Differentiable Appearance Acquisition
from a Flash/No-flash RGB-D Pair
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Abstract—Reconstructing 3D objects in natural environments requires solving the ill-posed problem of geometry, spatially-varying
material, and lighting estimation. As such, many approaches impractically constrain to a dark environment, use controlled lighting rigs, or
use few handheld captures but suffer reduced quality. We develop a method that uses just two smartphone exposures captured in
ambient lighting to reconstruct appearance more accurately and practically than baseline methods. Our insight is that we can use a
flash/no-flash RGB-D pair to pose an inverse rendering problem using point lighting. This allows efficient differentiable rendering to
optimize depth and normals from a good initialization and so also the simultaneous optimization of diffuse environment illumination and
SVBRDF material. We find that this reduces diffuse albedo error by 25%, specular error by 46%, and normal error by 30% against single-
and paired-image baselines that use learning-based techniques. Given that our approach is practical for everyday solid objects, we
enable photorealistic relighting for mobile photography and easier content creation for augmented reality.

Index Terms—Appearance acquisition, inverse rendering, SVBRDF, flash photography.

1 INTRODUCTION

ODELING object appearance with geometry anc
M spatially-varying bidirectional reflectance distributio:
functions (SVBRDFs) can create photorealistic rendering
and allow simple appearance editing and relighting fo
photography and augmented reality. Acquiring high-qualit
SVBRDFs of real-world 3D objects requires dense sampling o
view and light angles using a camera and active illuminatio
on a mechanical gantry [1], [2], [3], [4]. Approaches tha
capture SVBRDFs with everyday devices like smartphone
or DSLRs often restrict objects to planar geometry [5], [6
[7], [8], [9], [10] or require hundreds of multi-view inpu
images [11], [12]. Multiple views requires accurate structure
from-motion and multiview stereo [13] to estimate camer.
parameters and build initial base geometry before startin,
any material estimation process.

To reduce the number of input views, learning-basec
approaches train to infer SVBRDF parameters from a smal
number of input images [16], [17], [18], [19]. These require
a dataset of thousands to a hundred thousand synthetic
rendering images to tackle the under-constrained problem.
However, overfitting often limits the prediction accuracy of
reflectance characteristics on unseen objects. Given the limi-
tations of gantry, many view, and learning-based methods,
the problem of practical appearance acquisition still stands.

One particular problem is specular reflections. These are
difficult to separate from diffuse reflection when the number
of views is low, and due to their high radiance cause material
estimation to be less successful, especially when the geometry
and normal are unknown. State of the art approaches use
a flash/no-flash pair to separate specular reflections, but
the unconstrained geometry still causes ambiguity. This
again suggests deep learned priors, but in experiments we
find that general reconstruction accuracy is still lacking. As
learning approaches do not solve the problem, we must look
to integrate any additional information to help solve practical
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Fig. 1: High-quality appearance reconstruction from a pair
of exposures. We use a flash/no-flash RGB-D pair from a
smartphone (a) to recover geometry, lighting, and Cook-
Torrance SVBRDF material properties (d). Re-renderings
(c) are close to the original photograph (b) without using

impractical lighting rigs or multiple capture positions.

appearance reconstruction.

We propose appearance acquisition by using additional
sensors available on modern smartphones to capture one
flash/no-flash RGB-D pair, using an efficient differentiable
rendering optimization and material clustering. This has
three benefits:

1) Depth is simple to capture with structured light or time of
flight sensors in camera systems, and takes the place
of geometry reconstructed from multi-view captures.
However, captured depth is low quality, with noise,



Nam et al. [11] Schmitt et al. [12] Barron et al. [14] Cao et al. [15] Sang et al. [16] Bossetal. [17] Ours
# views Multi view Multi view Single view Two views Single view Single view Two views
Active lights Flash Multiple lights - Flash/no-flashx2 Flash Flash/no-flash  Flash/no-flash
Setup #images 100-400 10-40 1 3 1 2 2
Geometry MVS MVS Optional Stereo Depth sensor
Depth v v v v v v v (refined)
Normal v v v v v v v
Output  Diffuse albd. v v v v v v v
Specular albd. v’ v - - - v v
Roughness v v v v v

TABLE 1: Existing research on object appearance reconstruction has more limited practicality or quality than our method.
Nam et al. [11] and Schmitt et al. [12] capture SVBRDFs and complete 3D geometry, but require 10400 input images with
active illumination. Barron et al. [14] and Cao et al. [15] recover diffuse reflectance only, which limits flexibility. Sang et
al. [16] capture a single image and use deep learned priors but do not estimate specular albedo. Boss et al. [17] is the closest
related work as it estimates a complete SVBRDF from a pair of images at a single view. However, this uses deep learned
priors that do not overcome the ill-posed reconstruction problem (Figure 10). Our method overcomes this using additional
depth data and differentiable rendering to reduce errors by at least 25% (Table 2).

artifacts from specular reflections, and quantization errors.
Accurate normals are critical for material reconstruction,
but deriving normals from low-quality depth leads to poor
results. Differentiable rendering and an incremental ma-
terial clustering lets us integrate photometric constraints
to jointly refine depth and normal geometry and estimate
SVBRDF materials.

Physically-based differentiable rendering is slow. Using a
flash /no-flash pair lets us reduce the hemispherical light
integration problem to direct light from a known point,
leading to a more efficient formulation.

2)

3) We can optimize diffuse environment illumination via an
alternating strategy, avoiding the need to capture objects
in a dark room and providing additional diffuse albedo
constraints across image formation models.

These benefits lead to higher-quality reconstruction: our
approach reduces diffuse albedo error by 25%, specular
error by 46%, and normal error by 30% against single- and
paired-image baselines that use learning-based techniques.
These improvements are gained without loss of practicality,
allowing capture in lit indoor environments from an RGB-D
camera at a single viewpoint. Collectively, our work moves
toward ‘point and shoot” digitization of object appearance.

2 RELATED WORK

Object appearance reconstruction surveys cover progress up
until 2016 [20], [21], often using special hardware like light
stage acquisition platforms. Given our approach, we focus
on recent practical acquisition systems including those using
differentiable rendering (Table 1).

Diffuse Intrinsic Imaging. Intrinsic image decomposi-
tion [14], [22], [23] aims to separate a single image into diffuse
reflectance and illumination-dependent shading. Since this
problem is ill-posed, Bousseau et al. [24] use user scribbles
to constrain diffuse albedo. Research has also used stereo or
depth camera reconstructions as additional cues [25], [26],
[27], [28]. For example, Cao et al. [15] use a stereo depth map
and flash /no-flash images to reconstruct 3D geometry and
diffuse albedo, and Haefner et al. [29] super-resolve depth
using shape from shading via a diffuse surface assumption.
Unfortunately, diffuse-only models rarely describe the real
world as they ignore specularity. Our work does not assume
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(b) Diffuse albedo from Barron et al.

(a Flash-only [14] and outs) Error

Fig. 2: Modeling specular appearance is essential. Diffuse
albedo recovered from Barron et al. [14] (b left) using flash-
only image (a) and depth as input. Our approach with
specular modeling given added no-flash input (b right).
Since Barron et al. compute diffuse reflectance only, specular
highlights cannot be factored from diffuse albedo. (c) shows
difference from ground truth.

diffuse-only reflectance as it recovers specular albedo and
roughness based on the Cook-Torrance SVBRDF model [30],
which improves quality (Figure 2).

SVBRDFs on Planar Surfaces. To simplify the ill-posed
inverse rendering problem, many works restrict objects to
planar geometry [31]. Ren et al. [6] use a BRDF chart to
reconstruct SVBRDFs under a moving light from video.
Riviere et al. [8] and Hui et al. [7] reconstruct normals
and SVBRDFs of a near-planar surface from multiple views.
Aittala et al. [32] use an LCD and a DSLR camera to
acquire multiple reflectance images for SVBRDF estimation,
then later on [5] use a flash/no-flash pair to reconstruct
SVBRDFs on planar objects. Given the ill-posed problem,
deep learning may help. Deschaintre et al. [10] learn to
recover normal and SVBRDF from a single image, Li et
al. [33] use a self-augmented convolutional neural network
(CNN) for SVBRDF estimation, and Gao et al. [9] use deep
inverse rendering from an arbitrary number of images (single
to many) to estimate SVBRDFs. Unlike these works, our
approach does not assume that the object is planar, leading
to a more general method.

SVBRDFs from Multi-view Images. Multi-view images
from light stages and gantries help us recover highly accurate
material appearance of real-world objects [1], [3], [4], [34],
[35], [36], [37]. Given the size and expense of gantries,
research has also investigated practical hand-held data
acquisition, such as from smartphones [11] or compact
custom imagers with multiple lights [12]. Ha et al. [38]



use an omnidirectional environment capture and many
RGB-D captures to progressively update object shape and
SVBRDFs parameters in a signed distance field. However,
the authors state that their method is not robust to severe
depth noise or errors. All these methods use many images—
up to hundreds—to collect angular appearance samples and
reconstruct good base geometry via structure from motion
(SFM) and multi-view stereo (MVS) methods, typically for
whole objects. Even then, this geometry may be in error
and can be difficult to refine by optimization. Some current
approaches attempt expensive multi-view differentiable path
tracing for highly accurate reconstruction [39], [40]. We focus
on accurate reconstruction from a single view using captured
depth, which is easier and faster to refine than a mesh or
SDF within a simultaneous geometry, material, and lighting
optimization to help overcome depth errors.

SVBRDFs from a Single View Flash/No-flash Pair. With
only one flash image [16], [18], [41] or a flash/no-flash
pair [17], SVBRDF reconstruction of non-planar objects is
highly ill-posed, leading to the use of deep-learned methods.
Current methods are based on supervised learning that,
given the large space of material appearance, require thou-
sands of labeled or synthetically-rendered images for model
training [16], [17], [18], [19], [37]). Models may not generalize
depending on the characteristics of the training data, causing
artifacts or failures in unseen test data [17], or causing
accuracy drops with fewer input flash images [19]. Our
technical novelty of using flash/no-flash captures with the
noisy depth information now available on camera systems,
via differentiable rendering, allows us to improve accuracy
and maintain practicality without relying on a learned prior.

3 METHOD: IMAGE FORMATION MODEL

We explain our method via the models and optimization
terms, and defer implementation details to Section 5.

Image formation models approximate real-world image
appearance from varying surface geometry, material, and
lighting. Rendering SVBRDFs from complex environment
lighting typically requires integrating over a hemisphere
with a high-frequency lighting representation, which is
difficult and slow to optimize. Instead, we separate lighting
into low-frequency ambient diffuse illumination and direct
illumination only from a point light—our flash.

SVBRDF Reflectance Model. We use the Cook-Torrance
BRDF [30] that has diffuse albedo p, specular albedo s, and
surface roughness r terms to model material appearance.
Object surface reflectance is a function of surface normal n
as derived from surface geometry (for us, depth), incoming
light vector w;, and view vector w,:

Lw) =P S\II(h)G(hwuwo)F(h,wi)
f(n,wz, o)_ T + 4(n'w¢)(n-wo)

M

Reflectance also depends upon the microfacet distribu-
tion ¥ for which we use GGX [42], the halfway vector
h = (w; + w,)/||w; + w,||, and the Smith geometric attenua-
tion factor G(h, w;,w,) =~ G1(h,w;) - G{(h,w,). We assume
the Fresnel term F' is pre-integrated within the specular
albedo term, which eases optimization without significant
loss of accuracy for common objects [11].

Fig. 3: Specular parameter clustering. Left to right: We
compute initial superpixels of a no-flash image and then
iteratively cluster according to chromaticity distance and
boundary strength.

Unlike diffuse albedo, estimating accurate specular
albedo s and roughness r requires dense angular samples.
To avoid capturing multiple views, we assume that: 1) the
3D object surface orientation varies across the image, and
2) the object is made of a small number of materials that
share specular parameters [11], [36], [43]. This lets us cluster
materials, accumulate samples from different ray directions
in the normal space of each material, and only estimate
specular parameters per material: s¢ and r°.

Environment Lighting Model. We model diffuse illumina-
tion from the environment surrounding the object using
2nd-order spherical harmonics (SH), assuming that the
environment illumination has a smooth shading effect across
the object surface [44]. We parameterize diffuse illumination
shading S as product of nine SH coefficients g € R® and
their basis functions with respect to normals n: H(n). This
lets us estimate diffuse reflection from illumination using
diffuse albedo p, produceing image I:

8

k=0

@)

To compute diffuse shading .S, we simply remove p. Note
that this model ignores specular reflection appearance, which
we include in our next model.

Flash Lighting Model. Under a point light source, we model
direct illumination only including specular reflection and
produce image I via:

I(n7wi7w07f) :f(n7wi7wo)(n'wi)L7 (3)

where our point light source has intensity L. Given the
relatively long distance between the light and our object with
respect the object size, we ignore the distance attenuation
factor (d? law) over the object surface.

Discussion. This image formation model benefits differ-
entiable rendering in two ways: 1) Modeling the flash as
direct illumination only from a point light source removes
an integral over incident light directions, leaving us with a
simplified Eq. (3) that is easier and faster to optimize. 2) Mod-
eling diffuse-only appearance via a separate environment
lighting model lets us penalize the difference between the
diffuse albedo recovered from both flash and environment
lighting renderings (Eq. (7)), which improves quality.

4 METHOD: DIFFERENTIABLE RENDERING OPTIM.

As input, we capture a pair of linear RAW RGB images
without flash I and with flash I, and a depth map D. To
recover the effect on appearance of direct flash illumination,
we obtain a flash-only image I from the RGB pair by
subtracting the no-flash image from the flash image: I = I —T
(see Figure 5a for an example).
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Given these inputs, our optimization proceeds in a
two-step alternating strategy. In Step 1, we optimize the
environment lighting via SH coefficients g. In Step 2, we
jointly optimize five elements: geometry as depth offsets AD
and normals n as differential linearized rotation matrices
AR (twist rotation matrices [45]), and appearance as diffuse
albedo p, specular albedo per material s¢, and roughness per
material 7°: x = {AD, AR, p, s¢,r°}. Figure 4 presents all
inputs and the optimization strategy.

4.1 Initialization

Depth. The depth to optimize D is initially set to the sensor
depth D. The depth offsets are set to zero: AD = 0.

Normals. We initialize n from D by finite differences.

SVBRDE. We initialize diffuse albedo p as the no-flash image.
We initialize specular albedo s = 0.05 and roughness r =
0.15 for all material clusters.

Environment shading. We set diffuse shading S from
luminance levels of no-flash image I, assuming that initial
diffuse albedo is 50% of the reflectance: S = Y (1/0.5), where
Y'(+) is a luminance function.

4.2 Step 1: Environment lllumination

Given normal image n and diffuse shading image S, we
minimize a least-squares objective:

g = argmin Z IS —g H(“)”% )
& (ijeM

(4)

where g denotes the optimized SH illumination coefficients
and M indicates valid pixels. This is similar to the method
of Wu at al. [46], which also uses 2nd-order SH diffuse
illumination within an alternating shape from shading
optimization for normal refinement.

4.3 Step 2: Joint SVBRDF & Normal Optimization

Our joint objective has geometric and photometric terms:
X = arg)r(nin Apthp + Apthp + )\;fgil);eg—l—

Ap¥p + Anthn + A", ©)

The first three terms are radiometric: a photometric term ¢ p,
a diffuse albedo term 7, and a diffuse albedo regularization
term ;8. The second three terms are geometric: a depth
term v¢p, a normal term %5, and a normal regularization
term ;. Each term has a corresponding hyperparameter .

Photometric Consistency. Our photometric term ¢ p encour-
ages similarity between the input flash-only image I and the
rendered flash-only image I via Equation (3):

R ID IR L (CRENTN]

(i,5)eM

(6)

where we use D to calculate light w; and view w, vectors.

Diffuse Albedo. The origin of bright regions can be ambigu-
ous: are they from bright diffuse albedo, large specularity, or
smooth object surfaces? We can add an additional cue from
diffuse albedo computed with SH illumination shading to
help mitigate this ambiguity (Figure 5).

Given SH illumination coefficients g from Step 1, we
approximate diffuse shading S = g H(n) (Equation (4)).
Then, we divide each color channel of the no-flash image
I by the diffuse shading S to approximate diffuse albedo:
Pirg oy = Lirg01/5-

We also approximate diffuse albedo a second way by com-
puting shading from direct illumination S4 via Equation (3)
by ignoring SVBRDF f, then dividing the flash-only image
by this shading: py,. 453 = I{r,4,5}/Sa- Then, we encourage
both estimates to be similar:

¢P:Z(i,j)€M (i, 5)/7 = P, 5)l; - @

As the scales of these diffuse albedos are different due
to intensity differences of the flash/no-flash images, we
normalize using factor 7 = I* + 3 - I, where I* and I°
are the flash-only image mean and standard deviation. This
normalization factor also guides the albedo to lie in the
physically-meaningful range of [0,1].

Diffuse albedo can spatially vary, and so we enforce edge-
aware smoothness with regularizer ¢7®:

Gis = 3" willpli+1,5) — pli. g5 +
(i,5)eM

ST willpi,g+1) - pli, 5.
(i,5)EM

(©)

where w; and wj are bilateral weights computed from the SH
illumination diffuse albedo:

el +1,5) = (i, )13
202 ’

el i+ 1) = p(, )13
202 ’

wy = exp(

©)

wj = exp(

and where Gaussian standard deviation is o = 0.01.
Depth. We optimize depth values D via the depth offsets
AD: D = D+AD. Our depth term v p encourages similarity



Flash-only image (a) Flash-only (b) Without ¥, (c) With v,

Fig. 5: Constraining diffuse albedo from SH illumination
to be close to diffuse albedo from direct illumination
improves quality. For an input flash-only image (a), the
results in (b,c) compare the effect of the diffuse albedo term
1 (Eq. (7)). This term helps to separate SVBRDF parameters.

Fig. 6: Differentiable rendering refines noisy normals. Input
normals (middle) show low detail and quantization artifacts.
Our refined normals (right) recover detail while maintaining
accuracy.

between the current depth D and the sensor depth D:
o N NP
QZJD_Z(ZJ)GM”D(Z?J) D(Zvj)” :

Normal. As we optimize depth and normal as separate
parameters, we encourage integrability via normal term y,:

where 11 denotes the current normal rotated by the optimized
rotation i = AR(n), and i denotes normals obtained from
depth D following Wu et al. [46].

To mitigate depth sensor noise (Figure 6), we use normal
regularization term ¢[°% to make sure normals have edge-
aware smooth changes with respect to neighboring pixels:

(10)

(11)

Gt = 3w |G+ 1.5) — 80, )l5 +
(i,j)eM
ST willa, g+ 1) — a6, 5)|;. (12)
(i,j)eM

where w; and wj are as in Equation (9) with o = 0.1.

5 METHOD: IMPLEMENTATION DETAILS

Calibration. To align color and depth camera pixels, we
recover intrinsic and extrinsic camera parameters using
Zhang’s method [47]. For extrinsic calibration, we use a
pair of color images and an infrared image from the depth
camera. Then, we warp the depth camera pixels to the color
camera space to use the higher-resolution color information.

(d) Mobile capture (e) DSLR capture (f) DSLR setup

Fig. 7: Real-world data capture. Flash /no-flash pair (a,b) and
a depth map (c) from either a smartphone with an RGB-D
sensor (d) or a DSLR with a depth camera (e) & (f).

After projecting the depth map, some color pixels do not
have depth values due to occlusion by parallax. Thus, we
build a visibility mask M for each color image pixel (4, ),
and compute our optimization loss only for visibile pixels.

Material Clustering. To model specular albedo s¢ and rough-
ness r¢ per material, we formulate a graph simplification
problem based on Kruskal’s algorithm [48], where nodes
are material clusters and where edges join adjacent clusters.
We initialize material clusters using SLIC superpixels [49]
from the no-flash image (Figure 3). Edge weights are set
as the average L2 chromaticity (UV) difference between the
constituent pixels of node superpixels, and we compute a
boundary strength score between adjacent clusters from the
range of pixel intensities. Then, for each edge in increasing
weight order, we merge two clusters if they have a weak
boundary score and similar average color values. Upon
merging, we update the graph and recompute edge and
boundary scores. Then, we iterate until either 1) no clusters
are merged such as when adjacent color distances are larger
than a preset threshold value, or 2) we reach a minimum
number of clusters per object (manually specified).

Over our various test objects, this process consistently
produces large homogenous regions without merging su-
perpixels of similar albedo but that are separated by strong
features (Figure 3). Since the material clustering algorithm
depends on chromaticity and adjacent pixel values, similar
but distant materials are not classified as the same material,
and nearby materials with similar colors cannot be classified
as different materials.

Coarse-to-fine Algorithm. To aid the optimization, we take a

Algorithm 1 Coarse-to-fine optimization.

1: Initialize parameters x = {ADxk, ARk, px, Sk, Tk }
2: forlevel k = K...0do
3: I, +— Ik/Tk B
4: Step 1: Optimize g using no-flash image I
5: Step 2: Optimize with flash-only image I: x =
{ADg, ARy, pi, 85, 7%
if £ > 1 then
{Dk-1,0%-1, pr—1}
— UPSAMPLE({Dk =+ ADk, AR (nk), Pk - Tk})
8: Sk—1 4 SE - Tk

N

9: Te_1 < T}
10: end if
11: end for




multiscale approach (Algorithm 1). We use the optimization
results from the previous coarse level for the initialization of
the current level optimization. We optimize four hierarchy
levels (k=0...K, K=3) and perform 100-k /(K +1) iterations at
each level, using area interpolation for initial downsampling
and bilinear interpolation for upsampling after every level.

After each iteration, we clip specular albedo s and
roughness 7 to be at least e=1x10~". Also, since we update
our normal at every iteration n = AR(n), we set the
differential rotation matrix to the identity AR = I after
every iteration. Finally, when upsampling images between
levels, we renormalize diffuse albedos by 7.

Optimization Hyperparameters. We use Adam [50] with a
learning rate of 0.01 and a weight decay rate of 0.6 over every
30 iterations. Each optimization function is composed of
different optimization parameters with different unit ranges.
Thus, we use hyperparameters both to align these ranges and
to determine the relative importance of each subobjective.
To find good hyperparameters, we employ grid search. For
synthetic scenes, we use Ap = 6 X 104, Ap = 104, )\;fg = 103,
Ap =1, Ay, = 10%, A\I*& = 5 x 10%. For real scenes with more
imaging noise and greater variety in size and material type,
we fine tune the hyperparameters for each object. Please
refer to the supplement for hyperparameters of each object.
For owls, we use A\p = 5 x 10%, Ap =4 X 104, )\;,eg = 108,
Ap = 103, A, = 105, AI*8 = 10°.

Software, Hardware, and Computation Time. We implement
our method using TensorFlow?2 [51]. When executing upon
an NVIDIA GPU Titan V and Intel CPU i7-9700 with an input
image size of 0.5 Mpx (Figure 8) and with four hierarchical
levels, our implementation takes 150 seconds for material
clustering and 88 seconds for optimization.

6 EXPERIMENTS

Baselines. We compare our method to the closest two prac-
tical SVBRDF works that use only one or two input images
(Table 1): Sang et al. [16] and Boss et al. [17]. Both use deep
learned priors whereas we forego these and use additional
sensor depth information. While this means these works are
not directly comparable, we judged these comparisons to be
informative given new smartphone capabilities.

Sang et al. [16] use a flashlight to estimate depth, normal,

diffuse albedo, and roughness, and Boss et al. [17] use a
pair of flash/no-flash images to estimate appearance and
geometry. We provide a flash-only image to Sang et al. [16],
a pair of flash and no-flash images to Boss et al. [17], and a
depth map to our method.
Datasets: Synthetic and Real World. We use the synthetic
dataset of 20 test scenes provided by Boss et al. [17]
(Figure 10). Using the perfect depth from these scenes
would be unfair to other methods as we expect noisy
sensor depth as input, so we add Gaussian random noise
of varying standard deviation o = 0.001, 0.005, 0.01 to the
input depth. For environment illumination, we extract nine
SH coefficients of monochromatic illuminance from the Grace
HDR environment map (Grace). Then, we render flash and
no-flash images with an additional point light source, which
is collocated with the camera position.

For real-world scenes, we use two setups to show a
range of quality (Figure 7): (1) a handheld smartphone

(Samsung Galaxy Note 10+) with an RGB sensor resolution
of 4000x3000 and a depth sensor resolution of 640x480
(Figures 1 and 8), and (2) a tripod-mounted Nikon DSLR
camera (D7000) with a sensor resolution of 4928 x3264 and
a 24mm lens and a depth sensor (Intel RealSense SR305)
with a resolution of 640x480 (Figure 9). Given limited
dynamic range, we assume that flash intensity is stronger
than environment illumination intensity to obtain a high
signal-to-noise ratio (SNR) flash-only image. To ensure this,
we fix ISO at 100 and vary exposure time.

Metrics. For depth, we use scale and shift invariant (affine
similarity) mean-squared error (MSE) between the ground
truth and the predicted value [52]. For normals, we use
average angular error. For diffuse albedo, we compute MSE.
Finally, owing to model rendering equation differences in
that Sang et al. [16] does not estimate specular albedo, we
compute a combined specular reflection image error as MSE
rather than individual specular albedo and roughness, and
refer to qualitative results for comparisons to Boss et al. [17]
otherwise. Since the reflectance image has the same value
range over different methods, direct comparison of MSE
makes more sense than using scale-invariant MSE.

Qualitative Assessment and Comparison. Our approach
improves depth and normal estimates over their initializa-
tions within the optimization process. The final depth maps
and normals show less noise and higher resolution, up to
the flash/no-flash image size (Figures 6 and 10), for both the
smartphone (Figure 8) and the DSLR setup (Figure 9).

Table 2 quantitatively compares the accuracy of refined
depth and normal, along with estimated diffuse albedo and
specular reflection on the synthetic data. Our algorithm
outperforms the two learning-based methods on average.
Qualitatively, in Figure 10, our normal estimates occasionally
lack high frequency detail present in the ground truth,
but our depth input (even when noisy) and differentiable
rendering lead them to rarely have large error. In contrast,
the method of Sang et al. erroneously flattens the normals,
and the method of Boss et al. erroneously introduces sharp
boundaries. Material clustering leads our method to produce
more accurate specular albedo, but all methods struggle to
reconstruct surface roughness—learning or not.

For real-world scenes (Figures 8 and 9), we see similar
trends. Glossy objects like the orange and Santa’s hat cause
the method of Boss et al. [17] bake variation into diffuse
albedo rather than specular. Sang et al. [16] show better
results for diffuse albedo, but again suffer geometrically
with flattened normals and normals that are inconsistent
with the predicted depth. Concerning relighting, Sang et
al. both underestimate and overestimate specular appearance
(Santa, missing specular on hat; orange, too bright and sharp
specular lobe), and Boss et al. show more limited results due
to the baking issue. While our result suffers some normal
inaccuracy (Santa beard), overall our results improve quality
without risking overfitting to data and notably improve
normal and depth quality over the input (please zoom in).

Limitations. For materials, the Cook-Torrance SVBRDF
model can only represent certain materials. For instance,
transmissive materials that show subsurface scattering will
cause inaccurate reconstruction, such as skin or rock crystals
like quartz. Also, to ease the inverse rendering problem,
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specular albedo. For Boss et al. [17], often diffuse albedo and specular albedo are not separated properly. Our method more
successfully factorizes appearance and normals. Relighting results are illuminated with a point light at different positions in
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Fig. 10: Our approach qualitatively improves over two learning-based single view flash/no-flash methods. Synthetic
baseball scene from the 20 scenes of Boss et al. [17]. Our method outperforms both Sang et al. [16] and Boss et al. [17],
showing better SVBRDFs estimation and consistent 3D shape results. This lets our relighting be closer to the ground truth

(point light positions shown in bottom left circle).

TABLE 2: Our approach lowers quantitative

Method Diffuse ~ Specular ~ Normal Dept}l error over two learning-based single view
albedo _ reflection angle diff.  (x107% flash/no-flash methods. We compute average
Sang et al. [16] 0.024 0.013 0.446 6.082 MSE over 20 synthetic scenes from Boss et
Boss et al. [17] 0.038 0.176 0.353 3.162 al. [17]. Bold marks lowest error. Varying
Ours (avg. overo)  0.018 0.007 0.240 2.676 Gaussian noise with standard deviation o
Ours (o = 0.001) 0.017 0.007 0.232 1.898 added to our input depth does not increase
Ours (J = 0005) 0.018 0.007 0.243 3.054 material error.
Ours (o0 = 0.01) 0.018 0.007 0.246 3.082

(a) Flash and no-flash images (b) Diffuse albedo (c) Normals
Fig. 11: Limitation: Saturated pixels cause errors. If input
flash image has saturated pixels, the quality of the optimized
diffuse albedo and normals is degraded.

we assume that material surfaces are dielectric: That is, we
assume that the specular albedo should be monochromatic
and have the same color as the illumination. Clustering for
specular parameters may fail to group materials with high-
frequency patterns, leading to slightly different reconstruc-
tions across the same material. Further, in our application
scenario, specularity is optimized by reducing the rendered
image loss, and so specular albedo and roughness are bound
together. This can lead to small rendering errors, e.g., Figure 9
red dress has lower specular albedo but higher roughness.

Our algorithm requires that the input flashlight image
should not be saturated. At saturated pixels, the albedo
cannot be guided well by the no-flash image and normals
can be overfit to inaccurate results (Figure 11). Further, for
lighting, complex environment illumination causing object
or scene shadows cannot be represented with only nine
SH coefficients, nor any illumination that causes specular
reflections. Finally, outdoor scenes remain difficult because

the maximum intensity of the flashlight is relatively low
compared to the sun, requiring high signal to noise ratios
and high precision sensors.

7 CONCLUSION

Practical geometry and SVBRDF reconstruction is an ill-
posed problem that has previously been tackled with deep
learned priors. However, these can fail to generalize to
unseen data, causing inaccuracy or even catastrophic failure
(Boss et al. [17] on the orange, Figure 9). Given the challenge,
we show that better accuracy is possible by integrating
information from depth cameras, so long as the low input
accuracy can be overcome. We show how to do this efficiently
via differentiable rendering and a flash/no-flash pair that
lets us estimate environment lighting and enforce additional
diffuse albedo constraints. This approach allows capture
in lit environments without any setup more complex than
a smartphone, helping us move toward ‘point and shoot’
digitization of real-world object appearance.
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APPENDIX

In the supplemental material, we provide quantitative eval-
uation results for the 20 unseen test dataset [17]. We use
Mean Square Error (MSE) to compute diffuse albedo L2
difference in the linear domain (Table 3). For specular albedo
and roughness, since Sang et al. [16] do not compute specular
albedo, instead we calculate specular reflectance MSE as our
specular error metric (Table 4). To evaluate surface normals,
computing direct L2 difference is not appropriate since
normals from learning-based methods are not guaranteed to
have unit length magnitude. Thus, we compute the average
angular difference between predicted normals and ground
truth normals (Table 5) by following the method of Schmitt
et al. [12]. In a similar sense, depth computed from different
methods has different scales. Thus, we compute scale and
shift-invariant (affine similarity) error metric (Table 6) by
following Ranftl et al. [52].

For hyperparameters, once a moderately-robust interval
is found, optimal hyperparameters can be further refined
by sweeping a hyperparameter table. We tested these pa-
rameters: Ap = [10%,10%,106], A\, = [10%,10%,10%], \p® =
[10°,106,107], Ap = [1,10,10%,10%], Ay, = [10%,10%,10%],
An® = [10%,10%,105,107).

Specifically, for rugby we use, A\p = 4 x 10%, A, = 10%,
Ap? =10%, A\p = 103, \,, = 105, \y® = 10°. For chicken we
use, \p = 6 x 10%, A, = 5 x 101, \g® =7 x 10°, Ap = 103,
An = 105, Ax® = 2 x 106. For orange we use, \p = 10°,
Ay = 6x10%, 2% =107, Ap = 103, A\, = 10%, Ap® = 2x 105.
For owls we use, A\p = 5 x 10%, Ap =4 X 104, )\ffg = 109,
Ap = 103, A\, = 10%, A\n® = 10°. For santa we use, Ap = 10°,
Ay = 6x10%, A58 =106, A\p = 103, A\, = 10°, Ap® = 2x 10°.



Diffuse albedo MSE

Test

Sang

Boss

scene  [16] [17] ©OUs
1 0002 0.003 0.004
2 0002 0010 0.006
3 0.001 0001 0.005
4 0.027 0044 0.038
5 0001 0003 0.007
6 0.002 0002 0.022
7 0002 0002 0.017
8 0.007 0.008 0.056
9 0.024 0027 0.004
10 0003 0004 0007
11 0102 0282 0010
12 0042 0019 0005
13 0050 0058 0.004
14 0092 0042 0019
15 0006 0008 0.005
16 0002 0033 0004
17 0038 0100 0007
18 0011 0035 0.004
19 0062 0046 0.004
20 0006 0036 0015
Avg. 0024 0038 0017

TABLE 3: Diffuse albedo MSE for the 20 test dataset [17],
where o = 0.001 for our method (cf. Table 2 for varying o.)

Specular reflectance MSE

Test Sang  Boss Ours
scene [16] [17]

1 0.004 0.002 0.002
2 0.006 0.021 0.003
3 0.004 0.002 0.002
4 0.044 1455 0.025
5 0.005 0.010 0.004
6 0.014 0.054 0.012
7 0.009 0.038 0.008
8 0.059 0.164 0.037
9 0.004 0.026 0.001
10 0.006 0.005 0.005
11 0.027 0.087 0.010
12 0.008 0.015 0.002
13 0.005 0.020 0.001
14 0.024 0.374 0.010
15 0.004 1.097 0.004
16 0.004 0.022 0.002
17 0.007 0.030 0.002
18 0.006 0.049 0.001
19 0.002 0.011 0.001
20 0.016 0.034 0.009
Avg. 0.013 0.176 0.007

TABLE 4: Specular reflectance MSE for the 20 test dataset [17],
where o = 0.001 for our method (cf. Table 2 for varying o.)

TABLE 5:

TABLE 6: Depth MSE up to an affine transform for the 20 test
dataset [17], where o = 0.001 for our method (cf. Table 2).

Normal angle difference

Test

Sang

Boss

scene  [16] 7] ©urs
1 0258 0177 0.164
2 0437 0261 0192
3 0630 0256 0.149
4 0342 0371 0174
5 0924 0569 0332
6 0459 0274 0.093
7 0863 0252 0217
8 0417 0439 0.106
9 0240 0178 0127
10 0306 0411 0.087
11 0755 0451 0128
12 0174 0161 0.09
13 0.148 0162 0.100
14 0.8 0132 0115
15 0464 0545 0215
16 0715 0545 0253
17 0512 0272 0108
18 0119 0510 0084
19 0598 0115 0054
20 0285 0243 0266
Avg. 04461 03529 0232

Normal angular difference for the 20 test
dataset [17], where o = 0.001 for our method (cf. Table 2.)

Depth affine MSE (10~%)

Test Sang  Boss Ours
scene [16] [17]

1 12.31 026  0.05
2 4322 036 027
3 70.62  0.81 0.38
4 11.29 3.63 0.24
5 5094 352 1548
6 133.87 522 238
7 88.24 156 0.05
8 29.32 287 1.69
9 5.10 0.40 0.03
10 26.58  4.78 0.25
11 97.09 6.79 3.46
12 10.77 035 0.22
13 1226 037 023
14 32.58 347  6.70
15 6752 272 0.64
16 10941 1146 434
17 5824 317 0.12
18 227 095 0.06
19 30046 964  0.66
20 53.56 093 0.60
Avg. 60.82 3.16 1.89
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