
Automatica 151 (2023) 110912

A
D

R
R
A
A

S
I
M

s
s
s
t
p
i

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Separation of learning and control for cyber–physical systems✩

ndreas A. Malikopoulos
epartment of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE, 19716, USA

a r t i c l e i n f o

Article history:
eceived 24 May 2022
eceived in revised form18 September 2022
ccepted 19 December 2022
vailable online xxxx

Keywords:
Separation of learning and control
tochastic optimal control
nformation state
arkov decision theory

a b s t r a c t

Most cyber–physical systems (CPS) encounter a large volume of data which is added to the system
gradually in real time and not altogether in advance. In this paper, we provide a theoretical framework
that yields optimal control strategies for such CPS at the intersection of control theory and learning.
In the proposed framework, we use the actual CPS, i.e., the ‘‘true" system that we seek to optimally
control online, in parallel with a model of the CPS that is available. We then institute an information
state for the system which does not depend on the control strategy. An important consequence of
this independence is that for any given choice of a control strategy and a realization of the system’s
variables until time t, the information states at future times do not depend on the choice of the
control strategy at time t but only on the realization of the decision at time t, and thus they are
related to the concept of separation between estimation of the state and control. Namely, the future
information states are separated from the choice of the current control strategy. Such control strategies
are called separated control strategies. Hence, we can derive offline the optimal control strategy of
the system with respect to the information state, which might not be precisely known due to model
uncertainties or complexity of the system, and then use standard learning approaches to learn the
information state online while data are added gradually to the system in real time. We show that
after the information state becomes known, the separated control strategy of the CPS model derived
offline is optimal for the actual system. We illustrate the proposed framework in a dynamic system
consisting of two subsystems with a delayed sharing information structure.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Cyber–physical systems (CPS), in many instances, represent
ystems of subsystems with an informationally decentralized
tructure such as networked control systems, emerging mobility
ystems, communication networks, digital twin, and internet of
hings. Systems with informationally decentralized structures im-
ose significant challenges compared to systems with centralized
nformation structures; see van Schuppen and Villa (2015). The in-
formation structure in a system designates what information each
subsystem knows about the status of the system and when. Sev-
eral efforts on the characterization of information structures and
their implications on optimality results have been reported in the
literature over the years; see Mahajan et al. (2012), Subramanian
et al. (2022), Witsenhausen (1971). The information structure
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Miroslav Krstic.
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005-1098/© 2023 Elsevier Ltd. All rights reserved.
in a system stipulates the complexity, i.e., see Papadimitriou
and Tsitsiklis (1982), Tsitsiklis and Athans (1985), of the optimal
control problem and can lead to computational implications;
see Papadimitriou and Tsitsiklis (1985). The latter depends on
whether the system has a strictly classical information structure
or a nonclassical information structure. In classical information
structures, all subsystems receive the same information and have
perfect recall; see Malikopoulos (2016). If there is only one
subsystem, then such information structures are called strictly
classical resulting in typical centralized stochastic control prob-
lems; see Kumar and Varaiya (1986), Kushner (1971). In partially
nested information structures, there are some subsystems who
have a nonempty intersection of their information structures
while they have perfect recall. Any information structure that is
not classical, or partially nested, is called nonclassical.

In most CPS applications with nonclassical information struc-
tures there is a large volume of data of a dynamic nature which
is added to the system gradually in real time and not altogether
in advance. As the volume of data increases, the domain of the
control strategies also increases, and thus it becomes challenging
to search for an optimal strategy. Even if an optimal strategy
is found, implementing such strategies with increasing domains
is burdensome. In such applications, we typically assume an
ideal model of the system to derive optimal control strategies.

https://doi.org/10.1016/j.automatica.2023.110912
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.110912&domain=pdf
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uch model-based control approaches cannot effectively facilitate
ptimal solutions with performance guarantees due to the dis-
repancy between the model and the actual CPS. On the other
and, traditional supervised learning approaches cannot always
acilitate robust solutions using data derived offline. By contrast,
pplying reinforcement learning approaches directly to the actual
PS might impose significant implications on safety and robust
peration of the system.
The goal of this paper is to provide a theoretical framework

hat aims at separating the control and learning tasks which
llows us to combine offline model-based control with online
earning approaches, and thus circumvent the challenges in de-
iving optimal strategies for CPS with nonclassical information
tructures. The framework can fit well in applications related to
igital twins where a virtual representation of a real-world phys-
cal system serves as the indistinguishable digital counterpart of
t.

.2. Related work

.2.1. Model-based control
Most CPS represent systems of subsystems with nonclassical

nformation structures imposing the following technical chal-
enges (Papadimitriou & Tsitsiklis, 1987): (a) the functional op-
imization problem of selecting the optimal strategy is not trivial
s the class of strategies is infinite dimensional, and (b) the data
ncrease with time causing significant implications on storage
equirements and real-time implementation. These difficulties
an be addressed by finding sufficient statistics to compress the
rowing data without loss of optimality (Striebel, 1965) using a
onditional probability of the state of the system at time t given
ll the data available up until time t . This conditional probability
s called information state, and it takes values in a time-invariant
pace. This information state can help us derive results for opti-
al control strategies in a time-invariant domain; Krishnamurthy

2016).
One key property of such information states is that they do

ot depend on the control strategy of the system, and thus they
re related to the concept of separation between estimation and
ontrol. An important consequence of this separation is that for
ny given choice of control strategies and a realization of the sys-
em’s variables until time t , the information states at future times
o not depend on the choice of the control strategy at time t but
nly on the realization of the decision at time t; see Malikopoulos
2023). Thus, the future information states are separated from the
hoice of the current control strategy. The latter is necessary in
rder to formulate a classical dynamic program (Bertsekas, 2017;
oward, 1960), where at each step the optimization problem is to
ind the optimal decision for a given realization of the information
tate.
Several optimality results using information states defined in

ime-invariant spaces have been reported in the literature for
ystems with nonclassical information structures; see Dave and
alikopoulos (2019, 2020), Gupta et al. (2015), Kurtaran (1979),
ayyar et al. (2011), Varaiya and Walrand (1978), Witsenhausen

(1971), Wu and Lall (2014). There are three main approaches to
address optimal control problems with a nonclassical information
structure: (1) the person-by-person approach, (2) the designer’s ap-
proach, and (3) the common information approach. The person-by-
person approach (McGuire & Radner, 1972) aims to convert the
problem into a centralized stochastic control problem from the
point of view of each subsystem. Namely, we arbitrarily fix the
strategies for all subsystems except for one, say subsystem k ∈ K,
K = {1, . . . , K }, K ∈ N, and then, we derive the optimal strategy
for k given the strategies for all other subsystems. We repeat this
process for all subsystems until no subsystem can improve the
2

performance of the system by unilaterally changing their strategy.
The designer’s approach was first introduced by Witsenhausen
(1973), as a standard form for sequential stochastic control with a
nonclassical information structure, and extended later by Maha-
jan (2008). The designer’s approach transforms the problem into
a centralized, open-loop planning problem where the objective
is to derive the optimal control strategy of the system before
the system starts evolving. Thus, no data are observed by the
designer, and thus this approach leads to a dynamic programming
decomposition over a space of functions instead of decisions
imposing significant computational implications; see Papadim-
itriou and Tsitsiklis (1987). Finally, in the common information
approach (Nayyar et al., 2011, 2013), the subsystems share a sub-
set of their past observations and decisions to a shared memory
accessible by all subsystems. The solution is derived by reformu-
lating the problem from the viewpoint of a ‘‘coordinator’’ with
access only to the shared information (the common information),
whose task is to provide ‘‘prescription’’ strategies to each subsys-
tem. The coordinator’s problem is a centralized stochastic control
problem.

1.2.2. Learning-based control
Adaptive control methods (Åström & Wittenmark, 1995; Ioan-

nou & Sun, 1996; Narendra & Annaswamy, 1989; Sastry & Bodson,
1989) have successfully addressed regulation and tracking con-
trol problems with safety guarantees by accommodating model
uncertainties; see Dydek et al. (2013), Leman et al. (2009). Re-
inforcement learning (RL) has emerged from machine learning
as an adaptive approach to control dynamical systems; Bertsekas
and Tsitsiklis (1996), Sutton and Barto (1998). Several efforts have
focused on safe learning approaches combining robust reachabil-
ity guarantees from control theory with Bayesian analysis based
on empirical observations (Fisac et al., 2019), and on learning the
system’s unknown dynamics based on a Gaussian process model
to iteratively approximate the maximal safe set; see Akametalu
et al. (2014). Iterative learning control (Armstrong et al., 2021),
has been also widely used for system identification, or in con-
junction with extremum seeking (Khong et al., 2016a, 2016b),
for recursively constructing an input such that the corresponding
system output tracks a prescribed reference trajectory closely.
In communication networks, where models of wireless channels
are available only through data samples (Gatsis & Pappas, 2021)
there have been efforts on learning approximately optimal power
allocation policies to maximize control performance of a set of
independent control systems within a fixed budget; see Eisen
et al. (2018).

Other research efforts over the years have focused on develop-
ing robust learning-based approaches in applications
related to quadrotor safety and steady-state stability (Aswani
et al., 2013), learning-based model predictive control (Rosolia &
Borrelli, 2018), real-time learning (Malikopoulos, 2009) of pow-
ertrain operation of vehicles with respect to the driver’s driving
style (Malikopoulos et al., 2010), learning for traffic control in
simulation (Wu et al., 2017) in conjunction with transfer of
learned policies from simulation to a scaled environment (Chalaki
et al., 2020), decentralized learning for stochastic games (Arslan &
Yüksel, 2017), learning for optimal social routing (Krichene et al.,
2018) and congestion games (Krichene et al., 2015), and learning
for enhanced security against replay attacks in CPS; see Sahoo and
Vamvoudakis (2020), Zhai and Vamvoudakis (2021).

Regularities of optimal control on the space of transition ker-
nels along with the implications on robustness of optimal control
strategies derived using an ‘‘incorrect’’ model and applied to the
actual system have been discussed by Kara and Yüksel (2018).
Approximate planning and learning in partially observed sys-
tems using an information state was more recently proposed
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b
y Subramanian et al. (2022). Alternatively, one can establish
an approximate information state, defined in terms of properties
that can be estimated using sampled trajectories, along with an
approximate dynamic program; see Subramanian and Mahajan
(2019). This approach provides a constructive way for RL in par-
tially observed systems. Other efforts have also combined model
reference adaptive control with RL to generate online policies;
see Guha and Annaswamy (2021). Two recent survey papers
by Kiumarsi et al. (2018) and Recht (2019) provide a comprehen-
sive review of the general RL problem formulations along with a
complete list of applications.

1.3. Contributions of this paper

In this paper, we consider CPS consisting of several subsys-
tems with a common objective and a nonclassical information
structure, where the state of the system is not fully observed.
We provide a theoretical framework, which can combine offline
model-based control with online learning approaches, to yield
the optimal control strategy of the system. More specifically, we
identify a sufficient information state for the system which does
not depend on the control strategy. An important consequence
of this independence is that for any given choice of a control
strategy and a realization of the system’s variables until time
t , the information states at future times do not depend on the
choice of the control strategy at time t but only on the realization
of the decision at time t , and thus they are related to the con-
cept of separation between estimation of the state and control.
Namely, the future information states are separated from the
choice of the current control strategy. The adjective ‘‘separated’’ is
used to emphasize the fact that in implementing such an optimal
policy, we first need to learn the information state and then
choose the control. Such control strategies are called separated
control strategies. Hence, we can derive offline the optimal con-
trol strategy of the system with respect to the information state,
which might not be precisely known due to model uncertainties
or complexity of the system, and then use standard learning
approaches to learn the information state online while data are
added gradually to the system in real time.

The contributions of this paper are: (1) the institution of an
information state of the system, which does not depend on the
control strategy (Theorem 1), that allows us to restrict attention
to separated control strategies; (2) a dynamic programming de-
composition that uses a CPS model and the information state to
derive offline optimal separated control strategies (Theorem 2)
which are optimal for the actual system (Theorem 3); and (3)
providing structural properties of the dynamic programming de-
composition (Theorem 4) which allow us to derive the opti-
mal strategies offline using standard techniques for centralized
partially observed Markov decision processes.

The two features which sharply distinguish the framework
presented here from previous learning-based, or combined learn-
ing and control approaches reported in the literature to date are
the following. First, the CPS imposes a nonclassical information
structure while the state of the system is not fully observed. To
the best of our knowledge, this is the first time that results on
such systems are derived by separating the control and the learn-
ing tasks of the problem. Second, the large volume of data that is
added to the system gradually is compressed to sufficient statis-
tics without loss of optimality (Theorem 2) which constitutes the
information state of the system. Using this information state, we
derive results for optimal control strategies in a time-invariant
domain. Thus, the volume of data which is added gradually to
the system does not cause the domain of the control strategies to
increase with time. The latter is quite important since searching
and then implementing control strategies with increasing domain
is burdensome.
3

1.4. Organization of this paper

The remainder of the paper proceeds as follows. In Section 2,
we provide the modeling framework and the formulation of the
optimal control problem for a CPS with nonclassical informa-
tion structure. In Section 3, we present the analysis for deriving
separated control strategies. In Section 4, we present a simple ex-
ample to illustrate the proposed framework. Finally, we provide
concluding remarks and discuss potential directions for future
research in Section 5.

2. Problem formulation

2.1. Notation

Subscripts denote time, and superscripts index subsystems.
We denote random variables with upper case letters, and their
realizations with lower case letters, e.g., for a random variable Xt ,
xt denotes its realization. The shorthand notation X1:K

t denotes
the vector of random variables

(
X1
t , X2

t , . . . , XK
t

)
, x1:Kt denotes the

vector of their realization
(
x1t , x

2
t , . . . , x

K
t

)
, and h1:K

t (·, ·) denotes
the vector of functions

(
h1
t (·, ·), . . . , h

K
t (·, ·)

)
. The expectation of a

random variable is denoted by E[·], the probability of an event is
denoted by P(·), and the probability density function is denoted
by p(·). For a control strategy g, we use Eg

[·], Pg(·), and pg(·) to
denote that the expectation, probability, and probability density
function, respectively, depend on the choice of the control strat-
egy g. For two measurable spaces (X , X ) and (Y, Y ), X ⊗ Y is
the product σ -algebra on X × Y generated by the collection of
all measurable rectangles, i.e., X ⊗ Y := σ ({A × B : A ∈ X , B ∈

Y }). The product of (X , X ) and (Y, Y ) is the measurable space
(X ×Y, X ⊗Y ). We denote the Cartesian product of the sets Gk,
k ∈ K, K = {1, . . . , K }, K ∈ N, with ×k∈KGk.

2.2. Proposed approach

We consider a CPS representing a system of subsystems with
an informationally decentralized structure in which there is a
large volume of data of a dynamic nature that is added to the
system gradually and not altogether in advance. For such systems,
using model-based control approaches cannot effectively facili-
tate optimal solutions with performance guarantees due to the
discrepancy between the model and the actual CPS. On the other
hand, since there is a large volume of data of a dynamic nature
that is added to the system gradually in real time, traditional su-
pervised learning approaches might not facilitate robust solutions
using data derived offline. By contrast, applying reinforcement
learning approaches directly to the actual CPS might impose
significant implications on safety and robust operation of the
system.

To address these challenges, our framework aims at sepa-
rating the control and learning tasks which eventually allows
us to combine offline model-based control with online learning
approaches. In particular, we aim at identifying a sufficient in-
formation state for the CPS that takes values in a time-invariant
space, and use this information state to derive separated control
strategies. Separated control strategies are related to the concept
of separation between the estimation of the information state
and control of the system. An important consequence of this
separation is that for any given choice of control strategies and a
realization of the system’s variables until time t , the information
states of the system at future times do not depend on the choice
of the control strategy at time t but only on the realization of the
control at time t; see Kumar and Varaiya (1986). Thus, the future
information states are separated from the choice of the current
control strategy. By establishing separated control strategies, we
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Fig. 1. Illustration of the proposed framework.

can derive offline the optimal control strategy of the system with
respect to the information state, which might not be precisely
known due to model uncertainties or complexity of the system,
and then use learning methods to learn the information state
online while data are added gradually to the system in real time.

More specifically, in the proposed framework illustrated in
Fig. 1, we use the actual CPS, i.e., the actual system that we
seek to optimally control online, in parallel with a model of the
CPS that is available. The main idea here is the institution of
an information state which is the conditional joint probability
distribution of the states of the CPS model and the actual CPS
at time t given all data available of the model up until time
t , i.e., p(state of CPS model, state of actual CPS | data of the CPS
odel). We use this information state along with the CPS model

o derive offline separated control strategies. Since we derive the
ptimal strategies offline, the state of the actual CPS is not known,
.e., the actual CPS operates only online, and thus the optimal
trategy of the CPS model is parameterized with respect to all
ealizations of the state of the actual CPS. However, the control
trategy and the process of estimating the information state are
eparated. Therefore, we can learn the information state of the
ystem online, while we operate simultaneously the CPS model
nd the actual CPS in real time. Namely, the optimal strategy
erived for the CPS model offline, which is parameterized with
espect to the state of the actual CPS, is used to operate the actual
PS in parallel with the CPS model. As we collect data from the
wo systems, we can learn the information state online. In our
xposition, we show that when the information state becomes
nown online through learning, the separated control strategy
f the CPS model derived offline is optimal for the actual CPS
Theorem 3). The framework described above is centralized, e.g., a
entral controller controls all subsystems.

.3. Modeling framework

We consider a CPS consisting of K ∈ N subsystems with a
measurable state space (Xt , Xt ), where Xt is the set in which
he CPS state takes values at time t = 0, 1, . . . , T , T ∈ N,
nd Xt is the associated σ -algebra. Let Xt be a random variable
hat represents the state of the CPS model and X̂t be a random
variable that represents the state of the actual CPS. Both random
variables are defined on the probability space (Ω, F ,P), i.e., Xt :

(Ω, F ) → (Xt , Xt ), X̂t : (Ω, F ) → (Xt , Xt ), where Ω is the
ample space, F is the associated σ -algebra, and P is a probability
easure on (Ω, F ). The control of each subsystem k ∈ K, K =

{1, . . . , K }, is represented by a random variable Uk
t : (Ω, F ) →

(Uk
t , U k

t ), defined on the probability space (Ω, F ,P), and takes
values in the measurable space (Uk

t , U k
t ), where Uk

t is subsystem
k
k’s nonempty feasible set of actions at time t and Ut is the

4

associated σ -algebra. Let U1:K
t = (U1

t , . . . ,UK
t ) be the control of

PS at time t . Starting at the initial state X0, the evolution of the
PS model is described by the state equation

t+1 = ft
(
Xt ,U1:K

t ,Wt
)
, (1)

where t = 0, 1, . . . , T − 1, and Wt is a random variable defined
on the probability space (Ω, F ,P) that corresponds to the exter-
nal, uncontrollable disturbance to the CPS and takes values in a
measurable set (W, W ), i.e., Wt : (Ω, F ) → (W, W ). Similarly,
starting at the initial state X̂0, the evolution of the actual CPS is
described by the state equation

X̂t+1 = f̂t
(
X̂t ,U1:K

t ,Wt
)
, (2)

where t = 0, 1, . . . , T − 1, while {Wt : t = 0, . . . , T − 1} is a
sequence of independent random variables that are also indepen-
dent of the initial states X0 and X̂0. At time t = 0, 1, . . . , T − 1,
every subsystem k ∈ K in the model makes an observation Y k

t ,
which takes values in a measurable set (Yk, Y k), described by the
observation equation

Y k
t = hk

t (Xt , Zk
t ), (3)

where Zk
t is a random variable defined on the probability space

(Ω, F ,P) that corresponds to the noise of each subsystem’s sen-
sor and takes values in a measurable set (Zk, Z k), i.e., Zk

t :

(Ω, F ) → (Zk, Z k), while {Zk
t : t = 0, . . . , T − 1; k =

1, . . . , K } is a sequence of independent random variables that are
also independent of {Wt : t = 0, . . . , T − 1}, and the initial states
X0 and X̂0. Similarly, at time t = 0, 1, . . . , T −1, every subsystem
k ∈ K in the actual CPS makes an observation Ŷ k

t , which takes
values in a measurable set (Yk, Y k), described by the observation
equation

Ŷ k
t = hk

t (X̂t , Zk
t ). (4)

We consider that the actual CPS has n-step delayed information
sharing, i.e., at time t , subsystem k ∈ K observes Ŷ k

t , and the
n-step past observations Ŷ 1:K

0:t−n and decisions U1:K
0:t−n of the entire

system. At time t , the data available to subsystem k consist of the
data ∆̂t available to all subsystems, i.e.,

∆̂t := (Ŷ 1:K
0:t−n,U

1:K
0:t−n), (5)

where Ŷ 1:K
0:t−n = {Ŷ 1

0:t−n, . . . , Ŷ
K
0:t−n}, U

1:K
0:t−n = {U1

0:t−n, . . . ,UK
0:t−n},

and the data Λk
t known only to subsystem k ∈ K, is given by

Λ̂k
t := (Ŷ k

t−n+1:t ,U
k
t−n+1:t−1). (6)

Note that the n-step delayed information sharing can also be
asymmetric, i.e., for each member k ∈ K, Ŷ k

t−nk , U
k
t−nk , where

nk ∈ R is constant but not necessarily the same for each k. The
collection {(∆̂t , Λ̂k

t ); k ∈ K; t = 0, . . . , T − 1}, is the information
structure of the actual CPS and captures which subsystem knows
what about the status of the CPS and when. In what follows,
the results hold for any special case of potential information
structures that can be:

(1) Periodic information sharing with period ω ≥ 1: In this
case Ooi et al. (1997), for α = 1, 2, . . . and αω < t ≤

(α + 1)ω, the pair of ∆̂t , Λ̂k
t , k ∈ K, becomes

∆̂t : = (Ŷ 1:K
0:αω,U1:K

0:αω), (7)

Λ̂k
t : = (Ŷ k

αω+1:(α+1)ω,Uk
αω+1:(α+1)ω). (8)

(2) n-step delayed observation sharing: In this case Aicardi
et al. (1987), ∆̂t and Λ̂k

t , k ∈ K, become

∆̂t : = (Ŷ 1:K
0:t−n), (9)

ˆ k ˆ k k
Λt : = (Yt−n+1:t ,U0:t−1). (10)
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(3) n-step delayed control sharing: In this case Bismut (1973),
∆̂t and Λ̂k

t , k ∈ K, become

∆̂t : = (U1:K
0:t−n), (11)

Λ̂k
t : = (Ŷ k

0:t ,U
k
t−n+1:t−1). (12)

(4) No sharing information: In this case, ∆̂t and Λ̂k
t , k ∈ K,

become

∆̂t : = ∅, (13)

Λ̂k
t : = (Ŷ k

0:t ,U
k
0:t−1). (14)

The CPS model imposes the same information structure as the
actual CPS. The collection {(∆t , Λk

t ); k ∈ K; t = 0, . . . , T − 1}, is
the information structure of the model.

2.4. Optimal control problem

Let (Dt , Dt ) be the measurable spaces of all possible realiza-
tions of ∆t and ∆̂t , and (Lk

t , L k
t ), k ∈ K, be the measurable

spaces of all possible realizations of Λk
t and Λ̂k

t , where Dt and
L k

t are the associated σ -algebras. A control strategy g = {gt; t =
0, . . . , T−1}, g ∈ G, G =: (L1

t × . . .×LK
t ×Dt , L 1

t ⊗· · ·⊗L K
t ⊗Dt )

yields a decision

U1:K
t = gt (∆̂t , Λ̂1:K

t ), (15)

where the measurable function gt is the control law.

Problem 1 (Actual CPS). The problem is to derive the optimal
control strategy g∗ ∈ G that minimizes the expected total cost of
the actual CPS,

Ĵ(g) = Eg

[
T−1∑
t=0

ct (X̂t ,U1:K
t )+ cT (X̂T )

]
, (16)

where the expectation is with respect to the joint probability
distribution of the random variables X̂t and U1:K

t designated by the
choice of g ∈ G, ct (·, ·) : (Xt×

∏
k∈K Uk

t , Xt⊗U 1
t ⊗· · ·⊗U K

t ) → R
is the measurable cost function of the actual CPS at t , and cT (·) :
(XT , XT ) → R is the measurable cost function at T .

The statistics of the primitive random variables X̂0, {Wt : t =
0, . . . , T − 1}, {Zk

t : k ∈ K; t = 0, . . . , T − 1}, the observation
equations {hk

t : k ∈ K; t = 0, . . . , T − 1}, and the cost functions
{ct : t = 0, . . . , T } are all known. However, the state equations
{f̂t : t = 0, . . . , T − 1} are not known.

3. Separation of learning and control

In our exposition, we address Problem 1 from the point of view
of a central controller who seeks to derive the optimal strategy
g ∈ G of the actual CPS. First, we institute an appropriate informa-
tion state, defined formally next, that can be used to formulate a
classical dynamic programming decomposition. To establish this
information state, we use the CPS model in conjunction with the
actual CPS (Fig. 2).

Definition 1. An information state, Πt , for the system described
by the state Eqs. (1) and (2), is (a) a function of (∆t , Λ1:K

t ), while
(b) Πt+1 is determined from Πt , Y 1:K

t+1, and U1:K
t .

We consider densities for all probability distributions to sim-
plify notation. Let g = {gt; t = 0, . . . , T − 1}, g ∈ G, be a
control strategy and (∆t , Λ1:K

t ) be the information structure of
the CPS model. The control strategy g yields a decision U1:K

t =

gt (∆t , Λ1:K
t ).

Before we proceed with establishing the information state, we

prove some essential properties.

5

Fig. 2. Separation of learning and control.

Lemma 1. For any control strategy g ∈ G of the system,

pg(Y 1:K
t+1 | Xt+1, X̂t+1, ∆t , Λ1:K

t ,U1:K
t ) = p(Y 1:K

t+1 | Xt+1), (17)

or all t = 0, 1, . . . , T − 1.

roof. The realization of Y 1:K
t+1 is statistically determined by the

onditional distribution of Y 1:K
t+1 given Xt+1 in (3), hence

g(Y 1:K
t+1 | Xt+1, X̂t+1, ∆t , Λ1:K

t ,U1:K
t ) = pg(Y 1:K

t+1 | Xt+1). (18)

owever,
g(Y 1:K

t+1 | Xt+1) = pg(Z1:K
t+1 ∈

∏
k∈K

Bk
| Xt+1), (19)

here Bk
∈ Z k, k ∈ K. Since, {Zk

t : k = 1, . . . , K ; t =

, . . . , T −1} is a sequence of independent random variables that
re independent of Xt+1,

g(Z1:K
t+1 ∈

∏
k∈K

Bk
| Xt+1) = p(Z1:K

t+1 ∈
∏
k∈K

Bk). (20)

ence,
g(Y 1:K

t+1 | Xt+1) = p(Y 1:K
t+1 | Xt+1). (21)

he result follows from (18) and (21). □

emma 2. For any control strategy g ∈ G of the system,
g(Xt+1, X̂t+1 | Xt , X̂t , ∆t , Λ1:K

t ,U1:K
t )

= p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K
t ), (22)

or all t = 0, 1, . . . , T − 1.

roof. The realization of Xt+1 is statistically determined by the
onditional distribution of Xt+1 given Xt and U1:K

t , i.e., pg(Xt+1 |

t ,U1:K
t ). Similarly, the realization of X̂t+1 is statistically deter-

ined by the conditional distribution of X̂t+1 given X̂t and U1:K
t ,

.e., pg(X̂t+1 | X̂t ,U1:K
t ).

From (1), we have
g(Xt+1 | Xt ,U1:K

t ) = pg(Wt ∈ A | Xt ,U1:K
t ), (23)

here A ∈ W . From (2), we have
g(X̂t+1 | X̂t ,U1:K

t ) = pg(Wt ∈ A | X̂t ,U1:K
t ), (24)

here A ∈ W . Since, {Wt : t = 0, . . . , T − 1} is a sequence of
ndependent random variables that are independent of X , X̂ , and
t t
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1:K
t ,
g(Wt ∈ A | Xt ,U1:K

t ) = pg(Wt ∈ A | X̂t ,U1:K
t )

= p(Wt ∈ A). (25)

Next,

pg(Xt+1 | Xt , ∆t , Λ1:K
t ,U1:K

t )

= pg(Wt ∈ A | Xt , ∆t , Λ1:K
t ,U1:K

t ) = p(Wt ∈ A). (26)

Similarly,

pg(X̂t+1 | X̂t , ∆t , Λ1:K
t ,U1:K

t )

= pg(Wt ∈ A | X̂t , ∆t , Λ1:K
t ,U1:K

t ) = p(Wt ∈ A). (27)

The result follows from (23), (24), (25), (26), and (27). □

Lemma 3. For any control strategy g ∈ G of the system,

pg(Xt , X̂t | ∆t , Λ1:K
t ) = p(Xt , X̂t | ∆t , Λ1:K

t ), (28)

for all t = 0, 1, . . . , T − 1.

Proof. By expanding pg(Xt , X̂t | ∆t , Λ1:K
t ), we have

pg(Xt , X̂t | ∆t , Λ1:K
t )

= pg(Xt , X̂t | ∆t−1, Λ1:K
t−2, Y

1:K
t−1, Y

1:K
t ,U1:K

t−2,U
1:K
t−1). (29)

However, the realizations of Xt and X̂t are statistically determined
by the conditional joint distribution of Xt and X̂t given Xt−1,
X̂t−1 and U1:K

t−1, which does not depend on the control strategy g
(Lemma 2), so we can drop the superscript in (29), and thus (28)
follows immediately. □

Remark 1. As a consequence of Lemma 3, and since both Xt and
X̂t do not depend on U1:K

t , we have

pg(Xt , X̂t | ∆t , Λ1:K
t ,U1:K

t ) = p(Xt , X̂t | ∆t , Λ1:K
t ). (30)

Given that we can observe the data (∆t , Λ1:K
t ) of the CPS

model, we can compress these data to a sufficient statistic which
is the probability density function p(Xt , X̂t | ∆t , Λ1:K

t ), called
information state and denoted by Πt (∆t , Λ1:K

t )(Xt , X̂t ). The next
result shows that such information state does not depend on the
control strategy of the CPS model.

Theorem 1 (Information State of the System). For any control
strategy g ∈ G derived offline for the CPS model, the information
state Πt (∆t , Λ1:K

t )(Xt , X̂t ) does not depend on the control strategy
g. Moreover, there is a function φt , which does not depend on the
control strategy g, such that

Πt+1(∆t+1, Λ1:K
t+1)(Xt+1, X̂t+1)

= φt
[
Π k

t (∆t , Λ1:K
t )(Xt , X̂t ), Y 1:K

t+1,U
1:K
t

]
, (31)

for all t = 0, 1, . . . , T − 1.

Proof. See Appendix A. □

The information state Πt+1(∆t+1, Λ1:K
t+1)(Xt+1, X̂t+1) of the sys-

tem is the entire probability density function and not just its
value at any particular realization of Xt+1 and X̂t+1. This is because
to compute Πt+1(∆t+1, Λ1:K

t+1)(Xt+1, X̂t+1) for any particular real-
ization of Xt+1 and X̂t+1, we need the probability density functions
p( ·, · | ∆t , Λ1:K

t ,U1:K
t ) and p( ·, · | ∆t , Λ1:K

t ). This implies that the
information state takes values in the space of these probability
densities, which is an infinite-dimensional space.

In what follows, to simplify notation, the information state
Πt (∆t , Λ1:K

t )(Xt , X̂t ) of the system at t is denoted simply by Πt .

We use its arguments only if it is required in our exposition.

6

Definition 2. A control strategy g = {gt; t = 0, . . . , T−1}, of the
system is said to be separated if gt depends on ∆t and Λ1:K

t only
through the information state, i.e., U1:K

t = gt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)

Let Gs
⊆ G denote the set of all separated control strategies.

To derive the optimal control strategy of the actual CPS in
Problem 1, we formulate the following optimization problem.

Problem 2 (CPS Model). Using the CPS model, we seek to derive
offline the optimal control strategy g∗ ∈ Gs that minimizes the
following expected total cost

J(g; x̂0:T )

= Eg
[T−1∑

t=0

[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2]

+ cT (XT )
]
, (32)

where Xt+1 = ft
(
Xt ,U1:K

t ,Wt
)
, X̂t+1 = f̂t

(
X̂t , U1:K

t ,Wt
)
, and β

is a factor to adjust the units and size of the norm accordingly
as designated by the cost function ct (·, ·). The norm penalizes
any discrepancy between the realizations of the state of the CPS
model and the state of the actual CPS. The expectation in (32) is
with respect to the joint probability distribution of the random
variables Xt , U1:K

t , X̂t , t = 0, 1, . . . , T , (designated by the choice
of g ∈ Gs) and Wt . Since solving (32) is an offline process, the
realizations x̂0:T of the state X̂t , t = 0, . . . , T , of the actual CPS
are not known, and thus g∗ is parameterized with respect to x̂0:T .
The statistics of the primitive random variables X0, {Wt : t =

0, . . . , T − 1}, {Zk
t : k ∈ K; t = 0, . . . , T − 1}, the state equations

{ft : t = 0, . . . , T−1}, the observation equations {hk
t : k ∈ K; t =

0, . . . , T − 1}, and the cost functions {ct : t = 0, . . . , T } are all
known.

Next, we use the information state Πt (∆t , Λ1:K
t ) (Xt , X̂t ) to

derive offline the optimal separated control strategy in Problem 2.
In our exposition, we define recursive functions, and show that a
separated control strategy of the CPS model is optimal. In addi-
tion, we obtain a classical dynamic programming decomposition.

Theorem 2. Let Vt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)

be functions defined
recursively for all g ∈ Gs by

VT
(
ΠT (∆T , Λ1:K

T )(XT , X̂T )
)
:= Eg

[
cT (XT ) |

ΠT = πT

]
,

Vt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
:= inf

u1:Kt ∈
∏

k∈K Uk
t

Eg
[
ct (Xt ,

U1:K
t )+ β |Xt+1 − X̂t+1|

2

+ Vt+1
(
φt
[
Πt (∆t , Λ1:K

t )(Xt , X̂t ), Y 1:K
t+1,U

1:K
t

])
| Πt = πt ,

U1:K
t = u1:K

t

]
, (33)

where cT (XT ) is the cost function at T ; β is a factor to adjust the units
and size of the norm as designated by the cost function ct (·, ·); and
πT , πt , u1:K

t are the realizations of ΠT , Πt , and U1:K
t , respectively.

Then, (a) for any control strategy g ∈ Gs,

Vt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
≤ Jt (g; x̂t:T )

:= Eg
[T−1∑

l=t

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2]

+ cT (XT ) | ∆t , Λ1:K
t

]
, (34)
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here Jt (g; x̂t:T ) is the cost-to-go function of the CPS model, param-
terized by the realizations of the state X̂t of the actual CPS, at time
t corresponding to the control strategy g; and (b) g ∈ Gs is optimal
nd

t
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
= Jt (g; x̂t:T ), (35)

ith probability 1.

roof. See Appendix B. □

The optimal strategy derived by the CPS model, which is
arameterized with respect to the potential realizations x̂0:T of
he state X̂t , t = 0, . . . , T , of the actual CPS, is used to operate
he actual CPS in parallel with the CPS model (Fig. 2). As we
ollect data from the two systems, we learn the information state
t (∆t , Λ1:K

t )(Xt , X̂t ) online.

roposition 1. The information state Πt (∆t , Λ1:K
t )(Xt , X̂t ) of the

ystem is a function of p(Xt | ∆t , Λ1:K
t ), p(X̂t | ∆̂t , Λ̂1:K

t ), and
(Ŷ 1:K

0:t | U1:K
0:t−1).

roof. Recall Πt (∆t , Λ1:K
t )(Xt , X̂t ) = p(Xt , X̂t | ∆t , Λ1:K

t ). Next,

p(Xt , X̂t | ∆t , Λ1:K
t )

=
p(X̂t | Xt , ∆t , Λ1:K

t ) · p(Xt , ∆t , Λ1:K
t )

p(∆t , Λ1:K
t )

=
p(X̂t | U1:K

0:t−1) · p(Xt , ∆t , Λ1:K
t )

p(∆t , Λ1:K
t )

= p(X̂t | U1:K
0:t−1) · p(Xt | ∆t , Λ1:K

t ), (36)

here, in the second equality, we used the fact that X̂t does not
epend on Xt and Y 1:K

0:t , and in the third equality we applied Bayes’
ule. The first term in (36) can be written as

(X̂t | U1:K
0:t−1)

=

∫
Xt

p(X̂t | Ŷ 1:K
0:t ,U1:K

0:t−1) · p(Ŷ
1:K
0:t | U1:K

0:t−1)dŶ
1:K
0:t , (37)

nd the result follows. □

emark 2. The conditional probabilities p(Xt | ∆t , Λ1:K
t ) and

(X̂t | ∆̂t , Λ̂1:K
t ) can be computed recursively starting from an

nitial prior p(X0 | ∆0, Λ1:K
0 ) and p(X̂0 | ∆̂0, Λ̂1:K

0 ),

(Xt | ∆t , Λ1:K
t )

= θt−1
[
p(Xt−1 | ∆t−1, Λ1:K

t−1), Y
1:K
t ,U1:K

t−1

]
, (38)

(X̂t | ∆̂t , Λ̂1:K
t )

= θ̂t−1
[
p(X̂t−1 | ∆̂t−1, Λ̂1:K

t−1), Y
1:K
t ,U1:K

t−1

]
, (39)

or all t = 0, 1, . . . , T − 1, where θt and θ̂t are appropriate
unctions; see Malikopoulos (2023).

emark 3. The information state Πt (∆t , Λ1:K
t ) (Xt , X̂t ) of the

ystem can be obtained by using standard learning approaches,
.e., Brand (1999), Gyorfi and Kohler (2007), to learn online the
onditional probabilities p(Ŷ 1:K

0:t | U1:K
0:t−1) while we operate the

ctual CPS.

Next, we show that after the information state becomes known
hrough learning, then the separated control strategy of the CPS
odel derived offline is optimal for the actual CPS.

heorem 3. Let g ∈ Gs be an optimal separated control strategy
erived offline for the CPS model which minimizes the expected total
7

cost,

J(g; x̂0:T ) := Eg
[T−1∑

t=0

[
ct (Xt ,U1:K

t )+ β · |Xt+1

− X̂t+1|
2
]
+ cT (XT )

]
, (40)

in Problem 2. If p(Xt , X̂t | ∆t , Λ1:K
t ) = Π(∆t , Λ1:K

t ) (Xt+1, X̂t+1) is
known, then g minimizes also the expected total cost of the actual
CPS,

Ĵ(g) = Eg

[
T−1∑
t=0

ct (X̂t ,U1:K
t )+ cT (X̂T )

]
, (41)

in Problem 1.

Proof. If p(Xt , X̂t | ∆t , Λ1:K
t ) = Π(∆t , Λ1:K

t )(Xt+1, X̂t+1) is known,
then, for all t = 0, . . . , T − 1, U1:K

t = gt
(
Π(∆t , Λ1:K

t )(Xt+1, X̂t+1)
)

minimizes (40), which implies

|Xt+1 − X̂t+1|
2
= 0, (42)

for all t = 0, . . . , T − 1, hence ct (Xt ,U1:K
l ) = ct (X̂t ,U1:K

l ) and
cT (XT ) = cT (X̂T ). Therefore,

J(g; x̂0:T ) = Eg
[T−1∑

t=0

ct (Xt ,U1:K
t )+ cT (XT )

]

= Eg
[T−1∑

t=0

ct (X̂t ,U1:K
t )+ cT (X̂T )

]
= Ĵ(g). □ (43)

The following results provide some structural properties of the
recursive functions.

Lemma 4. The function Vt
(
Πt (∆t , Λ1:K

t )(Xt+1, X̂t+1)
)
defined re-

cursively in Theorem 2 is positive homogeneous for all t = 0, . . . , T ,
i.e., for any ρ > 0, Vt

(
ρ Πt (∆t , Λ1:K

t )(Xt+1, X̂t+1)
)

= ρ Vt
(

Πt (∆t , Λ1:K
t ) (Xt+1, X̂t+1)

)
.

Proof. See Appendix C. □

Theorem 4. The function Vt
(
Πt (∆t , Λ1:K

t )(Xt+1, X̂t+1)
)
defined re-

cursively in Theorem 2 is concave with respect to Πt (∆t , Λ1:K
t )(Xt+1,

X̂t+1).

Proof. See Appendix D. □

Remark 4. From Theorem 4, the solution of Problem 2 can be
derived using standard techniques for centralized partially ob-
served Markov decision processes. If the observation space of the
CPS is finite, then (32) has a finite dimensional characterization
(see Krishnamurthy (2016), p. 154). In particular, the explicit
solution to (32) is a piecewise linear concave function of the
information state; see Sondik (1971).

4. Illustrative example

We present a simple example of a system consisting of two
subsystems (K = 2) with delayed sharing pattern to illustrate
the proposed framework. The system evolves for a time horizon
T = 4 while there is a delay n = 2 on information sharing
between the two subsystems. The state of the actual system
X̂t = (X̂1

t , X̂2
t ), t = 1, 2, 3, 4, is two-dimensional, and the initial

state (primitive random variable), X̂0 = (X̂1
0 , X̂2

0 ), of the system
is a Gaussian random variable with zero mean, variance 1, and
covariance 0.5.
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The state of the actual system evolves as follows:

X̂0 = (X̂1
0 , X̂2

0 ), (44)
ˆ1 = (X̂1

1 , X̂2
1 ) = (X̂1

0 , X̂2
0 ), (45)

ˆ2 = (X̂1
2 , X̂2

2 ) = (X̂1
0 + X̂2

0 , 0), (46)
ˆ3 = (X̂1

3 , X̂2
3 ) = (X̂1

2 ,U2
2 ) = (X̂1

0 + X̂2
0 ,U2

2 ), (47)

X̂4 = (X̂1
4 , X̂2

4 ) = (X̂1
3 − X̂2

3 − U1
3 , 0)

= (X̂1
0 + X̂2

0 − U2
2 − U1

3 , 0), (48)

and the observation equations are

Ŷ k
t = X̂k

t , k = 1, 2; t = 1, 2, 3, 4. (49)

The state of the system’s model evolves as follows:

X0 = (X1
0 , X2

0 ), (50)

X1 = (X1
1 , X2

1 ) = (X1
0 , X2

0 ), (51)

X2 = (X1
2 , X2

2 ) = (X1
0 + X2

0 , 0), (52)

X3 = (X1
3 , X2

3 ) = (X1
2 ,U2

2 ) = (X1
0 + X2

0 ,U2
2 ), (53)

X4 = (X1
4 , X2

4 ) = (X1
3 − X2

3 − U1
3 , 0)

= (X1
0 + X2

0 − U2
2 − U1

3 , 0), (54)

and the observation equations are

Y k
t = Xk

t , k = 1, 2; t = 1, 2, 3, 4. (55)

Since X0 and X̂0 are different, we have implicitly imposed an
artificial discrepancy between the model and the actual system.

Each subsystem’s feasible sets of actions Uk
t are specified by

Uk
t =

{
R, if (k, t) = (1, 3) or (2, 2),
0, otherwise.

(56)

Hence a control strategy g ∈ Gs of the system consists only of
the pair g = {g2, g3} since gt ≡ 0 for the remaining t . Given the
modeling framework above, the information structure {(∆t , Λk

t );
k = 1, 2; t = 1, 2, 3} of the system is captured through the
model as follows

∆1 = ∅, ∆2 = ∅, (57)

∆3 = {Y 1
0 , Y 2

0 , Y 1
1 , Y 2

1 } = {X1
0 , X2

0 }. (58)

Note that since g1 ≡ 0, the realizations of U1
1 and U2

1 are zero,
and thus ∆3 includes only the observations in (58). The data
Λk

t , k = 1, 2, available to subsystem k for the feasible control laws
are

Λ1
2 = {Y 1

0 , Y 1
1 , Y 1

2 } = {X1
0 , X1

1 , X1
2 }

= {X1
0 , X1

0 + X2
0 }, (59)

Λ2
2 = {Y 2

0 , Y 2
1 , Y 2

2 } = {X2
0 , X2

1 , X2
2 } = {X2

0 }, (60)
1
3 = {Y 1

2 , Y 1
3 } = {X1

0 + X2
0 , X1

0 + X2
0 }

= {X1
0 + X2

0 }, (61)
2
3 = {Y 2

2 , Y 2
3 ,U2

2 } = {U2
2 }. (62)

.1. Optimal solution

The problem is to derive the optimal control strategy g∗ ∈ Gs

f the actual system which is the solution of

(g) = min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg

[
(X̂1

3 )
2
+ (U1

3 )
2
]

= min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg

[
(X̂1

0 + X̂2
0 − U2

2 − U1
3 )

2
+ (U1

3 )
2
]
. (63)
8

The feasible set G of the control strategies of the system
consists of all g =

{
g2(Λ2

2, ∆2), g3(Λ1
3, ∆3)

}
, i.e.,

2
2 :∆2 × Λ2

2 → U2
2 , or g2

2 : X̂
2
0 → R, (64)

1
3 :∆3 × Λ1

3 → U1
3 , or g1

3 : {X̂
1
0 , X̂2

0 } → R. (65)

The problem (63) has a unique optimal solution

2
2 =

1
2
X̂2
0 , U1

3 =
1
2
(X̂1

0 + X̂2
0 )−

1
4
X̂2
0 . (66)

.2. Solution given by Theorems 2 and 3

We solve problem (63) by considering the control strategies
= {gt; t = 0, 1, 2, 3}, where the control law is of the form

t
(

Π(∆t , Λ1:2
t ) (Xt , X̂t )

)
= gt

(
P(Xt , X̂t | ∆t , Λ1:2

t )
)
.

For t = 3, using (33) with β = 1, we have

3(Π3) = min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg
[
(X1

0 + X2
0 − U2

2 − U1
3 )

2

+ (U1
3 )

2
+ |X4 − X̂4|

2
| Π3

(
∆3, Λ1:2

3

)
,U1:2

3

]
= min

u22∈U
2
2 ,u13∈U

1
3

1
2
Eg
[
(X1

0 + X2
0 − U2

2 − U1
3 )

2

+ (U1
3 )

2
+ |X1

0 + X2
0 − X̂1

0 − X̂2
0 |

2
| P(X1

0 + X2
0 ,U2

2 ,

ˆ 1
0 + X̂2

0 | X1
0 , X2

0 , X1
0 + X2

0 ,U2
2 ),U

1
3

]
, (67)

here, given the information state Π3, we can select the re-
lization of U1

3 that achieves the lower bound in (67). Hence,

1
3 =

1
2
(X1

0 + X2
0 )−

1
2
U2
2 . (68)

ubstituting (68) into (67) yields

V3(Π3) = min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg
[(X1

0 + X2
0 − U2

2

)2
2

+ |X1
0

+ X2
0 − X̂1

0 − X̂2
0 |

2
| P(X1

0 + X2
0 ,U2

2 , X̂1
0 + X̂2

0 | X1
0 ,

X2
0 , X1

0 + X2
0 ,U2

2 ),U
1
3

]
. (69)

For t = 2, using (33) with β = 1, we have

2(Π2) = min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg
[
V3(Π3)+ |X3 − X̂3|

2
|

Π2
(
∆2, Λ1:2

2

)
,U1:2

2

]
= min

u22∈U
2
2 ,u13∈U

1
3

1
2
Eg
[
V3(Π3)+ |X1

0 + X2
0 − X̂1

0 − X̂2
0 |

2
|

P(X1
0 + X2

0 , X̂1
0 + X̂2

0 | X1
0 , X1

0 + X2
0 , X2

0 ),U
2
2

]
(70)

= min
u22∈U

2
2 ,u13∈U

1
3

1
2
Eg
[(X1

0 + X2
0 − U2

2

)2
2

+ 2 · |X1
0 + X2

0

− X̂1
0 − X̂2

0 |
2
| P(X1

0 + X2
0 , X̂1

0 + X̂2
0 | X1

0 , X1
0 + X2

0 ,

X2
0 ),U

2
2

]
. (71)

Since

U2
2 = g2

(
P(X2, X̂2 | ∆2, Λ1:2

2 )
)
= g2

2

(
P(X1

0 + X2
0 ,

X̂1
0 + X̂2

0 | X1
0 , X1

0 + X2
0 , X2

0 )
)
, (72)

the problem is to choose, for any given X2
0 , the estimate of (X1

0 +

X2
0 ) that minimizes the mean squared error

(
X1
0 + X2

0 − U2
2

)2 in
(71).
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S

A

·

w

p

Λ

N
Λ
h

p

=

Λ

S

p

=

Given the Gaussian statistics, the optimal solution is

U2
2 =

1
2
X2
0 . (73)

ubstituting (73) into (68) yields

U1
3 =

1
2
(X1

0 + X2
0 )−

1
4
X2
0 . (74)

fter learning the information states Π3
(
∆3, Λ1:2

3

)
and

Π2
(
∆2, Λ1:2

2

)
, the ‘‘true’’ values of the initial states in (73) and

(74) corresponding to the actual system become known. Hence,
we select X1

0 = X̂1
0 and X2

0 = X̂2
0 , and thus U2

2 =
1
2 X̂

2
0 and

U1
3 =

1
2 (X̂

1
0 + X̂2

0 ) −
1
4 X̂

2
0 . Therefore, the control laws of the

form gt
(
Π(∆t , Λ1:K

t )(Xt , X̂t )
)
= gt

(
P(Xt , X̂t | ∆t , Λ1:K

t )
)
yield the

unique optimal solution (66) of problem (63).

5. Concluding remarks and discussion

In most CPS applications there is a large volume of data of
a dynamic nature which is added to the system gradually in
real time and not altogether in advance. As the volume of data
increases, the domain of the control strategies also increases, and
thus it becomes challenging to search for an optimal strategy.
Even if an optimal strategy is found, implementing such strategies
with increasing domains is burdensome. In such CPS applications,
we typically assume an ideal model of the system which is
used to derive the optimal control strategy. Such model-based
control approaches cannot effectively facilitate optimal solutions
with performance guarantees due to the discrepancy between
the model and the actual CPS. On the other hand, traditional
supervised learning approaches cannot always facilitate robust
solutions using data derived offline. By contrast, applying rein-
forcement learning approaches directly to the actual CPS might
impose significant implications on safety and robust operation of
the system.

In this paper, we presented a theoretical framework that cir-
cumvents these challenges. The framework can combine offline
model-based control with online learning approaches to yield the
optimal control strategy for the system. There are two features
which sharply distinguish the framework presented here from
previous learning-based, or combined learning and control ap-
proaches reported in the literature to date: (1) the CPS imposes a
nonclassical information structure while the state of the system
is not fully observed; and (2) the large volume of data that
is added to the system gradually is compressed to a sufficient
information state without loss of optimality that takes values in
a time-invariant space. Therefore, the volume of data which is
added to the system gradually does not lead the domain of the
control strategies to increase with time.

In our exposition, we restricted attention to centralized strate-
gies. Ongoing research includes expanding the framework to de-
centralized strategies. A direction of future research should con-
sider investigating how potential errors in the communication
between the subsystems could be addressed.

Appendix A. Proof of Theorem 1

By applying Bayes’ rule, we have

pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t+1)

=

pg(Y 1:K
t+1 | Xt+1, X̂t+1, ∆t+1, Λ1:K

t ,U1:K
t )

· pg(Xt+1, X̂t+1, ∆t+1, Λ1:K
t ,U1:K

t )
pg(∆t+1, Λ1:K

t+1)
(A.1)

=
p(Y 1:K

t+1 | Xt+1) pg(Xt+1, X̂t+1, ∆t+1, Λ1:K
t ,U1:K

t )
g 1:K
p (∆t+1, Λt+1)

9

=

p(Y 1:K
t+1 | Xt+1) pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K

t ,U1:K
t )

· pg(∆t+1, Λ1:K
t ,U1:K

t )
pg(∆t+1, Λ1:K

t+1)
, (A.2)

where in the second equality we used Lemma 1.
Next,

pg(∆t+1, Λ1:K
t+1) = pg(∆t+1, Λ1:K

t , Y 1:K
t+1,U

1:K
t )

=

∫
Xt+1

∫
Xt+1

pg(Xt+1, X̂t+1, ∆t+1, Λ1:K
t , Y 1:K

t+1,

U1:K
t ) dXt+1 dX̂t+1

=

∫
Xt+1

∫
Xt+1

pg(Y 1:K
t+1 | Xt+1, X̂t+1, ∆t+1, Λ1:K

t ,U1:K
t )

·pg(Xt+1, X̂t+1, ∆t+1, Λ1:K
t ,U1:K

t ) dXt+1 dX̂t+1

=

∫
Xt+1

∫
Xt+1

pg(Y 1:K
t+1 | Xt+1, X̂t+1, ∆t+1, Λ1:K

t ,U1:K
t )

·pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t ,U1:K

t )

pg(∆t+1, Λ1:K
t ,U1:K

t ) dXt+1 dX̂t+1,

here by Lemma 1, the last equation becomes
g(∆t+1, Λ1:K

t+1)

=

∫
Xt+1

∫
Xt+1

p(Y 1:K
t+1 | Xt+1) pg(Xt+1, X̂t+1 | ∆t+1,

1:K
t ,U1:K

t ) · pg(∆t+1, Λ1:K
t ,U1:K

t ) dXt+1 dX̂t+1. (A.3)

ote that pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t ,U1:K

t ) = pg(Xt+1, X̂t+1 | ∆t ,
1:K
t ,U1:K

t ) since Y 1:K
t−n+1 and U1:K

t−n+1 are already included in Λ1:K
t ,

ence we can write (A.3) as
g(∆t+1, Λ1:K

t+1)∫
Xt+1

∫
Xt+1

p(Y 1:K
t+1 | Xt+1) pg(Xt+1, X̂t+1 | ∆t ,

1:K
t ,U1:K

t ) · pg(∆t+1, Λ1:K
t ,U1:K

t ) dXt+1 dX̂t+1. (A.4)

ubstituting (A.4) into (A.2), we have
g(Xt+1, X̂t+1 | ∆t+1, Λ1:K

t+1)

p(Y 1:K
t+1 | Xt+1) pg(Xt+1, X̂t+1 | ∆t , Λ1:K

t ,U1:K
t )∫

Xt+1

∫
Xt+1

p(Y 1:K
t+1 | Xt+1) pg(Xt+1, X̂t+1 | ∆t ,

Λ1:K
t ,U1:K

t ) dXt+1 dX̂t+1

. (A.5)

Next,

pg(Xt+1, X̂t+1 | ∆t , Λ1:K
t ,U1:K

t )

=

∫
Xt

∫
Xt

pg(Xt+1, X̂t+1 | Xt , X̂t , ∆t , Λ1:K
t ,U1:K

t )

·pg(Xt , X̂t | ∆t , Λ1:K
t ,U1:K

t ) dXt dX̂t . (A.6)

By Lemma 2 and Remark 1, (A.6) becomes

pg(Xt+1, X̂t+1 | ∆t , Λ1:K
t ,U1:K

t )

=

∫
Xt

∫
Xt

p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K
t )

·p(Xt , X̂t | ∆t , Λ1:K
t ) dXt dX̂t . (A.7)

Substituting (A.7) into (A.5) yields

pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t+1)

=

p(Y 1:K
t+1 | Xt+1)

∫
Xt

∫
Xt

p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K
t )

· p(Xt , X̂t | ∆t , Λ1:K
t ) dXt dX̂t∫

Xt+1

∫
Xt+1

p(Y 1:K
t+1 | Xt+1)

∫
Xt

∫
Xt

p(Xt+1, X̂t+1 | Xt ,

1:K 1:K

. (A.8)
Ut ) p(Xt , X̂t | ∆t , Λt ) dXt dX̂t dXt+1 dX̂t+1
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c
c

Therefore, pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t+1) does not depend on the

ontrol strategy g, so we can drop the superscript. Moreover, we
an choose appropriate function φt such that

pg(Xt+1, X̂t+1 | ∆t+1, Λ1:K
t+1)

= Πt+1(∆t+1, Λ1:K
t+1)(Xt+1, X̂t+1)

= φt

[
Πt (∆t , Λ1:K

t )(Xt , X̂t ), Y 1:K
t+1,U

1:K
t

]
. (A.9)

Appendix B. Proof of Theorem 2

(a) We prove (34) by induction. For t = T ,

JT (g; x̂T ) := Eg
[
cT (XT )| ∆T , Λ1:K

T

]
=

∫
XT

cT (XT ) ΠT (∆T , Λ1:K
T )(XT , X̂T ) dXT , (B.1)

and so (34) holds with equality. Suppose that (34) holds for t+1.
Then,

Jt (g; x̂t:T ) = Eg
[T−1∑

l=t

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2]

+ cT (XT ) | ∆t , Λ1:K
t

]
= Eg

[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+

T−1∑
l=t+1

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2 ]

+ cT (XT ) | ∆t , Λ1:K
t

]
= Eg

[
Eg
[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+

T−1∑
l=t+1

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2 ]

+ cT (XT ) | ∆t , Λ1:K
t ,U1:K

t

]
| ∆t , Λ1:K

t

]
≥ Eg

[
Eg
[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+ Vt+1
(
φt
[
Πt (∆t , Λ1:K

t )(Xt , X̂t ), Y 1:K
t+1,U

1:K
t

])
|

Πt (∆t , Λ1:K
t ),U1:K

t

]
| ∆t , Λ1:K

t

]
= Eg

[
Vt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
| ∆t , Λ1:K

t

]
= Vt

(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
, (B.2)

where, in the inequality, we used the hypothesis and, in the last
equality, we used (33). Thus, (34) holds for all t .

(b) We prove the second part of the theorem by induction too.
For t = T ,

JT (g; x̂T ) := Eg
[
cT (XT )| ∆T , Λ1:K

T

]
=

∫
X̂T

cT (XT ) ΠT (∆T , Λ1:K
T )(XT , X̂T ) dXT . (B.3)

Suppose that (33) holds for t + 1. Then

inf
1:K ∏ k

Eg
[T−1∑[

cl(Xl,U1:K
l )+ β · |Xl+1 − X̂l+1|

2 ]

ut ∈ k∈K Ut l=t

10
+ cT (XT ) | ∆t , Λ1:K
t

]
(B.4)

= inf
u1:Kt ∈

∏
k∈K Uk

t

Eg
[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+

T−1∑
l=t+1

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2]

+ cT (XT ) | ∆t , Λ1:K
t

]
= inf

u1:Kt ∈
∏

k∈K Uk
t

Eg
[
Eg
[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+

T−1∑
l=t+1

[
cl(Xl,U1:K

l )+ β · |Xl+1 − X̂l+1|
2 ]

+ cT (XT )| ∆t , Λ1:K
t ,U1:K

t

]
| ∆t , Λ1:K

t

]
= inf

u1:Kt ∈
∏

k∈K Uk
t

Eg
[
Eg
[
ct (Xt ,U1:K

t )+ β · |Xt+1 − X̂t+1|
2

+ Vt+1
(
φt
[
Πt (∆t , Λ1:K

t )(Xt , X̂t ), Y 1:K
t+1,U

1:K
t

])
| Πt (∆t ,

Λ1:K
t ),U1:K

t

]
| ∆t , Λ1:K

t

]
= Eg

[
Vt
(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
| ∆t , Λ1:K

t

]
= Vt

(
Πt (∆t , Λ1:K

t )(Xt , X̂t )
)
, (B.5)

where, in the third equality, we used the hypothesis, and in the
fourth equality, u1:K

t achieves the infimum. Thus, (33) holds for all
t .

For t = 0, (34) yields J0(g; x̂0:T ) = V0
(

Π0(∆0, Λ1:K
0 ) (X0, X̂0)

)
.

Taking expectations

J(g; x̂0:T ) = Eg
[
V0
(
Π0(∆0, Λ1:K

0 )(X0, X̂0)
)]

. (B.6)

By (34), it follows that for any other g′ ∈ G,

J(g′; x̂0:T ) ≥ Eg
[
V0
(
Π0(∆0, Λ1:K

0 )(X0, X̂0)
)]

. (B.7)

Appendix C. Proof of Lemma 4

Obviously, for t = T ,

VT
(
ρ ΠT (∆T , Λ1:K

T )
)

=

∫
XT

∫
XT

cT (XT ) ρ ΠT (∆T , Λ1:K
T )(XT , X̂t ) dXT dX̂t

= ρ VT
(
ΠT (∆T , Λ1:K

T )
)
. (C.1)

For t = 0, . . . , T − 1, by assigning Πt = ρ Πt [recall p(Xt , X̂t |

∆t , Λ1:K
t ) = Πt (∆t , Λ1:K

t )], (33) becomes

Vt
(
ρ Πt (∆t , Λ1:K

t )
)

= inf
u1:Kt ∈

∏
k∈K Uk

t

[ ∫
Xt

∫
Xt

ct (Xt ,U1:K
t ) ρ

· Πt (∆t , Λ1:K
t )(Xt , X̂t ) dXt dX̂t

+

∫ ∫ ∫ ∫ ∫
Vt+1

(
ρ Πt+1(∆t+1, Λ1:K

t+1)
)

Yt+1 Xt+1 Xt+1 Xt Xt
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· p(Y 1:K
t+1 | Xt+1) p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K

t ) ρ

·p(Xt , X̂t | ∆t , Λ1:K
t )dXt dX̂t dXt+1 dX̂t+1 dY 1:K

t+1

]
, (C.2)

where Yt+1 = ⊗k∈KY k.
Next, from (31),

ρ Πt+1(∆t+1, Λ1:K
t+1)

=

p(Y 1:K
t+1 | Xt+1)

∫
Xt

∫
Xt

p(Xt+1, X̂t+1 | Xt , X̂t ,

U1:K
t ) · ❆ρ · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt dX̂t∫
Xt+1

∫
Xt+1

p(Y 1:K
t+1 | Xt+1)

∫
Xt

∫
Xt

p(Xt+1, X̂t+1 |

Xt ,U1:K
t ) · ❆ρ p(Xt , X̂t | ∆t , Λ1:K

t ) dXt dX̂t dXt+1

,

= Πt+1(∆t+1, Λ1:K
t+1). (C.3)

Substituting (C.3) into (C.2), we have

Vt
(
ρ Πt (∆t , Λ1:K

t )
)

= inf
u1:Kt ∈

∏
k∈K Uk

t

[ ∫
Xt

∫
Xt

ct (Xt ,U1:K
t ) ρ

· Πt (∆t , Λ1:K
t )(Xt , X̂t ) dXt dX̂t

+

∫
Yt+1

∫
Xt+1

∫
Xt+1

∫
Xt

∫
Xt

Vt+1
(
Πt+1(∆t+1, Λ1:K

t+1)
)

· p(Y 1:K
t+1 | Xt+1) p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K

t ) ρ

·p(Xt , X̂t | ∆t , Λ1:K
t )dXt dX̂t dXt+1 dX̂t+1 dY 1:K

t+1

]
= ρ Vt

(
Πt (∆t , Λ1:K

t )
)
. (C.4)

Appendix D. Proof of Theorem 4

Starting with (33), we have

Vt
(
Πt (∆t , Λ1:K

t )
)

= inf
u1:Kt ∈

∏
k∈K Uk

t

[ ∫
Xt

∫
Xt

ct (Xt ,U1:K
t ) (D.1)

· Πt (∆t , Λ1:K
t )(Xt , X̂t ) dXt dX̂t

+

∫
Yt+1

∫
Xt+1

∫
Xt+1

∫
Xt

∫
Xt

Vt+1
(
Πt+1(∆t+1, Λ1:K

t+1)
)

· p(Y 1:K
t+1 | Xt+1) p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K

t )

·p(Xt , X̂t | ∆t , Λ1:K
t )dXt dX̂t dXt+1 dX̂t+1 dY 1:K

t+1

]
, (D.2)

where Yt+1 = ⊗k∈KY k.
Choosing

ρ =

∫
Xt+1

∫
Xt+1

∫
Xt

∫
Xt

p(Y 1:K
t+1 | Xt+1)

· p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K
t ) · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt

· dX̂t dXt+1 dX̂t+1, (D.3)

we can use the positive homogeneity of Vt
(
Πt (∆t , Λ1:K

t )
)

(Lemma 4) to write the second part of (D.2) as follows∫
Yt+1

∫
Xt+1

∫
Xt+1

∫
Xt

∫
Xt

Vt+1
(
Πt+1(∆t+1, Λ1:K

t+1)
)

· p(Y 1:K
t+1 | Xt+1) p(Xt+1, X̂t+1 | Xt , X̂t ,U1:K

t )

·p(Xt , X̂t | ∆t , Λ1:K
t )dXt dX̂t dXt+1 dX̂t+1 dY 1:K

t+1

=

∫
Vt+1

(
ρ Πt+1(∆t+1, Λ1:K

t+1)
)
dY 1:K

t+1

Yt+1
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=

∫
Yt+1

Vt+1

(
p(Y 1:K

t+1 | Xt+1)
∫

Xt

∫
Xt

p(Xt+1,

X̂t+1 | Xt , X̂t ,U1:K
t ) · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt

dX̂t

)
dY 1:K

t+1, (D.4)

where, in the last equality, we substituted (D.3) and (A.8).
Thus, we can write (D.2) as

Vt
(
Πt (∆t , Λ1:K

t )
)

= inf
u1:Kt ∈

∏
k∈K Uk

t

[∫
Xt

∫
Xt

ct (Xt ,U1:K
t )

· Πt (∆t , Λ1:K
t )(Xt , X̂t ) dXt dX̂t

+

∫
Yt+1

Vt+1

(
p(Y 1:K

t+1 | Xt+1)
∫

Xt

∫
Xt

p(Xt+1,

X̂t+1 | Xt , X̂t ,U1:K
t ) · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt

dX̂t

)
dY 1:K

t+1

]
. (D.5)

The remainder of the proof follows by induction. Suppose that
Vt+1

(
Πt+1(∆t+1, Λ1:K

t+1)
)
is concave. Since

Vt+1

(
p(Y 1:K

t+1 | Xt+1)
∫

Xt

∫
Xt

p(Xt+1,

X̂t+1 | Xt , X̂t ,U1:K
t ) · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt dX̂t

)
, (D.6)

is the composition of a concave function and increasing linear
function, it follows that it is concave. However, concavity is
preserved by integration (see Boyd and Vandenberghe (2004), p.
79), hence∫

Yt+1

Vt+1

(
p(Y 1:K

t+1 | Xt+1)
∫

Xt

∫
Xt

p(Xt+1,

X̂t+1 | Xt , X̂t ,U1:K
t ) · p(Xt , X̂t | ∆t , Λ1:K

t ) dXt

dX̂t

)
dY 1:K

t+1. (D.7)

is concave. Since the pointwise infimum of concave functions is
concave, (D.5) is concave.
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