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1. Introduction

The “double-asymptotic” paradigm of data analysis in which the parameter space increases with the sample size
seems increasingly important in the modern era of “big-data” statistics. Perhaps the most natural example is the high
dimensional multinomial model where the number of categories can grow with, and possibly exceed, the sample size.
In the context of statistical goodness-of-fit testing for survey responses, such high dimensional multinomial problem
was considered already in Fienberg and Holland (1973) and then studied in more detail, for instance, in Morris (1975)
and Cressie and Read (1984).

The double-asymptotic paradigm is also natural in many statistical problems of modern genomic research where often
the number of observed outcomes explicitly depends upon the size of a collected sample. In the last two decades, a
great deal of effort has been dedicated towards understanding how to extend some of the results of classical inferential
statistical analysis to such settings. Several examples in molecular studies were given, for instance, in Browning et al.
(2018) or Pietrzak et al. (2016) and both the goodness of fit and hypothesis testing in double-asymptotic models were
recently considered in Chen and Qin (2010), Kim et al. (2020), Jankova et al. (2020).

Motivated by these and other similar applications where the classical goodness-of-fit tests often fail (Haberman, 1988;
Kim, 2020), we establish in this paper some general results for the class of the so-called multinomial Cressie-Read (CR)
goodness-of-fit statistics (Cressie and Read, 1984) (and some of its close relatives) for triangular arrays of discrete random
variables for which the number of classes m, is either infinite or grows with the sample size n.

In statistical practice, it is often assumed that the CR goodness-of-fit statistics that are asymptotically (as n — oo) chi-
square distributed (for instance, the Pearson chi-square, log-likelihood ratio, or the Freeman-Tukey statistic), must be also
asymptotically normal when both m,, n — oo. Although this assumption is indeed often warranted, see e.g. Tumanyan
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(1956), Cressie and Read (1984), Menéndez et al. (1998), Inglot et al. (1991), Pérez and Pardo (2002), Ogata and Taniguchi
(2009), Mirakhmedov (2016), there are also instances when it is clearly false. A recent example was given, for instance,
in the paper Rempata and Wesotowski (2016) where it was shown that when m, is of order n? the Pearson chi-square
statistic is asymptotically Poisson (in the case of a uniform distribution this result was already noted much earlier in Steck
(1957)). In the current paper we show that the Poisson limit result extends to a broad sub-class of the CR-statistics that
includes, for example, a log-likelihood ratio statistic. We are currently unaware of any other similar asymptotic results
for the CR goodness-of-fit statistics.

The paper is organized as follows. In the next section we present our main result on the Poisson limit of the CR-statistics
when both the sample size and the number of multinomial classes increase to infinity. We show that our result extends in
particular the Pearson chi-square double-asymptotic theorem from Rempata and Wesolowski (2016). We also give some
additional examples and numerical illustrations. In the following section we consider a closely related class of CR-statistics
(dubbed uniform CR-statistics) that arises naturally when analyzing power of the goodness of fit testing of the uniform
distribution against certain class of alternatives — an important problem in high dimensional signal detection (Pour et al.,
2020; Pietrzak and Rempala, 2017). This result is of particular interest since, in general, the power of the tests based on
CR-statistics is poorly understood in high dimensional problems (see, for instance the recent discussion on the Pearson
chi-square in Berrett and Samworth, 2021). The proofs are given in Section 3. Although relatively elementary, they are
moderately cumbersome and technically involved. The techniques rely on martingale methods, in particular on the Poisson
Principle of Conditioning established in Beska et al. (1982). The result is quoted for readers’ convenience in the first part
of Section 3. Finally, in a short Appendix we give a partial proof of the conjecture on the non-decreasing efficiency (in
terms of the variance) of the modified CR-statistics vs its classical counterpart. At present, we are only able to show this
result for positive integer values of the canonical parameter A.

2. The classical CR-statistic

For any n > 1 consider iid r.v's X,, Xp.1, - . ., Xp.n With a discrete distribution
P(Xn = J) = pa(j), J € Ma.
Denote also
IOES

where

n
Nli) =Y Iyumjs J € My,
k=1

The CR-statistic (known also as the Cressie-Read goodness-of-fit statistic or the power divergence statistic), see Cressie
and Read (1984), has the form

CR(n)=nY _ pulj gx(ﬁgﬁ’,ﬁi), A > -1, (1)
JjEMn

where g; : [0, 00) — [0, 00) is defined as

X -1
g =1 o A70 -
2xlog x, A = 0 (by continuity).

As already indicated in the introduction, we refer to (1) as the CR-statistic. Important examples are
e the chi-squared statistic

X 2(n) :== CRy(n _nz (Pn()) Pn(l

Jj€Mn

o the log-likelihood ratio statistic
G?(n) := CRy(n) = 2n Zp,, )log (g“gi)
JjeMy

It is convenient to define the random variables P, := p,(X;), n > 1. Note that when #M, =: m, is finite we have
EP, ! =my,n > 1.In such case double asymptotics, i.e. the limit when both n, m, — oo, for the chi-square statistics was
considered in Rempata and Wesotowski (2016). In particular, for a special regime of n, m; — oo the limiting distribution
turns out to be Poissonian as asserted by the following.
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Theorem 2.1 (Rempata and Wesotowski, 2016). Assume that

r% —1n >0, (2)
np; — 0 (3)

where p}; = supjey, Pn(j) and
1 -1
o varP — 0. (4)
Then x2(n) is asymptotically Poisson. More precisely,
~ %2
7o(n) = Kl 4 \fpms f (5)
Our main result of the current paper is the following extension of Theorem 2.1 to CR-statistics.

Theorem 2.2 (Poisson Asymptotics for CR-statistics). Assume that the condition (3) is satisfied. For A > 0 let

1—
Balr, 1) == 26;’; )r—>n>o for r=1,2,3. (6)
and
VAR’ 0 when i >0 Var log P, — 0, when A =0 7
(EP;A)2—>,wen >0, nVar log P, — 0, when A =0. (7)
Then

2 (L
A CRy.(n)—n ]EP"gA(nPn)
EP;*

% 2.(2)Pois (1) . (8)

Thus the above theorem states that the properly normalized CR statistic is asymptotically Poisson distributed. We note

CNRA(n) =n

Remark 2.1. Theorem 2.2 specializes to Theorem 2.1 when A = 1. Indeed, observe first that (4) is equivalent to (7) for
A = 1. Then since IEP‘1 = m, we see that (6) becomes

Bu(1, 1) =Bn(2, 1) =1, Ba(3,1) = ;—%EP;Z. (9)
Thus conditions (6) for r = 1, 2 and (2) coincide. Since (4) can be written as

my (mi%ﬂzp;z - 1) -0

n

and by (2) we have " — oo, thus
mi%uz P2 — 1. (10)
Consequently, (9), we imply S8,(3, 1) — n.
Note that for A = 1 the normalized CR-statistic assumes the form
~ ~ 2
CRi(n) = Y22 72(m) + .
Therefore, in view of (2), the statements (8) and (5) are equivalent.

For the log-likelihood ratio statistics G,(n), inserting A = 0 in Theorem 2.2 we get

Corollary 2.3. Assume (3) and

nEP, — 1. (11)
If

nVar log P, — 0
then

Gy(n)+2nE log np, d (1
4log 2 - POIS(Z)'

An illustration of this result with the underlying distribution being uniform is given in Fig. 1.
The proof of Theorem 2.2 based on the Poissonian version (see Beska et al., 1982) of the principle of conditioning
(see Jakubowski, 1986) is given in Section 4. In this proof we will use also the following decomposition of CR-statistics.
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Fig. 1. Empirical probabilities (shown as bars) of (G,(n) + 2nE log nP,)/(4log 2) based on n = 10,000 realizations and the uniform distribution on

the set {1, ..., n?/5} vs. the Poisson distribution probabilities (shown as circles) with the parameter i, = 2.509 being the average of empirical
means. The parameter of the asymptotic Poisson distribution is /2 = 2.5.

Proposition 2.4. For any CR-statistic we have

Ry (n) = &8 45, (n) (12)
where
Uim =" 800 and Sim=n " pulXun)8: () (13)
jeMy 1<k<n

Proof of Proposition 2.4. Note that g; satisfies
g.(ab) = b**'g;(a) + agy(b), a,b>0. (14)

Therefore, taking a = N,(j) and b = (np,(j))~! in (14) we see that CR-statistic can be rewritten as
CRi(n) = & > &Ll 4 %" N, (), (npa(i) ).

(Pn ()Y
jeMp JjEMp

Observe that
D NGYG) =) f Kk
J€EMn k=1
for arbitrary function f. This identity for f(x) = g, ((npa(x))~!) applied to the second sum above yields (12). O

In the following Remark we illustrate (12) for A = 1, that is, for the important special case of the chi-square statistic.

=

Remark 2.2. When A = 1 the decomposition (12) reads

2 _ Up(n)+nSq(n)
x“(n)= %, (15)
with
- NZG=Nn()
Ui(n) = )
jeMn

Note that N2(j) — Nu(j) = Zlik#in Ix, ,=x, ,=j and thus, changing the order of summations, we get

_ lxn,k:Xn,Z
BOENSY Pn(Xnie)
1<k#€<n

Also
nS1(n) = Z Pn()}n,k) B nz.

1<k<n

Consequently, (15) agrees with the decomposition of the chi-square statistics from Rempata and Wesotowski (2016).

18



G. Rempata and ]. Wesotowski Journal of Statistical Planning and Inference 223 (2023) 15-32

We note that (see Rempata and Wesotowski, 2016)
Cov(Us(n), S1(n)) =0 (16)

and, consequently, that the variance of the y?(n) statistic is never smaller than that of Uy(n)/n for any finite n > 1. In
fact, we conjecture that in general, for any A > 0

Cov(Ux(n), S,(n)) = 0, (17)

and hence that the variance of CR; (n) is never smaller than that of Uy(n)/n* for n > 1. However, at present we only know
(17) to be true for positive integer values of A. The proof is provided in Appendix. The inequality (17) suggests that to
reduce the asymptotic variance of the goodness-of-fit statistics one could replace CR;(n) with U, (n).

Remark 2.3. Applying representation (12) to the normalized CR-statistics, as given in (8), after elementary algebra one
gets

~ i3,
CR;(n) = U/\(HE:_ASA(N)
n

where S, (n) = S;(n) — ES,(n). Since VarnS,(n) = nVar P, *, we see that (7) combined with (6) for r = 2 implies
lim Var”kgiﬁ({') — 0,
n—o00 EP,

whence under assumption of Theorem 2.2

CRi(n) = Up(m) + 0p(n),  with Uy(n) = 21 (18)

where Uy (n) is defined in the first part of (13).

Note that the definition of CNR,\(n), see (8) (or LNIA(n), see (18)), implicitly assumes that IEPH‘A < 00. When A > 1 this
condition implies that M,, is a finite set, since

EP,* > EP; ! = #M,.

This is in contrast to the case 0 < A < 1 when distributions with infinite support M, and finite E P, * do exist. Consider,
for instance, the following

Example 2.1. Let X, ~ geo(ay), i.e. let X, follow the geometric distribution. Then P(X, = j) = an(1 — o) for j > 0. In
this case EP} < oo only if y > —1 and

1
an+y

EP] =

(19)
Consequently, ﬁ?,\(n) is well-defined for non-negative A only when E P,;* < oo, that is, only when A € [0, 1).

Examples of LNIA(n) statistics for A = 1, 0 are
mp
Ui(ny= 5. ) MO0O=D and  Uo(n) =2 ) Nu(j) log NG
j=1 Jj€Mn

Example 2.2 (Example 2.1 Continued). As seen above for X;, ~ geo(«,) the statistic f]x(n) is only properly defined for
A €[0,1). By (19), for A € (0, 1)
_ (1=(=an) )’
Bu(r, ) = n*ef; r%7 r=1,2,3.

In this case (3) implies na, — 0 so that (6) cannot be satisfied for A > 0. For A = 0 the assumptions (3) and (11) of
Corollary 2.3 are satisfied iff na, — 1 > 0, see (19). However,

Var log px, =Var(log a(1 — a,)") = log?(1 — ) Var X,

1 2
:1;(21" lng(]—an):(l—an) [log(l—an)mn:l — ‘l’

n

and we see that the third assumption of Corollary 2.3 is not satisfied.

As we have just seen in Example 2.2, the assumptions of Theorem 2.2 (in particular, of Corollary 2.3) are not satisfied
for the geometric probabilities. In the next example we consider a modification of the geometric distribution for which
the assumptions of Theorem 2.2 are satisfied (see Fig. 2).

19



G. Rempata and ]. Wesotowski Journal of Statistical Planning and Inference 223 (2023) 15-32

04 05 06
I I I

probability
03
|

0.0
I

T T T T T T T
o 1 2 3 4 5 6

Fig. 2. Empirical probabilities (shown as bars) of ﬂg_s(n) based on n = 1000 realizations and the geo(1/n?) distribution truncated from above at
n® — 1 (for better comparison, the actual statistic values were slightly rounded to closest integers) vs. the Poisson distribution probabilities (shown
as circles) with the parameter u, = 0.478 being the average of empirical means. The parameter of asymptotic Poisson distribution is /2 = 0.5.

Example 2.3. Let us take A = 1/2 and consider m,, = #(M,) < oo, n > 1, such that (2) holds true. Then (6) specializes

to

2 EP)/?

]EP,TU2

—n and S LR n, (20)

(]Ep,jl/z)z

n

and (7) becomes
1 (ma— (EP,12)) > 0. (21)

Thus, under (2) it suffices to assume the first part of (20) and

(]EP?ln/z)z -1]—-0 (22)

to ensure that the conditions of Theorem 2.2 are satisfied.
We now consider the geometric distribution truncated from above, i.e.

pﬂ(j):1177c§7;1n Cﬁp j:0317~"7mn_17
for m,, such that (2) holds. We will show that then both (22) and the first relation of (20) are satisfied for some specific
choice of the sequence c,. Note that, since

mp—1
12, (/2

B = Y (i)' = () S

=0
and

mp—1

3/2 . 3mp/2

12 13/2 1- 1—
EP,” =) (i)’ = (ﬁ) R
~tn

j=0

then taking ¢, = 1 — # gives after some elementary algebra
n

mnp/2

. 1+(1—# ]
—m___1)=n i —-1]. (23)
_ 2 172 Tin
(]EPn 1/2) ”(1’#%) mn(l—(l—mi%) )
To conclude that (22) holds, we apply the double inequality 1 —mx < (1 —x)" <1—mx + WXZ true for0 < x < 1.
(The proof for integer m > 1 follows by induction.) In particular, we get
R L—— (24)
1\ ’
02
and hence the whole expression (23) is of order mi" — 0.
20
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Similarly, elementary algebra gives

1 mp/2 1 mnp
1/2 1+(1** +|1-—
2 ER? m2 m2 1 n?
—12 — 1/2 MmN m,
1 (=) ) ™
24(1—-— mp(1-|1—
+( mz) n m%

Note that the first factor converges to 1 and so does the second one, by (24). Since the third one converges to n by (2),

we may therefore conclude that (20) holds.

Finally, we note that
1—¢ 1 n? 1

npy =nN—mr =+ -

pn 1—63"” nm

" mn<l—<]— 1
and by (24) and (2) it follows that (3) is also satisfied. Consequently, the assertions of Theorem 2.2 hold. The illustration

for the statistic Uy 5(n) in this case is presented in Fig. 2.
Another simple family of distributions for which Theorem 2.2 holds true is given in the following example.
, pa(n?) = b, > 0. Then m, = n? and necessarily

Example 2.4. Denote p,(1) = --- = pp(k,) = a, > 0 and pn(k, + 1), .
knan, + (n? — kn)b, = 1. Moreover, for any real s

n2
n%—ky

—(s+1) _ 1 _ kn
EP;N =3 oty = ot
j=1

Therefore for r = 1, 2, and 3
k n?—k

) arx'lz + bmfzn

Bu(r,A) =n"—————.
( kn n —kn>

a1

1"72:1_“1;""' Then we need to have @ + 8 < 0 and 8 < 2. Moreover, in order to

For a, = n® and k, = n® we have b, =
have (3) satisfied we need to have o < —1.

Then
b . (n2—nByr—1
_ (1_na+ﬂ)r)»—2
ﬂn(rv )") =n nﬁ (nzinﬂ))\ T
70— T (et By—T
Note that when 8 — ari + 2o < 2ri — 2 the leading term in the numerator is n™ and it is also the leading term in the
denominator if only 8 — aX + @ < 2A. Thus if (2 + @)A > B + 2« + 2 then both inequalities are obviously satisfied and

2 nelri—2)

thus (6) holds true with n = 1.
Note that condition (7) for A > 0 assumes now the form

"] N (n2—nB )2
ne(22—1) (1,na+ﬁ)2l—1

—-1]1—0
nf (n?—nf * )2

Ept)
( PXn) (m#»w
and we see that it holds for certain ranges of A, @ and g8 values. Consequently, the assumptions of Theorem 2.2 hold, for

instance, when
LaA=1a=-3/28<1/3
2.A=2a=-9/5p8<1/2,
3.A=1/2,0 < —7/5, B =1/3.

3. The uniform CR-statistic
Note that when (p,(j))1<j<m, is the uniform distribution, that is p,(j) = mi 1 <j < m,, we have
(25)

mp
CRi(n) =Y gi(Nall)) =: U (n)
j=1
Note that (4) is trivially satisfied, conditions (6) reduce to (2) and, consequently (3) follows. Therefore we have the

following corollary of Theorem 2.2.
21
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Corollary 3.1. Let p,(j) = mi,, 1 <j<my n=> 1 Assume (2). Then for every A > 0

Uy (n) S g,(2)Pois (1) . (26)

Even though u4,(n) is defined here as the normalized CR-statistic for the uniform distribution, the statistic ¢/, (n) may
be also considered for non-uniform distributions (pn(j))jem,, possibly with infinite countable size of M,. As we show
below, this extension is useful for instance in analyzing the power in the problem of hypothesis testing for the uniform
distribution.

We first show that under some natural regularity conditions ¢4, (n) is asymptotically Poisson, also for distributions other
than uniform (and even when the support M, is not necessarily a finite set).

Theorem 3.2. Assume (3) and (11) hold true for (pn(j))jem,, n > 1.
Then for A > 0 the convergence (26) holds true.

Proof. Observe that g,(0) = g,(1) = 0. Therefore,
Up(n) = 81(2) Y =2 + Y &G (Nali)) Iny(i=3-

Jj€Mn JEMn
Since Ny(j) ~ Bin(n, pa(j)), j € My,

BEj e My: Na(i) =3) < D BING) 2 3) < ) 2 < i 2 p, — 0,

jeMy JjeMn

Therefore,

P &N Ivng=s > & | <PEj € My: No(j) = 3) — 0.
JE€Mn

Whence, it suffices to show that
d .
Koo = Z Ing(j)=2 — Pois (1). (27)
JEMR

Since
n n—2
EKy 2 = 5 EP,(1—P,)

we have

n n
(1 —p::)"‘z(z)EPn <EKy; < (2>EPn.

By (3)
(1 k=2 ( _ ”Pﬁ)n72
p) = L -1

and thus (11) implies EK,, — 3. Consequently, convergence in (27) follows from Theorem IIL3.1 of Kolchin et al.
(1978). O

Below we discuss some of its implications and relevant examples. First, we note that when A = 0 or A = 1 Theorem 3.2
gives the following.

Corollary 3.3. Assume (3) and (11). Then

Zlgkgn log Nn(Xn k) d s (1
=Sz — Pois(3)

and
> 1<k<n Nn(Xnk)-n d s (1
Slzkan EIEEE S Pois (2) -

Proof. For any function f we have

D Nl)F(NGG) = D F(Na(Xa ).

JEMR 1<k<n

22
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Thus taking f(x) = log x and f(x) = x we obtain
Up(n) =2 " Ny(j)log Na(j) =2 > log Nu(Xn)
JjeMn 1<k<n
and
) +n="> (Na@) = > NalXuni)-
jeMn 1<k<n
Application of Theorem 3.2 concludes the proof. O

The following are simple examples when Theorem 3.2 is applicable.

Example 3.1 (Hypothesis Testing). For a € [0, 1/2) let DPD(a, m,) be the discrete power distribution defined by

mp
. ji—a . . 1-a
pal) =L, Jell,....ma), where Cy(a)=) j "~ T_.
j=1
Note that DPD(0, m) = U({1, ..., m}) the uniform distribution on {1, ..., m}. Since
mp
_ 2 1 1 GRa)  m ™ (12a 2 (—ap?
EP= 3 00 = gy o = S > T (3%) = e
J€Mp j=1
for m, ~ n®/y we see that (11) holds, as
a2
n’EP, — n,(a) = K=

Further, noting that p} = C,"! we see that (3) holds also, since
npﬁ:g—a:%:(l—a)ﬁ%eo ifonly a< 1/2.
Consequently, by Theorem 3.2 we get
U, — g,(2)Pois(n, (a)/2),  a€]l0,1/2).
Let o be the probability distribution given by p,(j),j = 1..., m and assume that one wants to test the hypothesis
Ho : w = U({1, ..., m}) against the alternative H, : u € {DPD(a, m), a € (0, 1/2)}, where the sample from u is of size
n= . /ym for y > 0. In view of the above discussion the test statistic 4, /g,(2) is asymptotically Pois(y /2) under Hy and

asymptotically Pois(n,(a)/2), a € (0, 1/2), under the alternatives.
Recall that for N, ~ Pois(b) we have

b
P(Ny > j) = 6&%? where I'(b,j) = / t=le~tdt is the incomplete Gamma function.
0

The asymptotic critical region at the significance level « for testing Hp has the form K = [g,(2)k, /2, 00), where
ky,» =inflk € {1,2,...}: P(N, ;2 > k) < a}.

Then the asymptotic power function of the test is

F(@) = PNy, a2 = ky ) = 252 ae0,1/2).
Take o« = 0.01 and consider four choices of y € {1, 4, 10, 20}. Then ki, = 3, k, = 6, ks = 11 and ki = 18. The
graphs of fi, f4, fi0, f20 are presented in Fig. 3.
The comparison of the Poisson power function for « =~ 0.05, (f,.732 and k;3s¢ = 4) with the empirical power for
different values of n is presented in Fig. 4. Since the rate of convergence of the empirical power seems to only marginally
depend on the value of A only a single asymptotic curve was plotted (solid line).

Example 3.2 (Poisson vs Gaussian Asymptotic Power). In this example we compare the Poisson and Gaussian asymptotics

of the CR-statistics for testing the hypothesis that the observations are from the uniform distribution (see Example 3.1).

To illustrate the general problem concisely, we focus on the most popular case of A = 1, i.e. the chi-square test statistic.
Let (pn(j))1<j<m, be the uniform distribution, that is p,(j) = min 1 <j < m,. Moreover, instead of (2) assume that

2 >0 (28)

mp
Since U4(n) = x2, by Corollary 3.3,
X2 4 2Pois(2). (29)
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Fig. 4. Empirical power functions of Example 3.1 for different values of n and their Poisson approximation for o =~ 0.05. The empirical power value
is based on 2000 realizations.

On the other hand it is known (see Cor. 2.2 in Cressie and Read (1984) or Cor. 3.2 in Rempata and Wesotowski (2016))
that in case n/m, - a > 0

xim 4 N, 1). (30)

2mpy

In practice it means that for large m, and n and the value of 5 in (28) much smaller than m, one should use the Poisson
asymptotics (29). Note that if n ~ am,, with relatively small a > 0, the correct asymptotics is (30). Let us see what
happens when (28) holds true but instead of the Poissonian asymptotics (29) one uses incorrect Gaussian asymptotics
(30) to construct the critical region at the given significance level «. Such asymptotic critical region has the form

K, = [mn + Z1_q+/2my, oo) .

where z, denotes the qth quantile of the standard normal law. By construction for Z ~ N(0, 1) we have therefore
P(Z = my 4+ z1_4+/2M,) =~ «. However, under the Poissonian asymptotics

a(n,my) = B(K,) = B (N, = [ Rt ),

where 7 is defined in (28) and N/, ~ Pois(#/2). For illustration, the plot of a(n, m;) corresponding to o = 0.1 is presented
in Fig. 5. As we see from the plot, a(n, m,) is close to the nominal value alpha = 0.1 only for n &~ m, even for relatively

small sample size n. Of course, when n &~ m, and m, is large we have 2Ny, i N(my, 2m,). Note that the calculation of
the critical region using Gaussian approximation results in a highly conservative test as measured by the (correct) Poisson
asymptotics: the graph is well below the level 0.1.

In Fig. 6 we compared the power function of the test based on the Poisson asymptotics with the power function based
on the Gaussian ones. We consider, as in Example 3.1, the uniform Hy and the alternatives from the DPD class. The size
of both tests is « = 0.1, while measured respectively with respect to the Poisson or Gaussian asymptotics. However in
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size of the test
0.08
|

0.02
I

n

Fig. 5. The size a(n, m,) of the Gaussian based test of size « = 0.1 under Poissonian asymptotics for different values of n = ,’r'l—i and m, = 50.

power function
power function

02

o | o | o
s s 5

Fig. 6. The power function based on the Poisson asymptotics for the critical region for « = 0.1 based on: (1) the Poisson asymptotics (dotted line,
fy) vs. (2) the Gaussian asymptotics (solid line, g,). Each panel is for different values of n = ;—i € {1, 10, 30, 48}. The value of m, = 50 is common
for all panels.

both cases we use suitable Poisson asymptotics (see again Example 3.1), to construct power functions. Fig. 6 shows that
for n even relatively large (n = 1, 10, 30) when compared with m,, = 50 the power function for the Gaussian based test
behaves much worse (it is close to zero on almost all alternatives) than the power function for the Poisson based test.
On the other hand, when » approaches m, (n = 48) these two power functions become closer and closer and for n = 50
they are indistinguishable (of course, such values of 5 yield rather Gaussian than Poisson asymptotics).

Example 3.3 (Continuation of Example 2.1). For X, from the geometric distribution geo(«,) we have p} = «, and, by (19),

EPy = —% =
T 1—(1—ap)? — 2—an”

Therefore (3) and (11) are satisfied under the assumption n*«,, — 25 and thus the assertion of Theorem 3.2 follows. This
is illustrated in Fig. 7 for A = 0 and in Fig. 8 for A = 2.

Example 3.4. Let X, be of the Poisson Pois(n*) distribution, n > 1. Then

4
% _n4 pan

pn:e (n4)[’ nZ 1’

and, by the Stirling approximation,

* 1
~ — U.
np, =~ —— 0
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Fig. 7. Empirical probabilities (bars) of 2/y(n) based on 1000 realizations for n = 10,000 from the geometric distribution geo(5/n?) vs. the probabilities
(circles) of Poisson distribution with its parameter 1, = 1.282 being the average of empirical means. The parameter of asymptotic Poisson distribution
is n/2 = 1.25.

probability

0.10
I
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I
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0.00
I

Fig. 8. Empirical probabilities (bars) of ¢1,(n) based on 10,000 realizations for n = 10,000 from the geometric distribution geo(9/n?) vs. the
probabilities (circles) of Poisson distribution with its parameter u, = 2.214 being the average of empirical means. The parameter of asymptotic
Poisson distribution is 1/2 = 2.25.

Moreover,

44\ 2 4 8y 4
j20 j=0

where I; is the modified Bessel function of the first kind. Since Ip(s) ~ J% (see e.g. 9.7.1 in Abramovitz and Stegun,

1964), we have
2 1
n Epn —> ﬁ
X U 4 . 1
Thus, by Theorem 3.2 we conclude that ny Pois (NE)

4. Proofs
4.1. Poisson principle of conditioning

The proof relies on a martingale technique known as the principle of conditioning discussed in general in Jakubowski
(1986). We apply its Poisson version from Beska et al. (1982) which is cited here for readers’ convenience.

Theorem 4.1. Let (Zy,x, k = 1,...,n),>1 be a double sequence of non-negative random variables adapted to a row-wise
increasing double sequence of o-fields (Gnk, k = 0,1, ..., N)y>o (With Gn o being a trivial o-field, n > 1). Assume that for
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n— oo

P
max E(Zy k|Gn,k—1) = O,

1=

n

P
Z E(kalgn,k—l) g ; > 0;
k=1

and for any ¢ > 0

n

P
Z E(Zn kl\z, ~11>¢1Gn.k—-1) = O.
=1

Then

Z Zn k —d> Pois (¢) .

k=1

4.2. Proof of Theorem 2.2

Journal of Statistical Planning and Inference 223 (2023) 15-32

(31)

(32)

(33)

In view of Remark 2.3 and formula (18) it suffices to focus only on the asymptotic behavior of ﬁ,\(n). Note that
2,(0) = g,(1) = 0 and that the function g, := g;/g,(2) is non-decreasing on the set T = {0} U[1, 00). Let us introduce an

auxiliary function

hi(x) =&.(x+ 1) — gi(x), xeT

(34)

and note that 0 < hy(x) < Cb* on T with some constants C > 0 and b > 1 (possibly depending on A > 0). Moreover,

since for x > 0

W) = 2

1) A

LRV ) A >0,
log(x'+1)>0, A=0

the function h; is nondecreasing on [1, co) for any A > 0 (actually, it is non-decreasing on T).
Recall that for any n > 1 the distribution of X, is given by P(X, = j) = pn(j), j € M, and that we define P, := p,(X,).
Note that for any function f and a random vector Y, such that Y and X, are independent

> =k (),

JEMn

where the sum is assumed to be finite. Therefore, (see (18)) we may write

ak(n) -1 r (gx(lﬁnffn)) |xn)

EP;*

where X, = (Xp.1, .. -

1 8 (Nnk(Xn))—83(Nn.k—1(Xn))
Ln’k=W]E( nke P’);Jr)hl mk—1 |Xn), k=],...,n

, Xn.n). Denote

with Ny (j) = 21;1 Ix, i=i» k=1,...,n,and Ny o(j) = 0. In particular, N, , = Ny, which was considered earlier.

Then

Us(n) = £,(2) Z Ly k.
=1

We will prove that 2221 L, x converges in law to a Poisson distribution by verifying the conditions of Theorem 4.1.

First, we observe that

Ix =
Lk = B (GublXn) 2 X, )

where G (j) = 7'!"((’;:7(’;)‘)10)) ]E,;l—x and
n

IE:(Ln,kp(n,k—]) =E (Gn,l<(xn)|xn) .
Second, we observe that
E L;’k =E G;Yk(X,,).

27
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Indeed, let Z, 1, ..., Znr, Xn.1s - - . » Xn.n, Xp be iid rv's. Then due to (35) we can write

IEL;k_JE]_[ (Gnk(zm neIX,)

Xn k=Zni _
o) =1

and by the conditional independence of G, y(Z, ;) ., 1, given X,

T Xn,k=Zn,i _ n k(Z’1 1)
]ELn k= =E 1_[ G n 1 pn(Zni) — E (Pn(Zn,1)) IZ" 1==Zn.r=Xn k

and thus (37) follows due to E(Iz, ,—..—z, ,=x, |1 Xn.k—1, Zn.1) = (Pn(Zn.1))".
Third, we observe that

n
Y EL,—>2% r=123. (38)

Indeed, since the conditional distribution of N, x—1(X,) given X, is binomial Bin(k — 1, P,;), we have

n

B s 0D = 3 3 0 () A1~ Zh; By D (T =

k=1 i=1 k=i+1
n n
=P, Y (k= 1)(1—Py)" +Z RGP Y ()= Pyt
k=2 k=i+1

Consequently, (37) together with the definition of G, , yield

n

Y EL =Ti(n, 1)+ n, 1),
k=1

where
EPI™ 30 (k—1)(1—Py )k 2
Ty(n, r) = S Dk 1)
(er?)
and
T, r) = P L 0P S (Th0-m

(er”)
Now, Z;(n, r) — g for r = 1, 2, 3 which follows from (6) in view of the double inequality
(1= P Ba(r, A) < Ti(n, 1) < L Bu(r, ).

On the other hand, since
n—1 n n—1
SRR > () =P < cPan® Y (b pin) !
i=2 k=i+1 i=2

for sufficiently large n, i.e. such that b'np} € (0, 1), we get

o0

0 < Ty(n, 1) < Cpul(r, 1) D (B'p}) = Colr, 1) 22 — 0.

i=1

Thus (38) is established.
Now we are ready to verify conditions (31), (32) and (33).

Ad (31). Since h;, is non-decreasing we get

max E( n, k|xn k— 1) (Gn,n(Xn)|xn) .

1<k=<n
Note that
E M1 C0) B N1 0n) _ gy Xy m@CT)POP T oo P
Ph Pk P} 1—bnp};
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Ad (32).

for n sufficiently large. Consequently,

bnpj: —A bnp
0 <E max E(Ly X L ¢ gp*=Cc2P, 0
max (Ln k| Xn k1) < 2r7 C oo bt

and (31) follows.
Due to (38) for r = 1, in order for (32) to hold it suffices to show that

n
Var Z E(Ln k1 Xp,k—1) — 0.
k=1

Consider Y, < X, such that Yy, X;,, X;, are independent. Then by (36) it follows that forany 1 <k, <n
E(Ln,klxn,k71)E(Ln,(ilxn,kfﬂ = E( Gn,k(Xn)|Xn )E( Gn$€(Yn)|xn):

Consequently,

n
Var Z IE(Ln,kp(n,kfl)

k=1

= Z {E[E( Gn,l<(Xn)|xn)E( Gn,l(yn)p(n)] - IEGn,k(xn)IE Gn.k(yn)} .
1<k,f<n

Thus, conditional independence of G, x(X;) and Gy ¢(Yy) given X, yields

n n
Var ) B(LyilXnk1) =Y COV(Gni(Xn), Gne(Yn)): (39)
k=1 k=1

For k = £ we have
Cov(Gn,k(Xn), Gn,k(Yn))
= E P,Var(Gp 1(Xn)|Xn) + E Ix, v, CoV(Gn k(X ), G k(Yn )X, Yn). (40)
By definition of G, «(X,) we can write
E P, Var(Gp k(Xn)1Xn) < EPRE(G) 1(Xa)IXn)

o1 g EEGc ) p ORI PR

N2 25—1 =
(]E Pnﬂ) Py P,%)‘ 1<]prn>

Therefore, changing the order of summation, we get

n =1 p2im pit1-24 it1
37 E P Var(Go(a)X,) < S

= B (Ef’n’ )

Cha(2:2) }: i < Cha22) Dnpy
=< npn S n 1—b21’1pﬁ - O

Now, consider the second part of (40). Note that on the set {X, # Y, } we have
COV(Gn,k(Xn)7 Gn,k(Yn)|Xm Yn)

= WP A Cov (hA(Nn k=1(Xn))s M3 (Nn,k—1(Yn))|Xn, Yn) ,
where P, = pu(Yy), i.e. P} £ p, and P, and P, are independent.

Since the vector (Np x—1(i), Nnx—1(j)) for i # j has a multinomial distribution, it follows that its two components
are negatively associated (NA). As any non-decreasing (integrable) functions of NA random variables are
negatively correlated’ the above right-hand side is non-positive, and it thus follows that the second summand
in (40) is also non-positive.

For k # ¢ we have

(COV(Gn,k(Xn)v Gn,Z(Yn)) = EPn(COV(GnJ<(Xn), G, ¢(Xn)I1Xn) + EIX,,;éY,,COV(Gn,k(Xn)y Gn,Z(YnNXna Yn). (41)

We conclude that the second term is non-positive due to the NA property described above. For k < £ in view
of the Schwartz inequality and monotonicity of h; the first term can be bounded as follows

E PaCoV(Gp (Xn), Gn.e(Xn)IXn) < EPE(GS ,(Xn)IXn).

1 See, e.g., Joag-Dev and Proschan (1983) for some relevant facts of the theory of NA random variables.
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Consequently,

]

2 ) EPCoV(GriXn), Gre(Xa)lXn) <2 ) (€ — DEPLE(G, (Xa)IXn)
1<k<f<n =2

Thus, similarly as before we get

2 ) EPCoV(Gri(Xn), Gre(Xa)lXn) <
1<k<f<n (EP" )

Collecting the above results

Var Z n I<|Xn k—

=< Z E P,Cov(Gy k(Xn), Gnk(Yn)lXn) + Z E P,Cov(Gy,k(Xn), Gn,e(Yn)lXn, Yn) — O,
k=1 1<k#L<n

Y 1b2’]EP'+1 24 i+2

2%
< CBa(2.1) :b’;{’;ﬁ —0.

and thus condition (32) is verified.
Ad (33). Due to (38) we have

n n
E Z E(Ln ki, g —11>¢ 1 Xnk—1) = Z ELn i,  —1>¢
k=1 k=1
n n
-2 (Z Ely—2) EL:, + Z EL ,()
k=1 k=1

and (33) also holds.
By Theorem 4.1 we conclude that ZZ:] L,k converges in law to the required Poisson distribution. O
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Appendix. The covariance conjecture

We consider here the conjecture (17) from the main body of the paper. First, we prove the equivalent representation
of Cov(U; (n), Sy(n)) valid for any A > 0. With the help of this representation, we show that (17) holds for positive integer
values of A. Unfortunately, we are presently unable to extend this result to arbitrary nonnegative .

A.1. Covariance representation

Lemma A.1. Forany A >0
Cov(Us(n), S;(n)) = E {P;* (H, (Py') — EHx (Py")) (€1(Bac1 + 1) — &1(Ba1)) } (42)

where H,(x) = ng(x)’ x > 0, and the conditional distribution Pg _,x, ~ Bin(n — 1, Py).

Proof. By symmetry and bi-linearity of the covariance operator we get
Cov(U,.(n), S.(n))

nl=* Z (COV pn () &.(N.(j)), pr;l(xn,n))
JEMn

DD Ep () &Nk Hapy  Xnn)) — EHo(py Xnn)) Y Epy () 81 (Nali)

jeMp J€Mn
=n""" (EP,; g (Na(Xa))Ha (P, (Xn.n)) — EHA(py ' (Xun))E P, 74 24(X0))
=n'""Cov (P, &,(Na(Xn)), Ha(Py ' (Xan)))
=n""E {P;"™ Cov (gx(Na(Xn)), Hi(Py ' (Xn.n))I1Xn) } .
where the last equality follows from the fact that H,(p; 1(Xn,n)) and X, are independent.
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But
E (gA(Nn(Xn))Hk(pyTl(Xn.n))|Xn)
=E ([21(Nn—1(Xn) + 1) Ix, ,=x, + & Nno1(Xn )y n 0 | Ha(Dy ' (X ))1Xn)
=E(g,(Nn—1(Xa) + DIXa) PaHz (P ") + E(&.(Na1(Xi))IXn) (EH,. (Py") — PaHy (P 1)) -
Since
E(gA(Nn(Xn)NXn) = E(gA(Nn—l(Xn) + 1)|Xn)Pn + E(gA(Nn—l(Xn))|Xn)(] - Pn)’
we get
Cov (g1 (Na(Xa)), Ha(py ' (Xan))IXn)
= [E(gx(Nn—1(Xn) + 1)IXn) — E(g1(Nn—1(Xn))IXn)] PaHr(P; )
- [E(gk(Nn 1 Xn) + ])|Xn) - E(gA(anl(Xn)NXn)] PnIE HA(P;:1)7
and thus (42) follows. O

A.2. Case of the positive integer A
Proposition A.2. Assume that A € {1, ..}. Then Cov(Uy(n), S;(n)) > 0.

Proof. Note that in view of the representation (42) the inequality (17) for any A > 0 is equivalent to
EP,M(Py* —EP;*) [(Buoy + 1)1 — BT — 1] > 0. (43)

Recall that for positive integer K
K

XK= SR, D,

i=1
where S(K,i),i = 1,...,K, are Stirling numbers of the second kind and (x); = x(x —1)...(x —i+1),i=1,2,..., are
descending Pochhammer symbols. We note that

(x+ 1) — (x)i = i (X)iq

and thus
K K

(1 =X = 1= S0+ 1= () = 1= ) iS(K, )(X)ir

i=1 i=2
The left hand side of (43) for K := A + 1 takes on the form

Z (K, )E {P;* (P7* —EP;*) E ((Bao1)i_g 1Xn)} - (44)

i=1
Since
E[Bu-1i_1 [Xa] = (1 — iy Py !
we get
E (P, (Py* —EP,*) E((Bn-1)i_y 1Xa)} = (n — 1)y (EP, @~V — Ep KD E p KD)
Observe that for non-negative random variable Y and r, s > 0, such that EY™ < oo we have
EY'*™ >EY EY. (45)
Since each of 2K —i— 1, K — i, K — 1 is a nonnegative number, by (45) applied to Y = Pn‘1 we conclude that (44) is

non-negative. O
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