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size n goes to infinity, the number of groups mn increases with the sample size. Our
results extend the Poisson limit theorems for the Pearson chi-square statistic reported
in Rempała and Wesołowski (2016).
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1. Introduction

The ‘‘double-asymptotic’’ paradigm of data analysis in which the parameter space increases with the sample size
seems increasingly important in the modern era of ‘‘big-data’’ statistics. Perhaps the most natural example is the high
dimensional multinomial model where the number of categories can grow with, and possibly exceed, the sample size.
In the context of statistical goodness-of-fit testing for survey responses, such high dimensional multinomial problem
was considered already in Fienberg and Holland (1973) and then studied in more detail, for instance, in Morris (1975)
and Cressie and Read (1984).

The double-asymptotic paradigm is also natural in many statistical problems of modern genomic research where often
the number of observed outcomes explicitly depends upon the size of a collected sample. In the last two decades, a
great deal of effort has been dedicated towards understanding how to extend some of the results of classical inferential
statistical analysis to such settings. Several examples in molecular studies were given, for instance, in Browning et al.
(2018) or Pietrzak et al. (2016) and both the goodness of fit and hypothesis testing in double-asymptotic models were
recently considered in Chen and Qin (2010), Kim et al. (2020), Janková et al. (2020).

Motivated by these and other similar applications where the classical goodness-of-fit tests often fail (Haberman, 1988;
Kim, 2020), we establish in this paper some general results for the class of the so-called multinomial Cressie–Read (CR)
goodness-of-fit statistics (Cressie and Read, 1984) (and some of its close relatives) for triangular arrays of discrete random
variables for which the number of classes mn is either infinite or grows with the sample size n.

In statistical practice, it is often assumed that the CR goodness-of-fit statistics that are asymptotically (as n → ∞) chi-
square distributed (for instance, the Pearson chi-square, log-likelihood ratio, or the Freeman–Tukey statistic), must be also
asymptotically normal when both mn, n → ∞. Although this assumption is indeed often warranted, see e.g. Tumanyan
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(1956), Cressie and Read (1984), Menéndez et al. (1998), Inglot et al. (1991), Pérez and Pardo (2002), Ogata and Taniguchi

(2009), Mirakhmedov (2016), there are also instances when it is clearly false. A recent example was given, for instance,

in the paper Rempała and Wesołowski (2016) where it was shown that when mn is of order n2 the Pearson chi-square

statistic is asymptotically Poisson (in the case of a uniform distribution this result was already noted much earlier in Steck

(1957)). In the current paper we show that the Poisson limit result extends to a broad sub-class of the CR-statistics that

includes, for example, a log-likelihood ratio statistic. We are currently unaware of any other similar asymptotic results

for the CR goodness-of-fit statistics.

The paper is organized as follows. In the next section we present our main result on the Poisson limit of the CR-statistics

when both the sample size and the number of multinomial classes increase to infinity. We show that our result extends in

particular the Pearson chi-square double-asymptotic theorem from Rempała and Wesołowski (2016). We also give some

additional examples and numerical illustrations. In the following section we consider a closely related class of CR-statistics

(dubbed uniform CR-statistics) that arises naturally when analyzing power of the goodness of fit testing of the uniform

distribution against certain class of alternatives — an important problem in high dimensional signal detection (Pour et al.,

2020; Pietrzak and Rempala, 2017). This result is of particular interest since, in general, the power of the tests based on

CR-statistics is poorly understood in high dimensional problems (see, for instance the recent discussion on the Pearson

chi-square in Berrett and Samworth, 2021). The proofs are given in Section 3. Although relatively elementary, they are

moderately cumbersome and technically involved. The techniques rely on martingale methods, in particular on the Poisson

Principle of Conditioning established in Beśka et al. (1982). The result is quoted for readers’ convenience in the first part

of Section 3. Finally, in a short Appendix we give a partial proof of the conjecture on the non-decreasing efficiency (in

terms of the variance) of the modified CR-statistics vs its classical counterpart. At present, we are only able to show this

result for positive integer values of the canonical parameter λ.

2. The classical CR-statistic

For any n ≥ 1 consider iid r.v’s Xn, Xn,1, . . . , Xn,n with a discrete distribution

P(Xn = j) = pn(j), j ∈ Mn.

Denote also

p̂n(j) = Nn(j)

n
,

where

Nn(j) =
n∑

k=1

IXn,k=j, j ∈ Mn.

The CR-statistic (known also as the Cressie–Read goodness-of-fit statistic or the power divergence statistic), see Cressie

and Read (1984), has the form

CRλ(n) = n
∑

j∈Mn

pn(j)gλ

(
p̂n(j)

pn(j)

)
, λ > −1, (1)

where gλ : [0, ∞) → [0, ∞) is defined as

gλ(x) =
{

2x xλ−1
λ(λ+1)

, λ ̸= 0,

2x log x, λ = 0 (by continuity).

As already indicated in the introduction, we refer to (1) as the CR-statistic. Important examples are

• the chi-squared statistic

χ2(n) := CR1(n) = n
∑

j∈Mn

(p̂n(j)−pn(j))
2

pn(j)
,

• the log-likelihood ratio statistic

G2(n) := CR0(n) = 2n
∑

j∈Mn

p̂n(j) log
(

p̂n(j)

pn(j)

)
.

It is convenient to define the random variables Pn := pn(Xn), n ≥ 1. Note that when #Mn =: mn is finite we have

E P−1
n = mn, n ≥ 1. In such case double asymptotics, i.e. the limit when both n,mn → ∞, for the chi-square statistics was

considered in Rempała and Wesołowski (2016). In particular, for a special regime of n,mn → ∞ the limiting distribution

turns out to be Poissonian as asserted by the following.
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Theorem 2.1 (Rempała and Wesołowski, 2016). Assume that

n2

mn
→ η > 0, (2)

np∗
n → 0 (3)

where p∗
n = supj∈Mn

pn(j) and

1
nmn

Var P−1
n → 0. (4)

Then χ2(n) is asymptotically Poisson. More precisely,

χ̃2(n) := χ2(n)−mn√
2mn

d→
√

2
η
Pois

(
η

2

)
−
√

η

2
. (5)

Our main result of the current paper is the following extension of Theorem 2.1 to CR-statistics.

Theorem 2.2 (Poisson Asymptotics for CR-statistics). Assume that the condition (3) is satisfied. For λ ≥ 0 let

βn(r, λ) := n2 E P1−rλ
n(

E P−λ
n

)r → η > 0, for r = 1, 2, 3. (6)

and

n
Var P−λ

n

(E P−λ
n )2

→ 0, when λ > 0, nVar log Pn → 0, when λ = 0. (7)

Then

C̃Rλ(n) := nλ
CRλ(n)−n2E Pn gλ

(
1

nPn

)

E P−λ
n

d→ gλ(2) Pois
(

η

2

)
. (8)

Thus the above theorem states that the properly normalized CR statistic is asymptotically Poisson distributed. We note

Remark 2.1. Theorem 2.2 specializes to Theorem 2.1 when λ = 1. Indeed, observe first that (4) is equivalent to (7) for
λ = 1. Then since E P−1

n = mn we see that (6) becomes

βn(1, 1) = βn(2, 1) = n2

mn
, βn(3, 1) = n2

m3
n
E P−2

n . (9)

Thus conditions (6) for r = 1, 2 and (2) coincide. Since (4) can be written as

mn

n

(
1

m2
n
E P−2

n − 1
)

→ 0

and by (2) we have mn

n
→ ∞, thus

1

m2
n
E P−2

n → 1. (10)

Consequently, (9), we imply βn(3, 1) → η.
Note that for λ = 1 the normalized CR-statistic assumes the form

C̃R1(n) =
√
2 n√
mn

χ̃2(n) + n2

mn
.

Therefore, in view of (2), the statements (8) and (5) are equivalent.

For the log-likelihood ratio statistics G2(n), inserting λ = 0 in Theorem 2.2 we get

Corollary 2.3. Assume (3) and

n2
E Pn → η. (11)

If

nVar log Pn → 0

then

G2(n)+2nE log nPn
4 log 2

d→ Pois
(

η

2

)
.

An illustration of this result with the underlying distribution being uniform is given in Fig. 1.
The proof of Theorem 2.2 based on the Poissonian version (see Beśka et al., 1982) of the principle of conditioning

(see Jakubowski, 1986) is given in Section 4. In this proof we will use also the following decomposition of CR-statistics.
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Fig. 1. Empirical probabilities (shown as bars) of (G2(n) + 2nE log nPn)/(4 log 2) based on n = 10,000 realizations and the uniform distribution on

the set {1, . . . , n2/5} vs. the Poisson distribution probabilities (shown as circles) with the parameter µn = 2.509 being the average of empirical

means. The parameter of the asymptotic Poisson distribution is η/2 = 2.5.

Proposition 2.4. For any CR-statistic we have

CRλ(n) = Uλ(n)

nλ + Sλ(n) (12)

where

Uλ(n) =
∑

j∈Mn

gλ(Nn(j))

(pn(j))λ
and Sλ(n) = n

∑

1≤k≤n

pn(Xn,k) gλ

(
1

npn(Xn,k)

)
. (13)

Proof of Proposition 2.4. Note that gλ satisfies

gλ(ab) = bλ+1gλ(a) + agλ(b), a, b ≥ 0. (14)

Therefore, taking a = Nn(j) and b = (npn(j))
−1 in (14) we see that CR-statistic can be rewritten as

CRλ(n) = 1

nλ

∑

j∈Mn

gλ(Nn(j))

(pn(j))λ
+
∑

j∈Mn

Nn(j)gλ((npn(j))
−1).

Observe that

∑

j∈Mn

Nn(j)f (j) =
n∑

k=1

f (Xn,k)

for arbitrary function f . This identity for f (x) = gλ((npn(x))
−1) applied to the second sum above yields (12). □

In the following Remark we illustrate (12) for λ = 1, that is, for the important special case of the chi-square statistic.

Remark 2.2. When λ = 1 the decomposition (12) reads

χ2(n) = U1(n)+nS1(n)

n
, (15)

with

U1(n) =
∑

j∈Mn

N2
n (j)−Nn(j)

pn(j)
.

Note that N2
n (j) − Nn(j) =

∑
1≤k̸=ℓ≤n IXn,k=Xn,ℓ=j and thus, changing the order of summations, we get

U1(n) =
∑

1≤k̸=ℓ≤n

IXn,k=Xn,ℓ

pn(Xn,k)
.

Also

nS1(n) =
∑

1≤k≤n

1
pn(Xn,k)

− n2.

Consequently, (15) agrees with the decomposition of the chi-square statistics from Rempała and Wesołowski (2016).
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We note that (see Rempała and Wesołowski, 2016)

Cov(U1(n), S1(n)) = 0 (16)

and, consequently, that the variance of the χ2(n) statistic is never smaller than that of U1(n)/n for any finite n > 1. In
fact, we conjecture that in general, for any λ ≥ 0

Cov(Uλ(n), Sλ(n)) ≥ 0, (17)

and hence that the variance of CRλ(n) is never smaller than that of Uλ(n)/n
λ for n > 1. However, at present we only know

(17) to be true for positive integer values of λ. The proof is provided in Appendix. The inequality (17) suggests that to
reduce the asymptotic variance of the goodness-of-fit statistics one could replace CRλ(n) with Uλ(n).

Remark 2.3. Applying representation (12) to the normalized CR-statistics, as given in (8), after elementary algebra one
gets

C̃Rλ(n) = Uλ(n)+nλSλ(n)

E P−λ
n

,

where Sλ(n) = Sλ(n) − E Sλ(n). Since Var nλSλ(n) = nVar P−λ
n , we see that (7) combined with (6) for r = 2 implies

lim
n→∞

Var
nλ Sλ(n)

E P−λ
n

→ 0,

whence under assumption of Theorem 2.2

C̃Rλ(n) = Ũλ(n) + oP(n), with Ũλ(n) = Uλ(n)

E P−λ
n

(18)

where Uλ(n) is defined in the first part of (13).

Note that the definition of C̃Rλ(n), see (8) (or Ũλ(n), see (18)), implicitly assumes that E P−λ
n < ∞. When λ ≥ 1 this

condition implies that Mn is a finite set, since

E P−λ
n ≥ E P−1

n = #Mn.

This is in contrast to the case 0 ≤ λ < 1 when distributions with infinite support Mn and finite E P−λ
n do exist. Consider,

for instance, the following

Example 2.1. Let Xn ∼ geo(αn), i.e. let Xn follow the geometric distribution. Then P(Xn = j) = αn(1 − αn)
j for j ≥ 0. In

this case EP
γ
n < ∞ only if γ > −1 and

E Pγ
n = α

1+γ
n

(1−αn)1+γ . (19)

Consequently, C̃Rλ(n) is well-defined for non-negative λ only when E P−λ
n < ∞, that is, only when λ ∈ [0, 1).

Examples of Ũλ(n) statistics for λ = 1, 0 are

Ũ1(n) = 1
mn

mn∑

j=1

Nn(j)(Nn(j)−1)

pn(j)
and Ũ0(n) = 2

∑

j∈Mn

Nn(j) logNn(j).

Example 2.2 (Example 2.1 Continued). As seen above for Xn ∼ geo(αn) the statistic Ũλ(n) is only properly defined for
λ ∈ [0, 1). By (19), for λ ∈ (0, 1)

βn(r, λ) = n2α2−r
n

(
1−(1−αn)

1−λ
)r

1−(1−αn)2−rλ , r = 1, 2, 3.

In this case (3) implies nαn → 0 so that (6) cannot be satisfied for λ > 0. For λ = 0 the assumptions (3) and (11) of
Corollary 2.3 are satisfied iff n2αn → η > 0, see (19). However,

Var log pXn =Var(log αn(1 − αn)
Xn ) = log2(1 − αn)Var Xn

= 1−αn

α2
n

log2(1 − αn) = (1 − αn)

[
log(1 − αn)

1
αn

]2
→ 1,

and we see that the third assumption of Corollary 2.3 is not satisfied.

As we have just seen in Example 2.2, the assumptions of Theorem 2.2 (in particular, of Corollary 2.3) are not satisfied
for the geometric probabilities. In the next example we consider a modification of the geometric distribution for which
the assumptions of Theorem 2.2 are satisfied (see Fig. 2).
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Fig. 2. Empirical probabilities (shown as bars) of Ũ0.5(n) based on n = 1000 realizations and the geo(1/n2) distribution truncated from above at

n2 − 1 (for better comparison, the actual statistic values were slightly rounded to closest integers) vs. the Poisson distribution probabilities (shown

as circles) with the parameter µn = 0.478 being the average of empirical means. The parameter of asymptotic Poisson distribution is η/2 = 0.5.

Example 2.3. Let us take λ = 1/2 and consider mn = #(Mn) < ∞, n ≥ 1, such that (2) holds true. Then (6) specializes
to

n2 E P
1/2
n

EP
−1/2
n

→ η and n2(
EP

−1/2
n

)2 → η, (20)

and (7) becomes

1
n

(
mn −

(
E P−1/2

n

)2) → 0. (21)

Thus, under (2) it suffices to assume the first part of (20) and

n

(
mn(

EP
−1/2
n

)2 − 1

)
→ 0 (22)

to ensure that the conditions of Theorem 2.2 are satisfied.
We now consider the geometric distribution truncated from above, i.e.

pn(j) = 1−cn

1−c
mn
n

c jn, j = 0, 1, . . . ,mn − 1,

for mn such that (2) holds. We will show that then both (22) and the first relation of (20) are satisfied for some specific
choice of the sequence cn. Note that, since

EP−1/2
n =

mn−1∑

j=0

(pn(j))
1/2 =

(
1−cn

1−c
mn
n

)1/2
1−c

mn/2
n

1−c
1/2
n

and

EP1/2
n =

mn−1∑

j=0

(pn(j))
3/2 =

(
1−cn

1−c
mn
n

)3/2
1−c

3mn/2
n

1−c
3/2
n

,

then taking cn = 1 − 1

m2
n
gives after some elementary algebra

n

(
mn(

EP
−1/2
n

)2 − 1

)
= n

⎛
⎜⎝

⎛
⎝

1+
(
1− 1

m2
n

)mn/2

1+
(
1− 1

m2
n

)1/2

⎞
⎠

2

1

mn

(
1−
(
1− 1

m2
n

)mn
) − 1

⎞
⎟⎠ . (23)

To conclude that (22) holds, we apply the double inequality 1 − mx ≤ (1 − x)m ≤ 1 − mx + m(m−1)

2
x2 true for 0 < x < 1.

(The proof for integer m ≥ 1 follows by induction.) In particular, we get

1

mn

(
1−
(
1− 1

m2
n

)mn
) → 1, (24)

and hence the whole expression (23) is of order n
mn

→ 0.
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Similarly, elementary algebra gives

n2 E P
1/2
n

EP
−1/2
n

=
1+
(
1− 1

m2
n

)mn/2

+
(
1− 1

m2
n

)mn

2+
(
1− 1

m2
n

)1/2
1

mn

(
1−
(
1− 1

m2
n

)mn
) n2

mn
.

Note that the first factor converges to 1 and so does the second one, by (24). Since the third one converges to η by (2),

we may therefore conclude that (20) holds.

Finally, we note that

np∗
n = n 1−cn

1−c
mn
n

= 1
n

n2

mn

1

mn

(
1−
(
1− 1

m2
n

)mn
) ,

and by (24) and (2) it follows that (3) is also satisfied. Consequently, the assertions of Theorem 2.2 hold. The illustration

for the statistic Ũ0.5(n) in this case is presented in Fig. 2.

Another simple family of distributions for which Theorem 2.2 holds true is given in the following example.

Example 2.4. Denote pn(1) = · · · = pn(kn) = an > 0 and pn(kn + 1), . . . , pn(n
2) = bn > 0. Then mn = n2 and necessarily

knan + (n2 − kn)bn = 1. Moreover, for any real s

E P−(s+1)
n =

n2∑

j=1

1
(pn(j))s

= kn
asn

+ n2−kn
bsn

.

Therefore for r = 1, 2, and 3

βn(r, λ) := n2

kn

arλ−2
n

+ n2−kn

brλ−2
n(

kn

aλ−1
n

+ n2−kn

bλ−1
n

)r .

For an = nα and kn = nβ we have bn = 1−nα+β

n2−nβ . Then we need to have α + β < 0 and β ≤ 2. Moreover, in order to

have (3) satisfied we need to have α < −1.

Then

βn(r, λ) = n2

nβ

nα(rλ−2) + (n2−nβ )rλ−1

(1−nα+β )rλ−2
(

nβ

nα(λ−1) + (n2−nβ )λ

(1−nα+β )λ−1

)r .

Note that when β − αrλ + 2α < 2rλ − 2 the leading term in the numerator is nrλ and it is also the leading term in the

denominator if only β − αλ + α < 2λ. Thus if (2 + α)λ > β + 2α + 2 then both inequalities are obviously satisfied and

thus (6) holds true with η = 1.

Note that condition (7) for λ > 0 assumes now the form

n
Var p−λ

Xn(
E p−λ

Xn

)2 = n

⎛
⎜⎝

nβ

nα(2λ−1) + (n2−nβ )2λ

(1−nα+β )2λ−1

(
nβ

nα(λ−1) + (n2−nβ )λ

(1−nα+β )λ−1

)2 − 1

⎞
⎟⎠ → 0

and we see that it holds for certain ranges of λ, α and β values. Consequently, the assumptions of Theorem 2.2 hold, for

instance, when

1. λ = 1, α = −3/2, β < 1/3,

2. λ = 2, α = −9/5, β < 1/2,

3. λ = 1/2, α < −7/5, β = 1/3.

3. The uniform CR-statistic

Note that when (pn(j))1≤j≤mn is the uniform distribution, that is pn(j) = 1
mn

, 1 ≤ j ≤ mn, we have

C̃Rλ(n) =
mn∑

j=1

gλ(Nn(j)) =: Uλ(n) (25)

Note that (4) is trivially satisfied, conditions (6) reduce to (2) and, consequently (3) follows. Therefore we have the

following corollary of Theorem 2.2.
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Corollary 3.1. Let pn(j) = 1
mn

, 1 ≤ j ≤ mn, n ≥ 1. Assume (2). Then for every λ ≥ 0

Uλ(n)
d→ gλ(2)Pois

(
η

2

)
. (26)

Even though Uλ(n) is defined here as the normalized CR-statistic for the uniform distribution, the statistic Uλ(n) may

be also considered for non-uniform distributions (pn(j))j∈Mn , possibly with infinite countable size of Mn. As we show

below, this extension is useful for instance in analyzing the power in the problem of hypothesis testing for the uniform

distribution.

We first show that under some natural regularity conditions Uλ(n) is asymptotically Poisson, also for distributions other

than uniform (and even when the support Mn is not necessarily a finite set).

Theorem 3.2. Assume (3) and (11) hold true for (pn(j))j∈Mn , n ≥ 1.

Then for λ ≥ 0 the convergence (26) holds true.

Proof. Observe that gλ(0) = gλ(1) = 0. Therefore,

Uλ(n) = gλ(2)
∑

j∈Mn

INn(j)=2 +
∑

j∈Mn

gλ(Nn(j)) INn(j)≥3.

Since Nn(j) ∼ Bin(n, pn(j)), j ∈ Mn,

P(∃ j ∈ Mn : Nn(j) ≥ 3) ≤
∑

j∈Mn

P(Nn(j) ≥ 3) ≤
∑

j∈Mn

(npn(j))
3

3! ≤ np∗
n

3! n2
E Pn → 0.

Therefore,

P

⎛
⎝∑

j∈Mn

gλ(Nn(j)) INn(j)≥3 > ε

⎞
⎠ ≤ P(∃ j ∈ Mn : Nn(j) ≥ 3) → 0.

Whence, it suffices to show that

Kn,2 :=
∑

j∈Mn

INn(j)=2
d→ Pois

(
η

2

)
. (27)

Since

E Kn,2 =
(
n

2

)
E Pn(1 − Pn)

n−2

we have

(1 − p∗
n)

n−2

(
n

2

)
E Pn ≤ E Kn,2 ≤

(
n

2

)
E Pn.

By (3)

(1 − p∗
n)

n−2 =
(
1 − np∗

n

n

)n−2

→ 1

and thus (11) implies E Kn,2 → η

2
. Consequently, convergence in (27) follows from Theorem III.3.1 of Kolchin et al.

(1978). □

Below we discuss some of its implications and relevant examples. First, we note that when λ = 0 or λ = 1 Theorem 3.2

gives the following.

Corollary 3.3. Assume (3) and (11). Then
∑

1≤k≤n logNn(Xn,k)

2 log 2

d→ Pois
(

η

2

)

and
∑

1≤k≤n Nn(Xn,k)−n

2

d→ Pois
(

η

2

)
.

Proof. For any function f we have
∑

j∈Mn

Nn(j) f (Nn(j)) =
∑

1≤k≤n

f (Nn(Xn,k)).

22



G. Rempała and J. Wesołowski Journal of Statistical Planning and Inference 223 (2023) 15–32

Thus taking f (x) = log x and f (x) = x we obtain

U0(n) = 2
∑

j∈Mn

Nn(j) log Nn(j) = 2
∑

1≤k≤n

log Nn(Xn,k)

and

U1(n) + n =
∑

j∈Mn

(Nn(j))
2 =

∑

1≤k≤n

Nn(Xn,k).

Application of Theorem 3.2 concludes the proof. □

The following are simple examples when Theorem 3.2 is applicable.

Example 3.1 (Hypothesis Testing). For a ∈ [0, 1/2) let DPD(a,mn) be the discrete power distribution defined by

pn(j) = j−a

Cn(a)
, j ∈ {1, . . . ,mn}, where Cn(a) =

mn∑

j=1

j−a ≃ m1−a
n

1−a
.

Note that DPD(0,m) = U({1, . . . ,m}) the uniform distribution on {1, . . . ,m}. Since

E Pn =
∑

j∈Mn

p2n(j) = 1

C2
n (a)

mn∑

j=1

1

j2a
= Cn(2a)

C2
n (a)

≃ m1−2a
n

1−2a

(
1−a

m1−a
n

)2
= (1−a)2

mn(1−2a)
,

for mn ≃ n2/γ we see that (11) holds, as

n2
E Pn → ηγ (a) = γ (1−a)2

1−2a
.

Further, noting that p∗
n = C−1

a we see that (3) holds also, since

np∗
n = n

Ca
≃ n(1−a)

m1−a
n

= (1 − a) n√
mn

1

m
1/2−a
n

→ 0 if only a < 1/2.

Consequently, by Theorem 3.2 we get

Uλ → gλ(2) Pois(ηγ (a)/2), a ∈ [0, 1/2).
Let µ be the probability distribution given by pn(j), j = 1 . . . ,m and assume that one wants to test the hypothesis

H0 : µ = U({1, . . . ,m}) against the alternative H1 : µ ∈ {DPD(a,m), a ∈ (0, 1/2)}, where the sample from µ is of size
n = √

γm for γ > 0. In view of the above discussion the test statistic Uλ/gλ(2) is asymptotically Pois(γ /2) under H0 and
asymptotically Pois(ηγ (a)/2), a ∈ (0, 1/2), under the alternatives.

Recall that for Nb ∼ Pois(b) we have

P(Nb ≥ j) = Γ (b,j)

(j−1)! , where Γ (b, j) =
∫ b

0

t j−1 e−t dt is the incomplete Gamma function.

The asymptotic critical region at the significance level α for testing H0 has the form K = [gλ(2)kγ /2, ∞), where

kγ /2 = inf{k ∈ {1, 2, . . .} : P(Nγ /2 ≥ k) ≤ α}.
Then the asymptotic power function of the test is

fγ (a) = P(Nηγ (a)/2 ≥ kγ /2) = Γ (ηγ (a)/2,kγ /2)

(kγ /2−1)! , a ∈ [0, 1/2).

Take α = 0.01 and consider four choices of γ ∈ {1, 4, 10, 20}. Then k1/2 = 3, k2 = 6, k5 = 11 and k10 = 18. The
graphs of f1, f4, f10, f20 are presented in Fig. 3.

The comparison of the Poisson power function for α ≈ 0.05, (f2.732 and k1.366 = 4) with the empirical power for
different values of n is presented in Fig. 4. Since the rate of convergence of the empirical power seems to only marginally
depend on the value of λ only a single asymptotic curve was plotted (solid line).

Example 3.2 (Poisson vs Gaussian Asymptotic Power). In this example we compare the Poisson and Gaussian asymptotics
of the CR-statistics for testing the hypothesis that the observations are from the uniform distribution (see Example 3.1).
To illustrate the general problem concisely, we focus on the most popular case of λ = 1, i.e. the chi-square test statistic.

Let (pn(j))1≤j≤mn be the uniform distribution, that is pn(j) = 1
mn

, 1 ≤ j ≤ mn. Moreover, instead of (2) assume that

n2

mn
= η > 0. (28)

Since U1(n) = χ2
n , by Corollary 3.3,

χ2
n

d→ 2Pois(
η

2
). (29)
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Fig. 3. Test power functions of Example 3.1.

Fig. 4. Empirical power functions of Example 3.1 for different values of n and their Poisson approximation for α ≈ 0.05. The empirical power value

is based on 2000 realizations.

On the other hand it is known (see Cor. 2.2 in Cressie and Read (1984) or Cor. 3.2 in Rempała and Wesołowski (2016))
that in case n/mn → a > 0

χ2
n−mn√
2mn

d→ N(0, 1). (30)

In practice it means that for large mn and n and the value of η in (28) much smaller than mn one should use the Poisson
asymptotics (29). Note that if η ≈ amn, with relatively small a > 0, the correct asymptotics is (30). Let us see what
happens when (28) holds true but instead of the Poissonian asymptotics (29) one uses incorrect Gaussian asymptotics
(30) to construct the critical region at the given significance level α. Such asymptotic critical region has the form

Kα =
[
mn + z1−α

√
2mn, ∞

)
.

where zq denotes the qth quantile of the standard normal law. By construction for Z ∼ N(0, 1) we have therefore

P(Z ≥ mn + z1−α

√
2mn) ≈ α. However, under the Poissonian asymptotics

α(n,mn) := P(Kα) = P

(
Nη/2 ≥

⌈
mn+z1−α

√
2mn

2

⌉)
,

where η is defined in (28) and Nη/2 ∼ Pois(η/2). For illustration, the plot of α(n,mn) corresponding to α = 0.1 is presented
in Fig. 5. As we see from the plot, α(n,mn) is close to the nominal value alpha = 0.1 only for η ≈ mn even for relatively

small sample size n. Of course, when η ≈ mn and mn is large we have 2Nmn/2

d
≈ N(mn, 2mn). Note that the calculation of

the critical region using Gaussian approximation results in a highly conservative test as measured by the (correct) Poisson
asymptotics: the graph is well below the level 0.1.

In Fig. 6 we compared the power function of the test based on the Poisson asymptotics with the power function based
on the Gaussian ones. We consider, as in Example 3.1, the uniform H0 and the alternatives from the DPD class. The size
of both tests is α = 0.1, while measured respectively with respect to the Poisson or Gaussian asymptotics. However in
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Fig. 5. The size α(n,mn) of the Gaussian based test of size α = 0.1 under Poissonian asymptotics for different values of η = n2

mn
and mn = 50.

Fig. 6. The power function based on the Poisson asymptotics for the critical region for α = 0.1 based on: (1) the Poisson asymptotics (dotted line,

fη) vs. (2) the Gaussian asymptotics (solid line, gη). Each panel is for different values of η = n2

mn
∈ {1, 10, 30, 48}. The value of mn = 50 is common

for all panels.

both cases we use suitable Poisson asymptotics (see again Example 3.1), to construct power functions. Fig. 6 shows that
for η even relatively large (η = 1, 10, 30) when compared with mn = 50 the power function for the Gaussian based test
behaves much worse (it is close to zero on almost all alternatives) than the power function for the Poisson based test.
On the other hand, when η approaches mn (η = 48) these two power functions become closer and closer and for η = 50
they are indistinguishable (of course, such values of η yield rather Gaussian than Poisson asymptotics).

Example 3.3 (Continuation of Example 2.1). For Xn from the geometric distribution geo(αn) we have p∗
n = αn and, by (19),

E Pn = α2
n

1−(1−αn)2
= αn

2−αn
.

Therefore (3) and (11) are satisfied under the assumption n2αn → 2η and thus the assertion of Theorem 3.2 follows. This
is illustrated in Fig. 7 for λ = 0 and in Fig. 8 for λ = 2.

Example 3.4. Let Xn be of the Poisson Pois(n4) distribution, n ≥ 1. Then

p∗
n = e−n4 n4n

4

(n4)! , n ≥ 1,

and, by the Stirling approximation,

np∗
n ≃ 1

n
√
2π

→ 0.
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Fig. 7. Empirical probabilities (bars) of U0(n) based on 1000 realizations for n = 10,000 from the geometric distribution geo(5/n2) vs. the probabilities

(circles) of Poisson distribution with its parameter µn = 1.282 being the average of empirical means. The parameter of asymptotic Poisson distribution

is η/2 = 1.25.

Fig. 8. Empirical probabilities (bars) of U2(n) based on 10,000 realizations for n = 10,000 from the geometric distribution geo(9/n2) vs. the

probabilities (circles) of Poisson distribution with its parameter µn = 2.214 being the average of empirical means. The parameter of asymptotic

Poisson distribution is η/2 = 2.25.

Moreover,

E Pn =
∑

j≥0

(
e−n4 n4j

j!

)2
= e−2n4

∑

j≥0

(n8)j

(j!)2 = e−2n4 I0(2n
4), n ≥ 1,

where I0 is the modified Bessel function of the first kind. Since I0(s) ≃ es√
2πs

(see e.g. 9.7.1 in Abramovitz and Stegun,

1964), we have

n2
E Pn → 1

2
√

π
.

Thus, by Theorem 3.2 we conclude that
Uλ

gλ(2)

d→ Pois
(

1

2
√
2π

)
.

4. Proofs

4.1. Poisson principle of conditioning

The proof relies on a martingale technique known as the principle of conditioning discussed in general in Jakubowski
(1986). We apply its Poisson version from Beśka et al. (1982) which is cited here for readers’ convenience.

Theorem 4.1. Let (Zn,k, k = 1, . . . , n)n≥1 be a double sequence of non-negative random variables adapted to a row-wise

increasing double sequence of σ -fields (Gn,k, k = 0, 1, . . . , n)n≥0 (with Gn,0 being a trivial σ -field, n ≥ 1). Assume that for
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n → ∞

max
1≤k≤n

E(Zn,k|Gn,k−1)
P→ 0, (31)

n∑

k=1

E(Zn,k|Gn,k−1)
P→ ζ > 0, (32)

and for any ε > 0

n∑

k=1

E(Zn,kI|Zn,k−1|>ε|Gn,k−1)
P→ 0. (33)

Then

n∑

k=1

Zn,k
d→ Pois (ζ ) .

4.2. Proof of Theorem 2.2

In view of Remark 2.3 and formula (18) it suffices to focus only on the asymptotic behavior of Ũλ(n). Note that
gλ(0) = gλ(1) = 0 and that the function g̃λ := gλ/gλ(2) is non-decreasing on the set T = {0} ∪ [1, ∞). Let us introduce an
auxiliary function

hλ(x) = g̃λ(x + 1) − g̃λ(x), x ∈ T (34)

and note that 0 ≤ hλ(x) ≤ Cbx on T with some constants C > 0 and b > 1 (possibly depending on λ ≥ 0). Moreover,
since for x > 0

h′
λ(x) = 2

gλ(2)

{
(x+1)λ−xλ

λ
> 0, λ > 0,

log (x−1 + 1) > 0, λ = 0

the function hλ is nondecreasing on [1, ∞) for any λ ≥ 0 (actually, it is non-decreasing on T ).
Recall that for any n ≥ 1 the distribution of Xn is given by P(Xn = j) = pn(j), j ∈ Mn and that we define Pn := pn(Xn).

Note that for any function f and a random vector Y, such that Y and Xn are independent
∑

j∈Mn

f (Y, j) = E

(
f (Y,Xn)

Pn
|Y
)

,

where the sum is assumed to be finite. Therefore, (see (18)) we may write

Ũλ(n) = 1

E P−λ
n

E

(
gλ(Nn(Xn))

Pλ+1
n

|Xn

)

where Xn = (Xn,1, . . . , Xn,n). Denote

Ln,k = 1

E P−λ
n

E

(
g̃λ(Nn,k(Xn))−g̃λ(Nn,k−1(Xn))

Pλ+1
n

|Xn

)
, k = 1, . . . , n

with Nn,k(j) =
∑k

i=1 IXn,i=j, k = 1, . . . , n, and Nn,0(j) = 0. In particular, Nn,n = Nn, which was considered earlier.
Then

Ũλ(n) = gλ(2)

n∑

k=1

Ln,k.

We will prove that
∑n

k=1 Ln,k converges in law to a Poisson distribution by verifying the conditions of Theorem 4.1.
First, we observe that

Ln,k = E

(
Gn,k(Xn)

IXn,k=Xn

Pn
|Xn

)
, (35)

where Gn,k(j) = hλ(Nn,k−1(j))

(pn(j))λ
1

E P−λ
n

and

E(Ln,k|Xn,k−1) = E
(
Gn,k(Xn)|Xn

)
. (36)

Second, we observe that

E Lrn,k = EGr
n,k(Xn). (37)
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Indeed, let Zn,1, . . . , Zn,r , Xn,1, . . . , Xn,n, Xn be iid rv’s. Then due to (35) we can write

E Lrn,k = E

r∏

i=1

E

(
Gn,k(Zn,i)

IXn,k=Zn,i

pn(Zn,i)
|Xn

)

and by the conditional independence of Gn,k(Zn,i)
IXn,k=Zn,i

pn(Zn,i)
, i = 1, . . . , r , given Xn

E Lrn,k = E

r∏

i=1

Gr
n,k(Zn,i)

IXn,k=Zn,i

pn(Zn,i)
= E

Gr
n,k

(Zn,1)

(pn(Zn,1))
r IZn,1=···=Zn,r=Xn,k

and thus (37) follows due to E(IZn,1=···=Zn,r=Xn,k |Xn,k−1, Zn,1) = (pn(Zn,1))
r .

Third, we observe that

n∑

k=1

E Lrn,k → η

2
, r = 1, 2, 3. (38)

Indeed, since the conditional distribution of Nn,k−1(Xn) given Xn is binomial Bin(k − 1, Pn), we have

E(hr
λ(Nn,k−1(Xn))|Xn) =

n∑

k=1

k−1∑

i=1

hr
λ(i)

(
k−1

i

)
P i
n(1 − Pn)

k−1−i =
n−1∑

i=1

hr
λ(i) P

i
n

n∑

k=i+1

(
k−1

i

)
(1 − Pn)

k−1−i

=Pn

n∑

k=2

(k − 1)(1 − Pn)
k−2 +

n−1∑

i=2

hr
λ(i) P

i
n

n∑

k=i+1

(
k−1

i

)
(1 − Pn)

k−1−i.

Consequently, (37) together with the definition of Gn,k, yield

n∑

k=1

E Lrn,k = I1(n, r) + I2(n, r),

where

I1(n, r) = E P1−rλ
n

∑n
k=2 (k−1)(1−Pn)

k−2

(
E P−λ

n

)r

and

I2(n, r) = E P−rλ
n

∑n−1
i=2

hr
λ
(i) P in

∑n
k=i+1 (k−1

i )(1−Pn)
k−1−i

(
E P−λ

n

)r .

Now, I1(n, r) → η

2
for r = 1, 2, 3 which follows from (6) in view of the double inequality

(1 − p∗
n)

n−1
2n

βn(r, λ) ≤ I1(n, r) ≤ n−1
2n

βn(r, λ).

On the other hand, since

n−1∑

i=2

hr
λ(i) P

i
n

n∑

k=i+1

(
k−1

i

)
(1 − Pn)

k−1−i ≤ CPnn
2

n−1∑

i=2

(brp∗
nn)

i−1

for sufficiently large n, i.e. such that brnp∗
n ∈ (0, 1), we get

0 ≤ I2(n, r) ≤ C βn(r, λ)

∞∑

i=1

(brnp∗
n)

i = Cβn(r, λ)
brnp∗

n

1−brnp∗
n

→ 0.

Thus (38) is established.

Now we are ready to verify conditions (31), (32) and (33).

Ad (31). Since hλ is non-decreasing we get

max
1≤k≤n

E(Ln,k|Xn,k−1) = E
(
Gn,n(Xn)|Xn

)
.

Note that

E
hλ(Nn,n−1(Xn))

Pλ
n

= E
E(hλ(Nn,n−1(Xn))|Xn)

Pλ
n

= E

∑n−1
i=1

hλ(i)(
n−1
i )P in(1−Pn)

n−1−i

Pλ
n

≤ C
bnp∗

n

1−bnp∗
n
E P−λ

n
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for n sufficiently large. Consequently,

0 ≤ E max
1≤k≤n

E(Ln,k|Xn,k−1) ≤ 1

E P−λ
n

C
bnp∗

n

1−bnp∗
n
E P−λ

n = C
bnp∗

n

1−bnp∗
n

→ 0

and (31) follows.

Ad (32). Due to (38) for r = 1, in order for (32) to hold it suffices to show that

Var

n∑

k=1

E(Ln,k|Xn,k−1) → 0.

Consider Yn
d= Xn such that Yn, Xn,Xn are independent. Then by (36) it follows that for any 1 ≤ k, ℓ ≤ n

E(Ln,k|Xn,k−1)E(Ln,ℓ|Xn,k−1) = E(Gn,k(Xn)|Xn)E(Gn,ℓ(Yn)|Xn),

Consequently,

Var

n∑

k=1

E(Ln,k|Xn,k−1)

=
∑

1≤k,ℓ≤n

{
E[E(Gn,k(Xn)|Xn)E(Gn,ℓ(Yn)|Xn)] − EGn,k(Xn)EGn,k(Yn)

}
.

Thus, conditional independence of Gn,k(Xn) and Gn,ℓ(Yn) given Xn, yields

Var

n∑

k=1

E(Ln,k|Xn,k−1) =
n∑

k,ℓ=1

Cov(Gn,k(Xn), Gn,ℓ(Yn)). (39)

For k = ℓ we have

Cov(Gn,k(Xn),Gn,k(Yn))

= E PnVar(Gn,k(Xn)|Xn) + E IXn ̸=YnCov(Gn,k(Xn),Gn,k(Yn)|Xn, Yn). (40)

By definition of Gn,k(Xn) we can write

E PnVar(Gn,k(Xn)|Xn) ≤ E PnE(G
2
n,k(Xn)|Xn)

= 1(
E P−λ

n

)2E
E(h2

λ
(Nn,k−1(Xn))|Xn)

P2λ−1
n

≤ E
C
∑k−1

i=1
b2i(k−1

i )P in

P2λ−1
n

(
E p−λ

Xn

)2 .

Therefore, changing the order of summation, we get

n∑

k=1

E PnVar(Gn,k(Xn)|Xn) ≤ C
∑n−1

i=1
b2iE P i+1−2λ

n ni+1

(
E P−λ

n

)2

≤ Cβn(2,λ)

n

n−1∑

i=1

(b2np∗
n)

i ≤ Cβn(2,λ)

n

b2np∗
n

1−b2np∗
n

→ 0.

Now, consider the second part of (40). Note that on the set {Xn ̸= Yn} we have

Cov(Gn,k(Xn), Gn,k(Yn)|Xn, Yn)

= 1

(E P−λ
n )2

1

PnP
′
n
Cov

(
hλ(Nn,k−1(Xn)), hλ(Nn,k−1(Yn))|Xn, Yn

)
,

where P ′
n = pn(Yn), i.e. P

′
n

d= Pn and Pn and P ′
n are independent.

Since the vector (Nn,k−1(i), Nn,k−1(j)) for i ̸= j has a multinomial distribution, it follows that its two components
are negatively associated (NA). As any non-decreasing (integrable) functions of NA random variables are
negatively correlated1 the above right-hand side is non-positive, and it thus follows that the second summand
in (40) is also non-positive.
For k ̸= ℓ we have

Cov(Gn,k(Xn),Gn,ℓ(Yn)) = E PnCov(Gn,k(Xn), Gn,ℓ(Xn)|Xn) + E IXn ̸=YnCov(Gn,k(Xn),Gn,ℓ(Yn)|Xn, Yn). (41)

We conclude that the second term is non-positive due to the NA property described above. For k < ℓ in view
of the Schwartz inequality and monotonicity of hλ the first term can be bounded as follows

E PnCov(Gn,k(Xn), Gn,ℓ(Xn)|Xn) ≤ E PnE(G
2
n,ℓ(Xn)|Xn).

1 See, e.g., Joag-Dev and Proschan (1983) for some relevant facts of the theory of NA random variables.
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Consequently,

2
∑

1≤k<ℓ≤n

E PnCov(Gn,k(Xn), Gn,ℓ(Xn)|Xn) ≤ 2

n∑

ℓ=2

(ℓ − 1)E PnE(G
2
n,ℓ(Xn)|Xn)

Thus, similarly as before we get

2
∑

1≤k<ℓ≤n

E PnCov(Gn,k(Xn), Gn,ℓ(Xn)|Xn) ≤ C
∑n−1

i=1
b2iE P i+1−2λ

n ni+2

(
E P−λ

n

)2 ≤ Cβn(2, λ)
b2np∗

n

1−b2np∗
n

→ 0.

Collecting the above results

Var

n∑

k=1

E(Ln,k|Xn,k−1)

≤
n∑

k=1

E PnCov(Gn,k(Xn),Gn,k(Yn)|Xn) +
∑

1≤k̸=ℓ≤n

E PnCov(Gn,k(Xn), Gn,ℓ(Yn)|Xn, Yn) → 0,

and thus condition (32) is verified.

Ad (33). Due to (38) we have

E

n∑

k=1

E(Ln,kI|Ln,k−1|>ε|Xn,k−1) =
n∑

k=1

E Ln,kI|Ln,k−1|>ε

≤ ε−2

(
n∑

k=1

E Ln,k − 2

n∑

k=1

E L2n,k +
n∑

k=1

E L3n,k

)
→ 0

and (33) also holds.

By Theorem 4.1 we conclude that
∑n

k=1 Ln,k converges in law to the required Poisson distribution. □
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Appendix. The covariance conjecture

We consider here the conjecture (17) from the main body of the paper. First, we prove the equivalent representation
of Cov(Uλ(n), Sλ(n)) valid for any λ ≥ 0. With the help of this representation, we show that (17) holds for positive integer
values of λ. Unfortunately, we are presently unable to extend this result to arbitrary nonnegative λ.

A.1. Covariance representation

Lemma A.1. For any λ ≥ 0

Cov(Uλ(n), Sλ(n)) = E
{
P−λ
n

(
Hλ

(
P−1
n

)
− EHλ

(
P−1
n

))
(gλ(Bn−1 + 1) − gλ(Bn−1))

}
, (42)

where Hλ(x) = gλ(x)

x
, x > 0, and the conditional distribution PBn−1|Xn ∼ Bin(n − 1, Pn).

Proof. By symmetry and bi-linearity of the covariance operator we get

Cov(Uλ(n), Sλ(n))

=n1−λ
∑

j∈Mn

Cov
(
p−λ
n (j) gλ(Nn(j)), Hλp

−1
n (Xn,n)

)

=n1−λ

⎛
⎝∑

j∈Mn

E p−λ
n (j) gλ(Nn(j))Hλ(p

−1
n (Xn,n)) − EHλ(p

−1
n (Xn,n))

∑

j∈Mn

E p−λ
n (j) gλ(Nn(j))

⎞
⎠

=n1−λ
(
E P−1−λ

n gλ(Nn(Xn))Hλ(p
−1
n (Xn,n)) − EHλ(p

−1
n (Xn,n))E P−1−λ

n gλ(Xn)
)

=n1−λ
Cov

(
P−1−λ
n gλ(Nn(Xn)), Hλ(p

−1
n (Xn,n))

)

=n1−λ
E
{
P−1−λ
n Cov

(
gλ(Nn(Xn)), Hλ(p

−1
n (Xn,n))|Xn

)}
,

where the last equality follows from the fact that Hλ(p
−1
n (Xn,n)) and Xn are independent.
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But

E
(
gλ(Nn(Xn))Hλ(p

−1
n (Xn,n))|Xn

)

=E
([
gλ(Nn−1(Xn) + 1) IXn,n=Xn + gλ(Nn−1(Xn))IXn,n ̸=Xn

]
Hλ(p

−1
n (Xn,n))|Xn

)

=E(gλ(Nn−1(Xn) + 1)|Xn) PnHλ

(
P−1
n

)
+ E(gλ(Nn−1(Xn))|Xn)

(
EHλ

(
P−1
n

)
− PnHλ

(
P−1
n

))
.

Since

E(gλ(Nn(xn))|Xn) = E(gλ(Nn−1(Xn) + 1)|Xn)Pn + E(gλ(Nn−1(Xn))|Xn)(1 − Pn),

we get

Cov
(
gλ(Nn(Xn)), Hλ(p

−1
n (Xn,n))|Xn

)

= [E(gλ(Nn−1(Xn) + 1)|Xn) − E(gλ(Nn−1(Xn))|Xn)] PnHλ(P
−1
n )

− [E(gλ(Nn−1(Xn) + 1)|Xn) − E(gλ(Nn−1(Xn))|Xn)] PnEHλ(P
−1
n ),

and thus (42) follows. □

A.2. Case of the positive integer λ

Proposition A.2. Assume that λ ∈ {1, 2, . . .}. Then Cov(Uλ(n), Sλ(n)) ≥ 0.

Proof. Note that in view of the representation (42) the inequality (17) for any λ > 0 is equivalent to

E P−λ
n (P−λ

n − EP−λ
n )

[
(Bn−1 + 1)λ+1 − Bλ+1

n−1 − 1
]

≥ 0. (43)

Recall that for positive integer K

xK =
K∑

i=1

S(K , i)(x)i,

where S(K , i), i = 1, . . . , K , are Stirling numbers of the second kind and (x)i = x(x − 1) . . . (x − i + 1), i = 1, 2, . . ., are
descending Pochhammer symbols. We note that

(x + 1)i − (x)i = i (x)i−1

and thus

(x + 1)K − xK − 1 =
K∑

i=1

S(K , i)((x + 1)i − (x)i) − 1 =
K∑

i=2

iS(K , i)(x)i−1.

The left hand side of (43) for K := λ + 1 takes on the form

K∑

i=1

iS(K , i)E
{
P−λ
n

(
P−λ
n − E P−λ

n

)
E
(
(Bn−1)i−1 |Xn

)}
. (44)

Since

E
[
(Bn−1)i−1 |Xn

]
= (n − 1)i−1P

i−1
n

we get

E
{
P−λ
n

(
P−λ
n − E P−λ

n

)
E
(
(Bn−1)i−1 |Xn

)}
= (n − 1)i−1

(
E P−(2K−i−1)

n − E P−(K−i)
n E P−(K−1)

n

)

Observe that for non-negative random variable Y and r, s ≥ 0, such that E Y r+s < ∞ we have

E Y r+s ≥ E Y r
E Y s. (45)

Since each of 2K − i − 1, K − i, K − 1 is a nonnegative number, by (45) applied to Y = P−1
n we conclude that (44) is

non-negative. □

References

Berrett, Thomas B, Samworth, Richard J, 2021. USP: an independence test that improves on Pearson’s chi-squared and the G-test. arXiv preprint

arXiv:2101.10880.

Beśka, Marek, Kłopotowski, Andrzej, Słomiński, Leszek, 1982. Limit theorems for random sums of dependent d-dimensional random vectors. Probab.

Theory Related Fields 61 (1), 43–57.

31

http://arxiv.org/abs/2101.10880
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb2
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb2
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb2


G. Rempała and J. Wesołowski Journal of Statistical Planning and Inference 223 (2023) 15–32

Browning, Lauren M., Pietrzak, Maciej, Kuczma, Michal, Simms, Colin P., Kurczewska, Agnieszka, Refugia, Justin M., Lowery, Dustin J., Rempala, Grze-

gorz, Gutkin, Dmitriy, Ignatowicz, Leszek, 2018. TGF-β–mediated enhancement of TH17 cell generation is inhibited by bone morphogenetic protein

receptor 1α signaling. Sci. Signal. 11 (545).

Chen, Son Xi, Qin, Ying-Li, 2010. A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Stat. 38 (2), 808–835.

Cressie, Noel, Read, Timothy R.C., 1984. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B (Methodological) 1, 440–464.

Fienberg, Stephen E., Holland, Paul W., 1973. Simultaneous estimation of multinomial cell probabilities. J. Am. Stat. Assoc. 68 (343), 683–691.

Haberman, Shelby J., 1988. A warning on the use of chi-squared statistics with frequency tables with small expected cell counts. J. Am. Stat. Assoc.

83 (402), 555–560.

Inglot, Tadeusz, Jurlewicz, Teresa, Ledwina, Teresa, 1991. Asymptotics for multinomial goodness of fit tests for a simple hypothesis. Theory Probab.

Appl. 35 (4), 771–777.

Jakubowski, Adam, 1986. Principle of conditioning in limit theorems for sums of random variables. Ann. Probab. 5, 902–915.

Janková, Jana, Shah, Rajen D., Bühlmann, Peter, Samworth, Richard J., 2020. Goodness-of-fit testing in high dimensional generalized linear models. J.

R. Stat. Soc. Ser. B (Statistical Methodology) 82 (3), 773–795.

Joag-Dev, Kumar, Proschan, Frank, 1983. Negative association of random variables with applications. Ann. Stat. 1, 286–295.

Kim, Ilmun, 2020. Multinomial goodness-of-fit based on U-statistics: High-dimensional asymptotic and minimax optimality. J. Statist. Plann. Inference

205, 74–91.

Kim, Ilmun, Balakrishnan, Sivaraman, Wasserman, Larry, 2020. Robust multivariate nonparametric tests via projection averaging. Ann. Stat. 48 (6),

3417–3441.

Menéndez, Mari Luisa, Morales, Domingo, Pardo, Leandro, Vajda, Igor, 1998. Asymptotic distributions of ϕ-divergences of hypothetical and observed

frequencies on refined partitions. Stat. Neerlandica 52 (1), 71–89.

Mirakhmedov, Sherzod M., 2016. Asymptotic intermediate efficiency of the chi-square and likelihood ratio goodness of fit tests. arXiv preprint

arXiv:1610.04135.

Morris, Carl, 1975. Central limit theorems for multinomial sums. Ann. Statist. 165–188.

Ogata, Hiroaki, Taniguchi, Masanobu, 2009. Cressie–read power-divergence statistics for non-gaussian vector stationary processes. Scandinavian J.

Stat. 36 (1), 141–156.

Pérez, T., Pardo, J.A., 2002. Asymptotic normality for the Kφ-divergence goodness-of-fit tests. J. Comput. Appl. Math. 145, 301–317.

Pietrzak, Maciej, Rempala, Grzegorz A., 2017. Asymptotic approaches to discovering cancer genomic signatures. In: Handbook of Statistics, vol. 37.

Elsevier, pp. 23–36.

Pietrzak, Maciej, Rempała, Grzegorz A., Seweryn, Michał, Wesołowski, Jacek, 2016. Limit theorems for empirical Rényi entropy and divergence with

applications to molecular diversity analysis. TEST 4, 1–20.

Pour, Ali Foroughi, Pietrzak, Maciej, Dalton, Lori A., Rempała, Grzegorz A, 2020. High dimensional model representation of log-likelihood ratio: binary

classification with expression data. BMC Bioinf. 21, 1–27.

Rempała, Grzegorz A., Wesołowski, Jacek, 2016. Double asymptotics for the chi-square statistic. Statistics and Probability Letters 119, 317–325.

Steck, George P., 1957. Limit theorems for conditional distributions. Univ. California Publ. Statist. 2 (12), 237–284.

Tumanyan, S. Kh, 1956. Asymptotic distribution of the chi-square criterion when the number of observations and number of groups increase

simultaneously. Teor. Veroyat. Yeyo Primen. 1 (1), 131–145.

32

http://refhub.elsevier.com/S0378-3758(22)00067-2/sb3
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb3
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb3
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb3
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb3
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb4
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb5
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb6
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb7
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb7
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb7
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb8
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb8
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb8
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb9
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb10
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb10
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb10
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb11
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb12
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb12
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb12
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb13
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb13
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb13
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb14
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb14
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb14
http://arxiv.org/abs/1610.04135
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb16
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb17
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb17
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb17
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb18
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb19
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb19
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb19
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb20
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb20
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb20
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb21
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb21
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb21
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb22
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb23
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb24
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb24
http://refhub.elsevier.com/S0378-3758(22)00067-2/sb24

	Poisson limit theorems for the Cressie–Read statistics
	Introduction
	The classical CR-statistic
	The uniform CR-statistic
	Proofs
	Poisson principle of conditioning
	Proof of gp

	Acknowledgments
	Appendix. The covariance conjecture
	Covariance representation
	Case of the positive integer 

	References


