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Some upper bounds for the number of monogenizations of quartic orders are
established by considering certain classical Diophantine equations, namely index
form equations in quartic number fields, and cubic and quartic Thue equations.

1. Introduction

Let K be an algebraic number field and Oy its ring of integers. Let O be an order
in K (a subring of Ok with quotient field K). We call the ring O monogenic if
it is generated by one element as a Z-algebra, i.e., O = Z[«] for some o € O;
the element « is called a monogenizer of O. If « is a monogenizer of O, than
s0 is +a + ¢ for any ¢ € Z. We call two monogenizers « and o’ of O equivalent
if @ = +a + ¢ for some ¢ € Z. Then by a monogenization of O, we mean an
equivalence class of monogenizers of O. By fundamental work of Gyéry [1976],
we know that any order in an algebraic number field can have at most finitely many
monogenizations and that effectively computable upper bounds on the number of
these monogenizations can be determined. It is a difficult computational problem
to find or even count the monogenizations of a given order (many computational
examples, interesting special cases and efficient algorithms in low degree number
fields may be found in [Gadl 2019]).

We are interested in counting the number of monogenizations of a given order.
An overview of various results on estimates for the number of monogenizations of
orders in number fields is given in [Evertse 2011]. There are further extensions and
generalizations of such results in [Evertse and Gy6ry 2017] (in particular, see the
relevant results in Section 9.1).

Monogenicity of algebraic number rings has a long history. It is an interesting
problem to decide whether a given number field K is monogenic, that is, whether
its ring of integers Ok, which is the maximal order in K, is monogenic. It is well
known that quadratic number fields are monogenic. Dedekind [1878] gave the
first example of a nonmonogenic cubic field. It is an open conjecture that most of
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number fields of degree greater than 2 are not monogenic. For recent progress in
this direction in the cases of cubic and quartic number fields, we refer the reader to
the work of Alpoge, Bhargava, and Shnidman [Alpdge et al. 2021a; 2021b].

In this article we focus on the problem of counting the number of monogenizations
of a quartic order. Evertse and Gy&ry [1985] proved explicit upper bounds for the
number of monogenizations of an order in a number field K. These bounds depend
only on the degree of K. The best known result for n > 4 is due to Evertse [2011],
who proved in that an order O in a number field K of degree n can have at most
2401 +3)(n=2) monogenizations. In the case n =4, Evertse’s result shows that an order
in a quartic field can have at most 27> monogenizations. Recently, Bhargava [2022]
gave an improved bound in, showing that an order in a quartic number field can
have at most 2760 monogenizations (and even fewer when the discriminant of the
order is large enough). We give another proof for Theorem 1.1 of [Bhargava 2022].

Theorem 1.1. Let O be an order in a quartic number field. The number of monog-
enizations of O is at most 2760. If the absolute value of the discriminant of O is
sufficiently large, the number of monogenizations of O is at most 182. Moreover,
if the discriminant of O is negative and has sufficiently large absolute value, the
number of monogenizations of O is at most 70.

In the above theorem the assumptions about the size of the discriminant are
the result of such assumptions to overcome certain technical difficulties in some
approximation methods used to prove Propositions 2.3, 2.5, and 2.6. These restric-
tions can be expressed explicitly. For instance, assuming the absolute value of the
discriminant is at least 10°°° will suffice; see [Akhtari 2009; 2012], where such
explicit values are established but no effort has been made to optimize them. It is
known that there are only finitely many quartic number fields with the absolute
value of their discriminants bounded by a constant; see [Birch and Merriman 1972;
Evertse and Gy6ry 1991]. By the identity in (2), which relates the discriminant of
an order to that of the underlying number field, Theorem 1.1 implies that with at
most finitely many exceptions, a quartic order with positive discriminant can have
at most 182 monogenizations and a quartic order with negative discriminant can
have at most 70 monogenizations.

Our approach involves refining and modifying an algorithmic method developed
by Gaal, Pethé and Pohst [Gadl et al. 1996] to solve an index form equation
I(X,Y,Z)==1 in a quartic number field. Using this method, we will be able to
associate explicit polynomials and binary and ternary forms to a monogenic order
and a fixed monogenizer of that, and eventually reduce our problem to the resolution
of a number of Thue equations of degree 3 and 4. The proof in [Bhargava 2022]
uses a more abstract viewpoint by utilizing two ways of parametrizing quartic rings,
one established by Bhargava [2004] and another one established by Wood [2012].
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2. Preliminaries: discriminants, Thue equations, discriminant and
index form equations

2A. Discriminants. We recall the definitions of discriminants of orders, polynomi-
als, algebraic numbers, and binary forms which will be frequently used throughout
this manuscript. We will also refer to the discriminant of number fields. The
discriminant of a number field K is the discriminant of its maximal order, the ring
of integers Ok . For K = Q(«), the discriminant of K can be expressed in terms of
the discriminant of the algebraic number « and its index in (Q(«). The index of an
algebraic integer and the discriminant of orders are defined in Section 2B.

Let P(T) € Z[T] be a polynomial of degree n and leading coefficient a € Z. The
discriminant Disc(P) of P(T) is

Disc(P) =a” > [ [(vi —v).
i<j
where yi, ..., ¥, € C are the roots of P(T).
The discriminant of an algebraic number is defined as the discriminant of its
minimal polynomial.
Let F(U, V) € Z[U, V] be a binary form of degree n that factors over C as

n

[ [ -8V
i=1
The discriminant D(F) of F is given by
D(F) =] [(Bj —a;Bi)’ 1)
i<j

We note that the discriminant of the polynomial F' (U, 1) € Z[U] is equal to the
discriminant of the binary form F(U, V) € Z[U, V1.

2B. Discriminant and index form equations. Let K be an algebraic number field

of degree n. Let «y, ..., o, a linearly independent set of n elements of K. Let
01,...,0, : K — C be all the embeddings of K into C. The discriminant of
(o1, ..., ap) is defined as the square of the determinant of an n x n matrix:
Dija(al, ..., @) = (det(oi(@)))?,

where i, j € {1, ..., n}.

If {B1, ..., Bn} forms a basis for Ok, then the discriminant of K is

Dk = Dk ao(B1, ..., Bn)-
Let y1, 2, ..., vy be an integral basis for an order O in a number field K of

degree n (we note that by definition an order is a full-rank Z-module in Ok). The
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discriminant of O is defined as Dk, (1, - .., ¥») and is independent of the choice
of the integral basis y1, ¥, ..., ¥»; see [Koch 1997], or any introductory text in
algebraic number theory.

The following basic well-known lemmas are due to Hensel [1908].

Lemma 2.1. Let oy, ..., a, € Ok be linearly independent over Q and set
O ="7w,...,ocul.
then
Dkjo(ar, ... o) = J* Dk, )

where O; and O™ are the additive groups of the modules Og and O, respectively,
and J = (O} : OY) is the module index.

For every y € K, we denote the algebraic conjugates of y by y@ (1 <i <n).

Let {1, wy, ..., w,} be an integral basis of K. Let
X=(X17"'9X}’l)’
and
LX)=X1+w X+ +w, X,, (3)

with algebraic conjugates
LOX) = X1+ 0y Xo+-- -+ 0 X,,
(1 <i <n). Kronecker and Hensel called the form L(X) the Fundamentalform and
DX =[] @?X) —LYX))? )
1<i<j<n
the Fundamentaldiskriminante.

Lemma 2.2. We have
D a(L(X)) = (I(X1, ..., X»))* Dk,

where Dk is the discriminant of the field K, the linear form L(X) and its discrimi-
nant are defined in (3) and (4), and 1 (X1, ..., X,,) is a homogeneous form inn — 1
variables of degree n(n — 1) /2 with integer coefficients.

The form 1 (X1, ..., X;) in the statement of Lemma 2.2 is called the index form
corresponding to the integral basis {1, wy, ..., ®,}. An important property of the
index form is that for any algebraic integer

o =Xx1+ X202+ -+ X0,
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with K = Q(«), by Lemma 2.2 we have

I(o) = [I(x2, ..., Xn)l,

where I (o) is the index of the module Z[«] in Ok . The index form is independent
of the variable X, for if 8 =« + a, where a € Z, then I () = I (B).

We remark that in a cubic number field an index form equation is in fact a cubic
Thue equation (see Section 2C for the definition)

1(X3, X3) = £m,

where m € Z. In [Akhtari 2020] we have discussed some results about cubic Thue
equations and their consequences in resolving index form equations and counting
the number of monogenizations of a cubic ring.

2C. Upper bounds on the number of solutions of cubic and quartic Thue equa-
tions. Let F(U, V) e Z[U, V] be a binary form of degree at least 3. If F(U, V) is
irreducible over Q, for any integer m, it is shown in [Thue 1909] that the equation

FU,V)y=m

has at most finitely many solutions in integers U, V. These equations are called
Thue equations. We will summarize some useful results on the number of integer
solutions of binary cubic and quartic Thue equations. In Propositions 2.3-2.6, two
pairs of solutions (u, v), (—u, —v) € 72 are considered as one solution.

The following is the combination of main results due to Bennett [2001] and
Okazaki [2002]; see also [Akhtari 2009].

Proposition 2.3. A cubic Thue equation F(U, V) = £1 has at most 10 integer
solutions. If the absolute value of the discriminant of F(U, V) is sufficiently large
then F (U, V) = =1 has at most 7 integer solutions.

The following result was established independently by Delone [1930] and Nagell
[1928].

Proposition 2.4. Let F(U, V) € Z[U, V] be a cubic binary form with negative
discriminant. The Thue equation F (U, V) = =£1 has at most 5 integers solutions.

The following is Theorem A.1 of [Bhargava 2022], where results from [Akhtari
2015; 2012; Bennet and Rechnitzer > 2022] are combined to obtain upper bounds
for the number of integral solutions to quartic Thue equations.

Proposition 2.5. A quartic Thue equation F(U, V) = %1 has at most 276 integer
solutions. If the absolute value of the discriminant of F(U, V) is sufficiently large
then the quartic Thue equation F (U, V) = %1 has at most 26 integer solutions.

The following is part of the main theorem in [Akhtari 2012].
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Proposition 2.6. Let F(U, V) € Z[U, V] be a quartic binary form with negative
discriminant. If the absolute value of the discriminant of F (U, V) is sufficiently
large, the Thue equation F (U, V) = %1 has at most 14 integer solutions.

2D. Matrix actions on binary forms. We summarize some trivial facts about
matrix actions on binary forms that are well known to those in the field. Let
FU,V)eZ[U,V]and A= (‘z Z) be a 2 x 2 matrix with integer entries. We define
the binary form

F4(U,V)eZ[U, V]
by
Fi(U,V)=F(aU+bV,cU+dV).

Via the definition (1), we observe that for any 2 x 2 matrix A with integer entries

D(F,) = (det A)""~D D(F). ®)

We say that two integral binary forms F and G are equivalent if G = £ F4
for some A € GL,(Z). This is in fact an equivalence relationship. Moreover, the
discriminants of two equivalent forms are equal.

For A= (¢ 3) € GLy(Z), and any (u, v) € Z?, we clearly have

alog( 470
—C a

Fa(du — bv, —cu +av) = £F (u, v).

and

Therefore, there is a one-to-one correspondence between the possible solutions of
the Thue equation F (U, V) = %1 and those of the Thue equation F4(U, V) = %1.
3. Index form equations in quartic number fields

Let & be a quartic algebraic integer with the minimal polynomial
P(T)=T*+aiT* + ;T + a3T +ay € Z[T). 6)

Let K = Q(&). Suppose that w; = 1, wy, w3 and w4 form an integral basis for the
quartic number field K. We write o1, 02, 03 and o4 for the distinct embeddings of
K into C. Fori =1, 2, 3, 4, we define the linear forms

L(X,Y,Z)=Xo + Yol + Zo,

where a)j.l) =0;(w)).
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The discriminant form corresponding to the integral basis {1, wo, w3, w4} is
defined by

Dijo(Xen+Yws+Zog)= || G(X,Y,2)—1;(X, Y, 2))%.
1<i<j<4
We have
Dgjo(Xwy +Yws 4+ Zwyg) = (I(X, Y, Z))? Dk, (7

where Dk is the discriminant of the number field K and I (X, Y, Z) € Z[X, Y, Z]
is the index form corresponding to the fixed integral basis {1, w;, w3, w4}. The
integral ternary form /(X, Y, Z) has degree 6. For any algebraic integer o =
a-+xwy + yws + zwg, with a, x, y, z € Z, the index I (@) is equal to |1 (x, y, z)|,
where I (o) is the module index of Z[«] in Ok, the ring of integers of K. In this
section we consider the index form equation

I(X,Y,Z)=4m (8)

where m € Z.

We follow a simple and efficient algorithm given by Gaal, Peth6 and Pohst [1996],
where they reduce the problem of solving an index form equation in a quartic number
field to the problem of finding all solutions (u;, v;) € Z? of a cubic Thue equation
F(U, V)==h, with h € Z, and the resolution of corresponding systems of quadratic
equations Q (X, Y, Z) = u;, Q2(X,Y, Z) = v;, where F(U,V) € Z[U, V] is a
cubic form, and Q (X, Y, Z) and Q,(X, Y, Z) are integral ternary quadratic forms.
We state this reduction more precisely in Proposition 3.1.

We denote by I the index of the algebraic integer £&. Then

Io=1(§) = |1 (x0, yo, z0) I,

where & = ag + xow> + yows + zows, and ag, xo, yo, 2o € Z. Once again we remark
that the algebraic integers & and § — a; have the same index in Og. Since I is the
index of Z[£] in Ok, for every algebraic integer « € Ok, we have

Iy € Z[&].
Assume that (x1, yi, z1) € 73 satisfies (8). Let

a = x| + y1w3 + 7104, 9
and
o = la =d, +x|E+yE2+2)& e Z[E] (10)
We have
(@) =T(XE+yE2+78%) =+I0m. (11)
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We denote by £ and o’ the algebraic conjugates of & and o, fori =1, 2, 3, 4.
Dividing both sides of the (11) by 7 (§) = Iy, we obtain

I (a/m_a/w)(a/(k)_a/(l)) ilgm L )
O _ e ©_en |~ = xlom,
D) & & § 3 Iy

where the above product is taken for (i, j, k, 1) =(1,2,3,4), (1, 3,2,4), (1,4, 2, 3).
For each (i, j, k, [), via (10), we have

oD — oD\ [ ® — oD
( g(l) _E(]) )( E(k) _g(l) ) - Ql(x;: y;: Z/]) _éi,j,k,l Q2(x;’ y;: Z/]), (13)

where
E =&V 40D
0,(X.,Y,2)=
X2 —ai XY +ay Y 4+-(a}—2a0) X Z+(a3—a1a) Y Z+(—ayaz+a3+a) Z%,  (14)

and
O0,(X,Y,2)=Y*—XZ—a1YZ+a,Z°. (15)

The coefficients of the quadratic forms Q(X, Y, Z) and Q»(X, Y, Z) are expressed
in terms of the coefficients of P(T'), the minimal polynomial of £ given in (6). For
each (i, j, k,1)=(1,2,3,4),(1,3,2,4), (1, 4, 2, 3), we define the linear form

P(l’ j? ka l) = P(l’ j’ ka l)(Ua V) = U - 51,2,3,4‘/'
Taking U = Q1(X, Y, Z) and V = Q»(X, Y, Z), by (12) and (13), we obtain

[T PG kD) =(U—E1234V)U—E1324V)U—E1423V) =%Igm, (16)
@, j.k,0)

where the product is taken over (i, j, k,1) = (1,2,3,4),(1,3,2,4), (1,4, 2, 3).

The left-hand side of (16) is a cubic binary form in U and V whose coefficients
are symmetric polynomials of £, €@ £ £® Simple and routine calculations
show that this integral cubic binary form is

[] PG j. kD@, V)
e AUAY)
=U3— UV + (a1az — 4a4)UV2 + (4araq — a% — a%a4)V3. (17)
The cubic polynomial

F(T,1)= T3 — agT2 + (a1a3 —4as)T + (4aras — a% — a%a4)
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is called the cubic resolvent polynomial of P(T), the minimal polynomial of &.
The discriminant of P(T) € Z[T] is equal to the discriminant of F (T, 1) € Z[T]
and therefore to the discriminant of F (U, V) € Z[U, V1. Since the discriminant of
the minimal polynomial P (7T) is not zero, we conclude that F'(U, V) will factor
into three pairwise nonproportional linear factors over C. This, together with (16),
implies that the three cubic algebraic integers &1 2.3 4, £1.3,2,4, and &; 4 2 3 are distinct
algebraic conjugates over Q. The above argument can be found in [Gaal 2019] and
[Gadl et al. 1996], and implies the following.

Proposition 3.1. Let & be a quartic algebraic integer and

lo=1(§).

Assume that (X, Y, Z) € Z[X, Y, Z] is an index form in the quartic number field
Q). The triple (x, y, z) € Z° is a solution of the index form equation

1(X,Y,Z)=+m,

with m € Z, if and only if there exists a solution (u,v) € 7> of the cubic Thue
equation
FU,V)=+Im (18)

such that (x, y, z) satisfies the system of quadratic ternary equations
01X, Y,Z)=u, Q(X,Y,Z)=v, (19)

where F (U, V) is an integral cubic binary form and Q(X,Y, Z) and Q»(X,Y, Z)
are integral quadratic ternary forms, respectively defined in (17), (14) and (15) with
coefficients expressed in terms of the coefficients of the minimal polynomial of the
fixed generator &.

Proposition 3.1 provides a general algorithm to find algebraic integers with index
m in the quartic number field K by fixing any algebraic integer & that generates K.
So in general the quantities /o and m need not to be related. Using an argument of
Mordell [1969], in [Gaal et al. 1996] it is shown that all solutions of an index form
equation in a quartic number field can be found through solving finitely many cubic
and quartic Thue equations; see Theorems 1 and 2, as well as equations (8), (9)
and (10) of [loc. cit.]. In Section 4 we will modify the argument in [loc. cit.] and
apply our modification to an index form equation of the shape I (X, Y, Z) = £1
connected to the quartic ring generated by an algebraic integer £. This will enable
us to count these Thue equations more efficiently. Moreover, it turns out that in this
case the right-hand sides of our Thue equations are +1, and therefore we may apply
absolute upper bounds for the number of integer solutions recorded in Section 2C.
This way we can provide an absolute upper bound for the number of solutions of
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the index form equation that we study. These solutions will correspond to different
monogenizations of the quartic order Z[£].

We end this section by recording another important relation between the ternary
quadratic forms @ and @, defined in (14) and (15), and the integer values
represented by the cubic form F' (U, V). For (ug, vo) € 72, we define

0X,Y,Z)=uoQ2(X. Y, Z) —v Q1(X,Y, Z). (20)

Let Mg be the 3 x 3 symmetric Gram matrix of the quadratic form Q(X,Y, Z).
We have

4[Det(Mg)| = | F(uo, vo)|, 1)

where F (U, V) is defined in (17). The identity (21) can be verified easily and
is established as an implication of Lemma 1 of [Gadl et al. 1996]. Its proof can
also be found in Lemma 6.1.1 of [Gadl 2019]. The identity (21) is not used in our
proofs, but it is crucial in confirming that the ternary quadratic forms @ and Q>
form a pair that parametrizes a quartic ring in the sense of Bhargava [2004]. Such
a parametrization is used in Bhargava’s proof of Theorem 1.1 [Bhargava 2022].
Another ingredient in [Bhargava 2022] is a beautiful parametrization due to Wood
[2012] for quartic rings. We do not use any of these two parametrizations. However,
in light of identities (20) and (21), one could view our discussion in the following
section as an explicit way of expressing polynomials and binary forms that are
appearing (implicitly) in Bhargava’s and Wood’s methods of parametrization.

4. Proof of Theorem 1.1

When treating a general index form equation in a quartic number field, one needs
to consider the identity (10) in order to have integer values for x|, y| and z.
In Theorem 1.1 we are interested in finding other possible monogenizers for a
monogenized ring Z[£]. Therefore, we are looking for algebraic integers o € Z[£]
that satisfy the index form (8). In this case, under the assumption « € Z[£], we may
express (10) as

o =day +xE + yEX + 283, (22)

with x, y, z € Z. This will simplify some of the equations introduced in Section 3.
Another simple observation is that if Z[£] = Z[«], then the algebraic integers o
and & have the same index in the ring of integers of the underlying number field
Q(a) = Q(&), and therefore in the index form (11) and (12), we may take Iy = m.

Let K be a quartic number field and & an algebraic integer in K of index Iy = m.
We are interested in finding other monogenizers of Z[£]. After replacing (10) by
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(22), for o € Z[£] the identity (12) becomes

a® — gD\ [a® —o®
1_[ (50)_5(1‘))(5@)_5(0):il- (23)

(i,j.k.D)

Therefore, in Proposition 3.1, we may consider the cubic Thue equation

F(U,V)=+l. (24)
In fact, we obtain the following modification of Proposition 3.1.

Lemma 4.1. The algebraic integer x& +y&>4zE3, with x, v, z € Z is a monogenizer

of Z[£] if and only if there is a solution (u, v) € Z* of the cubic Thue equation
F(U,V) =+l (25)

such that (x, y, z) satisfies the system of quadratic ternary equations

0(X,Y,Z)y=u, QxX,Y,Z)=v. (26)

4A. The trivial solution of F(U, V) = 1. First we notice that F (U, V) is monic
and therefore (u, v) = (1, 0) satisfies the equation F (U, V) = %1. This corresponds
to the system of equations

0:(X,Y,2)=1

27
0,(X,Y,Z)=0, &7

where the ternary quadratic forms Q| and Q> are defined in (14) and (15).

A special solution to the system of equations (27) is (x, y, z) = (1,0, 0) as £ is
trivially a monogenizer of Z[£]; see (10).

Assume x, y, 7 € Z satisfy (27). Then

0>(x,y,2) =y’ —xz—aiyz+az* =0. (28)

If z =0then y = 0. Since x, y, z also satisty Q(X, Y, Z) = 1, we conclude that
x=1.

Now assume that z # 0. From (28), we conclude that z | y. Let ¢ = gcd(z, y),
y=gqy" and z = g7/, with ged(y’, z’) = 1. We may rewrite (28) as

Q>(x,y,2) =y?¢* —x7q—a1y'7¢* + a2z?¢* =0

to conclude that g | xz’ and 7' |g. Since (x,y, z) satisfies the system (27), in
particular Q;(x, y,z) = 1, we have gcd(g, x) = 1 and therefore ¢ |z’. So we
have 7/ = 4¢ and ¢?> = #z. Since (x, y,z) and (—x, —y, —z) give the same
monogenization, we may assume z > 0 and ¢ = z. Now we can express x, y and
z in terms of two integers g and p as follows:

x=p*—aipg+aq’, y=pq, z=q> (29)
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The parametrization (29) can be done for any (x, y, z) # (1, 0, 0) that satisfies
(28). Substituting the parametrized values for variables X, Y and Z in (14), we
may express the ternary quadratic form Q(X, Y, Z) as a quartic binary form in
variables P, Q, where

X(P,Q)=P*—a1PQ+a Q% Y(P,Q)=PQ, Z(P,0) =0 (30)

We note that each X (P, Q), Y (P, Q) and Z(P, Q) is a binary quadratic form in
variables P and Q. The parametrization (29) was considered for z # 0, however
the trivial (and special) solution (x, y, z) = (1, 0, 0) also corresponds to a solution
of the quartic Thue equation

Qi1(X(P,0),Y(P,Q), Z(P, Q) =1,

namely (p, q) = (1, 0).
Let us define the quartic binary form

We have shown that the number of solutions (X, Y, Z) € Z> of the system of ternary
equations (27) is equal to the number of integer solutions (p, ¢) of the quartic Thue
equation

AP, Q)=1.

Via (27), we may substitute the parameter X by (Y2 —a\YZ + a»Z?)/Z? in
0.(X,Y,Z) to get
Qi1(X.Y,2)=2'P(% —a)),

where P (T) is the minimal polynomial of & defined in (6). In other words,
4p(P
Q(P.0)=0*P(L —a).

Since a; € Z, we conclude that the discriminant of the quartic form Q(P, Q) is
equal to the discriminant of &, and therefore, to the discriminant of the cubic form
FU,V).

We also note that Q(P, Q) is a monic binary form, i.e., the coefficient of the
term P* equals 1. This confirms the existence of the trivial solution (p, ¢) = (1, 0)
of the Thue equation Q(P, Q) = 1.

We conclude that the trivial solution (1, 0) of the cubic Thue equation F(U,V)=1
corresponds to a quartic Thue equation, namely Q(1,0)(P, Q) = 1, defined in (31).
Moreover, by (29), each pair of solution (p, ¢) € Z* corresponds to the monogenizer

X(p, & +Y(p, Q&>+ Z(p, q)&°

of the order Z[£]. Clearly, the monogenizer £ is produced by the solution (p, g) =
(1, 0) of the quartic Thue equation.
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4B. Nontrivial solutions of F (U, V) = 1. For nontrivial solutions of the Thue
equation (24), in [Gadl et al. 1996] the system of ternary quadratic equations (32)
is reduced to a quartic Thue equation with a parametrization similar to (30); see
equations (8) and (10) of [Gadl et al. 1996]. We simplify such a parametrization with
help of a GL;(Z) matrix that maps any given primitive solution of a Thue equation
to the trivial solution (1, 0) of an equivalent Thue equation. More precisely, assume
that (ug, vo) € Z%, with (ug, vo) # (1, 0), satisfies (24). We have gcd(ug, vg) =1
and therefore we may choose fixed s, ¢t € Z so that

sug+tvg = 1.

Consequently, if (x, y, z) € 73 satisfies the system of equations in (19) with (u, v) =
(ug, vo), then (x, y, z) will satisfy

Qi(X,Y,2)=sQ1(X,Y,2)+10Q>(X, Y, Z) =1
Q/Z(Xv Yv Z) ZUOQI _MOQZZO.

The next step is to express this system as an equation of a quartic binary form to 1,
via the parametrization (30).
Let A= (_ !)eGLy(Z). Clearly we have

—vg Uo
uoy\ _ 1
4(2) = (o)

The matrix A~! € GL,(Z) acts on the binary cubic form F (U, V) to produce
the equivalent binary form F,-1(U, V). The solution (g, vg) of F(U,V) =1
corresponds to the solution (1, 0) of the cubic equation F4-1 (U, V) = 1.

Since (1, 0) satisfies the equation F,-1(U, V) = 1, the cubic binary form
F,-1(U, V) is monic. Similar to (31), and via parametrization (30), we obtain
the binary quartic form

(32)

Q(MO,UO)(P7 Q) = Q/l(X(Pv Q)’ Y(Pa Q)a Z(Pv Q))v (33)

with Q’; defined in (32). Therefore, in order to solve the system of ternary equa-
tions (32) one can solve the quartic Thue equation

Qug,vp) (P, Q) =1 (34)

in integers P, Q.

4C. Conclusion. Let & be an algebraic integer of degree 4 with the minimal poly-
nomial given in (6). In order to count the number of monogenizations of Z[£], we
defined the integral cubic form F'(u, v) in (17), and the integral quadratic forms
0((X,Y,Z)and Q»(X,Y, Z) in (14) and (15), respectively. The coefficients of
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these forms are all expressed in terms of the coefficients of the minimal polynomial
of £. We showed that the following three numbers are equal:

(1) The number of solutions to the cubic Thue equation F (U, V) = %1 in (24).
(2) The number of systems of ternary quadratic equations (32).
(3) The number of quartic Thue equations (34).

We have also shown that for any fixed solution (u, v) € 7? of the cubic Thue
equation F (U, V) = =£1 in (24), each solution (p, g) of the corresponding quartic
Thue equation (34) provides a monogenizer X (p, )& + Y (p, 9)€> + Z(p, q)&>,
with the integral binary quadratic forms X (P, Q), Y (P, Q) and Z(P, Q) defined
in (30).

Therefore, the number of monogenizations of Z[£] is bounded by an upper bound
for the number of integer solutions to cubic Thue equations multiplied by an upper
bound for the number of integer solutions to quartic Thue equations. Proposition 2.3
provides upper bounds for the number of solutions of cubic Thue equations and
Proposition 2.5 provides upper bounds for the number of solutions of quartic Thue
equations.
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