of
operators (Pt)t≥0 with

Ptf(x0) = E[f(Xt)|X0 = x0]

for all suitable f : R
n → R and x0 ∈ R

n, where (Xt)t≥0 is
a Markov process which admits the explicit representation

Xt = e−t(x0 +
√

2

∫ t

0

esdBs) given X0 = x0,

where (Bt)t≥0 is the standard Brownian motion in R
n

starting at the origin. Such (Xt)t≥0 is also known as the
Ornstein±Uhlenbeck process, and it can be shown to satisfy

PXt|X0=x0
= e−tx0 +

√

1 − e−2tN (0, In),∀x0 ∈ R
n.

Viewed from this perspective, the coupling of (PZn , PY n)
constructed in the proof of Theorem 2.5 can be thought of
as the joint distribution of (g(X0), Xt(R)) by letting PX0 =
N (0, In), g be a mapping that pushes N (0, In) forward to
PZn , and t(R) = − ln

√
1 − e−2R/n.

APPENDIX D
PROOF OF LEMMA 3.1

Let (X1, X2, X3) ∼ P be a coupling of (µ1, µ2, µ3) such
that

1) X1 = g(X2) where g is a one-to-one mapping and
(g(X2), X2) is an optimal coupling of (µ1, µ2) that
attains Wp(µ1, µ2), i.e.,

Wp(µ1, µ2) = {EP [dp(X1, X2)]}1/p
;

2) (X2, X3) is an optimal coupling of (µ2, µ3) under
the (R, τ, δ)-information density constraint that attains
Wp(µ2, µ3;R, τ, δ), i.e.,

Wp(µ2, µ3;R, τ, δ) = {EP [dp(X2, X3)]}1/p
.

From the above two conditions, it follows that (X1, X3)
is a coupling of (µ1, µ3) that also satisfies the (R, τ, δ)-
information density constraint. Indeed, since X1 and X2 are
one-to-one mappings of each other, we have

IP (X1;X3) = IP (X2;X3) ≤ R

and

P(|iP (X1;X3) − IP (X1;X3)| ≤ τ)

= P(|iP (X2;X3) − IP (X2;X3)| ≤ τ)

> 1 − δ.

Therefore, we have

Wp(µ1, µ3;R, τ, δ)

≤ EP [d(X1, X3)
p]1/p

≤ EP [(d(X1, X2) + d(X2, X3))
p]1/p

≤ EP [d(X1, X2)
p]1/p + EP [d(X2, X3)

p]1/p (101)

= Wp(µ1, µ2) + Wp(µ2, µ3;R, τ, δ)

where (101) follows from the Minkowski inequality. This
completes the proof of Proposition 3.1.

APPENDIX E
CONTINUITY OF α(η)

Lemma 5.1: The function α(η) defined in (62) is continu-
ous in η.

Proof: Rewrite α(η) as

1

n

(

− sup
xn∈B

{lnµ(Cap(xn, η) ∩ A)} + ln(µ(A)) − R

)

=
1

n

(

−ln

(

sup
xn∈B

{µ(Cap(xn, η) ∩ A)}
)

+ln(µ(A)) − R

)

.
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To prove α(η) is continuous in η, it suffices to show

sup
xn∈B

µ(Cap(xn, η) ∩ A) (102)

is continuous in η.
For any ϵ > 0, we have
∣

∣

∣

∣

sup
xn∈B

µ(Cap(xn, η + ϵ) ∩ A) − sup
xn∈B

µ(Cap(xn, η) ∩ A)

∣

∣

∣

∣

= sup
xn∈B

µ(Cap(xn, η + ϵ) ∩ A) − sup
xn∈B

µ(Cap(xn, η) ∩ A)

= sup
xn∈B

{

µ(Cap(xn, η+ϵ) ∩ A)− sup
xn∈B

µ(Cap(xn, η) ∩ A)

}

≤ sup
xn∈B

{

µ(Cap(xn, η + ϵ) ∩ A) − µ(Cap(xn, η) ∩ A)

}

= sup
xn∈B

µ((Cap(xn, η + ϵ) \ Cap(xn, η)) ∩ A)

≤ sup
xn∈B

µ(Cap(xn, η + ϵ) \ Cap(xn, η))

≤ δ(ϵ) (103)

for some δ(ϵ) → 0 as ϵ → 0, and therefore we have shown
the right-continuity of (102). Similarly, we can show the left-
continuity of (102). This proves the lemma.
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