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Abstract

This study presents a thorough investigation of the performance comparison of three
ensemble data assimilation (DA) methods, including the maximum likelihood
ensemble filter (MLEF), the ensemble Kalman filter (EnKF), and the iterative EnKF (IEnKF),
with respect to solution accuracy and computational efficiency for nonlinear problems.
The convection–diffusion–reaction (CDR) problem is first tested, and then, the chaotic
Lorenz 96 model is solved. Both linear and nonlinear observation operators are
considered. The study demonstrates that MLEF consistently produces more accurate
and efficient solution than the other two methods and provides more information on
both states and their uncertainties. The IEnKF and MLEF are used to estimate model
parameters and uncertainty in initial conditions using a nonlinear observation operator.
The assimilation performance is assessed based on the quality metrics, such as the
squared true error, the trace of the error covariance matrix, and the root-mean-square
(RMS) error. Based on these DA performance assessments, MLEF demonstrates better
convergence and higher accuracy. Results of the CDR problem show significant
improvements in the estimate of model parameters and the solution accuracy by MLEF
compared to the EnKF family. This study provides evidence supporting the choice of
MLEF when solving large nonlinear problems.

Keywords: Data assimilation, Maximum likelihood ensemble filter, Ensemble Kalman
filter, CFD Modeling with data assimilation, Ensemble data assimilation methods

1 Introduction
Data assimilation has been playing an indispensable role in the fields of atmospheric
science and meteorology for successful weather and climate predictions (e.g., [6,16,30–
34]) over the past 50 years. Only recently data assimilation has been brought into the field
of engineering (e.g., [7–11,35,36,38,39]) for improving the predictions of computational
fluid dynamics (CFD). A brief overview of recent works that are particularly focused on
DA applications to flow, turbulence, and combustion demonstrates the effective use of
the family of the ensemble Kalman filter (EnKF) (e.g., [8–11,35,36]). Gao and Wang [8–
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11,35,36] applied the ensemble Kalman filter (EnKF) to improve the estimate of model
parameters for freely propagating laminar flames and investigated issues with the filter
divergence. Iterative EnKF (IEnKF) was used in Xiao et al. [41] to treat the nonlinear
applications. Labahn et al. [18] employed the EnKF method to examine local extinction
events in a jet flame with high-speed measurements. Hurst and Gao [14] applied the
ensemble transformKalman filter (ETKF)with bred vectors to theKuramoto–Sivashinsky
equation to increase the finite limit of the predictability of CFD simulations of chaos.
Recently, Wang et al. [38,39] used the maximum likelihood ensemble filter (MLEF) to
improve the uncertainty reduction in initial conditions for the time-evolving shear-layer
mixing with methane-air combustion and the turbulent flow over a bluff-body geometry.
While nonlinear problems are common in engineering, one of the main questions of DA
applications is how a DAmethod is appropriately chosen and assessed. The present work
is focused on studying the DA performance for nonlinear problems.
The objective of the present study is to gain a more fundamental understanding of the

ensemble filter methods by examining and comparing the applicability and capability of
three DA methods—the MLEF [44], the EnKF [6], and the IEnKF [22]. The outcome of
the investigation is expected to provide some insights on the DA performance assessment
and guidance toward applications of the MLEF and EnKFs methods to the fluid dynamics
problem in engineering.
To facilitate understanding of the present work, a brief overview of the necessary back-

ground on data assimilation is provided immediately, focusing on the classification of
DA methods and their characteristics. More specifically, the similarities and distinctions
between the MLEF and EnKFs are delineated at the concept, mathematical formulation,
and numerical algorithm levels.

1.1 Data assimilation

Practical DA methods can be broadly categorized into variational and ensemble
approaches, along with various hybrid approaches that combine the variational and
ensemble methods. Variational DA method (e.g., [2,19]), such as three-dimensional vari-
ational (3D-Var) and four-dimensional variational (4D-Var), utilizes optimal control the-
ory to find the analysis state that minimizes a cost function, which is a quadratic function
attempting to balance the model prediction and the data. In contrast to the variational
method, the ensemble DA method (e.g., [1,4,5,13,40,44,45]) is based on statistical esti-
mation and from the Bayesian point of view, striving to obtain the information about the
mean and the covariance of the posterior probability density function (PDF) conditioned
on the data. In practice, it is infeasible to determine the complete information, and instead,
statistical parameters, such as themean and/or the variance of the distribution, are sought.
Regardless of classification, all DAmethods can, in principle, involve two different types

of correction processes: filtering and smoothing. Both processes use observations from the
past up to the current time to achieve an optimal state estimate. In filtering, the optimal
analysis is achieved by directly estimating the state at the current time, while in smoothing,
the state at some moment in the past is changed/optimized, which is then used to predict
the state up to the current time.Mathematically speaking, in the analysis step, the filtering
process only involves the observation operator, but the smoothing process involves both
the prediction model and observation operators.
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The core operation of data assimilation is the computation of the forecast error covari-
ance matrices used in the analysis step. Over the years in atmospheric andmeteorological
research, many types of variational and ensemble DA methods, along with their hybrids,
have been developed and applied with the aim of improving the computational efficiency
of this operation. Further details can be found in work by Bannister [2], which pro-
vides a thorough review of these methods, including their developments, performances,
strengths, and limitations. Since ensembleDAmethods, in general, aremore advantageous
than variational methods due to estimating the flow-dependent forecast uncertainty, we
focus on understanding the ensemble filters in the present study.
Another important aspect of data assimilation is its ability to address nonlinearity in

practical engineering applications. A practical approach to handle the nonlinearity in data
assimilation is to apply nonlinear optimization such as gradient-based unconstrainedmin-
imization algorithms. Numerical optimization has been amajor component of variational
data assimilation for decades (e.g., [20,24,27,28,43]) and was later applied to ensem-
ble data assimilation (e.g., [44,45]) and hybrid variational-ensemble DA methods (e.g.,
[17,37]). It is well-known that one can iteratively use the Kalman filter equations to form a
Gauss–Newton minimization algorithm [3]. Alternative ways to address the nonlinearity
in the ensemble Kalman filters have been developed as IEnKF methods (e.g., [22,29,42]).
These IEnKF often combine empirical arguments with particular numerical optimization
algorithms, such as Newton and Gaussian–Newton methods.
In summary, we select three ensemble DA methods—the MLEF, EnKF, and IEnKF

methods. Their performance is assessed by focusing on their capabilities to address (i) the
nonlinearity of the observation operator and (ii) the chaotic dynamics and the practical
physics processes, involving convection, diffusion, and source. The organization of this
paper is as follows. Section 2 describes and compares the differences in the mathemati-
cal formulations and numerical algorithms among the three ensemble DA methods. The
quality measures of DA performance are introduced in Sect. 3. The computational con-
figurations of two model problems and data assimilation are presented in Sect. 4. Results
are discussed in Sect. 5. Conclusions are drawn in Sect. 6.

2 MLEF, EnKF, and IEnKF
The MLEF, EnKF, and IEnKF methods follow the main idea of the Kalman Filter (KF);
that is that the forecast state and forecast uncertainty are obtained by transporting the
analysis and analysis uncertainty through a simulation model (aka forward model). In the
EnKF method, the observation operator is linear. The Kalman filter equation is used in
the linear update process for solving the optimized state. To address the nonlinearity of
the observation operator, IEnKF uses the augmented state approach and iteratively uti-
lizes the Kalman filter equation for optimization. Unlike the EnKF and IEnKF,MLEF does
not apply linearization to observation operator during the update process. The forecast
state is obtained by conducting a simulation from the current analysis time to the next
analysis time, using the current analysis state as the initial conditions for the next DA
cycle. To transport uncertainties, one needs to define the initial state for each member in
the ensemble as the analysis perturbed by a column of square-root forecast error covari-
ance, which makes MLEF suitable for high-dimensional applications [38,39]. MLEF has
a theoretical advantage in nonlinear DA problems over standard ensemble methods and
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Table 1 Summary of mathematical notations and symbols
used in our DA+CFD system

Notations/symbols Definition

U Vector for solution variables

α Vector for model parameters

Q̂ (used in the MLEF) Control vector consisting ofU and α

Q (used in the EnKF and IEnKF) Control variable matrix with all members

Q̄ (used in EnKF and IEnKF) Ensemble mean vector

O Synthesized observation vector

P Error covariance matrix w.r.t Q̄ or Q̂

R Error covariance matrix w.r.tO

M(·),H(·) Forward model and observation mapping operators

K Kalman gain matrix

Superscript t , f and a Truth, forecast and analysis state, respectively

Ne , Ns and Nobs The number of ensembles, model states and observations, respectively

updating error covariance over standard variational methods. It does not need any adjoint
calculations. Instead, it uses Hessian as a preconditioner to accelerate the convergence
for finding the maximum a posteriori (MAP) point. What follows next is a comparison
between the differences in their mathematical formulations and numerical algorithms.

2.1 Difference in the mathematical formulations

For convenience, a list of the consistent mathematical notation and symbols is provided
in Table 1, although they are also defined in the text prior to their use.

2.1.1 Ensemble Kalman filter

We select the ensemble Kalman filter (EnKF) developed by Evensen [6]. The solution
procedures are described in the following. The forecast state is obtained by conducting
a CFD simulation from the current analysis time to the next analysis time when the
observation is available, using the current analysis state as the initial condition for the
forward model. As an example, to transport uncertainties, the CFD model advances each
analysis member,Qa

h−1,i (i.e., the ith column ofQa
h−1 matrix), for getting the forecast state

at the hth DA cycle as shown by

Qf
h,1 = M(Qa

h−1,1),

· · ·
Qf

h,i = M(Qa
h−1,i),

· · ·
Qf

h,Ne
= M(Qa

h−1,Ne ). (1)

where M(·) is defined as the forward CFD model operator. The superscripts f and a
denote the forecast and analysis state, respectively. At the forecast stage, the forecast
ensemble mean (Q̄f ) and forecast error covariance (Pf ) can be calculated in the form of

Q̄f = 1
Ne

Ne∑

i=1
Qf

i , (2)
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Pf = 1
Ne−1

Ne∑

i=1

(
Qf

i − Q̄f
)(

Qf
i − Q̄f

)T
. (3)

The symbol T stands for the transpose. Then, each member in the ensemble is updated at
the analysis step with the perturbed observations as

Qa
i = Qf

i + K
(
Oi − HQf

i

)
, (4)

where the Kalman gain matrix is given by

K = PfHT
(
HPfHT + R

)−1
. (5)

H is the linearized observation operator of H(·) at the forecast mean (Q̄f ). The observa-
tions,Oi, are synthesized from the truth (Qt ) by the following equations,

Oi = Ō + εi, Ō = H (Qt) + λ, (6)

λ, εi ∈ N (0,R), i = 1, . . . , Ne. (7)

Finally, the analysis covariance matrix Pa can be calculated by

Pa = (I − KH)Pf , (8)

and the subsequent forecast is applied for running to the next DA cycle,

Qf
h+1,i = Mh

(Qa
h,i

)
, i = 1, . . . , Ne. (9)

2.1.2 Iterative ensemble Kalman filter

The Kalman gain matrix in Eq. (5) applies a linear update of the ensemble by linearizing
observational operator. However, this linear update process could be problematic when
the observational model is strongly nonlinear since the information in the observation
data (e.g., experimental measurements) is not fully utilized during the analysis step. As
described inwork by Lorentzen et al. [22], this can lead to estimates that are not as accurate
as they could be. In this work, we adopt the iterative ensemble Kalman filter (IEnKF)
method developed by Lorentzen et al. [22]. It does not need any adjoint calculations. It
addresses the nonlinearity by introducing an inner-loop iterative process when solving
Eq. (4) at the analysis step. Specifically, we show the concept of the inner-loop iterative
solver to distinguish the difference from the EnKFmethod in the following. The threshold
of the tolerance (ζtol) and maximum iteration integer (n) are set to be 0.02 and 12 in the
present work, respectively. At an iteration k ,

1. If k = 0, then we initializeQk and Q̄k as follows

• Set each member with

Qi
k = Qf,i

h , i = 1, . . . , Ne. (10)
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• Calculate the mean estimation in the form of

Q̄k = 1
Ne

Ne∑

i=1
Qi

k . (11)

2. Otherwise, we perform the augmented state approach as follows

• Estimate Pf
k based on Q̄k−1 andQk−1 by using Eq. (3).

• Set

Hk = d(H(Q))
dQ

∣∣∣∣
Q=Q̄k−1

. (12)

• Evaluate Kk by using Eq. (5).
• Calculate (O − HQk )i for i = 1, . . . , Ne.
• Update each member,Q1:Ne

k , by using Eq. (4).
• Calculate the mean estimation, Q̄k , by using Eq. (2).
• Evaluate the L2-norm of the ensemble mean difference by

ζk =

√√√√
∑Ns

j=1
(Q̄k,j − Q̄k−1,j

)2

Ns
. (13)

• Check the following conditions

(a) if ζk ≤ ζtol or k > n, the augmented state vector, Q̄k , is obtained. Then,
exit the loop.

(b) otherwise, set k = k + 1 and repeat the above steps.

Once exiting from the inner-loop iterative solver, the analysis solution can be updated by

Qa,{i}
h = Q{i}

k , i = 1, . . . , Ne,

and then used to reinitialize the next forecast step.

2.1.3 Maximum likelihood ensemble filter

TheMLEF method developed by Zupanski [44] is considered. TheMLEF method follows
the main idea of the Kalman filter (KF), in which the forecast state and the forecast uncer-
tainty are obtained by transporting the analysis and the analysis uncertainty through a
simulation model. A cost function is defined and minimized for Q̂ which is a control vec-
tor consisting of a vector for the solution variables and a vector for the model parameters.
The general derivation of the cost function is based on the Bayes formula, which finds the
posterior PDF from the prior, the conditional, and the observation PDFs under Gaussian
assumption [15,21]. The cost function is defined as a negative logarithm of the posterior
PDF and takes the form of

J (Q̂) = 1
2
[Q̂ − Q̂f ]TP−1

f
[Q̂ − Q̂f ] + 1

2
[O − H(Q̂)

]TR−1[O − H(Q̂)
]
, (14)

where Pf is the forecast error covariance, R is the observation error covariance, O is the
observation vector, andH(·) is again the observation operator mapping the state space to
the observation space.
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For the forecast state, it can be obtained by conducting a CFD simulation from the
current analysis time to the next analysis time, using the current analysis state as the initial
condition. Similar to the EnKF method, we define the initial state for each member using
the analysis control vector (Q̂a) perturbed by a column of square-root error covariance
P1/2
a . To transport uncertainties, the CFD model advances the deterministic state (Q̂f )

and the ensemble forecast (Qf ) using P1/2
a,i (i.e., the ith column of P1/2

a ) at the hth DA cycle
as

Q̂f
h = M (Q̂a

h−1
)
,

Qf
h,1 = M

(
Q̂a

h−1 + P1/2
a,1

)
,

· · ·
Qf

h,Ne
= M

(
Q̂a

h−1 + P1/2
a,Ne

)
. (15)

Since the state vector Q̂ is generally multivariate, it can include variables with different
orders of magnitude. It is not feasible to invert the forecast error covariance in high-
dimensional problems. During the update process, the MLEF algorithm introduces the
variable change in the cost function and the minimization process for computational
efficiency. For convenience and completeness, the implementation of the variable change
and minimization that are used in our previous study [39] is briefly described here. A
typical change of variable is applied as

Q̂ = Q̂f + P1/2
f ψ. (16)

The new control variableψ is dimensionless. Correspondingly, the cost function (Eq. (14))
is reformulated based on ψ as

J (ψ) = 1
2
ψTψ + 1

2

[
O − H(Q̂f + P1/2

f ψ)
]T

R−1
[
O − H(Q̂f + P1/2

f ψ)
]
. (17)

However, Eq. (17) is not the final form to be solved because the system is stiff, which can be
indicated by the condition number of the Hessian matrix, ∇2J (ψ). To achieve a fast con-
vergence of minimization and a good estimate of analysis error covariance in the system,
another change of variable is introduced, referred to as the Hessian preconditioning

ψ =
[
I + (Z(Q̂)

)T (Z(Q̂)
)]−1/2

ξ, (18)

where ξ is the final control variable, and Z(Q̂) is a Nobs × Ne matrix defined with
[z1, z2, . . . , zNe ] as

zi = R−1/2
[
H(Q̂ + P1/2

f,i ) − H(Q̂)
]
, i = 1, 2, . . . , Ne, (19)

where Nobs is the number of available observation data. The Hessian preconditioning
significantly reduces the condition number, which helps speed up the convergence rate
of the iterative minimization methods. In the process of minimization, both the first
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derivative and second derivative with respect to ξ are required. The iterative update of the
control variable ξ is

ξk+1 = ξk + αkdk , (20)

where k is the minimization iteration index, d is the descent direction vector, and α is the
step length. The calculations of α and descent direction depend on theminimization algo-
rithm used. A few minimization methods have been experimented with and discussed in
our previous work [39]. For example, the simplest one is the steepest descentmethod [12].
It only relies on the information of the local gradient of the cost function for the direction
of finding the optimal solution. Its performance is poor in terms of the convergence rate.
The quasi-Newton method [23] determines the optimal direction based on the Hessian
matrix by storing the information of the local curvature of the cost function. It converges
much faster than the steepest descent method. In this work, we use the quasi-Newton
method. During the minimization process, the initial step-length is α = 1, and the opti-
mal α is determined to satisfy the Wolfe conditions in each iteration (Chapters 8 and 10
in Nocedal and Wright [26]). Then, the dk is updated by

dk = −Sk∇ξJ (Q̂k ), (21)

where Sk is defined as the inverse Hessian matrix. At k = 1, it can be calculated as

S1 =
(
∇2

ξ J (Q̂1)
)−1

. (22)

For k > 1, Sk can be updated in that form of

Sk =
(
I − λk−1βk−1ω

T
k−1

)T
Sk−1

(
I − λk−1βk−1ω

T
k−1

)
+ λk−1ωk−1ω

T
k−1, (23)

where the terms λk−1,βk−1 and ωk−1 are given by λk−1 = ∇ξJ (Q̂k )− ∇ξJ (Q̂k−1), βk−1 =
αk−1dk−1, andωk−1 = 1/

(
λk−1β

T
k−1

)
, respectively. Theminimization process startswith

the initial guess ξk=0 = 0, which means

Q̂k=0 = Q̂f . (24)

After the optimal value of ξk is obtained, the analysis deterministic state vector Q̂a, as the
minimizer of Eq. (14), is then calculated by

Q̂a = Q̂f + P1/2
f

[
I +

(
Z(Q̂f )

)T(
Z(Q̂f )

)]−1/2

ξk . (25)

Then, Q̂a is used to update the square-root analysis error covariance,

P1/2
a = P1/2

f

[
I +

(
Z(Q̂a)

)T(
Z(Q̂a)

)]−1/2

. (26)
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Finally, aGaussian perturbation to Q̂a ismade to prepare for eachmember in the ensemble
as initial conditions for the next DA cycle,

Qa
i = Q̂a + P1/2

a,i , i = 1, . . . , Ne. (27)

where P1/2
a,i is the ith column in the P1/2

a matrix.

2.2 Difference in the numerical algorithms

All methods involve threemajor steps: (i) initiation step, (ii) forecast step, and (iii) analysis
step. The main difference is in the analysis step. EnKF/IEnKF calculate Ne analyses to
obtain the analysis mean, while MLEF calculates only a single analysis. Algorithms 1–
3 present the major steps in each component for three ensemble-based DA methods,
respectively. In the EnKF and IEnKF methods, observations have to be perturbed when
evaluating the observation increments with respect to each member in the ensemble,
then the Kalman gain matrix (K) is introduced and used to update each member in that
ensemble sequentially by linearizing the observation impact from the observation space
into the model state space. As shown in line 18 of Algorithm 1, the EnKF method solves
the optimized state by the linear update process using the Kalman filter equation (Eq. 4).
Lines 16 and 17 of Algorithm 2 show that the IEnKF method uses the augmented state
approach and utilizes Eq. (4) in an iterative manner to form a minimization algorithm
on addressing the nonlinearity of the observation operator. In the MLEF method, as
presented in lines 20–25 of Algorithm 3, an iterative minimization solver is applied to the
cost function (Eq. 14) for the optimization.
IEnKF essentially belongs to the Gauss–Newton (GN) method for nonlinear least

squares (e.g., Sakov et al. [29]). However, successful performance of theGNmethod is lim-
ited to small residuals or to residuals being linear functions (see Chapter 10 inNocedal and
Wright [26]). There is a fundamental assumption in GN that approximates the Hessian
using Jacobian matrices, which has limited applicability. Although several improvements
ofGNmethodhavebeenproposed (e.g., line search, Levenberg–Marquardtmethod),most
often the preferableminimizationmethod is a standard unconstrainedminimization, such
as nonlinear conjugate-gradient (CG) or quasi-Newton method (QN) (e.g., Nocedal and
Wright [26]). MLEF does exactly that; it employs unconstrained minimization with line
search (the QN method in the present study). CG and QN methods are more suitable
for handling arbitrary nonlinearity than GN method, from both theoretical and practical
points of view (see Chapters 5, 8 and 10 inNocedal andWright [26]). Because of that it can
only be expected thatMLEF outperforms IEnKF inmajority of situations. Amore detailed
comparison between the CG/QN and GNmethods would have to specifically address the
components of the GN algorithm, such as the validity of Hessian approximation and line
search. Although potentially beneficial, such comparative study would amount to a new
manuscript, and therefore it is left for the future.
In addition, the optimal deterministic state vector is solved in the ensemble space (Ne)

in the MLEF method, then it is used to update the analysis error covariance matrix and
the members to reinitialize the new DA cycle. However, the potential computational cost
of the MLEF method is still comparable to that of the EnKF and IEnKF methods. Based
on our experience in lower-dimensional problems (Ns ≤ 105), they are mostly on the
same order of magnitude. For high-dimensional problems, covariance localization is a



   62 Page 10 of 29 Y. Wang et al. Res Math Sci           (2022) 9:62 

standard feature in ensemble-based DA applications. However, covariance localization is
typically used only in severely ill-conditioned problems. To quantify ill-conditioning, a
general rule-of-thumb is to estimate the order of magnitude of the ratio between state
and ensemble dimensions. When this ratio is equal to several orders of magnitude, then
covariance localization is required. For example, in realistic data assimilation problems,
one typically employs O(102) ensembles for O(107) state dimension, making the ratio
between the state and ensemble dimensions of the order of O(105). For low-dimensional
problems considered in this manuscript, the ratio is approximately O(10), which makes
the use of localization harder to justify. In addition, covariance localization introduces a
set of new empirical parameters for specifying the localization scale. With localization, it
is also customary for EnKF to include covariance inflation with its own set of empirical
parameters. Therefore, adding covariance localization will likely make this comparison
overly dependent on the optimal choice of localization and inflation parameters, as well
as on the chosen method for inflation. While this may be necessary for high-dimensional
applications, it can unnecessarily contaminate the results of low-dimensional applications
presented here.

Algorithm 1 EnKF Method

Step 1: Initialization

1: Initial Step (Q1:Ne
0 )

2: Select the initial conditions of uncertainties.
3: if (Uncertainty in model states) then
4: Use the lagged forecast method [16].
5: end if
6: if (Uncertainty in model parameter) then
7: Use Box–Muller transform method [25].
8: end if
9: ConstructQ1:Ne

0 .
10: end

Step 2: Forecast Step

11: Forecast Step (Qf ,Pf )
12: PropagateM(Q1:Ne ) from th−1 to th.
13: Calculate Q̄f and Pf by Eq. 2 and 3.
14: end

Step 3: Analysis Step

15: Analysis Step (Qa,Pa)
16: Calculate (O − HQ)i for i = 1, . . . , Ne.
17: Evaluate K by Eq. 5.
18: UpdateQa by Eq. 4..
19: Calculate Pa by Eq. 8.
20: end
21: Next DA cycle
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Algorithm 2 IEnKF Method

Step 1: Initialization

1: Initial Step (Q1:Ne
0 )

2: Select the initial conditions of uncertainties.
3: if (Uncertainty in model states) then
4: Use the lagged forecast method.
5: end if
6: if (Uncertainty in model parameter) then
7: Use Box-Muller transform method.
8: end if
9: ConstructQ1:Ne

0 .
10: end

Step 2: Forecast Step

11: Forecast Step (Qf ,Pf )
12: PropagateM(Q1:Ne ) from th−1 to th.
13: Calculate Q̄f and Pf by Eq. 2 and 3.
14: end

Step 3: Analysis Step

15: Analysis Step (Qa,Pa)
16: Call Inner-loop Iterative Solver..
17: UpdateQa with the output from last step..
18: Calculate Pa by Eq. 8.
19: end
20: Next DA cycle

3 Performancemeasures
In order to assess the DA performance, three validation measurements are used—the
squared true error diagnostics, the trace of Pa, and root-mean-square (RMS) error. These
measures are prescribed as follows and used for the performance assessment in the results.
The squared true error diagnostics is used in the context of ensemble DA methods.

The value can be evaluated by the total difference between the truth and the DA+CFD
prediction in the form of

εt = (Qt − Q̃)T (Qt − Q̃)
, (28)

where Qt denotes the truth vector and Q̃ represents the mean predicted solution vector
by the data assimilation. Assuming there is no uncertainty in the initial and boundary
conditions as well as in the physical models and model parameters, the numerical sim-
ulation obtained by the perfect CFD model is regarded as the “truth” in this study. The
analysis ensemble mean vector (Q̄a) of the EnKF and IEnKF methods and the analysis
deterministic vector (Q̂a) of the MLEF method are used as the mean prediction for this
calculation. The expected values for εt should decrease as more DA cycles are performed.
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Algorithm 3MLEF Method

Step 1: Initialization

1: Initial Step(Q1:Ne
0 ,Q̂0)

2: Select the initial conditions of uncertainties.
3: if (Uncertainty in model states) then
4: Use the lagged forecast method.
5: end if
6: if (Uncertainty in model parameter) then
7: Use Box-Muller transform method.
8: end if
9: ConstructQ1:Ne

0 and Q̂0.
10: end

Step 2: Forecast

11: Forecast Step(Qf ,Pf )
12: PropagateM(Q1:Ne ) andM(Q̂) from th−1 to th.
13: ObtainQf and Q̂f .
14: Calculate P1/2

f .
15: end

Step 3: Analysis

16: Analysis Step(Q̂a,Pa)
17: Set Q̂k=0 = Q̂f .
18: Apply change of variable ψk=0.
19: Evaluate the Hessian preconditioner by Eq. 18.
20: while 1 ≤ k ≤ n do
21: Calculate Sk by Eq. 22 or 23.
22: Calculate dk by Eq. 21.
23: Estimate αk .
24: Update ξk by Eq. 20.
25: end while
26: Update Q̂a by Eq. 25.
27: Calculate P1/2

a by Eq. 26.
28: UpdateQa

i for i = 1, . . . , Ne by Eq. 27.
29: end
30: Continue the next DA cycle.
31: Repeat Steps 1-3.

The other important statistical verification of the ensemble filter algorithm is to cal-
culate the trace value of the analysis error covariance matrix, which indicates the filter
performance on the uncertainty reduction during the DA process. Since the uncertainty
error is expected to be reduced by the available observations, the variance of the members
should decrease and converge to a sufficiently small tolerance as more DA cycles are per-
formed. The expected values for trace(Pa) should be close to a sufficiently small tolerance
as possible.
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Finally, the RMS error can be calculated based on the synthesized observation and the
predicted solution vector, as

RMSi =

√√√√
∑Nobs

j=1
(O − H(Q̃)

)2
j

Nobs
. (29)

Overall, the value of the RMS error is expected to decrease as more DA cycles are per-
formed.

4 Tests and DA configurations
The DA+CFD system is applied to the 1D convection-diffusion-reaction (CDR) problem
and the Lorenz 96 model. These problems are chosen because the truth for each problem
is available for the performance assessment. More importantly, these problems represent
physics of interest to engineering fluids problems. The CFD predictions are compared
among the DA analyses using the EnKF, IEnKF, and MLEF methods. The assimilation
performance is assessed using the true error diagnostics, the trace of Pa, and the RMS
error as prescribed above.
The present study has been carried out on Atlantis, an internal high-performance com-

pute server managed by the Computational Fluid Dynamics and Propulsion group at
Colorado State University. It consists of nine compute nodes and 189 TB of storage con-
nected by a 40 Gbps InfiniBand network. In total, there are 200 cores on the compute
nodes.

4.1 The convection–diffusion–reaction Model

The one-dimensional transient inhomogeneous CDR problem from our previous DA
study [9,11,35,36] with the EnKF method is used to verify the MLEF method. Assume
that the model parameters are inaccurate and need to be estimated by data assimilation.
In addition, we are interested in assessing how the adverse impact of imperfect initial
conditions on predictions can be removed or mitigated by data assimilation. Specifically,
the uncertain model parameters to be estimated are γ , μ, and c in the CDR equation,

∂φ

∂t + γ
∂φ

∂x − μ
∂2φ

∂x2 + cφ = f, 0 ≤ x ≤ 1, (30)

where φ is the solution variable. For convenience, the true values for the convection speed,
γ , the diffusivity, μ, and source term coefficient, c, are known and they are all unity. The
other source term, f , is modeled by f = 2 (x − 1) e−t . Dirichlet boundary condition is
applied for the inlet, and Neumann boundary condition is specified for the outlet domain
extent. The analytical solution of the problem is used as the truth and defined in the form
of

φt (x, t) = x2e−t . (31)

Three tests are configured. The first case examines the consequence of an imperfect ini-
tial condition on the solution field. The second test investigates the situation in which the
errors exist in both the initial condition and the three model parameters simultaneously.
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The third test focuses on filter performance with a nonlinear quadratic observation oper-
ator. The assimilation performance for each case is assessed by comparing the solution
differences between the truth and the DA+CFD predictions at the end of the DA cycles.

4.2 The Lorenz 96 model

The Lorenz 1996 model is commonly used as a model problem in data assimilation. The
model equation is given by

dxj
dt = (

xj+1 − xj−2
)
xj−1 − xj + F, j = 1, 2, . . . , Nx, (32)

where Nx represents the total number of variables. In this study, we use Nx = 20. F is
the source term for enforcing the system to be a chaotic regime, which has the value of
8.17. A strong positive or negative correlation is observed for each variable with respect
to the adjacent variable components in the vector. The periodic boundary condition is
applied in the system. The numerical solution is simply obtained by discretizing Eq. (32)
in the temporal space using a fourth-order Runge–Kutta time marching scheme with a
constant time step�t = 0.001. The truth of this problem is adopted as the solution that is
propagated from the initial condition of setting the first component of the model variable
to be 0.1 and the rest of them to be zero.

4.3 Configurations of data assimilation

Themain concept of data assimilation is uncertainty error estimation and reduction. In the
current modeling system, the observation errors are assumed to be unbiased and followed
by the Gaussian distribution along the whole DA process. The conservative variables in
the initial condition and the initialmodel parameters are considered to have uncertainties.
However, the discretization errors introduced by the CFD forward model are neglected,
which is considered as a “perfect model scenario.” In addition, in data assimilation, the
observations are normally the experimental measurements in space and time, whose spa-
tial and temporal scales depend on the technique used to make the measurements. Then,
since observations are not necessarily the same variables as those solved by the forward
model, the choice of the observation operators could have a significant impact on the
statistical error analysis. The observations used in the following two cases are synthesized
from the perfect model. In addition, for the purpose of getting better performance assess-
ments, a free CFD run (i.e., data assimilation is not applied) is performed to compare the
predictions of 3 different DA methods and the truth.
It is worth emphasizing that, before any data assimilation can begin, it is necessary

to define an initial state (including solution variables and empirical parameters) and the
uncertainty of that initial state. For the initial conditions of data assimilation, we often
use the lagged forecast method [16], as illustrated by Fig. 1. That is, given the time for
which the initial state and its uncertainty are needed, th = 0, a deterministic simulation of
length 4tτ is started from a time th = −2tτ in the past. The time tτ can typically be equal
to the assimilation frequency window (TDA). For an ensemble withNe members, one runs
Ne +1 CFD simulations in theMLEFmethod whileNe in the EnKF family method, which
can be equally distributed over the 4TDA interval. In this approach, we use time-lagged
simulations as members in the ensemble. The initial deterministic state may be set by the
simulation whose start is at th = 0, or simply the ensemble mean of Ne members. For the
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tDA=1 t

Q0

-4τ -3τ -2τ -τ t0 τ 2τ 3τ 4τ

Fig. 1 The schematic of the lagged forecast method

initial uncertainty of empirical parameters, we use random perturbations, currently based
on a Gaussian probability density function. However, the lagged forecast method is not
an inherent component of any of these DA methods. It is chosen here because it has a
good record in applications to various time-dependent problems in meteorology. When
using the lagged forecast method, some spatial differences and the uncertainty correlation
between themodel variables and themodel parameters are included as dynamical features
are advected over time. Based on our experience, it can help to reduce the unphysical
perturbationnoisewhen forming the initial forecast error covariancematrices in ensemble
DAmethods, which could benefit these methods to be able to recover more correct error
covariance after only a couple of DA cycles.

5 Results and discussion
5.1 Imperfect initial condition in steady-mode problem

We start the investigation of the DA impact on the imperfect initial condition for the
one-dimensional transient inhomogeneous CDR model problem, which eventually has a
steady-state solution.The computational domain size for theproblem is set tobeLx = 1m.
Total of 128 cells are used. The DA frequency is set to be every 5000 time steps, and the
time step size is �t = 1 × 10−5 s, that is that a DA cycle occurs every 0.05 sec along the
propagation of forward model. The sensitivity study of the ensemble size for the CDR
problemwas performed in our previous study [36], which led to an ensemble consisting of
8 members.We use the same ensemble size in this work. A small amount of perturbations
is added into the initial CFD condition for propagating the solution using the lagged
forecast method as

φ(x, t = 0) = x2 sin
(

β1
2πx
Lx

+ β2

)
, β1 ∈ N (0.1, 0), β2 ∈ N (0.01, 0). (33)

The initial members in the ensemble are presented and compared to the truth in Fig. 2.
The first case is to assess the assimilation performance and make a comparison among

the EnKF, IEnKF, andMLEFmethods when the observation operator is linear. The obser-
vation operator,H(·), is given by

H(φj) = φj , j = 1, 2, . . . , Nobs. (34)
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Fig. 2 The members in the initial ensemble for CDR model

Table 2 DA+CFD configurations for imperfect initial condition in the steady-mode problem
(referred as “case 1”)

Forward model Configuration

Equation CDR model (see Sect. 4.1)

Computational domain Lx = 1m with 128 cells

Time step (�t) 1 × 10−5 s

Boundary condition Inlet: Dirichlet boundary condition

Outlet: Neumann boundary condition

DA Configuration

Size of the ensemble 8 (EnKF, IEnKF), 8 + 1 (MLEF)

Uncertainty Solution variable (φ)

Initial guess φ: generated by lagged forecast method

Frequency 5000 time steps

Synthesized Observation At every other 4 cells:

Linear test:O = φ.

Nonlinear test:O = 2.5φ2 + 1.5φ.

Observation error N(0, 0.15)

Methods Linear test: EnKF, IEnKF, and MLEF

Nonlinear test: IEnKF and MLEF

Total DA cycle 15 cycles

The observations are synthesized from the perfect model at every other 4 cells by adding
noise with the error distributionN (0, 0.15). The DA performance is first assessed by com-
paring the predictions of each DA method with the truth. The summary of the DA+CFD
configuration is shown in Table 2. The results in Fig. 3 show the predictions of eachmem-
ber and their mean estimation in 3 columns and 3 rows. For the MLEF method, we use
the prediction of the control vector as its mean estimation. In each column, the predic-
tions from different DA methods are compared to the truth at the same DA cycles. Rows
show the comparisons at 5th, 10th, and 15th DA cycles, respectively. At the 5th DA cycle,
the variance of the members by the MLEF method is the smallest, which indicates that
MLEF has a better convergence rate of uncertainty reduction than the other twomethods.
In addition, as more DA cycles are performed, all the DA predictions are getting closer
toward the truth, which is what we expected from a proper DA process.
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Fig. 3 Solution comparisons among the EnKF (1st column), IEnKF (2nd column), and MLEF (3rd column)
methods at the 5th, 10th, and 15th DA cycles for the linear test in case 1

The performance is further assessed by measures of the true error, the trace of Pa

matrix, and the RMS error along the DA process. By tracking the trajectories of the
convergence history in Fig. 4a–c, we clearly see that the IEnKF method shows faster
convergence at the beginning of DA process. But, theMLEFmethod results in a smoother
and higher error reduction rate than both the EnKF and IEnKF methods along the DA
process. Moreover, we calculate the absolute solution difference, ‖�φ‖ = ∥∥φDA − φt∥∥,
over the computational domain after 15 DA cycles. The MLEF prediction shows the
smaller difference in the results among the 3 DA methods in Fig. 4d.
Furthermore, we investigate the performance of the MLEF and IEnKF methods for the

case of using a nonlinear quadratic observation operator, whereH(·) is given by

H(φj) = 2.5φ2
j + 1.5φj , j = 1, 2, . . . , Nobs. (35)

The DA setups are the same as those in the previous case; that is the same in the assimila-
tion frequency and the initial ensemble for the initial condition. In this case, the assessment
of the performance depends on tracking the convergence histories of the true error, the
trace of Pa matrix, and the RMS error along the DA process. The trajectories for the true
error estimation and the trace of Pa matrix are shown in Fig. 5a, b, respectively. Both
methods have achieved an error reduction of more than 95% within 6 DA cycles. As the
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Fig. 4 Comparisons of different measures among the EnKF (blue line), IEnKF (red line), and MLEF (green line)
methods for the linear test in case 1

DA predictions converge toward the truth, the overall impact of data assimilation on the
CFD simulations decreases as expected. Similarly, the RMS error can be considered for
the quality assessment of data assimilation. As shown in Fig. 5c, the MLEF method drives
the RMS error down much lower in the case of the quadratic observation operator. The
solution differences between the truth and the DA+CFD predictions at the last DA cycle
are shown in Fig. 5d. The final prediction by MLEF shows a better convergence toward
the truth than IEnKF.

5.2 Errors in both initial condition andmultiple parameters

We investigate the performance of the MLEF and IEnKF methods with the same non-
linear observation operator for the situation in which the uncertainties exist in both the
initial condition and the three model parameters (γ , μ, and c) simultaneously. For each
model parameter, members are selected randomly by following a normal distribution.
The normal distribution curves used here have the mean value of 3.0 and standard devi-
ation of 1.0 for generating the initial guess of μ and c, and using the mean value of 4.0
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Fig. 5 Comparisons of different measures between the IEnKF (red line) and MLEF (green line) methods for
the nonlinear test in case 1

and standard deviation of 2.0 for the initial guess of γ . The DA setups remain the same
as those in the above cases. The summary of the DA+CFD configuration for the prob-
lem is shown in Table 3. Since the magnitude of the errors in the model parameters and
the initial condition are of a different order of magnitude, tracking the overall true error
would not be particularly instructive. Instead, we plot the trajectories of the convergence
history of the true error estimation for the model parameters and the solution variable
separately in Fig. 6a, b. We clearly can see that some fluctuations occur in the results
by the IEnKF method, while the results by the MLEF method show nice and smooth
convergence history along the DA process. The error takes a much longer time to be
adjusted or converged to a lower magnitude for this case. This is not surprising because
themodel parameters are not observed components in the given observation and can only
get corrected through the covariance between the coupled uncertainties with the solution
variable. Similar oscillation phenomena are observed in the results of the IEnKF method
when tracking the trajectories of the trace value of only the solution variable part of Pa

matrix along the entire DA process in Fig. 6c. Figure 6d compares the final DA predictions
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Table 3 DA+CFD configurations for errors in both initial condition and multiple parameters
(referred as “case 2”)

Forward model Configuration

Equation CDR model (see Sect. 4.1)

Computational domain Lx = 1m with 128 cells

Time step (�t) 1 × 10−5 s.

Boundary condition Inlet: Dirichlet boundary condition

Outlet: Neumann boundary condition

DA Configuration

Size of the ensemble 8 (IEnKF), 8 + 1 (MLEF)

Uncertainty Solution variable (φ) and 3 model parameters (γ , μ, and

c)

Initial guess φ: generated by lagged forecast method

μ and c: generated by Box–Muller transform method

with mean of 3.0 and standard deviation of 1.0

γ : generated by Box–Muller transform method with

mean of 4.0 and standard deviation of 2.0

Frequency 5000 time steps

Synthesized observation At every other 4 cells:

Nonlinear test:O = 2.5φ2 + 1.5φ

Observation error N(0, 0.15)

Methods Nonlinear test: IEnKF and MLEF

Total DA cycle 40 cycles

by the IEnKF and MLEF methods to the truth along with the free CFD runs. In addition,
the trajectories of each model parameter by the two DA methods are plotted in Fig. 7.
Clearly, MLEF efficiently and effectively improves the estimate of the model parameters
and the prediction.

5.3 Imperfect Initial Condition in Chaotic-mode Problem

We continue the investigation of the DA impact on the imperfect initial condition of the
Lorenz 1996 model (L96) problem. A sensitivity study of the ensemble size is performed
first using the IEnKF method for the consideration of both the solution accuracy and
computational efficiency. A linear observation operator is applied in the form of

H(Xj) = Xj, j = 1, 2, . . . , Nobs. (36)

The observations are synthesized from the perfect model at every cell by adding noise
with the error distribution N (0, 0.5). The initial members are generated by randomly
perturbing the initial condition. The DA frequency is set to be every 100 time steps, and
the time step is �t = 0.001 s. Six ensembles, consisting of 4, 6, 8, 10, 12, and 14 members,
respectively, are generated. The total computational costs and the cost increments on
average are reported in Table 4 with respect to each ensemble size. The trajectories of
the convergence history of the RMS error are plotted in Fig. 8. We find that an ensemble
consisting of 12 members shows the best performance in the aspects of both the solution
accuracy and computational efficiency along the DA process. In the following test cases,
we use 12 members in the ensemble.
The DA performance is first assessed by comparing the solution of the model states

between the predictions by the three DA methods and the truth. We use the same linear
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Table 4 The computational cost and the cost increment of
each ensemble

Ensemble size Total CPU cost (sec) Increment (%)

4 0.563 –

6 0.702 24.64

8 0.885 26.03

10 0.997 12.60

12 1.107 11.04

14 1.218 10.08

observation operator as defined in Eq. (36). The observations are still synthesized from
the perfect model, but now they are at every other cell by adding noise with the error
distributionN (0, 0.75). The DA frequency and the time step size remain the same as those
in the above case. The initial members are generated by the lagged forecast method with
tτ = 250. The summary of the DA+CFD configuration for the problem is recorded in
Table 5. Figure 9 shows the spread of the members, the ensemble mean, and the truth.
The results in Fig. 10 present the trajectory comparisons of both the observed element (X5)
and unobserved element (X16) predictions along the entire DA process. The small black
triangles indicate when the observations are available and assimilated into the DA+CFD
system. By comparing the overall difference between the truth, the free CFD runs, and
the predictions from the EnKF, IEnKF, and MLEF methods, all DA predictions are pulled
toward the observation at the beginning of the DA process. However, only the MLEF
prediction gets better converged toward the “truth” along the entire process. Partially,
this may be due to the optimization at the analysis stage in the MLEF method.
We further assess the performance based on the measure of the RMS error. By tracking

the trajectories of the convergence history of the RMS error over the DA cycles and
comparing among the 3 different DAmethods in Fig. 11a, we find that data assimilation is
effective in the error reduction for the chaoticmodeproblemsince all theRMSerror values
are reduced as more DA cycles are performed. Some fluctuations occur in the results by 3
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Table 5 DA+CFD configurations for imperfect initial condition in chaotic-mode problem (referred
as “case 3”)

Forward model Configuration

Equation Lorenz 1996 model (see Sect. 4.2)

Number of variables 20 (N = 20)

Time step (�t) �t = 0.001 s

Boundary condition Inlet: Dirichlet boundary condition

Outlet: Neumann boundary condition

DA Configuration

Size of the ensemble 12 (EnKF, IEnKF), 12 + 1 (MLEF)

Uncertainty Solution variable (X )

Initial guess X : generated by lagged forecast method

Frequency Linear test: 100 time steps

Nonlinear test: 200 time steps

Synthesized observation At every other cell:

Linear test:O = X

Nonlinear test:O = 2.5X2 + 1.5X

Methods Linear test: EnKF, IEnKF, and MLEF

Nonlinear test: IEnKF and MLEF

Total DA cycle Linear test: 40 cycles

Nonlinear test: 20 cycles

DA methods. But, the result of the MLEF method converges to a lower magnitude along
the DA process. The final prediction by MLEF converges closer to the truth after 40 DA
cycles in Fig. 11b, which shows that the MLEF has better convergence performance than
the other two methods on addressing the chaotic dynamics.
More interestingly, we investigate the performance of the MLEF and IEnKF methods

for the nonlinear quadratic observation operator, whereH(·) is given by

H(Xj) = 2.5X2
j + 1.5Xj, j = 1, 2, . . . , Nobs. (37)

Similarly, the observations are synthesized from the perfect model at every other cell
by adding noise with the error distribution N (0, 0.25). In this case, because of the chaotic
model problem and the nonlinearity introduced from the given observations, a very small
perturbation in the DA initial conditions can lead to a significant deviation when testing
both the IEnKF and MLEF methods. Instead, the observation error is reduced in order
for us to focus on understanding the uncertainty reduction between the IEnKF andMLEF
methods. The DA frequency is set to be every 200 time-steps, and the time step is still
�t = 0.001 s. The predictions of the observed element (X5) and unobserved element (X16)
predictions are compared among the results of the IEnKF and MLEF, the truth, and the
free CFD run in Fig. 12 along the entire DA process. The small black triangles still indicate
when the observations are available and assimilated into the DA+CFD system. Clearly,
both DA methods can result in pulling the forecasts to the truth, but the prediction by
the MLEF method converges closer to the truth. Nevertheless, the predictions with DA
converge toward the truth over the DA cycles, while the free CFD simulations are still
apparently erroneous.
The assimilation performance is further investigated by tracking the RMS error over the

DA cycles and comparing between the two DA methods. The trajectories of the conver-



   62 Page 24 of 29 Y. Wang et al. Res Math Sci           (2022) 9:62 

2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

Cell index

X

Member Ensemble mean Truth

Fig. 9 The members in the initial ensemble for L96 model

0 800 1,600 2,400 3,200 4,000
−6

−3

0

3

6

9

12

Time steps

X
5

EnKF(Q̄) IEnKF(Q̄) MLEF(Q̂)
Truth FreeRun DA Occurrence

0 800 1,600 2,400 3,200 4,000
−8

−4

0

4

8

12

Time steps

X
16

EnKF(Q̄) IEnKF(Q̄) MLEF(Q̂)
Truth FreeRun DA Occurrence

(a)

(b)
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Fig. 11 Comparisons of different measures among the EnKF (blue line), IEnKF (red line), and MLEF (green
line) methods for the linear test in case 3

gence history are plotted in Fig. 13a. They are clearly consistent with what we observed in
Figs. 5c and 11a, which show that data assimilation is effective in the error reduction. The
absolute solution difference is calculated and presented in Fig. 13b. The final prediction of
MLEF shows a smaller difference than that in the prediction of the IEnKF, which can indi-
cate that the MLEF method has better filter performance in addressing the nonlinearity
of the observation operator than the IEnKF method does.

6 Conclusions and future work
The DA performance has been tested with two problems—one with a transient mode and
the other with a chaotic nature. The first CDR problem involves three transient physi-
cal processes of convection, diffusion, and reaction (source), but the system eventually
becomes steady. The second problem is the Lorenz 1996 chaotic model. The rationality
of choosing the two-unit problems is based on that (i) both have the “truth” which can be
used to assess the assimilation performance and predication accuracy easily, and (ii) com-
plex engineering fluid dynamics problems are often characterized by physical processes
involving convection, diffusion, and source, in addition to turbulence (chaos). On the
observation operator, both the linear and nonlinear operators are studied. In engineering,
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Fig. 12 Trajectory comparisons on the observed and the unobserved components between the IEnKF (red
line) and MLEF (green line) methods for the nonlinear test in case 3

solution variables are not always observed, so nonlinear mapping between observation
and state space is required. All DA methods are applied to demonstrate the reduction
in the error of initial conditions, the improvement in the estimates of uncertain model
parameters, and both simultaneously. Since the initial state and covariance are imperfect,
we obtained that there is a time needed for data assimilation to reach its solution, typically
after several DA cycles. To assess the performance of all three DA methods, the analysis
ensemble means are plotted for the EnKF and IEnKF, while the deterministic analysis
state is plotted for the MLEF method. Due to a large number of analyses, the ensemble
mean of EnKF/IEnKF analyses may have a better chance to (accidentally) estimate anal-
ysis uncertainty in the beginning when all systems are trying to “learn” about the true
state and its uncertainty. However, the “learning” process implied from the Bayes formula
(i.e., Bayesian inference) appears to be more efficient in MLEF. Hence, the MLEF has
theoretical advantages in producingmore accurate solutions. It is possible that alternative
choices of the initial state and uncertainty at the beginning of assimilation may produce
less favorable conditions for EnKF/IEnKF during initial DA cycles, but this is out of the
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scope of this manuscript. Furthermore, based on the quality metrics (e.g., the true error,
the trace of the error covariance matrix, and the root-mean-square error), the assessment
of DA performance for the CDR problem shows that the MLEF method is superior to
the EnKF method in both the computational efficiency and the solution accuracy in the
case of the linear observation operator and the IEnKFmethod in the case of the nonlinear
observation operator. Especially in the cases of the nonlinear observation operator, the
MLEF demonstrates consistent efficiency and effectiveness in improving the estimates of
the model parameters and predictions. The MLEF outperforms the EnKF in the linear
observation operator case and the IEnKF in the nonlinear observation operator case for
the chaotic dynamics. The excellent performance of the MLEF can be attributed to its
mechanism in the forecast error covariance estimation, which is dynamically updated and
consistently incorporates the information of the dynamical system.While anyDAmethod
will reduce uncertainty, themain challenge is not only tominimize uncertainty but also to
estimate uncertainty that realistically corresponds to the optimal state obtained by min-
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imization. That can be produced by the MLEF method for the time-dependent estimate
of the uncertainty of the dynamical system. This information is essential for engineering
applications.
For future work, we will demonstrate a new approach to address non-Gaussianity by

integrating the MLEF with an implicit particle filtering method for further extending
its application to study critical information on the flow laminar-to-turbulence transition
process.
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