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Abstract

In this paper, we study a routing and travel-mode choice problem for mobility systems with a

multimodal transportation network as a “mobility game” with coupled action sets. We formu-

late an atomic routing game to focus on the travelers’ preferences and study the impact on

the efficiency of the travelers’ behavioral decision-making under rationality and prospect

theory. To control the innate inefficiencies, we introduce a mobility “pricing mechanism,” in

which we model traffic congestion using linear cost functions while also considering the wait-

ing times at different transport hubs. We show that the travelers’ selfish actions lead to a

pure-strategy Nash equilibrium. We then perform a Price of Anarchy and Price of Stability

analysis to establish that the mobility system’s inefficiencies remain relatively low and the

social welfare at a NE remains close to the social optimum as the number of travelers

increases. We deviate from the standard game-theoretic analysis of decision-making by

extending our mobility game to capture the subjective behavior of travelers using prospect

theory. Finally, we provide a detailed discussion of implementing our proposed mobility

game.

Introduction

Motivation

Commuters in big cities have continuously experienced the frustration of congestion and traf-

fic jams [1]. Travel delays, accidents, and road altercations have consistently impacted the

economy, society, and the natural environment regarding energy and pollution [2]. One of the

pressing challenges of our time is the increasing demand for energy, which requires us to

make fundamental transformations in how our societies use and access transportation [3].

Thanks to the technological evolution of mobility (e.g., electrification of vehicles, smart mobil-

ity with self-driving cars, and improved vehicle sensor technology [4]) it is highly expected

that we will be able to eliminate congestion while significantly increasing mobility efficiency in

terms of energy and travel time [5]. Several studies have shown the benefits of emerging mobil-
ity systems (EMS) (e.g., ride-hailing, on-demand mobility services, shared vehicles, self-driving

cars) in reducing energy and alleviating traffic congestion in a number of different
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transportation scenarios [6–10]. For a thorough review of models and the possible methods

and techniques for smart mobility-on-demand systems, see [11].

The cyber-physical nature (e.g., data and shared information) of EMS is associated with sig-

nificant control challenges and gives rise to a new level of complexity in modeling and control

[12]. Research efforts over the last twenty years have tended to focus on the technological

dimension. What is missing is a complementary theoretical study of the broader social impli-

cations of smart mobility. The impact of selfish social behavior in routing networks of regular

and autonomous vehicles has been studied in [13–15]. Other efforts have addressed “how peo-

ple learn and make routing decisions” with behavioral dynamics [16, 17]. A game-theoretic

framework using sequential games was proposed to study the socioeconomic interactions and

the different tradeoffs that emerge between the mobility stakeholders of a mobility “ecosystem”

[18]. It seems, though, that the problem of how automation in mobility will affect the tendency

to travel and decision-making has not been adequately approached yet. In a recent study [19],

it was shown that when daily commuters were offered a convenient and affordable taxi service

for their travels, a change of behavior was noticed; the commuters adjusted their travel behav-

ior and activities and used the taxi service considerably more often leading to an 83% overall

increase in vehicle miles traveled. Along with other similar studies [20, 21], this shows that

EMS most probably may affect people’s tendency to travel and incentivize them to use cars

more frequently, which potentially can also lead to a shift away from public transit.

In this paper, we are interested in one open question: Can we devise appropriate mobility
prices in a game-theoretic framework for a multimodal transportation system that considers
rational or subjective decision-making? Ideally, we want these prices to lead to an equilibrium

that ensures an efficient mobility system. To address this question, we first need to understand

the behavioral interactions of travelers with different modes of transportation along with the

implications to system efficiency. Thus, we study the game-theoretic interactions of travelers

seeking to travel in a transportation network comprised of roads used by different modes of

transportation (e.g., cars, buses, light rail, and bikes). A key characteristic of our approach is

that we adopt the Mobility-as-a-Service (MaaS) concept, i.e., a multimodal mobility system

that centrally handles the travelers’ information and provides travel services (e.g., navigation,

location, booking, payment). We aim to provide a game-theoretic framework that captures the

most significant factors of a traveler’s decision-making in a transportation network under two

different behavioral models.

Literature review

One of the standard approaches to alleviate congestion in a transportation system has been

through “congestion pricing.” With this approach, we can manage the travelers’ demand while

also considering the scarcity of road space or limited public transit supply [22, 23]. Congestion

pricing has been instrumental in intelligent and scalable traffic routing, in which the aim is to

optimize routing decisions and “guide” travelers via appropriate prices [24–26]. To understand

the innate competition over the scarce resources in transportation and the impact of conges-

tion, pricing game theory has been one of the standard tools that can help us investigate the

impact of selfishness and traffic efficiency [27, 28]. By adopting a game-theoretic approach,

advanced systems have been proposed to assign travelers concrete routes or minimize all trav-

elers’ travel time while studying the system’s Nash equilibrium (NE) under different mecha-

nisms of congestion pricing [29–37]. Key theoretical games used for this approach include

routing/congestion games [14, 38–41], which are a generalization of the standard resource-shar-

ing game of an arbitrary number of resources in a network with a finite number of travelers.

For example, each traveler may contribute a certain amount of traffic from a source to a
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destination and affect the overall congestion on a route, thus increasing the travel time for all

other travelers.

Another important class of games is potential games, first introduced in [42]. In a potential

game, the incentive of all players to change their strategy can be expressed using a single global

function called the “potential” function, which depends on the action sets of all players. As it

capture the changes of utility as the actions vary, potential games have been used extensively in

wide-ranging applications (taxation of public goods [43], economics of shallow lakes [44], and

electricity markets [45]. Routing/congestion and potential games have played an instrumental

role in understanding competition over shared resources. Both classes of games have been

studied in multiple disciplines to model transportation and communication networks [23, 46–

48] and common-pool resource games in economics [49]. Thus, for our purposes, it is most

appropriate to formulate our problem as a routing game and show that there exists a potential

function. This way, we can keep the mathematical analysis tractable and still be able to draw

key insights on the impact of the travelers’ decision-making. We deviate from the current state

of the art in transportation with game theory by considering negative congestion externalities.
Namely, we suppose that if the number of co-travelers that utilize the same route or mode of

transportation increases, then a traveler’s utility decreases too [50–52].

So far, most of the existing game-theoretical literature in transportation and routing/con-

gestion games assumes that players’ are rational and intelligent, i.e., each player is a risk-neu-

tral, selfish, utility maximizer. This makes transportation models quite unrealistic, as

unexpected travel delays can lead to uncertainty in a traveler’s utility. Irrational decision-mak-

ing over uncertainties and risks in utility can play a significant role, and its study can help us

understand how large-scale systems perform inefficiently. To support this assertion, empirical

experiments were conducted that showed how a human’s choices or preferences systematically

deviate from the choice or preferences of a rational game-theoretic player [53, 54]. For exam-

ple, humans compare the outcomes of their choices to a known expected amount of utility

(called reference) and decide, based on that reference, whether their utility is a gain or loss.

Prospect theory has laid down the theoretical foundations to study such biases and the subjec-

tive perception of risk in the utility of humans [55]. Prospect theory has been recognized as a

closer-to-reality behavioral model for the decision-making of humans and has been used in a

wide range of applications and fields [56], including recent studies in engineering [57–59].

There has also been considerable work at the intersection of transportation studies and pros-

pect theory [60–62]. Thus, in this paper, we offer a game-theoretic formulation for the routing

and travel-mode choice problem and propose a pricing mechanism that successfully leads to

an efficient equilibrium under the standard assumption of rationality and prospect theory.

Contribution of this paper

In this paper, we formulate a mobility game for the travelers’ routing and travel-mode choices

in a multimodal transportation network. We study the existence of a NE and the resulting inef-

ficiencies of the travelers’ decision-making. Our main contribution is to show that although

we cannot guarantee equilibrium uniqueness, our pricing mechanism allows us to control the

inefficiencies that arise at equilibrium and we can then derive an upper bound for the PoA. In

particular, our mobility game considers the impacts of negative congestion externalities and

waiting costs in travelers’ decision-making. That way, we offer an improved look at the socio-

economic factors that can affect the efficient and sustainable distribution of travel demand in a

transportation network with multiple different modes of transportation (e.g., car, bus, light

rail, bike). Moreover, we study the travelers’ decision-making under two behavioral models:

(1) rational, where players are selfish and seek to maximize only their own utility; and (2)
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prospect theory, where the players’ biases and subjectivity are taken into account when deci-

sions are made under risk.

The features that distinguish our work from the state of the art are as follows:

1. we model the interactions between travelers using a mobility game, a combination of an

atomic routing and potential game with travel-mode choices and coupled action sets (see

Section “Modeling Framework”);

2. we take into account the traffic congestion cost factors using linear cost functions and the

waiting time of travelers at different transport hubs; each transport hub allows a traveler to

choose any of the available modes of transportation to utilize for their travel needs (see Sec-

tion “Modeling Framework”);

3. we introduce a mobility pricing mechanism to control travel demand (both regarding the

route and mobility service) and study the inefficiencies at a NE by showing that a NE exists

(Theorem 1) and deriving a bound that remains small enough as the number of travelers

increases (Theorem 2); in addition, we also upper bound the ratio of the maximum social

welfare that can be achieved by all travelers to the maximum social welfare that is achieved

at a NE (Theorem 3), and

4. we incorporate prospect theory for the travelers’ decision-making under the uncertainty of

the transport hubs’ budgets (Theorem 4).

Organization of the paper

The remainder of the paper is structured as follows. First, we present the mathematical formu-

lation of our mobility game, which forms the basis of our theoretical study in this paper. Then,

we derive the properties of our mobility game, i.e., we show NE existence, and we bound the

Price of Anarchy (PoA) and the Price of Stability (PoS). Then we prove that a NE exists under

prospect theory. Finally, we draw conclusions and offer a discussion of future research.

Modeling framework

We consider a mobility system of two finite, disjoint, and non-empty sets, (1) the set of travel-

ers I , jI j ¼ I 2 N�2, and (2) the set of mobility services by J , jJ j ¼ J 2 N. For example, j 2

J can represent either a car, a bus, a light rail vehicle, or a bike. We consider that in our mobil-

ity game, I < J. The set of all mobility services J can be partitioned to a finite number of dis-

joint subsets, each representing a specific type of a mobility service, i.e., J ¼
SH

h¼1
J h, where

H 2 N is the total number of subsets of J . For example, if there are only two modes of trans-

portation, say cars and buses, then J ¼ J 1 [ J 2, where J 1 represents the subset of all avail-

able cars, and J 2 represents the subset of all available buses.

Definition 1. The set of all different types of services is H ¼ f1; . . . ;Hg, H 2 N, where

each element h 2 H represents a possible travel option. We denote the type of service j used by

traveler i by hi 2 H.

For example, suppose H = 4. Then each element h 2 H can be associated one-to-one to the

elements of the set {car, bus, light rail, bike}.

Naturally, each service can accommodate up to a finite number of travelers, that is different

for each type of service. So, we expect the “physical traveler capacity” of each service to vary

significantly.

Definition 2. Each service j 2 J is characterized by a current physical traveler capacity, i.e.,

εj 2 f0; 1; 2; . . . ; �ε jg, where �ε j 2 N denotes the maximum traveler capacity of service j.
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For example, one bus can provide travel services up to eighty travelers (seated and standing)

compared to a bike-sharing company’s bike (one bike per traveler).

Travelers seek to travel in a transportation network represented by a directed multigraph

G ¼ ðV; EÞ, where each node in V represents a city area (neighborhood) with a “transport

hub,” i.e., a central place where travelers can use different modes of transportation. Each edge

E represents a sequence of city roads with public transit lanes. For our purposes, we think of

G ¼ ðV; EÞ as a representation of a smart city network with a road and public transit infra-

structure. In network G, any traveler i 2 I seeks to travel from an origin o 2 V to a destination

d 2 V while making optional stops at a self-chosen transport hub vi 2 V. So, on one hand, all

travelers are associated with the same origin-destination pair (o, d). On the other hand, travel-

ers can make a stop along their route. Next, each type of mobility services h 2 H is associated

with a sequence of edges, i.e., a route that connects at least two nodes (or transport hubs). We

say that there exists a set of routes for each traveler i where each route connects their origin-

destination pair (o, d) and can be traveled by any mobility service. Formally, we have Pðo;dÞ
�

2E to denote the set of routes available to traveler i in origin-destination (o, d), where each

route in Pðo;dÞ consists of a set of edges connecting o to d.

Each traveler i 2 I seeks to travel in network G using one of the available mobility services

j 2 J of type h 2 H. Thus, any traveler can choose the type of mobility service they prefer for

their specific travel needs. Note that any j 2 J can use any edge. Thus, travelers compete with

each other for the available services in the transportation network. For the purposes of this

work, we restrict our attention to all available modes of transportation that use the road infra-

structure. In addition, each transport hub (including the ones at (o, d) allows travel by any

mobility service (any mode of transportation), thus a traveler’s travel preferences or needs can

be satisfied by many and different mobility services (as one expects from a multimodal trans-

portation network).

Selfish behavior, however, may lead to inefficiencies. Therefore, as part of our efforts to con-
trol the inefficiencies that arise from the travelers’ selfishness (and thus control the emergence

of rebound effects), in our mobility game, we introduce the idea of a “mobility pricing mecha-

nism” to incentivize travelers to use services in public transit for their travel needs. Informally,

each transport hub starts with a budget, collects payments for services, and then provides mon-

etary incentives (pricing mechanism) to travelers to ensure a socially-efficient utilization of ser-

vices in the network. By “socially-efficient,” we mean that the endmost collective travel

outcomes must achieve two objectives: (i) respect and satisfy the travelers’ preferences regard-

ing mobility, and (ii) ensure the alleviation of congestion in the system. We formalize the idea

of our mobility pricing mechanism in the following definitions.

Definition 3. Each traveler i starts with a mobility wallet represented in monetary units by

yi 2 ½0; �y i�, where �y i 2 R>0 is the maximum amount of traveler i’s monetary units. Traveler i
uses their wallet θi to pay for their travels in-network G.

The mobility wallet for each traveler represents the financial resources available to them,

i.e., the amount of money they have to spend on transportation. In addition, by introducing

mobility wallets, we can realistically model the travelers’ cost-constrained decision-making,

where different transportation options have different costs.

Definition 4. Any traveler i is required to pay a fee, called “mobility payment,” for using a

mobility service in network G. This mobility payment is given by function pi : H � N ! R�0,

where 0 � πi(hi, εj) � θi.
Note that πi(hi, εj) has the same monetary units as θi in Definition 3. Intuitively, a traveler i

pays πi for using mobility service j of type hi. The mobility payment πi of any traveler i varies
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extensively for each type of service hi and increases fast as εj tends to �ε j. To ensure our exposi-

tion is compact, we omit the arguments of πi(hi, εj), and simply write πi.
In mobility game M, each traveler i pays for using a mobility service j of type hi on route ρi

with origin-destination pair (o, d) making an optional stop at transport hub vi. At each trans-

port hub, available funds can be offered to incentivize travelers to use public transit services.

Our mobility game can be thought of as a static game that is played repeatedly [63], thus travel-

ers are assumed to take different actions multiple times. Therefore, the pricing mechanism

needs to consider both the payments of all travelers for each type of service and the available

funds at each transport hub. We formalize this idea for the allocation of mobility payments for

each traveler i by stating the following definition.

Definition 5. Suppose traveler i 2 I chooses route ri 2 Pðo;dÞ
and makes a stop at transport

hub vi along that route using some service j 2 J of type hi 2 H. Then, the set of co-travelers at

vi 2 V is Svi
¼ fk 2 I j vk ¼ vig.

In words, Svi
groups all travelers including traveler i who have made a stop at transport hub

vi. Next, we formally define the available budget at transport hub vi.
Definition 6. Let bðviÞ 2 R be the number of funds available for transactions at traveler i’s

transport hub vi 2 Vnfðo; dÞg over all types of services h 2 H.

Intuitively, b(vi) represents the available funds (e.g., after covering all expenses), in the same

monetary units as θi and πi, that transport hub vi may allocate to travelers. Practically, even

though our proposed mobility game is not dynamic, b(vi) can be computed based on historical

data (e.g., along similar lines presented in [64]), and thus capture the “demand” of services at a

particular vi. Each traveler i 2 I starts with a mobility wallet θi and pays πi while they make a

stop at transport hub vi. Note that we are interested in modeling the travelers’ decision-making

in regards to commuting with cars and public transportation. That is why, in our model, each

traveler is required to pass through a specific vertex, such as a transfer station (e.g., business

district). Our justification is that many public transportation trips involve transferring between

different modes of transportation or commuters must pass through a specific locations as part

of their daily trip.

We can capture the travelers’ preferences of different outcomes using a “utility function.”

Travelers are expected to act as utility maximizers. Thus, we can influence the travelers’ behav-

ior by introducing a control input in the utility function. In our mobility game, we consider a

mobility pricing mechanism, as a control input, that aims to reward or penalize each traveler i
(either by increasing a traveler’s utility or decreasing it). We offer here an informal description

of our pricing mechanism. The total excess amount of mobility funds is bðviÞ �
P

i2Svi
pi. The

total excess amount of mobility funds at transport hub vi excluding traveler i is

bðviÞ �
P

k2Svi nfigpk. Given the available mobility funds already present at vi, we can redistrib-

ute the “mobility wealth” based on the types of services and roads utilized by the travelers as

follows: we consider a quadratic-based pricing mechanism τ(vi, πi), defined formally next,

which is the same for all travelers. Under this pricing mechanism, we observe the following

two interesting properties: for high values of πi, τ is strictly decreasing; for low values of πi, τ is

strictly increasing. Thus, if traveler i pays a high payment πi (e.g., which implies traveler i uses

a car), then disincentive is also high to use this mobility service. Thus, this serves as an indirect

incentive for a traveler to use public transit or a different transport hub (this becomes clear in

(4)). Furthermore, the pricing mechanism τ can take negative values, and actually strictly

decreases fast as πi takes high values for any traveler i. So, travelers can get penalized if they

choose a “high-demand” type of service (thus, leading to a high valued
P

k2Svi nfigpk). Even if a

traveler has the means to pay (i.e., the traveler has a large mobility wallet), the pricing

PLOS ONE A traveler-centric mobility game

PLOS ONE | https://doi.org/10.1371/journal.pone.0285322 May 5, 2023 6 / 32

https://doi.org/10.1371/journal.pone.0285322


mechanism can penalize the traveler with hefty fees, thus all travelers have the incentive to

minimize the penalties and choose public transit services or less congested transport hubs. For

example, when a traveler uses a bike, their mobility payment will be low and so they can earn

(instead of paying for the service). This incentivizes a sustainable allocation of services to all

travelers. We offer the formal definition of the pricing mechanism next for the allocation of

the mobility funds and payments.

Definition 7. The pricing mechanism is a multivariable function t7!R that depends on a

traveler i’s transport hub vi and mobility payment πi, and is explicitly given by

tðvi; piÞ ¼ bðviÞ �
X

k2Svi nfig

pk

0

@

1

A

2

� bðviÞ �
X

i2Svi

pi

0

@

1

A

2

: ð1Þ

Recall that the term b(vi) captures the demand of a transport hub vi based on what types of

services in general travelers have been using (e.g., if a transport hub has a lot of money, it

means travelers use cars significantly).

Remark 1. If we expand (1) and simplify, we obtain the following relation

tðvi; piÞ ¼ 2pi bðviÞ �
pi

2
�

X

k2Svi nfig

pk

0

@

1

A: ð2Þ

The behavior of (1) is rather interesting. Obviously, as traveler i’s payment increases, then (1)

decreases. However, given that bðviÞ >
P

k2Svi nfigpk, for small values of πi, τ increases up to a

maximum point, and then starts to decrease. This characteristic of (1) serves as a strong incentive
for travelers to choose services that are “cheap” (bikes) or uncongested (buses) since then πi will
be small. Otherwise, τ can take very high negative values as πi increases.

As long as b(vi) is higher than
P

k2Svi nfigpk, then the pricing mechanism (1) redistributes

wealth back to each traveler i based on what is available on the self-chosen transport hub vi
and how much travelers pay by taking into consideration traveler i’s contribution at transport

hub vi.
Since the travelers’ objective is to maximize their payoff, we need a way to “incentivize”

travelers to avoid decisions that may lead to an empty mobility wallet. Thus, we introduce an

empty wallet “disincentive” for an arbitrary traveler i.
Definition 8. Given the current amount of mobility wallet θi of any traveler i, the disincen-

tive of having an empty wallet is a decreasing function g : ½0; �y i� ! R given by

gðyiÞ ¼
�y i

yi þ Zipi
; ð3Þ

where ηi 2 (0, 1) is a socioeconomic characteristic of traveler i and affects the impact of how

much they choose to spend or save in terms of their mobility wallet.

Definition 8 establishes mathematically a disincentive as a function where �y i is proportional

to the sum of the current mobility wallet θi and the weighted mobility payment ηiπi. We expect

each traveler to avoid as much as possible an empty wallet; hence, (3) ensures to “penalize”

travelers with a low mobility wallet θi while choosing to spend ηiπi � θi. Thus, (3) grows fast as

θi decreases. We offer now the formal definition of a traveler’s action set.

Definition 9. For an arbitrary traveler i 2 I , the action set is Ai ¼ Pðo;dÞ
� V � R�0, where

Pðo;dÞ
is the set of routes that connects traveler i’s origin-destination pair (o, d), V is the set of
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nodes in network G that includes all possible transports hubs vi, and pi 2 R�0 is the mobility

payment of traveler i.
Note that, by Definition 9, the action set Ai of an arbitrary traveler i is a coupled set with

discrete values (route, transport hub, source/destination pair), and continuous values (mobility

payment). Thus, the action profile ai 2 Ai of traveler i 2 I is a vector of discrete and continu-

ous values. We write A ¼ A1 � A2 � . . . � AI for the Cartesian product of all the travelers’

action sets. We write a−i = (a1, a2, . . ., ai−1, ai+ 1, . . ., aI) for the action profile that excludes trav-

eler i 2 I . Next, for the aggregate action profile, we write a = (ai, a−i), a 2 A. We also denote

by a*, aNash an action profile at a social optimum and at a NE, respectively.

Next, we introduce a travel time latency function to capture the congestion cost that travel-

ers may experience.

Definition 10. Let the total number of services of all types h = 1, . . ., H on road e 2 E with

at least one traveler be Je ¼
P

h2HohjJ e;hj, where J h;e is the set of all services on road e of type

h, and ðohÞh2H, ωh 2 [0, 1] are weight parameters that depend on the type h to capture the dif-

ferent impact of services on the traffic. Then, the travel time latency function is a strictly

increasing linear function ce : N ! R, with explicit form ce(Je) = ξ1Je + ξ2, where ξ1, ξ2 are

constants.

Notice that we assume linearity in the travel time latency functions ce, which is not unique

in the literature [62, 65, 66]. The justification behind linearity is that it is the simplest yet most

useful way for a mathematical analysis to capture the travel costs in terms of distance or road

capacity and the traffic congestion costs. The choice of the constants ξ1 and ξ2 play an impor-

tant role, namely ξ2 can represent the length of road e and ξ1 normalizes the number of services

on road e so that both components of ce have the same units.

We can now formally define the utility of any traveler i 2 I .

Definition 11. The utility ui : A ! R of traveler i 2 I is what traveler i receives under the

risk-neutral setting given by

uiðaÞ ¼ tðvi; piÞ � gðyiÞ � z1

X

e2ri :ri2Pðo;dÞ

ceðJeÞ

0

@

1

A� z2

jSvi
j

sðvi; hiÞ

� �

; ð4Þ

where σ(vi, hi) is the rate of travel service at transport hub vi for type of service hi (how many

travelers per hour can travel using type of service hi from transport hub vi), and z1; z2 2 R are

unit parameters that transform time to money (that way the units of (4) are consistent).

Note that both constants z1, z2 get absorbed by the constants of function ce (as defined in

Definition 10) and parameter σ, respectively. So, we can safely omit them from the mathemati-

cal analysis. In (4), the first term represents the pricing mechanism and is the amount of

mobility funds redistributed to traveler i for paying πi. The second term is the disincentive as

defined in Definition 8 and the third term is the congestion cost of traveler i due to traffic on

road e. Finally, the last term in (4) is a waiting cost for joining transport hub vi, where the num-

ber of travelers at transport hub vi is proportional to the rate of travel service at transport hub

vi.
Next, we characterize fully and formally the mobility game.

Definition 12. The mobility game is fully characterized by the tuple

M ¼ hI ;J ; ðAiÞi2I ; ðuiÞi2Ii; ð5Þ

a collection of sets of travelers, mobility services, actions, and a profile of utilities.

The mobility game M is a non-cooperative repeated routing game with a multimodal

transportation network and coupled action sets. Travelers have a travel-mode choice to make
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that will satisfy their travel needs. The benefit of ensuring that our mobility game M is a

repeated game is that it eliminates the possibility of unassigned travelers. At this point also, we

clarify the information structure of the mobility game M (“who knows what?” [67]). All travel-

ers have complete knowledge of the mobility system (network, travel time latencies, waiting

costs, and utility functions). Each traveler knows their own information (action and utility) as

well as the information of other travelers. For the purposes of our work, we observe that a NE

is most fitting to apply as a solution concept as it requires complete information.

Before we continue to the analysis of our mobility game M, we summarize the notation

that has been introduced so far in our paper.

Analysis and properties

In this section, our goal is to establish the existence of at least one NE in the mobility game M,

derive an upper bound for the PoA, and perform a prospect theory analysis.

We start our exposition by summarizing two necessary preliminary concepts and results of

game theory that we use throughout the paper.

Definition 13. A game M is an exact potential game if there exists a potential function F :

A ! R such that for all i 2 I , for all a−i, and for all ai; a0
i 2 Ai, we have

Fðai; a�iÞ � Fða0
i; a�iÞ ¼ uiðai; a�iÞ � uiða0

i; a�iÞ: ð6Þ

Definition 14. An action profile aNash ¼ ðaNashi ; aNash
�i Þ is called a pure-strategy Nash equilib-

rium for game M if, for all i 2 I , we have uiðaNashi ; aNash
�i Þ � uiða0

i; a
Nash
�i Þ, for all a0

i 2 Ai.

The potential function F is a useful tool in showing whether a game has a NE and analyzing

its properties. This is because, by construction, the effect on the utility of any traveler’s action

is expressed by one function common for all travelers.

Existence of a nash equilibrium

In this subsection, we prove that for the mobility game M, as defined in Definition 12 (please

also see Table 1), there exists at least one NE. The key idea of our proof is the use of a potential

function, as defined in Definition 13, that captures the changes in utility of an arbitrary traveler

that deviates in their action.

Theorem 1. The mobility gameM admits a pure-strategy NE.

As it is standard in the existence of NE results for potential games (see Chapter 2 [68]), we

start by stating the explicit form of the potential function for the mobility game M, i.e.,

FðaÞ ¼
X

v2V

bðvÞ �
X

i2Sv

pi

 !2

�
X

i2I

�y i

yi þ Zipi
�
X

e2E

XJe

k¼1

ceðkÞ �
X

v2V

X

i2I

jSvjðjSvj þ 1Þ

2sðv; hiÞ
; ð7Þ

Our goal now is to verify Definition 13, thus showing that M is a potential game. Mathemati-

cally, for an arbitrary traveler i and for any two actions ai ¼ ðri 2 Pðo;dÞ; vi; piÞ and

a0
i ¼ ðr0

i 2 Pðo;dÞ
; v0

i; p0
iÞ, we need to show

Fðai; a�iÞ � Fða0
i; a�iÞ ¼ uiðai; a�iÞ � uiða0

i; a�iÞ: ð8Þ

Note here that any traveler i that deviates in their action ai to a0
i by changing their route ρi

to r0
i that does not require an additional service j on any new roads e 2 r0

i, then traveler i’s
impact to congestion is negligent. Thus, traveler i can change routes and still travel along an

existing service j in road e 2 r0
i if that service j has not reached its maximum capacity �ε j. If

traveler i changes their route from ρi to r0
i and the traveler capacities of all services on that
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route are not maxed out, then the number of services Je does not change in the roads that

remain the same along both routes (any e 2 ri \ r0
i). However, the number of services Je

increases by one in any road e 2 r0
inri since we require an additional service j in road e for

traveler i. Thus, we have
P

e2r0
i
ceðJeÞ ¼

P
e2r0

i\ri
ceðJeÞ þ

P
e2r0

inri
ceðJe þ 1Þ.

If traveler i changes their transport hub vi to v0
i, then their new waiting cost is

jSv0
i
jþ1

sðv0
i ;hÞ

, where

Sv0
i

¼ fk 2 Infig j vk ¼ v0
ig. We make a similar argument for πi and p0

i, and thus, we can write

uiða0
i; a�iÞ ¼ bðv0

iÞ �
X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

� bðv0
iÞ � p0

i �
X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

�
�y i

yi þ Zip
0
i

�
jSv0

i
j

sðv0
i; hiÞ

�
X

e2r0
i\ri

ceðJeÞ þ
X

e2r0
inri

ceðJe þ 1Þ

2

4

3

5;

ð9Þ

where the first component represents the squared remaining cost that traveler i has to pay for

deviating to the alternative transport hub v0
i without taking into account their p0

i. Thus, it

accounts for the base cost of the deviation in the transport hub and mobility payment and the

sum of prices paid by other the travelers. The second component represents the squared

remaining cost that traveler i has to pay for the alternative transport hub v0
i when actually they

do consider their p0
i, along with the sum of prices paid by other travelers. We note here that the

Table 1. A summary of our notation.

Symbol Description

I Set of travelers

J Set of mobility services

J h Set of mobility services of type h
H Set of different types of services

εj Physical traveler capacity for service j 2 J
�ε j Maximum traveler capacity of service j 2 J

G Network with set of edges E and set of nodes V

vi Node in network G that represents a transport hub

Pðo;dÞ Set of routes that connect the origin o to destination d

θi Mobility wallet for traveler i 2 I
�y i Maximum amount of travelers i’s monetary units for the wallet θi
πi Mobility payment of traveler i 2 I

ρi Route chosen by traveler i 2 I

Svi
Set of co-travelers at transport hub vi for traveler i 2 I

b(vi) Amount of funds available for transactions at transport hub for traveler i 2 I

τ Pricing mechanism

g Empty wallet disincentive

ηi Socioeconomic characteristic of traveler i 2 I

Ai Set of actions for traveler i 2 I

A Cartesian product of all action sets

Je Total number of services of all types on road e 2 E

ce Travel time latency function

σ Rate of travel service

https://doi.org/10.1371/journal.pone.0285322.t001
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difference between these two terms highlights the impact of traveler i’s price p0
i and v0

i on their

ui when they deviate and choose an alternative action. If traveler i chooses a higher payment,

the remaining cost decreases, and this difference will have a negative impact on their utility.

Conversely, if traveler i chooses a lower payment, the remaining cost increases, and this differ-

ence will have a positive impact on their utility. Next, we subtract (9) from (4) to get

uiðai; a�iÞ � uiða0
i; a�iÞ ¼ bðviÞ �

X

k2Svi nfig

pk

0

@

1

A

2

� bðviÞ �
X

i2Svi

pi

0

@

1

A

2

� bðv0
iÞ �

X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

þ bðv0
iÞ � p0

i �
X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

�
X

e2rinr0
i

ceðJeÞ

þ
X

e2r0
inri

ceðJe þ 1Þ �
jSvi

j

sðvi; hiÞ
þ

jSv0
i
j þ 1

sðv0
i; hiÞ

þ
Zi

�y iðpi � p0
iÞ

ðyi þ ZipiÞðyi þ Zip
0
iÞ

;

ð10Þ

where
P

e2rinr0
i
ceðJeÞ ¼

P
e2ri

ceðJeÞ �
P

e2r0
i\ri

ceðJeÞ. Now, we denote all four components of (7)

as follows: �1 ¼ �
P

v2VðbðvÞ �
P

i2Sv
piÞ

2
, �2 ¼ �

P
i2I

�y i
yiþZipi

, �3 ¼ �
P

e2E

PJe
k¼1

ceðkÞ, and

�4 ¼ �
P

v2V

P
i2I

jSv jðjSv jþ1Þ

2sðv;hiÞ
. Step by step, we compute the difference of all four different ϕ’s

under ai and a0
i as follows

φ
1
ðai; a�iÞ � φ

1
ða0

i; a�iÞ ¼

b v0
i

� �
þ
X

i2Sv0
i

p0

i

0

B
@

1

C
A

2

�
X

v2V

b vð Þ �
X

i2Sv

pi

 !2

�
X

v2Vnfv0
ig

b vð Þ �
X

i2Sv

pi

 !2

¼ b við Þ �
X

k2Svi nfig

pk

0

@

1

A

2

� b við Þ �
X

i2Svi

pi

0

@

1

A

2

� b v0
i

� �
�

X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

þ b v0
i

� �
� p0

i �
X

k2Sv0
i
nfig

pk

0

B
@

1

C
A

2

;

ð11Þ

where we note that in
P

v2V both vi and v0
i are included, so if we expand the summations that

involve the unrelated nodes in V, then most terms cancel out (what remains are only the terms

PLOS ONE A traveler-centric mobility game

PLOS ONE | https://doi.org/10.1371/journal.pone.0285322 May 5, 2023 11 / 32

https://doi.org/10.1371/journal.pone.0285322


that involve the deviations of traveler i, thus we get (11)). Next, we have

φ
2
ai; a�ið Þ � φ

2
a0
i; a�i

� �
¼ �

X

i2I

�y i

yi þ Zipi
þ

X

k2Infig

�yk

yk þ Zkpk
þ

�y i

yi þ Zip
0
i

" #

¼
X

i2I

Zi
�y i pi � p0

i

� �

yi þ Zipið Þ yi þ Zip
0
i

� � :

ð12Þ

φ
3
ai; a�ið Þ � φ

3
a0
i; a�i

� �
¼ �

X

e2E

XJe

k¼1

ce kð Þ þ
X

e2Enfe2r0
ig

XJe�1

k¼1

ce kð Þ þ
X

e2Enfe2rig

XJeþ1

k¼1

ce Jeð Þ

¼ �
X

e2rinr0
i

ce Jeð Þ þ
X

e2r0
inri

ce Je þ 1ð Þ;

ð13Þ

φ
4
ai; a�ið Þ � φ

4
a0
i; a�i

� �
¼
X

v2V

X

i2I

jSvj jSvj þ 1ð Þ

2s v; hið Þ

�
X

v2Vnfvig[fv0
ig

X

k2Infig

jSvj jSvj þ 1ð Þ

2s v; hkð Þ

� �

�
jSvi

j jSvi
j � 1

� �

2s vi; hið Þ

�
jSv0

i
j þ 1

� �
jSv0

i
j þ 2

� �

2s v0
i; hi

� � ¼
jSvi

j

s vi; hið Þ
�

jSv0
i
j þ 1

s v0
i; hi

� � ;

ð14Þ

We define F ai; a�ið Þ � F a0
i; a�i

� �
¼
P4

k¼1
½�k ai; a�ið Þ � �k a0

i; a�i

� �
�. We take the sum of (11)–

(14) and thus, we obtain F ai; a�ið Þ � F a0
i; a�i

� �
¼ ui ai; a�ið Þ � ui a0

i; a�i

� �
. This proves that the

mobility game M is a potential game, and so following from key results (see [68]), we con-

clude that M admits a pure-strategy NE.

Note that this existence result is not straightforward as the action set of any traveler is a cou-

pled set composed of countable and uncountable subsets.

Corollary 1. If the mobility gameM is played repeatedly, then the travelers’ actions converge
to a pure-strategy NE in finite time.

Proof. We aim to show that if the mobility game M is played repeatedly, the travelers’

actions will converge to a pure-strategy NE in finite time. This proof relies on Theorem 1 and

Theorem 2.6 (pp. 33) from [68]. The mobility game M can be classified as a repeated routing

game with complete information since each traveler i 2 I has full knowledge of the mobility

system (travel time latencies, network congestion, and other relevant parameters) when mak-

ing their decisions. We demonstrate convergence to a pure-strategy NE by considering the

decision-making process of the travelers; so we outline the iterative process: (i) Traveler i 2 I
chooses their initial action ai based on the current state of the mobility system. (ii) After

observing traveler i’s action, all other travelers k 2 I ; k 6¼ i choose their actions ak accordingly,

taking into account the updated state of the mobility system. (iii) The mobility system’s state is

updated again, reflecting the actions of all travelers in the current round. (iv) Traveler i now

evaluates their action ai and decides whether to deviate to a0
i based on the updated state of the

mobility system. (v) These steps are repeated for all travelers until no traveler has an incentive

to change their action, leading to a convergence to a pure-strategy NE. we observe that travel-

ers compete and as a result, each traveler’s actions are influenced by the actions of others. So,

continuous deviations eventually will lead to a pure strategy NE by an iterative process (see

Theorem 2.6 from [68]). In conclusion, by showing that the mobility game M is a repeated
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routing game with complete information and that the iterative decision-making process of the

travelers leads to a stable equilibrium, we have demonstrated that the travelers’ actions will

converge to a pure-strategy NE in finite time.

Price of anarchy and stability analysis

An existence result (Theorem 1) leads to the problem of multiple NE and raises questions

about the efficiency of each equilibrium. For example, an important concern is the efficiency

of the equilibrium that the travelers will reach (as it is guaranteed by Corollary 1). To address

this concern, we provide an analysis based on the Price of Anarchy (PoA) [69], which is one of

the most widely-used metrics to measure the inefficiency in a system and provides an under-

standing of how the travelers’ decision-making affect the overall performance of the system.

We provide the formal definition of the PoA.

Definition 15. Let the social welfare of the mobility game M be represented by

J að Þ ¼
P

i2Iui að Þ. Then, the PoA is the ratio of the maximum optimal social welfare over the

minimum social welfare at a NE, i.e.,

PoA ¼
maxa2A

P
i2Iui að Þ

mina2ANash
P

i2Iui að Þ
� 1; ð15Þ

where ANash
is the set of NE, which is guaranteed to be non-empty according to Theorem 1.

Next, we show that, for the mobility game M, (15) is as low as possible at an arbitrary NE.

Thus, it follows that our PoA result yields an upper bound for the inefficiencies at a NE of the

mobility game M.

But first, we prove two useful lemmata that are necessary for our work.

Lemma 1. Let a∗i ¼ r∗i ; v
∗
i ; p∗i

� �
denote the optimal action of traveler i 2 I , define

~b2 ¼
P

v2V

P
h2Hb v; hð Þ

� �2
¼
P

v2V b vð Þð Þ
2
, and at a NE:

J3 að Þ ¼
P

i2I b v∗i
� �

�
P

i2Sv∗i
pi

� �2

� b v∗i
� �

� p∗i �
P

k2Sv∗i
nfigpk

� �2

�
�y i

yiþZip
∗
i

" #

. Then, we have

X

i2I

b v∗i
� �

�
X

k2Sv∗i
nfig

pk

0

B
@

1

C
A

2

� b v∗i
� �

� p∗i �
X

k2Sv∗i
nfig

pk

0

B
@

1

C
A

2

�
�y i

yi þ Zip
∗
i

2

6
4

3

7
5

� J3 a∗ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~b2 þ 2 J3 aNashð Þ � I�y i

� �� �
~b2 þ 2 J3 a∗ð Þ � I�y i

� �� �r

� 4I�y i � ~b2

�~b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 þ 2 J3 aNashð Þ � I�y i

� �q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 þ 2 J3 a∗ð Þ � I�yi

� �q� �

:

ð16Þ
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Proof. At social optimum, the pricing mechanism is given by

t∗ v∗i ; p∗i
� �

¼ b v∗i
� �

�
X

k2S∗
v∗i

nfig

p∗k

0

B
@

1

C
A

2

� b v∗i
� �

�
X

i2S∗
v∗i

p∗i

0

B
@

1

C
A

2

¼ b v∗i
� �

�
X

k2S∗
v∗i

nfig

p∗k

0

B
@

1

C
A

2

� b v∗i
� �

� p∗i �
X

k2S∗
v∗i

nfig

p∗k

0

B
@

1

C
A

2

¼ 2p∗i b v∗i
� �

� p∗i
� �2

� 2p∗i

X

k2S∗
v∗i

nfig

p∗k:

ð17Þ

Summing over all travelers now gives

X

i2I

2p∗i b v∗i
� �

� p∗
i

� �2
� 2p∗i

X

k2S∗
v∗i

nfig

p∗k

2

6
4

3

7
5

¼ 2
X

i2I

p∗i b v∗i
� �

�
X

v2V

2
X

i2S∗v∗

p∗i
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@

1

A
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@

1

Aþ
X

i2I
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X

v2V
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X
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X

v2V
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A
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X

i2I

p∗i
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:

ð18Þ

So, we use the Cauchy-Schwarz inequality to bound (18), i.e.,

J3 a∗ð Þ �
X

i2I

�y i

yi þ Zip
∗
i

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

v2V
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X
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@
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A

2
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X

v2V

X

i2S∗v∗

p∗i
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2
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X

i2I

p∗i
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: ð19Þ

For any traveler i, it is always true that
�y i

yiþZip
∗
i

> 0, p∗i 2 ½0; �y i�, and also ~b2 ¼
P

v2V b vð Þð Þ
2
.

Thus, (19) simplifies to

X

v2V

X

i2S∗v∗

p∗i
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� 0; ð20Þ

Note that (20) is a second-order polynomial with respect to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

v2V

P
i2S∗v∗

p∗i

� �2
r

. Thus, we

compute the discriminant D
∗

¼ ~b2 þ 2 J3 a∗ð Þ � I � �y i

� �
, where Δ* denotes the discriminant at

the social optimum, so clearly Δ*� 0. So, from (20), we get

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð21Þ
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We need to follow the same steps to obtain a similar relation as (21) for a NE. Hence, we have

2
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X

v2V

X

k2Sv

pk

 !2
v
u
u
t � ~b þ

ffiffiffiffi
D

p
; ð22Þ

where D ¼ ~b2 þ 2 J3 aNashð Þ � I � �y i

� �
. Next, the LHS of (16), if expanded, can be simplified as

follows:
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ð23Þ
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ð24Þ

where pi v∗i
� �

denotes traveler i’s payment at an optimal v∗i , and thus, (24) can be simplified by

noting that
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ð25Þ

Using (25), we impose an upper bound to (24) as follows
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ð26Þ
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We continue by upper bounding the summations in (26):
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þ
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2
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D

p
þ
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D
∗
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þ
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2
;

ð27Þ

by the Cauchy-Schwartz inequality and relations (21) and (22). Finally, we substitute D ¼

~b2 þ 2 J3 aNashð Þ � I�y i

� �
and D

∗
¼ ~b2 þ 2 J3 a∗ð Þ � I�y i

� �
into (27) and with (26) we obtain the

desired bound.

Lemma 2. We have

J a∗ð Þ

J aNashð Þ
� 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð28Þ

Proof. We can show this result by expanding and rearranging (28) to obtain a simplified

relation. So, we have

J a∗ð Þ

J aNashð Þ
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J aNashð Þ

s

: ð29Þ

We seek to solve for
J a∗ð Þ

J aNashð Þ
, so we remove the square roots by squaring both sides of (29), i.e.,

J a∗ð Þ

J aNashð Þ
� 2 D þ E2ð Þ

J a∗ð Þ

J aNashð Þ
þ D2 �

~b2E2

I

 !

� 0; ð30Þ

where E ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
~b2

I þ 2

q

þ
~bffiffi
I

p and D ¼ 1 þ
~b2

I � 4�y i

� �
�

~bffiffi
I

p

ffiffiffiffiffiffiffiffiffiffiffiffi
~b2

I þ 2

q

. We solve (30) by noting the

positivity of the coefficients to obtain

J a∗ð Þ

J aNashð Þ
� E2 þ D þ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ 2D þ
~b2

I

s

: ð31Þ

We observe that E2 þ 2D þ
~b2

I � E þ D
E þ

~b2

2EI

� �2

, and so, an upper bound exists for (31). Thus,
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we have
J a∗ð Þ

J aNashð Þ
� 2E2 þ 2D þ

~b2

2I . We substitute back both E and D and get
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:
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Hence, since
~b2

I þ 2 �
~bffiffi
I

p þ
ffiffi
I

p
~b

� �2

, the result follows.

We are ready now to state and prove our PoA result.

Theorem 2. Any inefficiencies of any NE of the mobility gameM remain low as close to a
constant as the number of travelers jI j ¼ I tends to infinity. Mathematically, we have

PoA � 2 þ
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 !2

: ð33Þ

Proof. From Definition 14, for some arbitrary traveler i 2 I , it is clear that

ui aNashi ; a�i

� �
� ui a∗i ; a�i

� �
, so if we expand the RHS of it, we get
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;

ð34Þ

where b v∗i
� �

is the budget at an optimal v∗i and Sv∗i
¼ fk 2 I j v∗k ¼ v∗i g. Summing over all

travelers in (34), and keeping note of ui aNashi ; a�i

� �
� ui a∗i ; a�i

� �
yields

J aNashð Þ �
X

i2I

ui a
∗
i ; a�i

� �
: ð35Þ

At this point, we recall that the travel time latency functions are linear. Thus, we can write

J1 aNashð Þ ¼
X

i2I

X

e2rNashi

ce JNashe

� �
¼
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e2E

JNashe x1J
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;

ð36Þ

J1 a∗ð Þ ¼
X

i2I

X

e2r∗i

ce J∗e
� �

¼
X

e2E

J∗e x1J
∗
e þ x2

� �
;

ð37Þ

where JNashe and J∗e denote the number of services on road e at a NE and social optimum, respec-

tively. Inspired from [70], we impose an upper bound on each component of the RHS of (35),
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and thus we have the following
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ð38Þ

where we simplified the notation as JNashe ¼ Je, used ce(Je)�ce(Je + 1) for each e 2 r∗i \ ri, and

applied the Cauchy-Schwarz inequality twice. Note that x1J∗e þ x2 � x1 J∗e
� �2

þ x2J∗e at any

e 2 E. Next, we introduce notation: J2 aNashð Þ ¼
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Now we introduce the following notation:

J3 aNashð Þ ¼
X

i2I

"

b vNashi

� �
�

X

k2SNash
vi nfig

pNash
k

0

@

1

A

2

� b vNashi

� �
�
X

i2SNash
vi

pNash
i

0

@

1

A

2

�
�y i

yi þ Zip
Nash
i

#

;

ð40Þ

where b vNashi
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is the budget at a vNashi , and
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By Lemma 1, we have a bound for the first two components of (35), thus
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We combine all relations together (38), (39), and (42) and substitute them into (35) to get
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where we have used the fact that for any four numbers gk 2 R>0ð Þ, k = 1, 2, 3, 4, we have
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So, we have the following after a simple rearrangement
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We divide both sides of (45) by J(aNash) to obtain
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ð46Þ

By Lemma 2, we reach the desired bound.

Next, we discuss the intuition behind Theorem 2. The travelers of the mobility game M are

considered selfish and non-cooperative. Thus, one important question is what will be the

impact of selfishness on the efficiency of the mobility system. Since the existence of a NE is

guaranteed by Theorem 1 and the mobility game M converges to at least one NE, we can com-

pare the level of inefficiency at a NE to the social optimum (this is exactly what the PoA does).

The bound we have derived in (33) under certain conditions ensures the mobility system’s

inefficiency is guaranteed to remain within a constant, and as the number of travelers
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increases, this bound becomes smaller and smaller. So, our mobility game M can ensure in a

realistic setting (big city with road infrastructure) with a large number of travelers a sufficiently

efficient operation of the mobility system as it could ideally be operated by a central authority

“ordering” the travelers how to travel. Our bound in (33) is strong in the sense that it excludes

any other possibility of an improvement in efficiency compared to what we can achieve at a

NE.

It happens that we can also upper bound using the “potential function method” (as used in

[66]) the Price of Stability (PoS) for our mobility game M. The PoS is defined as a ratio com-

paring social optimum and the best possible social welfare at a NE, i.e.,

PoS ¼
maxa2A

P
i2Iui að Þ

maxa2ANash
P

i2Iui að Þ
: ð47Þ

Theorem 3. With linear travel time latency functions and pricing (7), the PoS for the mobility
gameM is upper bounded, i.e.,
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Proof. Recall that the social welfare of the mobility game M is represented by

J að Þ ¼
P

i2Iui að Þ. We aim to compare the J(a) with the potential function F(a). So, we have
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yi þ Zipi
�
X

e2E

XJe

k¼1

x1k þ x2ð Þ �
X

v2V

X

i2I

jSvj jSvj þ 1ð Þ

2s v; hið Þ
; ð49Þ

where we have substituted ce(Je) = ξ1Je + ξ2. Next, we have

F að Þ ¼
X

v2V

b vð Þð Þ
2

� 2
X

v2V

b vð Þ
X

i2Sv

pi

 !

þ
X

v2V

X

i2Sv

pi

 !2

�
X

i2I

�y i

yi þ Zipi

�
X

e2E

x1J
2

e þ x1 þ 2x2ð ÞJe
� �

�
X

v2V

X

i2I

jSvj jSvj þ 1ð Þ

2s v; hið Þ
:

ð50Þ

We also have the following

J að Þ ¼
X

i2I

ui að Þ ¼
X

i2I

2pi b við Þ �
pi

2
�

X

k2Svi nfig

pk

0

@

1

A�
X

i2I

�y i

yi þ Zipi

�
X

i2I

X

e2ri :ri2P o;dð Þ

x1Je þ x2ð Þ �
X

i2I

jSvi
j

s vi; hið Þ
;

ð51Þ

which leads to

J að Þ ¼
X

i2I

2pi b við Þ �
pi

2
�

X

k2Svi nfig

pk

0

@

1

A�
X

i2I

�y i

yi þ Zipi

�
X

e2E

x1J
2

e þ x2Je
� �

�
X

i2I

jSvi
j

s vi; hið Þ
;

ð52Þ
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By comparing now (50) and (52), we note that

1

2
J að Þ � F að Þ � J að Þ þ

X

v2V

b vð Þð Þ
2

þ 2
X

i2I

X

k2Svi nfig

pipk ð53Þ

� J að Þ þ 2Imax
i2I

½ �yi
�yi � 1
� �

� þ
X

v2V

b vð Þð Þ
2
: ð54Þ

Our next step is to define a NE that happens to maximize the potential function, say ~aNash to

get

J ~aNashð Þ � F ~aNashð Þ � F a∗ð Þ � J a∗ð Þ þ 2Imax
i2I

½ �yi
�yi � 1
� �

� þ
X

v2V

b vð Þð Þ
2
: ð55Þ

Therefore, if we divide by J ~aNashð Þ, we get the following relation

PoS ¼
J a∗ð Þ

J ~aNashð Þ
�

1

2
þ max

i2I
�yi

�yi � 1
� �� �

þ
1

I

X

v2V

b vð Þð Þ
2
: ð56Þ

Theorem 3 helps us understand the mobility game’s NE and provides a metric for how

close any NE might be to the social optimum. We can ensure that as the number of travelers

increases, the smaller the PoS becomes, guaranteeing that the closer the mobility game’s NE is

to the social optimum.

Prospect theory analysis

In this subsection, we introduce prospect theory and its main concepts [56, 71]. We then

incorporate prospect theory to our game M. One of the main questions prospect theory

attempts to answer is how a decision-maker may evaluate different possible actions/outcomes

under uncertain and risky circumstances. Thus, prospect theory is a descriptive behavioral

model and focuses on three main behavioral factors:

1. Reference dependence: decision makers make decisions based on their utility, which is mea-

sured from the “gains” or “losses.” However, the utility is a gain or loss relative to a refer-

ence point that may be unique to each decision-maker. It has been shown in experimental

studies [56] the reference dependence captures the tendency of a decision-maker to be

more affected in their decisions by the changes in attributes than by the absolute magni-
tudes. For example, the shortest/average travel time between two locations.

2. Diminishing sensitivity: changes in value have a greater impact near the reference point

than away from the reference point. For example, an individual is highly likely to discrimi-

nate between a 1 and 2 hours travel time but not very likely to notice the difference between

18 and 19 hours travel time.

3. Loss aversion: decision-makers are more conservative in gains and riskier in losses. For

example, a traveler may prefer to secure a 45 min commute rather than risking for a 1.5

hours commute.

One way to mathematize the above behavioral factors (1)—(3) is to consider an action by a

decision-maker as a “gamble” with objective utility value z 2 R (e.g., money). We say that this
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decision maker perceives z subjectively using a value function [54, 72]

n zð Þ ¼
z � z0ð Þ

b1 ; if z � z0;

�l z0 � zð Þ
b2 ; if z < z0;

8
<

:
ð57Þ

where z0 represents a reference point, β1, β2 2 (0, 1) are parameters that represent the dimin-

ishing sensitivity. Both β1, β2 shape (57) in a way that the changes in value have a greater

impact near the reference point than away from the reference point. We observe that (57) is

concave in the domain of gains and convex in the domain of losses. Moreover, λ � 1 reflects

the level of loss aversion of decision makers (see Fig 1).

Remark 2 To the best of our knowledge, there does not exist a widely-agreed theory that deter-
mines and defines the reference dependence [53, 73, 74]. In engineering [62, 75], it is assumed
that z0 = 0 captures a decision maker’s expected status-quo level of the resources.

As we discussed earlier in this subsection, prospect theory models the subjective behavior

of decision-makers under uncertainty and risk. Each objective utility z 2 R is associated with a

probabilistic occurrence, say p 2 [0, 1]. Decision makers, though, are subjective and perceive p
in different ways depending on its value. To capture this behavior, we introduce a strictly

increasing function w : ½0; 1� ! R with w(0) = 0 and w(1) = 1 called the probability weighting
function. This function allows us to model how decision-makers may overestimate small prob-

abilities of objective utilities, i.e., w(p)>p if p is close to 0, or underestimate high probabilities,

i.e., w(p)<p if p is close to 1 (see Fig 2). For the purposes of this work, we use the probability

Fig 1. The value function for three different values of λ.

https://doi.org/10.1371/journal.pone.0285322.g001
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weighting function first introduced in [76],

w pð Þ ¼ exp � �log pð Þð Þ
b3

� �
; p 2 ½0; 1�; ð58Þ

where β3 2 (0, 1) represents a rational index, i.e., the distortion of a decision-makers probabil-

ity perceptions. Mathematically, β3 controls the curvature of the weighting function (see Fig

2). Although there are many different formulations for the probability weighting function, we

use (58) defined in [76] as a single-parameter function and easier computationally to estimate.

Next, we define a prospect which is a tuple of the objective utility (gain or loss) and its prob-

ability of happening.

Definition 16. Suppose that there are K 2 N possible outcomes available to a decision-

maker and zk 2 R is the kth gain/loss of objective utility. Then a prospect ℓk is a tuple of the

utilities and their respective probabilities

‘k ¼ z0; z1; z2; � � � ; zK ; p0; p1; p2; � � � ; pKð Þ; ð59Þ

where k = 1, 2, . . ., K. We denote the kth prospect more compactly as ℓk = (zk, pk). We have

that
PK

k¼0
pk ¼ 1 and ℓk is well-ordered, i.e., z0 � x1 � � � � � zK. Under prospect theory, the

decision-maker evaluates their “subjective utility” as u(ℓ) = ∑0�k � Kv(zk)w(pk), where ‘ ¼

‘kð Þ
K
k¼1

is the profile of prospects of K outcomes.

Fig 2. The probability weighting function for three different values of the rational index β3.

https://doi.org/10.1371/journal.pone.0285322.g002
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In the remainder of this subsection, we apply the prospect theory to our game, clearly define

the mobility outcomes (objective and subjective utilities), and then show that the prospect-the-

oretic mobility game M admits a NE.

Travelers may be uncertain about the available amount of mobility funds at any transport

hub, that is why we define a mobility prospect to represent as a random variable Z with objec-

tive utilities z1, z2, . . ., zK and their probabilities p1, p2, . . ., pK. Each zk now represents the

uncertain b(vi). In addition, the reference dependence of each traveler i is represented by

z0
i 2 R. For any traveler i, the probability weighting function is wi : ½0; 1� ! R and the value

function is ni zk; z0
i

� �
: R2

! R, k = 1, 2, . . ., K. Thus, we have

E½Z� ¼
XK

k¼1

ni zk; z
0

i

� �
wi pkð Þ; ð60Þ

where wi(pk) is given by (58), and

ni zk; z0
i

� �
¼

zk � z0
i

� �b
; if zk � z0

i ;

�l z0
i � zk

� �b
; if zk < z0

i ;

8
<

:
ð61Þ

where β = β1 = β2. We can justify β1 = β2 in the above definition as it has been verified to

produce extremely good results, and the outcomes are consistent with the original data [54].

Next, we explicitly define the reference point for the mobility game M as follows

z0
i ¼

P
k2Svi nfigpk

� �2

�
P

i2Svi
pi

� �2

where z0
i represents the ideal redistribution of wealth to

traveler i (since no transport hub vi should make a profit, i.e., b(vi) = 0). For the random vari-

able Z, we assume a continuous distribution F with zero mean and a probability density func-

tion f, and explicitly have

Z ¼ F �
X

k2Svi nfig

pk

0

@

1

A

2

� F �
X

i2Svi

pi

0

@

1

A

2

: ð62Þ

So, by (60), we have E½Z� ¼
P

n2Rni z nð Þ; z0
i

� �
wi f nð Þð Þ, where z(n) represents at each transport

hub vi of an arbitrary traveler i the realization of Z with n 2 R available mobility funds. The

total utility now under prospect theory for a traveler i is

uPT
i að Þ ¼ z0

i þ E½Z� �
�y i

yi þ Zipi
�

X

e2ri:ri2P o;dð Þ

ce Jeð Þ �
jSvi

j

s vi; hið Þ
: ð63Þ

Next, we show that our mobility game M under prospect theory is guaranteed to have at

least one NE.

Theorem 4. The mobility gameM under prospect theory admits a pure-strategy NE.

proof. We expand z(n) and subtract z0
i and simplify to get

z nð Þ ¼ n �
X

k2Svi nfig

pk

0

@

1

A

2

� n �
X

i2Svi

pi

0

@

1

A

2

z nð Þ � z0
i ¼ 2n½

X

k2Svi nfig

pk �
X

i2Svi

pi� ¼ 2npi:

ð64Þ
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where z0
i ¼

P
k2Svi nfigpk

� �2

�
P

i2Svi
pi

� �2

. Substituting (64) into (63) yields

uPT
i að Þ ¼ z0

i þ
X

n2R

ni � 2npið Þ � wi f nð Þð Þ �
X

e2ri:ri2P o;dð Þ

ce Jeð Þ �
jSvi

j

s vi; hið Þ
�

�y i

yi þ Zipi
; ð65Þ

where vi is given by (61). The next step is explicitly defining a new potential function under

prospect theory. We have

C að Þ ¼
X

i2I

X

n2R

ni � 2npið Þ � wi f nð Þð Þ �
X

e2E

XJe

k¼1

ce kð Þ

�
X

v2V

jSvj jSvj þ 1ð Þ

2s v; hið Þ
�
X

i2I

�y i

yi þ Zipi
þ
X

v2V

X

k2Sv

pk

 !2

:

ð66Þ

Next, we show that C as given in (66) is an exact potential function. We notice that
P

n2Rni �

2npið Þ � wi f nð Þð Þ does not depend on a−i, i.e., the actions of the other travelers except traveler i.
Hence, following similar arguments as in Theorem 1, we obtain

uPT
i ai; a�ið Þ � uPT

i a0
i; a�i

� �
¼ C ai; a�ið Þ � C a0

i; a�i

� �
. Hence, C is indeed an exact potential

function for the mobility game M under prospect theory. Therefore, since any action profile

that minimizes C results in a NE, the mobility game M admits a NE under prospect theory.

Corollary 2. For the mobility gameM under prospect theory, the sequence of best responses
of an arbitrary traveler i 2 I converges to a NE.

Proof. It is sufficient to note that the action set Ai of any traveler i is compact. Thus, it fol-

lows from the results in [42] that the sequence of best responses of any traveler i 2 I converges

to a NE.

Both Theorem 4 and Corollary 2 ensure that the mobility game M under the prospect-the-

oretic behavioral model admits a NE and prospect-based travelers will eventually converge to

it. Both results establish that we can still ensure that an equilibrium can be reached under cer-

tain conditions for the cost and pricing functions.

Concluding remarks

In this paper, we proposed a mobility game to study the behavioral interactions of travelers in

a multimodal transportation network. First, we formulated a repeated non-cooperative routing

game with a finite number of travelers. In our first result, we showed that the mobility game

admits a NE under the assumption of rationality. In our second result, we derived a bound for

the PoA. Although we cannot have uniqueness at an equilibrium, our upper bound guarantees

that the inefficiencies are as low as possible if the number of travelers is large enough (which is

naturally expected in a mobility system). We also derived an upper bound for the PoS, showing

that the greater the number of travelers, the close some NE can be to the social optimum. Next,

we extended our game to consider the subjective behavior of travelers under prospect theory

and showed that our mobility game admits a NE.

Implementation

In this subsection, we outline how our proposed mobility game can be potentially imple-

mented. We consider a major metropolitan area with an extensive road and public transit

infrastructure; a good example is Boston. Several key areas in Boston are connected by roads,

buses, light rail, and bikes. These areas can serve as transport hubs from which travelers can

utilize any of the available modes of transportation. We can apply the MaaS concept and offer
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on each transport hub travel services (e.g., navigation, location, booking, payment) to all pass-

ing travelers. Information can be shared among all travelers via a “mobility app,” which allows

travelers to access the services on the transport hubs. Using this app, travelers can pay for their

travel needs and, at the same time, receive mobility payments. For example, a traveler who

informs the app and uses a bike multiple times (per day or per week) can receive mobility pay-

ments. In addition, travelers travel multiple times and interact with each other more than

once. So, travelers seek to move from one place to another while competing with many other

travelers, use the transport hubs to access their preferred mode of transportation, and pay

using a mobility app. Each mode of transportation offers different benefits in utility; for exam-

ple, a car is more convenient than a bus and is expected to be in high demand. This naturally

will lead to inefficiency and congestion.

The mobility game M with the utility structure defined in (4) captures the key factors that

may play a role in a traveler’s decision-making. It can be seen by Theorem 1 and Corollary 1

that an equilibrium exists and can be reached by the travelers without direct intervention from

a central authority. The particular pricing mechanism we have proposed in (1) ensures all trav-

elers with the computational power of their cellphone can quickly derive the NE strategy

(route, transport hub, payment). This is important as we can avoid solving a mixed-integer

nonlinear program for all the travelers in the mobility system. In addition, by Theorem 2 we

can guarantee that the inefficiency of the mobility system stays low as long as the number of

travelers remains large (something that is expected in a typical mobility system). We can guar-

antee that a NE will stay close to the social optimum as the number of travelers increases.

Thus, even though we cannot guarantee the uniqueness of a NE, we can ensure that all NE are

similarly efficient and nearly as efficient as the social optimum as long as the number of travel-

ers is high.

Using prospect theory, we can also consider how a traveler can feel uncertain about whether

they may receive mobility payments for choosing a more sustainable mode of transportation

(e.g., bike). Under certain conditions, we show that indeed a NE exists (Theorem 4) and it can

be reached by the travelers as they can travel from the hub that is nearest to their home to the

hub that is nearest to their work (Corollary 2). Thus, our game M framework is proved to lead

to a NE under two different behavioral models and capture the impact of the travelers’ deci-

sion-making.

Technical discussion and a numerical example

In this subsection, we discuss in more detail the technical implementation of our mobility

game. So, we can compute a NE using the potential function, leveraging the fact that our game

is a potential game with a finite set of travelers (as shown in Theorem 1). Note that this means

that there exists a potential function (given by (7)) that maps each strategy profile to a real

value. Intuitively, any change in any traveler’s utility that unilaterally deviates from a strategy

is equal to the change in our potential function. Hence, we can find the strategy profiles that

simply maximize our potential function. One approach to achieve this for mixed-integer opti-

mization problems is to use the branch-and-bound algorithm [77]. So, by Corollary 1, conver-

gence to a pure strategy NE is guaranteed, thus we can find a NE, compute it, and use for our

PoA analysis.

Typically, we solve numerically the optimization problem that arises from the routing

game. We can either employ a gradient-based methods or a learning algorithm (e.g., fictitious

play). The gradient-based method involves updating the travelers’ strategies by moving in the

direction of the gradient of the potential function. However, since the action sets are coupled

and include route choices, the optional stop at a transport hub along the route, and the
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payment for the mobility service, the standard way solve this problem is as a mixed-integer

nonlinear program (MINLP) (in such a case use the branch-and-bound or branch-and-cut

algorithm). Alternatively, we can first use the specialized algorithm Dijkstra and find the best

route and transport hub through the network based on criteria such as shortest distance and

least time. Once we have this optimal route, we then use “fmincon” to compute the optimal

value of the mobility payments along that route and transport hub.

We now offer a numerical example with a simple transportation network that has one

unique origin-destination (OD) pair. In this network, there are three routes, namely route 1,

route 2, and route 3. We assume that there are two mobility services: car and bike. The travel

time on each route depends on the volume of traffic and the service. We have the following

Route 1 : t1 carð Þ ¼ 10 þ x1; t1 bikeð Þ ¼ 8; ð67Þ

Route 2 : t2 carð Þ ¼ 5 þ 2x2; t2 bikeð Þ ¼ 7; ð68Þ

Route 3 : t3 carð Þ ¼ 15; t3 bikeð Þ ¼ 5 þ x3; ð69Þ

where xk denotes the fraction of travelers choosing either of routes k = 1, 2, 3 using a car. We

also consider that the pricing functions for the two modes: car and bike take the explicit form

as τ(car) = 10 and τ(bike) = −2. So, travelers receive a $2 incentive for choosing a bike. Suppose

we have 50 travelers in total, with 30 travelers preferring route 1 and route 2 (we call this

Group A), while the remaining 20 travelers prefer route 2 and route 3 (we call this Group B).

Now, say that Group A chooses to utilize route 1 with a car, and Group B chooses to utilize

route 3 using a car. We can now compute the utilities for each traveler:

Route 1 : t1 carð Þ ¼ 10 þ 30 ¼ 40; utility ¼ �40 � 10 ¼ �50; ð70Þ

Route 2 : t2 carð Þ ¼ 5; utility ¼ �5 � 10 ¼ �15; ð71Þ

Route 3 : t3 carð Þ ¼ 15; utility ¼ �15 � 10 ¼ �25: ð72Þ

So, for Group A the utility for route 2 (car) is higher than route 1 (car), thus all travelers in

Group A will deviate to route 2 (car). Similarly, in Group B the utility for route 3 (bike) is

higher than Route 3 (car), and so all travelers will deviate to route 3 (bike). Let us now compute

the utilities for any arbitrary traveler, i.e.,

Route 1 : t1 carð Þ ¼ 10; u ¼ �10 � 10 ¼ �20; ð73Þ

Route 1 : t1 bikeð Þ ¼ 8; u ¼ �8 þ 2 ¼ �6; ð74Þ

Route 2 : t2 carð Þ ¼ 5 þ 2 30ð Þ ¼ 65; u ¼ �65 � 10 ¼ �75; ð75Þ

Route 2 : t2 bikeð Þ ¼ 7; u ¼ �7 þ 2 ¼ �5; ð76Þ

Route 3 : t3 carð Þ ¼ 15; u ¼ �15 � 10 ¼ �25; ð77Þ

Route 3 : t3 bikeð Þ ¼ 5; u ¼ �5 þ 2 ¼ �3: ð78Þ

We continue our equilibrium analysis as follows: for Group A, the utility for route 1 (bike) is

higher than Route 2 (car), so travelers will deviate to route 1 (bike). Next, Group B will not

deviate as route 3 (bike) (already highest utility). Hence, we have reached the point in which
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no traveler can deviate and receive better utility; thus we have a NE. We notice that all travelers

from Group A and Group B choose route 1 and route 3 utilizing bikes, respectively. We con-

clude that it is possible as we showed in our theoretical analysis for a NE to exist and it is easily

converged to based on our pricing mechanism in this simple multimodal transportation net-

work. Next, at this Ne, all travelers have chosen to utilize the mobility service: bike, which is a

sustainable and environmentally-friendly mode of transportation. Our pricing mechanism

naturally will favor such modes of transportation and provide incentives to travelers for better

utilization. Thus, we can control travel demand and effectively reduce any inefficiencies that

may arise from congestion or higher pollution levels caused by car usage. One last note: in this

example, we used a similar method to the best-response dynamics approach and found the NE

using only a few iterations. Although our example quickly leads to an equilibrium solution, for

larger and more complex transportation networks, we cannot draw the same conclusion and

thus, it remains future work to adopt more advanced optimization and algorithmic techniques

in order to find and compute our mobility game’s NE.

Limitations and future work

One important limitation of our framework is the assumption of complete information. Real-

istically, we cannot expect travelers to have accurate and complete knowledge of other travelers

or the system’s capabilities (network, road capacities). A potential direction for future research

should relax this assumption by only allowing travelers to know their own actions and utilities.

In the literature, attempts have been made to investigate the emergence of cooperation among

selfish travelers and how to bound rationality/irrationality in travel-choice problems [78–81].

A standard technique is Bayesian game-theoretic analyses, and recently, and techniques to

learn representations of unknown information from observed data [82–86]. Another interest-

ing direction for future research is to expand the current framework by explicitly designing the

socially-efficient pricing functions to achieve the best possible equilibrium in the mobility sys-

tem using techniques from mechanism design. Furthermore, to showcase the benefits of the

proposed game-theoretic approach, a necessary extension of our work is using machine learn-

ing techniques [87–91] with real-life data. Finally, future work may explore how to perform a

comparative analysis on models focusing on real-time efficacy for similar problems like ours

using techniques similar to other fields [92–95].
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