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Abstract
In this paper, we provide a notion of ∞-bicategories fibred in ∞-bicategories which we call
2-Cartesian fibrations. Our definition is formulated using the language of marked biscaled
simplicial sets: Those are scaled simplicial sets equipped with an additional collection of
triangles containing the scaled 2-simplices, which we call lean triangles, in addition to
a collection of edges containing all degenerate 1-simplices. We prove the existence of
a left proper combinatorial simplicial model category whose fibrant objects are precisely
the 2-Cartesian fibrations over a chosen scaled simplicial set S. Over the terminal scaled
simplicial set, this provides a newmodel structure modeling∞-bicategories, which we show
is Quillen equivalent to Lurie’s scaled simplicial set model. We conclude by providing a
characterization of 2-Cartesian fibrations over an ∞-bicategory. This characterization then
allows us to identify those 2-Cartesian fibrations arising as the coherent nerve of a fibration
of Set+�-enriched categories, thus showing that our definition recovers the preexisting notions
of fibred 2-categories.

Keywords Infinity bicategory · Model structure · 2-Cartesian fibration · Scaled simplicial
set

1 Introduction

Of Grothendieck’s many insights, the construction of a fibred category from a functor
may be one of the most influential notions in the development of (higher) category theory.
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1342 F. Abellán García, W. H. Stern

Right/left fibrations, (co)Cartesian fibrations, and the associated Grothendieck constructions
have become integral parts of the ∞-categorical toolbox.

In our previous works [2, 3], and [1], we have made extensive and free use of this toolbox
in our exploration of cofinality for (∞, 2)-categories. This paper can be seen as a nec-
essary stepping-stone to the final phase of this exploration: providing a model structure
for (∞, 2)-categories fibred in (∞, 2)-categories. The appropriate notion of (co)limits in
(∞, 2)-categories has already been explored in [9], and the connection to the various forms
of the Grothendieck construction are made exceptionally clear there. In the exposition in [9],
however, the authors cleverly sidestep the need for additional technology to handle fibred
∞-bicategories, opting instead to work with Set+�-enriched categories.

To generalize our cofinality criteria from [2] and [1], however, there is an unavoidable need
for such a theory of fibrations, as well as an associated Grothendieck construction. As stated
in [1] the cofinality criterion for ordinary (∞, 1)-categorical colimits can be understood in
term of weighted colimits by proving an equivalence of weight functors with values in the
category of spaces. One essential ingredient of the proof of this fact is the theory of Cartesian
fibrations, i.e. functors with values in ∞-categories. In [4] we will show that such proof will
generalise in a straightforward manner once the necessary categorified theory of Cartesian
fibrations is developed.

This paper is the first in a 2-part sequence which will provide this technology. We here
define and develop a notion of 2-Cartesian fibration, using the language of simplicial sets
equipped with a marking and two scalings. We then show the existence of a model structure
whose fibrant objects are precisely these 2-Cartesian fibrations. In the second paper , we
will develop the corresponding Grothendieck construction and establish the full (∞, 2)-
categorical version of our results in [2] and [1]. Needless to say, we expect the theory of
2-Cartesian fibrations to have a wide range of applications outside our cofinality framework
in much the same way as Cartesian fibrations now occupy a central position in the study of
∞-categories.

We would like to point out after this paper originally appeared as a preprint several new
works have addressed similar topics [10, 14, 15]. Among these works the approach taken
[10] is particular close to ours: The authors define notions of (∞, 2)-categorical fibrations
over scaled simplicial sets which model all possible variances (see next section for more
details) of 2-dimensional fibrations. However, the authors do not give the corresponding
model structures for these kinds of fibrations. As expected, our definitions coincide with
those of [10] in the specific case we study in this paper.

1.1 Defining 2-Cartesian Fibrations

As one climbs up the ladder of categorification, the higher dimensionality manifests itself
most obviously in the number of new variances that a functor can have. What seems like
an innocent increase of complexity in the strict 2-categorical setting turns out to play a
much more central role when working with (∞, 2)-categories. In particular, there should be
four sensible notions of ∞-bicategories fibred in ∞-bicategories. Loosely speaking, these
correspond to a functor f : B → C having

1. Cartesian lifts of 1-morphisms and coCartesian lifts of 2-morphisms;
2. Cartesian lifts of 1-morphisms and Cartesian lifts of 2-morphisms;
3. coCartesian lifts of 1-morphisms and Cartesian lifts of 2-morphisms;
4. coCartesian lifts of 1-morphisms and coCartesian lifts of 2-morphisms.
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2-Cartesian fibrations I: A model... 1343

We will not explore all four of these notions here, instead focusing on case (1). Note that this
will also immediately address case (4), since this dualization can be achieved by taking the
opposite simplicial sets. We adopt the terminology employed by the authors in [7] and denote
the cases (1) and (4) as outer 2-Cartesian (resp. 2-coCartesian) fibrations and similarly the
cases (2) and (3) as inner 2-Cartesian (resp. 2-coCartesian) fibrations. The reasons for our
particular choice of variance (which could seem arbitrary to the reader) are related to the kind
of cofinality we will discuss in our upcoming paper [4]. For ease of reading, we call fibrations
with our chosen variance simply 2-Cartesian fibrations, trusting that this terminology will
be replaced in writings where it becomes unclear.

There are several different kinds of clues in the literature which can help explain what
2-Cartesian fibrations should look like. Of particular interest is the work [5] of Buckley,
which provides explicit versions of these definitions—one in strict 2-categories, and one in
bicategories. Unwinding Buckley’s definitions (and dualizing appropriately), we find that
they amount to the following conditions on a functor F : B → C :

• The induced functors

Fa,b : B(a, b) → C(a, b).

are coCartesianfibrations.We call the coCartesianmorphisms of these fibrations coCarte-
sian 2-morphisms.

• The horizontal composite of coCartesian 2-morphisms is coCartesian. Herewe are noting
that the vertical composites of coCartesian morphisms are automatically coCartesian.

• For any 1-morphism g : c → F(b) in C , there is a Cartesian morphism g̃ : c̃ → b in B
lifting g.

For the rest of this discussion we will choose to focus on coCartesian 2-morphisms. We hope
that the reader will trust us in believing that there is not much novelty in defining Cartesian
1-morphisms since the definition generalises in an straightforward manner.

One distinctly evident difficulty comes from the fact that a priori it seems that the defini-
tion of a coCartesian 2-morphism is dependent on the choice of a particular model for the
mapping∞-category. To justify our definition we will draw an analogy with the already well
understood notion of an invertible 2-morphism, i.e. a thin 2-simplex. Let us suppose we are
given a map of ∞-bicategories

p : B → C

having the right lifting property against the class of scaled anodyne maps. We will call a
2-simplex σ in B left-degenerate if σ |�{0,1} is degenerate. One readily verifies that a left-
degenerate triangle σ is thin if and only if p(σ ) is thin in C and every lifting problem of the
form

�n
0 B

�n C

f

p

such that p|
�{0,1,n} = σ admits a solution. To illuminate the previous claim, let us consider

for every pair of objects x, y ∈ B the mapping categories B(x, y) defined in [7, Section
2.3], whose simplices are maps �n+1 → B sending the terminal vertex to y, and all other
vertices to x . Then interpreting σ as an edge inB(x, y) we can see that the previous claim is
essentially saying that an edge is an equivalence if and only if it is coCartesian and its image
inC(p(x), p(y)) is an equivalence. Guided by this intuition wewill say that a left-degenerate
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1344 F. Abellán García, W. H. Stern

2-simplex is p-coCartesian (or simply coCartesian if no confusion should arise) if we can
produce the dotted arrow below

�n
0 B

�n C

f

p

provided f |
�{0,1,n} = σ . Our definition will be completed once it can be extended to an

arbitrary 2-simplex. To this end we then note that, for any 2-simplex γ in B, we can define
a 3-simplex η

γ (2)

γ (0) γ (0)

γ (1)

γ02

γ01 γ01

g

γ12

where d0(η) and d3(η) are scaled, d1(η) = γ , and d2(η) is left-degenerate. This data exhibits
and equivalence of composite 2-morphisms d3(η) ◦ γ = d0(η) ◦ d2(η). In particular, since
d0(η), d3(η) are thin we see that γ and d2(η) represent the same 2-morphism in the mapping
∞-category of B. We will call d2(η) the left-degeneration of γ . This allows us to make
the following definition: A 2-simplex is coCartesian if and only if its left-degeneration is
coCartesian.

Oncewehave establishedour definitionof coCartesian triangles, the definitionofCartesian
edges is relatively straightforward. We simply require that lifting problems

�n
n B

�n C

f

p

have solutions, provided that f |�{0,n−1,n} is a coCartesian triangle, and f |�{n−1,n} is p-
Cartesian.

There are several additional technical conditions that come into play in our definition, but
these two form the core idea. As we will discuss below, this intuitive approach becomes very
close to the formal definition when the base of our fibration is a fibrant scaled simplicial
set (∞-bicategory). We refer the reader to the third section of the paper for a systematical
approach of this definition.

1.2 Decorations and Data

To handle the data of Cartesian morphisms in the theory of Cartesian fibrations of (∞, 1)-
categories, Lurie introduces a decoration on simplicial sets. In [11, Ch. 3], he defines a
marked simplicial set to consist of a simplicial set X and a collection of edges MX ⊂ X1

which contains all degenerate edges. In this way, one can “hardcode” the Cartesian edges
into a simplicial set.

We will follow a similar approach in our development of the 2-Cartesian model structure.
Unfortunately, this entails rather a lot of decoration. A scaled simplicial set (X , TX ) already
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2-Cartesian fibrations I: A model... 1345

comes equippedwith a collection TX of ‘thin’ triangles,which are taken to represent invertible
2-morphisms. To this we will add a second collection of decorated 2-simplices, CX , which
we take to represent the coCartesian 2-simplices. Since any invertible 2-morphism should,
in particular, be coCartesian, we require TX ⊂ CX . We will call the elements of CX the lean
triangles.

In addition to all of this, we then add a collection of marked 1-simplices. These we take
to represent the Cartesian morphisms. All in all, the data we will have to consider to codify
our intuition about 2-Cartesian fibrations consists of a simplicial set and three decorations.
We will call a simplicial set with these three decorations a marked biscaled simplicial set (or
MB simplicial set for short) and denote the category of such by Setmb

�

1.3 Main Results

As the title and preceding discussion already suggest, the main result of this paper is that
there is a model structure on the category of marked biscaled simplicial sets over a scaled
simplicial set S, whose fibrant objects are precisely the 2-Cartesian fibrations.

Theorem (3.42) Let S be a scaled simplicial set. Then there exists a left proper combinatorial
simplicial model structure on (Setmb

� )/S, which is characterized uniquely by the following
properties:

C) A morphism f : X → Y in (Setmb
� )/S is a cofibration if and only if f induces a

monomorphism between the underlying simplicial sets.
F) An object p : X → S in (Setmb

� )/S is fibrant if and only if p is a 2-Cartesian fibration.

The proof of this theorem is, by necessity, quite technical. The main ingredients—
verification of a pushout-product axiom for an appropriate collection of anodyne maps and
a characterization of weak equivalences by their properties on fibres—dominate a large part
of the paper.

From this model structure, we immediately obtain a model structure over the terminal
scaled simplicial set—equivalently a model structure on Setmb

� . As one would hope, this
turns out to provide a new model for ∞-bicategories. This model is quite similar to the
model of [16], which was shown to be equivalent to Lurie’s model on Setsc� in [7]. In our new
model, however, there is a significant amount of redundant data: a second scaling which, for
fibrant objects, agrees with the first scaling.

Theorem (3.43) There is a a Quillen equivalence

L : Setsc� Setmb
� : U

between the model structure onMB simplicial sets over�0 and the model structure on scaled
simplicial sets of [13].

Once these core results are established, we explore the cases where the base is a fibrant
scaled simplicial set, i.e. an ∞-bicategory. In this setting, it is possible to give a much more
intuitive characterization of the fibrant objects.

Theorem (4.27) Let B be an ∞-bicategory and let p : (X , MX , TX ⊂ CX ) → B be an
element of (Setmb

� )/B. Then p : X → B is fibrant if and only if

1. p has the right lifting property against the generating scaled anodyne maps.
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1346 F. Abellán García, W. H. Stern

2. The collection CX lean of triangles in X contains all left-degenerate coCartesian trian-
gles.

3. The collection CX is stable under composition along 1-morphisms.
4. The collection EX consists of precisely the p-cartesian edges of X.
5. Every morphism in B admits a p-Cartesian lift.
6. Every 2-morphism in B admits a p-coCartesian lift.

In addition to being a useful characterization of 2-Cartesian fibrations, this serves as a
confirmation that our intuitive understanding cribbed from [5] was correct. Condition (1)
is a formality in the strict 2-categorical case, and conditions (2)-(5) closely parallel those
conditions which we extracted from [5]. We can, in fact, extract a further corollary from this
characterization:

Corollary Let F : B → C be a 2-fibration in the sense of [5], dualized to require coCartesian
2-morphisms rather than Cartesian 2-morphisms. Then the induced map

N sc(F) : (N sc(B), MB, TB ⊂ CB) → N sc(C)

is a 2-Cartesian fibration, where MB is the set of Cartesian edges, and CB is the set of
coCartesian triangles.

1.4 Structure of This Paper

In Sect. 2, we briefly introduce some notational conventions and recapitulate the generating
scaled anodynemorphisms of [13]. The next section, Sect. 3 is entirely given over to the proof
that the desired 2-Cartesian model structure exists. This proof has two lengthy technical com-
ponents: in Sect. 3.1, we define our chosen class of anodyne morphisms—theMB-anodyne
morphisms—and prove that they satisfy a pushout-product axiom; in Sect. 3.2, we provide a
fibrewise characterization of the putative equivalences, and then deduce the existence of the
model structure. The final section, Sect. 4, is devoted to providing a clear characterization
of the fibrant objects over an ∞-bicategory. In particular, the characterizations provided in
this section make clear the connection between our 2-Cartesian fibrations, the Set+�-enriched
fibrations of [9], and the 2-fibrations of [5].

2 Preliminaries

Recapitulating even the basics of the theory of quasi-categories, ∞-bicategories, and the
various types of fibrations between them would take more space than the rest of the paper.
Consequently,we here confine ourselves to fixing some notational conventions, and establish-
ing definitions for later reference. Where possible, we will follow the notational conventions
established in [11] and expanded in [13] and [12]. In referring to the works of Gagna, Harpaz,
and Lanari [7–9], we will endeavor to either follow their notation, or explain where our con-
ventions differ.

Definition 2.1 The simplex category� is the full subcategory of Cat, the ordinary 1-category
of (small) categories, spanned by the posets

[n] = {0 < 1 < · · · < n}, for n ≥ 0

The category of simplicial sets Set� is defined to be the presheaf category Fun(�op,Set).
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2-Cartesian fibrations I: A model... 1347

Definition 2.2 The inclusion of � ⊂ Cat defines a functor N : Cat → Set� which sends a
category C to the simplicial set N(C) whose n-simplices are given by functors σ : [n] → C .

Definition 2.3 We say that a 2-simplex σ : �2 → X is left degenerate if its restriction
σ |

�{0,1} is a degenerate simplex in X .

Definition 2.4 Let n ≥ 0 given 0 ≤ i ≤ j ≤ n we denote by �[i, j] the nerve of the subposet
of [n] consisting in those objects � such that i ≤ � ≤ j .

Definition 2.5 Amarked simplicial set is given by a pair (X , EX )where X is a simplicial set
and EX ⊂ X1 is a subset of the set of 1-simplices containing every degenerate 1-simplex.
We refer to the elements of EX as marked edges. A morphism of marked simplicial setes
(X , EX ) → (Y , EY ) is a morphism of the underlying simplicial sets such that f (EX ) ⊆
f (EY ). We denote by Set+� the category of marked simplicial sets.

Remark 2.6 We will sometimes denote marked simplicial sets using a superscript notation
X† = (X , EX ). We will denote by X � := (X , �) the marked simplicial set whose marked
edges are precisely the degenerate ones. Similarly wewill denote by X 	 := (X , 	) themarked
simplicial set where all edges are marked.

Definition 2.7 A scaled simplicial set is given by a pair (X , TX ) where X is a simplicial set
and TX ⊆ X2 is a subset of the set of 2-simplices containing every degenerate 2-simplex.
We refer to the elements of TX as thin triangles or scaled triangles. A morphism of scaled
simplicial sets (X , TX ) → (Y , TY ) is a morphism of the underlying simplicial sets such that
f (TX ) ⊆ f (TY ). We denote by Setsc� the category of scaled simplicial sets.

Notation Given a simplicial set X we denote by X� := (X , �) the scaled simplicial set whose
thin triangles are precisely the degenerate 2-simplices. We similarly denote X	 := (X , 	) the
scaled simplicial set where all triangles are thin.

Remark 2.8 By 2-category we mean a category enriched over the symmetric monoidal cat-
egory of categories. Similarly the notion of 2-functor will refer to an enriched functor. We
denote by 2Cat the ordinary 1-category of strict 2-categories.

Definition 2.9 We define a functor N : 2Cat → CatSet+�
with values in the category of Set+�-

enriched categories which sends an strict 2-categoryD to the Set+�-enriched category N(D)

defined as follows:

• The objects of N(D) are given by the objects ofD.
• Given a pair of objects x, y ∈ D we define a marked simplicial set N(D)(x, y) with

underlying simplicial set given by N(D(x, y)) (see Definition 2.2), where the marking
is given by the equivalences in D(x, y).

We call N the Hom-wise nerve functor. Note that since the functor N is fully faithful it follows
that the Hom-wise nerve N, is also fully faithful.

Definition 2.10 Let n ≥ 0 and define a 2-category On as follows:

• Objects are given by the elements of the poset [n].
• For every i, j ∈ [n] the category On(i, j) is either empty if i > j or given by the poset

of subsets S ⊆ [n] such that min(S) = i and max(S) = j ordered by inclusion. The
non-trivial composition functors for i ≤ j ≤ k are induced by union of subsets

On(i, j) × On( j, k) → On(i, k); (S, T ) 
→ S ∪ T .

The action on morphisms of the composition functors is the obvious one since union
preserves our given order.
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1348 F. Abellán García, W. H. Stern

This definition extends to a functor O• : � → 2Cat → CatSet+�
where the last functor is

given by the Hom-wise nerve.

Remark 2.11 We will abuse notation and denote by On the 2-category defined in Defini-
tion 2.10 together with its image under the Hom-wise nerve.

Definition 2.12 Let C be a Set+�-enriched category. We define a scaled simplicial set N sc(C)

whose n-simplices are given by functors of Set+�-enriched categoriesOn → C. A 2-simplex
O2 → C is thin if and only if it factors throughO2

	 → CwhereO2
	 denotes the Set

+
�-enriched

category obtained from O2 by maximally marking all mapping spaces.
The definition extends to a functor N sc : CatSet+� → Setsc� which has as left adjoint which

we denote by Csc : Setsc� → CatSet+�
. It follows from [13, Theorem 4.2.7] that the adjunction

Csc : Setsc� −→←− CatSet+�
: N sc

is a Quillen equivalence between themodel structure of scaled simplicial sets and the Bergner
model structure on CatSet+�

.

Definition 2.13 The set of generating scaled anodyne maps S is the set of maps of scaled
simplicial sets consisting of:

(i) the inner horns inclusions
(
�n

i , {�{i−1,i,i+1}}) → (
�n, {�{i−1,i,i+1}}) , n ≥ 2 , 0 < i < n;

(ii) the map

(�4, T ) → (�4, T ∪ {�{0,3,4}, �{0,1,4}}),
where we define

T
def= {�{0,2,4}, �{1,2,3}, �{0,1,3}, �{1,3,4}, �{0,1,2}};

(iii) the set of maps
(
�n

0

∐

�{0,1}
�0, {�{0,1,n}}

)
→

(
�n

∐

�{0,1}
�0, {�{0,1,n}}

)
, n ≥ 3.

A general map of scaled simplicial set is said to be scaled anodyne if it belongs to the weakly
saturated closure of S.

Definition 2.14 We say that a map of scaled simplicial sets p : X → S is a weak S-fibration
if it has the right lifting property with respect to the class of scaled anodyne maps.

Definition 2.15 We say that a scaled simplicial set X := (X ,CX ) is a ∞-bicategory if the
unique map X → �0 is a weak S-fibration.

Example 2.16 For every 2-categoryD the scaled nerve functor yields a∞-bicategory N sc(D).

In general, we will denote fibrant objects in Setsc� using blackboard characters, e.g. D. We
will use undecorated roman majescules, e.g. X , to denote objects of any category, adding
explicit decorations as necessary for clarity.
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2-Cartesian fibrations I: A model... 1349

Definition 2.17 Consider the cosimplicial object

Q : � → Setsc�;
[n] 
→ �0

∐

�n

(�n
�0),

equipped with the minimal scaling. Given an ∞-bicategory X ∈ Setsc�, for any a, b ∈ X , we
define a simplicial set X(a, b) whose n-simplices are maps Qn → X which send the first
vertex to a and the second to b. It was shown in [7, Proposition 2.33] that X(a, b) is a model
for the mapping ∞-category from a to b in X .

3 TheModel Structure

3.1 Marked Biscaled Simplicial Sets andMB-AnodyneMorphisms

Definition 3.1 Amarked biscaled simplicial set (MB simplicial set) is given by the following
data

• A simplicial set X .
• A collection of edges EX ⊆ X1 containing all degenerate edges. We will refer to the

elements of this collection as marked edges
• A collection of triangles TX ⊆ X2 containing all degenerate triangles. We will refer to

the elements of this collection as thin triangles.
• A collection of triangles CX ⊆ X2 such that TX ⊆ CX . We will refer to the elements of

this collection as lean triangles.

We will denote such objects as triples (X , EX , TX ⊆ CX ). A map (X , EX , TX ⊆ CX ) →
(Y , EY , TY ⊆ CY ) is given by a map of simplicial sets f : X → Y which maps marked
edges in X (resp. thin triangles, resp. lean triangles) tomarked edges in Y (resp. thin triangles,
resp. lean triangles). We denote by Setmb

� the category ofMB simplicial sets.

Notation Let (X , EX , TX ⊆ CX ) be a MB simplicial set. If the collection EX consist only
of degenerate edges then we will use the notation (X , EX , TX ⊆ CX ) = (X , �, TX ⊆ EX )

and do similarly for the collection TX . If CX consists only of degenerate triangles we fix the
notation (X , EX , TX ⊆ CX ) = (X , EX , �). In an analogous fashion we use the symbol “	”
to denote a collection containing all edges (resp. all triangles). Finally, we will employ the
notation (X , EX , TX ) whenever we have TX = CX .

Remark 3.2 We will often abuse notation when defining the collections EX (resp. TX , resp.
CX ) and just specified its non-degenerate edges (resp. triangles).

Definition 3.3 We define a category �MB by appending to the simplex category � three
objects [1]+, [2]t and [2]l and morphisms

[1] i+−→ [1]+, [2] il−→ [2]l il−→ [2]t ,
s+
0 : [1]+ → [0], sti : [2]t → [1], for i = 0, 1

such that s+
0 ◦ i+ = s0 and such that sti ◦ it ◦ il = si . We can produce a functor R : Setmb

� →
Fun(�op

MB,Set) which sends a MB simplicial set (X , EX , TX ⊆ CX ) to the functor R(X)

which maps [1]+ to the collection of marked edges, [2]l to the collection of lean 2-simplices
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1350 F. Abellán García, W. H. Stern

and [2]t to the collection of thin triangles. The functor R(X) maps the new morphisms to the
obvious inclusions

EX ⊆ X1, TX ⊆ CX ⊆ X2

between the collections and to the inclusion of degenerate edges (resp. triangles) into the
marked edges (resp. thin simplices).

Remark 3.4 It follows by direct inspection that the functor R : Setmb
� → Fun(�op

MB,Set)
is fully faithful with essential image those presheaves mapping the morphisms i+, il and it
to monomorphisms in Set. It is also straightforward to verify that R has a left adjoint L .
This implies that the category ofMB simplicial sets is a reflective subcategory of a presheaf
category and thus locally presentable (see [6, Definition 1.17])

Remark 3.5 Let X , Y ∈ Setmb
� the product X×Y ∈ Setmb

� is given by the underlying product
of the simplicial sets equipped with the following decorations:

• An edge �1 → X × Y (resp. triangle) is declared marked (resp. thin resp. lean) if and
only if its image in X and its image in Y is marked (resp. thin resp. lean).

Remark 3.6 Observe that we have a functor, L : Setsc� Setmb
� sending a scaled sim-

plicial set (X , TX ) to (X , �, TX ) which is left adjoint to the forgetful functor U sending
(X , EX , TX ⊆ CX ) to (X , TX ).

Definition 3.7 The set of generating marked-biscaled anodyne maps MB is the set of maps
ofMB simplicial sets consisting of:

(A1) The inner horn inclusions
(
�n

i , �, {�{i−1,i,i+1}}) → (
�n, �, {�{i−1,i,i+1}}) , n ≥ 2 , 0 < i < n;

which are a direct generalization of the inner-horn right-lifting property of ∞-
categories. For n = 2 these morphisms guarantee the existence of composites of
1-morphisms.

(A2) The map

(�4, �, T ) → (�4, �, T ∪ {�{0,3,4}, �{0,1,4}}),
where we define

T
def= {�{0,2,4}, �{1,2,3}, �{0,1,3}, �{1,3,4}, �{0,1,2}};

These morphisms encode a general 2-out-of-3 property for thin triangles.
(A3) The set of maps

(
�n

0

∐

�{0,1}
�0, �, � ⊂ {�{0,1,n}}

)
→

(
�n

∐

�{0,1}
�0, �, � ⊂ {�{0,1,n}}

)
, n ≥ 2.

These maps force left-degenerate (Definition 2.3) lean-scaled triangles to represent
coCartesian edges of the mapping category. For n = 2 this requires the existence of
p-coCartesian lifts of edges in the mapping category of the base to exist.

(A4) The set of maps
(
�n

n, {�{n−1,n}}, � ⊂ {�{0,n−1,n}}
)

→
(
�n, {�{n−1,n}}, � ⊂ {�{0,n−1,n}}

)
, n ≥ 2.

This forces the marked morphisms to be p-Cartesian with respect to the given thin
and lean triangles.
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2-Cartesian fibrations I: A model... 1351

(A5) The inclusion of the terminal vertex
(
�0, 	, 	

)
→

(
�1, 	, 	

)
.

This requires p-Cartesian lifts of morphisms in the base to exist.
(S1) The map

(
�2, {�{0,1},�{1,2}}, 	

)
→

(
�2, 	, 	

)
,

requiring that p-Cartesian morphisms compose across thin triangles.
(S2) The map

(
�2, �, � ⊂ 	

)
→

(
�2, �, 	

)
,

which requires that lean triangles over thin triangles are, themselves, thin.
(S3) The map

(
�3, �, {�{i−1,i,i+1}} ⊂ Ui

)
→

(
�3, �, {�{i−1,i,i+1}} ⊂ 	

)
, 0 < i < 3

where Ui is the collection of all triangles except i-th face. This and the next two
generators serve to establish composability and limited 2-out-of-3 properties for lean
triangles.

(S4) The map
(
�3

∐

�{0,1}
�0, �, � ⊂ U0

)
→

(
�3

∐

�{0,1}
�0, �, � ⊂ 	

)

where U0 is the collection of all triangles except the 0-th face.
(S5) The map

(
�3, {�{2,3}}, � ⊂ U3

)
→

(
�3, {�{2,3}}, � ⊂ 	

)

where U3 is the collections of all triangles except the 3-rd face.
(E) For every Kan complex K , the map

(
K , �, 	

)
→

(
K , 	, 	

)
.

Which requires that every equivalence is a marked morphism.

A map ofMB simplicial sets is said to beMB-anodyne if it belongs to the weakly saturated
closure of MB.

Remark 3.8 We would like to point out that a priory the collection (E) is not a set. This issue
can be solved by allowing K to range over a set of representatives for all isomorphism classes
of Kan complexes with only countably many simplices as explained in [11, Remark 3.1.1.3].

Definition 3.9 Let f : (X , EX , TX ⊆ CX ) → (Y , EY , TY ⊆ CY ) be a map ofMB simplicial
sets. We say that f is a MB-fibration if it has the right lifting property against the class of
MB-anodyne morphisms.

Lemma 3.10 Let f : (X , EX , TX ⊆ CX ) → (Y , EY , TY ⊆ CY ) be a MB-fibration and
denote by Xy the fibre of f over y ∈ Y . Then Xy is an ∞-bicategory with precisely the
equivalences marked.
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1352 F. Abellán García, W. H. Stern

Proof Observe that it follows from (S2) that the thin triangles and the lean triangles of Xy

must coincide. Since Xy has the right lifting property against maps (A1)-(A3) it follows that
Xy is an ∞-bicategory. It follows from (E) that all equivalences must be marked.

Let u : a → b be a marked edge in Xy and let s : �2
2 → Xy be the map that sends

the edge 1 → 2 to u and the edge 0 → 2 to the identity morphism on b. It follows that
we can provide an extension of s to a thin 2-simplex σ : �2 → Xy which provides with
a morphism v : b → a such that u ◦ v 
 id. To finish the proof we construct a morphism
(�3

3,�
{2,3}, 	) → Xy as depicted by the diagram below

b

a b

a

u

vid

u
idu

where the only non-degenerate triangle is given by the 0-th face which is precisely σ . An
extension of this map to (�3,�{2,3}, 	) where we scale the face missing the vertex 3 using
a morphism of type (S5) yields a a thin 2-simplex exhibiting v ◦ u 
 id. ��
Lemma 3.11 The morphism

θ :
(
�2, {�{1,2},�{0,2}}, 	

)
→

(
�2, 	, 	

)

isMB-anodyne.

Proof We first note that, given aMB-fibration f : (X , EX , TX ⊆ CX ) → (S, 	, TS), we can
find a lift of θ as follows. Suppose we have a lifting problem

(
�2, {�{1,2},�{0,2}}, 	

)
X

(
�2, 	, 	

)
S

σ

θ f

Where the top arrow corresponds to the thin 2-simplex

σ :
b

a c

uv

w

Since f : X → S is a MB-fibration, we can choose a marked lift v̂ : â → b of f (v). Using
a lift of type (A1) to compose u and v̂ and a lift of type (A4) to obtain a morphism from
a to â, we can obtain a �3

2-horn, all of whose sides are thin-scaled. We can fill this to a
maximally thin-scaled 3-simplex using a pushout of type (A1) and a pushout of type (A2).
This three-simplex has the form

c

a â

b

w

v

p

v̂

q

u
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2-Cartesian fibrations I: A model... 1353

Since every triangle is scaled, we can apply lifts of type (S1) to show that q is marked. This
implies that p is and equivalence in the fibre over f (a), and so p is marked. Thus, a lift of
type (S1) shows that v is marked as desired.

To finish the proof we use the small object argument to produce a factorization

(
�2, {�{1,2},�{0,2}}, 	

)
X

(
�2, 	, 	

)
α β

where the first morphism is MB-anodyne and the second morphism is a MB-fibration. The
first part of the proof then implies that there exists a section γ : (�2, 	, 	) → X such that
γ ◦θ = α and such that id = β ◦γ . This shows that θ as a retract of aMB-anodynemorphism
and thus the claim holds. ��
Definition 3.12 We say that a map f : (X , EX , TX ⊆ CX ) → (Y , EY , TY ⊆ CY ) of
MB simplicial sets is a cofibration if its underlying map of simplicial sets is a cofibration.
Equivalently, a cofibration ofMB simplicial sets is given by amonomorphism in the category
Setmb

� .

Remark 3.13 The generators of the class of cofibrations are given by

(C1)
(
∂�n, �, �

)
→

(
�n, �, �

)
for n ≥ 0 where ∂�0 = ∅.

(C2)
(
�1, �, �

)
→

(
�1, 	, �

)
.

(C3)
(
�2, �, �

)
→

(
�2, �, � ⊂ 	).

(C4)
(
�2, �, � ⊂ 	

)
→

(
�2, �, 	

)
.

Note that (C4) and (S2) are the same morphism.

Proposition 3.14 Let f : (X , EX , TX ⊆ CX ) → (Y , EY , TY ⊆ CY ) be a cofibration and
let g : (A, EA, TA ⊆ CA) → (B, EB , TB ⊆ CB) be a MB-anodyne morphism. Then the
pushout-product

f ∧ g : X × B
∐

X×A

Y × A → Y × B

isMB-anodyne.1

Before embarking on our proof of the pushout-product, we will tackle one particularly
recalcitrant case by itself. As it so happens, a case nearly precisely dual to this one also
occurs in checking the pushout-product. To save paper (and the reader’s eyesight), we will
only provide the proof of one of these cases, trusting that it will be apparent how to dualize
the argument.

We we first prove two quick lemmata, which will somewhat ease the coming proof.

Construction 1 Letm ≥ 2 and consider a list of vertices�i = {i1, . . . ik+1} of�m with k < m.
We denote by �m

�i the simplicial subset of �m whose non-degenerate simplices are given by
subsets J ⊂ [n] satisfying the following property

• There exists � ∈ [m] such that � /∈ J and � /∈ �i .
1 Note that this proposition is about the pushout-product of marked biscaled simplicial sets. For readability,
we have omitted the marking and biscaling from the notation in the conclusion.
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1354 F. Abellán García, W. H. Stern

Lemma 3.15 Let �i = {i1, . . . ik+1} be a list of non-consecutive vertices of �m which does
not contain 0,m. We define a biscaling T�i on �m by declaring that �{i−1,i,i+1} is thin for

every i ∈ �i . Then the morphism

(�m
�i , �, T�i ) → (�m, �, T�i )

is in the weakly saturated hull of morphisms of type (A1) for m ≥ 2.

Proof We proceed by induction on the length of �i . When length(�i) = 1, this is simply a
morphism of type (A1).

Now suppose that this holds for length(�i) < k + 1 and let i1, . . . , ik+1 be a k + 1-tuple
satisfying the hypotheses above. Define �j = �i \ {i1}, and consider the m − 1-simplex

σ : �m−1 → �m

given by the i1-th face map. Then σ ∩ �m
�i = �m−1

�j , and so, by the inductive hypothesis, we

can fill this simplex to obtain a new simplicial subset

�m
�i ⊂ X ⊂ �m .

We then see that X will consist of precisely those subsimplices of �m which either (a) skip
i1 or (b) skip a vertex j not belonging to �i . More simply put, precisely those simplices which
skip a vertex not contained in {i2, . . . , ik+1}. Consequently,

X = (�m
�i\{i1}, �, T�i )

and so, by the inductive hypothesis, this map is in the weakly saturated hull of morphisms of
type (A1). ��
Lemma 3.16 Let �i := {0, i1, . . . , ik+1} be a set of distinct vertices of �m ∐

�{0,1} �0 with
m ≥ 2 such that

• 1 < i1 ≤ i2 ≤ · · · ≤ ik+1 < n
• The simplex {0, 1,m} is lean-scaled.

Then the map

(�m
�i )

∐

�{0,1}
�0 → �m

∐

�{0,1}
�0

isMB-anodyne.

Proof We once again proceed by induction on the length of �i . If �i = {0}, then this is a
morphism of type (A3). If �i = {0, i1}, then we can fill the simplex obtained by deleting i1
using a pushout of type (A3), the resulting inclusion is again an inclusion of type (A3).

We now assume, inductively, that the statement holds for any �i of length less than k + 2,
and let �i = {0, i1, . . . , ik+1}. Consider the simplex σ : �m−1 → �m obtained by deleting
i1. Then we see that

(�m
�i

∐

�{0,1}
�0) ∩ σ = �m−1

�i\i1
∐

�{0,1}
�0

so that, by the inductive hypothesis, we can fill σ using an MB-anodyne morphism. The
resulting simplicial subset X in

(�m
�i )

∐

�{0,1}
�0 → X → �m

∐

�{0,1}
�0
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consists of precisely those subsimplices of �m which skip i1 or which skip an element not
in �i . More precisely

X = �m
�i\{i1}

∐

�{0,1}
�0

and thus, by the inductive hypothesis,

X → �m
∐

�{0,1}
�0

isMB-anodyne, completing the proof. ��

Proposition 3.17 Denote by

f : (∂�n, �, �) → (�n, �, �)

a morphism of type (C1), and by

g :
(
�m

0

∐

�{0,1}
�0, �, � ⊂ {�{0,1,m}}

)
→

(
�m

∐

�{0,1}
�0, �, � ⊂ {�{0,1,m}}

)

a morphism of type (A3). Then the pushout-product f ∧ g isMB-anodyne.

Before beginning the proof, we create a diagram for reference. We visualize the product
of the targets as a grid, with some simplices which get collapsed.

00

10

20

30

40

01

11

21

31

41

02

12

22

32

42

03

13

23

33

43

In the diagram above, we are looking at �4 ×�3, and the 1-simplices in red are those which
get collapsed.
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1356 F. Abellán García, W. H. Stern

Proof Since the case n = 0 is simply the original type (A3) morphism, we may, without loss
of generality, assume n ≥ 1. To prove the claim we will provide a filtration

X0 → X1 → · · · → Xk−1 → Xk = �n ×
⎛

⎝�m
∐

�{0,1}
�0

⎞

⎠

X0 = ∂�n ×
⎛

⎝�m
∐

�{0,1}
�0

⎞

⎠
∐

∂�n×(
�m

0
∐

�{0,1} �0
)
�n ×

⎛

⎝�m
0

∐

�{0,1}
�0

⎞

⎠

and show that each step Xα → Xα+1 is MB-anodyne. Let us remind the reader that the
marking and biscaling on �n × �m is determined by the universal property of the product
as discussed in Remark 3.5 and each object in the filtration carries the inherited marking and
biscaling from �n × �m .

Webegin byfixing somenotation for then+m simplices in�n×�m .Wedenote the objects
of (a, b) ∈ �n×�m simply as ab according to the diagram above. A non-degenerate simplex
σ : �k → �n × �m is specified by a sequence of vertices {aibi }ki=0 such that ai < ai+1

or bi < bi+1. The non-degenerate simplices of maximal dimension are precisely those such
that either ai+1 = ai and bi+1 = bi + 1 or ai+1 = ai + 1 and bi+1 = bi .

Let σ : �k → �n ×�m with vertex sequence given by {aibi }ki=0. Then σ factors through
X0 if at least one of the following conditions is satisfied:

• There exists j ∈ [n] such that ai �= j for 0 ≤ i ≤ k. In other words, the path in our grid
determined by the vertex sequence skips the j-th row.

• There exists j ∈ [m] such that j �= 0 and bi �= j for 0 ≤ i ≤ k. As before, this means
that the path determined by the vertex sequence skips the j-th column.

The next step in our proof is to define a total order on the set of non-degenerate simplices
of maximal dimension. Once this order is provided {σ1 < σ1 < · · · < σk} we will define X�

as the subsimplicial set of �n × �m containing the non-degenerate simplices θ of maximal
dimension such that θ ≤ σ�. Let θ, σ : �m+n → �n × �m be two distinct simplices of
maximal dimension with associated vertex sequences {aibi }m+n

i=0 and {ci di }m+n
i=0 . By maxi-

mality it follows that a0b0 = c0d0 = 00. Let 1 ≤ ν < m + n be the first index such that
aνbν �= cνdν . Then we say that θ < σ if bν < dν .

We observe that the decorations of �n × �m are already contained in X0 unless n = 1
andm = 2. We will deal with this case separately. Let us suppose that n = 1 andm = 2 then
it follows that every triangle in �1 × �2 is lean. The filtration in this case is given by

X0 → X1 → X2 → �1 ×
⎛

⎝�2
∐

�{0,1}
�0

⎞

⎠

Let σ1 : �3 → X1 be simplex specified by 00 → 10 → 11 → 12. We observe that the
restriction of σ1 to X0 is given by (�3

1)
† := (�3

1,�
{1,2},�{0,1,2} ⊂ 	). We observe that the

morphism

(�3
1)

† := (�3
1,�

{1,2},�{0,1,2} ⊂ 	) → (�3,�{1,2},�{0,1,2} ⊂ 	) = (�3)†

123
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is MB-anodyne since can be obtained via pushouts from a morphism of type (A1) and a
morphism of type (S3). It follows that we have a pushout diagram

(�3
1)

† (�3)†

X0 X1

which shows that the first step is MB-anodyne. Now we consider the simplex σ2 : 00 →
01 → 11 → 12 in X2. The restriction of σ2 is given by (P,�{0,1},�{0,1,2} ⊂ 	) where P is
the union inside of �3 of the face that skips 1 and the face that skips 3. We can add the 0-th
face using a pushout along a morphism of type (A1) thus yielding

(P,�{0,1},�{0,1,2} ⊂ 	) → (�3
2,�

{0,1}, V ⊂ 	) → (�3,�{0,1}, V ⊂ 	)

where V = {�{0,1,2},�{1,2,3}}. The first map is in the weakly saturated hull of morphisms
of type (A1) and the second is in the weakly saturated hull of morphisms of type (A1) and
(S3). It follows by an analogous reasoning that X1 → X2 isMB-anodyne.

The last 3-simplex to add is given by σ3 = 00 → 01 → 02 → 12 which we view as a
map

σ3 : �3
∐

�{0,1}
�0 → �1 ×

⎛

⎝�2
∐

�{0,1}
�0

⎞

⎠ .

As before we compute the restriction of σ3 to X2 which is precisely given by A� =
(�3

0

∐
�{0,1} �0, �, � ⊂ 	). We define B� = (

�3 ∐
�{0,1} �0, �,�{1,2,3} ⊂ 	

)
. It follows by

direct inspection that we have a pushout square

A� (B)�

X2
(
�2 ∐

�{0,1} �0
)

so it will suffice to show that the top horizontal morphism isMB-anodyne. We construct the
following factorization
⎛

⎝�3
0

∐

�{0,1}
�0, �, � ⊂ 	

⎞

⎠ →
⎛

⎝�3
∐

�{0,1}
�0, �, � ⊂ 	

⎞

⎠ →
⎛

⎝�3
∐

�{0,1}
�0, �,�{1,2,3} ⊂ 	

⎞

⎠

where we note that the first map is in the weakly saturated hull of morphisms of type (A3)
and (S4). The second morphism is in the weakly saturated hull of morphisms of type (S2)
and so the claim holds.

From this point on we will assume that X0 contains all the decorations. We proceed by
cases. First we will assume that σα : �n+m → Xα satisfies σα(0 → 1) = 00 → 10.
Just as we did before we will compute the restriction of σα to Xα−1. Let {aibi }n+m

i=0 be the
vertex sequence associated toσα .Wedefine�i = {0 < i < n + m | ai−1 < ai , ai = ai+1} and
observe that the restriction of σα to Xα−1 is precisely given by �n+m

�i as in Construction 1. It

follows by construction that for every j ∈ �i the triangle {i − 1, i, i + 1} is thin. Consequently
we can apply Lemma 3.15 to show that Xα−1 → Xα isMB-anodyne.

To finish the proof we consider a morphism σα : �m+n ∐
�{0,1} �0 → Xα such that

σα(0 → 1) = 00 → 01. Now we define �i = {0 < i < n + m | ai−1 < ai , ai = ai+1} ∪ {0}
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Fig. 1 Above, we depict in blue
and in red two simplices of
maximal dimension. Note that in
our ordering the simplex depicted
by the red path is smaller than the
simplex in blue

and observe that 1 /∈ �i . It follows that the restriction of σα to Xα−1 is given by �n+m
�i and

that the conditions of Lemma 3.16 apply. Therefore we see that the morphism Xα−1 → Xα

isMB-anodyne and thus the proof is finished. ��

While a significantmajority of the cases of the pushout-product remain, all of the remaining
cases involve far less difficulty than this one. We can now turn to the main event.

Proof of Proposition 3.14 The proof will consist of the usual rigmarole — checking on pairs
of generators. While there are 44 cases in all, the vast majority of these turn out to be trivial
or extremely simple. The two cases dealt with by the preceding propositions are by far the
most complicated cases.

We will label our cases first by the generating cofibration, and then by the generating
MB-anodyne morphism.

(C1) The cofibration is of the form
(
∂�n, �, �

)
→

(
�n, �, �

)
.

(A1) Since the marking is trivial, and the thin and lean scalings agree, we can consider
only the thin scalings. Case (1A) from 3.1.8 in [13] then shows that this can be
obtained as a pushout of morphisms of type (A1) and morphisms for the type from
remark 3.1.4 in [13].

(A2) This is precisely case (1B) from 3.1.8 [13]
(A3) This is Proposition 3.17.
(A4) The dual of the argument given for Proposition 3.17 suffices oncewe have replaced

"degenerate 1-simplices" with "marked 1-simplices".
(A5) We note that the map of underlying simplicial sets is

Y0 := (�n × {1})
∐

∂�n×{1}
(∂�n × �1) → �n × �1
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We can define a sequence of n + 1 simplices in �n × �1 via the maps

σk : [n + 1] → [n] × [1];

i 
→
{

(i, 0) i ≤ k

(i − 1, 1) i > k

We then define Yi inductively as Yi−1 ∪ σi−1 (Following [11, 2.1.2.6]). We see
that the morphism Yi−1 → Yi is a pushout with a �n+1

i+1 -horn. It will thus suffice
for us to note two things:
• When i < n, the 2-simplex σi |�{i−1,i,i+1} is the simplex

(i, 0) → (i, 1) → (i + 1, 1)

in �{i−1,i} × �1, and thus is necessarily thin-scaled. We thus obtain a pushout
of type (A1).

• when i = n, the 2-simplex σn |�{0,n−1,n} is the simplex

(0, 0) → (n, 0) → (n, 1)

in �{0,n} × �1, and thus is necessarily thin-scaled. Moreover, the morphism
σn+1|�{n−1,n} is

(n, 0) → (n, 1)

and thus is marked. Hence, we obtain a pushout of type (A4).
(S1) This is an isomorphism when n ≥ 1, and is a morphism of type (S1) when n = 0.
(S2) This is an isomorphism on underlying marked lean scaled simplicial sets, and thus

in the saturated hull of morphisms of type (S2).
(S3) We will treat the case i = 2—the case i = 1 follows virtually identically. When

n > 2 this is an isomorphism and when n = 0, this is a morphism of type (S3).
This means that we may consider the following two cases:
• If n = 2,we note that this is an isomorphismon the underlyingmarked simplicial

sets, and indeed differs only in the lean-scaling. The only missing lean-scaled
simplex is 00 → 11 → 23 in �2 × �3. We may expand this to a 3-simplex
00 → 11 → 12 → 23. It is easily checked that this 3-simplex gives us a pushout
of type (S3) (with i = 1), showing that the morphism isMB-anodyne.

• If n = 1,we again have that the source and target differ only in their lean-scaling.
It is easy to check that the missing simplices are the simplices 00 → 11 → 13
and 00 → 01 → 13 in �1 × �3. In the former case, we can extend to the
3-simplex 00 → 11 → 12 → 13 and scale the desired 2-simplex with a
pushout of type (S3), and in the latter case we can extend to the 3-simplex
00 → 01 → 02 → 13 and scaled the desired 2-simplex with a pushout of
type (S3).

(S4) This case is almost dual to the next one and left as an exercise.
(S5) When n ≥ 2, this is an isomorphism.When n = 0, this is a morphism of type (S5).

When n = 1, we get the identity on underlying marked simplicial sets

(�3)† × (�1)� → (�3)† × (�1)�, (�3)† = (�3,�{2,3})

The lean scaling on the target is maximal. The missing scaled simplices in the
source are 00 → 10 → 21, 00 → 11 → 21. One can then note that the 3-simplex
00 → 11 → 21 → 31 is of type (S5), and can thus be filled. Similarly, the
3-simplex 00 → 10 → 21 → 31 is of type (S5), and can be filled.
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(E) If n ≥ 1, this is an isomorphism. If n = 0, this is again a morphism of type (E).

(C2) The cofibration is of the form
(
�1, �, �

)
→

(
�1, 	, �

)
.

(A1) This is isomorphism on underlying marked, lean-scaled simplicial sets, and thus
MB-anodyne.

(A2) This is an isomorphism.
(A3) This is an isomorphism.
(A4) This is an isomorphism.
(A5) This gives us the inclusion

(�1 × �1, E†, 	) → (�1 × �1, 	, 	)

Where E† is the marking containing �1 ×{0}, �1 ×{1}, and {1}×�1. A pushout
of type (S1) marks the diagonal, and a pushout by the morphism

(
�2, {�{1,2},�{0,2}}, 	

)
→

(
�2, 	, 	

)

marks the remaining edge. By Lemma 3.11, this isMB-anodyne.
(S1) This is the identity on (�2 × �1) the underlying simplicial sets. Moreover, every

triangle in both simplicial sets is thin scaled. The only 1-simplex which is not
marked in the source is 00 → 21, and the target is maximally marked. We can add
the remaining marked edge using a pushout of type (S1).

(S2) This is an isomorphism.
(S3) This is an isomorphism.
(S4) This is an isomorphism.
(S5) This is an isomorphism.
(E) The source and target of the pushout-product differ only in theirmarking.However,

every edge which is marked in the target by not in the source will be the product of
a non-degenerate edge in K and the non-degenerate edge in �1. Consequently, it
will be the diagonal in a square�1×�1 ⊂ �1×K . Since every other 1-simplex of
this square will bemarked, the diagonal can bemarkedwith a pushout of type (S1).

(C3) The cofibration is of the form
(
�2, �, �

)
→

(
�2, �, � ⊂ 	

)
.

(A1) When n > 2, this is an isomorphism. If n = 2, this is an isomorphism on the
underlying marked thin-scaled simplicial sets, so we can consider only the lean
scaling.
The target is maximally lean scaled. In the source, there are precisely three 2-
simplices which are not lean scaled:

00 → 12 → 22 (1)

00 → 11 → 22 (2)

00 → 10 → 22 (3)

For the first, we can extend to the 3-simplex 00 → 02 → 12 → 22, and obtain
obtain a pushout of type (S3) with i = 1. For the third, we can extend to the
3-simplex 00 → 10 → 20 → 22, and obtain a pushout of type (S3) with i = 2.
For the second, we can then extend to the 3-simplex 00 → 10 → 11 → 22, and
obtain a pushout of type (S3) (with i = 1).

(A2) The pushout-product is an isomorphism on underlying marked thin-scaled simpli-
cial sets, so once again we consider the lean triangles. The underlying simplicial
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2-Cartesian fibrations I: A model... 1361

sets are both �2 × �4. There are two triangles which are lean in the target, but
not the source, namely:

00 → 13 → 24 (4)

00 → 11 → 24 (5)

For (4), if we extend to the 3-simplex 00 → 03 → 13 → 24, we obtain a pushout
of type (S3) with i = 1. For (5), if we extend to the 3-simplex 00 → 11 → 21 →
24, we obtain a pushout of type (S3) with i = 2.

(A3) This is an isomorphism when n > 2. When n = 2, we first note that we can
neglect the thin scaling and the marking. Since this is the case, we consider the
corresponding inclusion of lean-scaled simplicial sets. The underlying map is

id : �2 ×
(
�2

∐
�0

)
→ �2 ×

(
�2

∐
�0

)

and the target carries a maximal scaling. The only unscaled simplex in the source
is

00 → 11 → 22

We can then consider the simplex

00 → 01 → 11 → 22

Since 00 → 01 is degenerate, we can scale the remaining simplex via a pushout
of type (S4).

(A4) This is an isomorphism when n > 2. When n = 2, we again note that is sufficient
only to consider the marking and the lean scaling since the source of our morphism
already contains every thin triangle. In this case, we obtain an isomorphism on
the underlying simplicial set �2 × �2. The markings are identical on the source
and target, so we are again left to consider only the lean scaling. The target is
maximally scaled, and the only unscaled simplex in the source is 00 → 11 → 22.
Considering the 3-simplex

00 → 11 → 21 → 22,

we note that 21 → 22 is marked. Thus, a pushout of type (S5) suffices.
(A5) The underlyingmap of simplicial sets is the identity on�2×�1. It is, as above, and

isomorphism on the marking and thin-scaling. There are precisely three simplices
which we need to lean-scale:

00 → 11 → 21 (6)

00 → 10 → 21 (7)

00 → 10 → 20 (8)

For (6), we can extend to the 3-simplex 00 → 01 → 11 → 21, and then obtain
the desired scaling via a pushout of type (S3) with i = 1. For (7), we can extend
to the 3-simplex 00 → 10 → 11 → 21 and obtain the desired scaling via a
pushout of type (S3) with i = 2. Finally, for (8), we can extend to the 3-simplex
00 → 10 → 20 → 21, and obtain a pushout of type (S5) (since the morphism
20 → 21 is marked).

(S1) This is an isomorphism.
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1362 F. Abellán García, W. H. Stern

(S2) This is an isomorphism on the underlying marked lean-scaled simplicial sets, and
thus a sequence of pushouts of type (S2).

(S3) In both cases, the underlying map of simplicial sets is the identity on �2 × �3,
and in both cases, there is only one 2-simplex we need to lean scale.
• When i = 2, the missing scaling is on 00 → 11 → 23. We can extend to the

3-simplex 00 → 11 → 21 → 23, and scale the missing 2-simplex using a
pushout of type (S3) with i = 2.

• When i = 1, the missing scaling is on 00 → 12 → 23. We can extend to the
3-simplex 00 → 02 → 12 → 23, and scale the missing 2-simplex using a
pushout of type (S3) with i = 1.

(S4) This is effectively dual to the next case.
(S5) On the underlying marked simplicial sets, this is the identity on the marked sim-

plicial set

(�3, {�{2,3}}) × (�2)�.

The only simplex which is lean-scaled in the target but not the source is 00 →
11 → 22. However, if we consider the 3-simplex

00 → 11 → 22 → 32

in �3 × �2 whose edge 22 → 32 is marked, we obtain a pushout of type (S5)
giving the desired scaling.

(E) This is an isomorphism.

(C4) The cofibration is of the form
(
�2, �, � ⊂ 	

)
→

(
�2, �, 	

)
.

(A1)-(E) All of these are, necessarily, isomorphisms on the underlying marked lean-scaled
simplicial sets (since, forgetting about thin simplices, the morphisms of type (C4)
are isomorphisms of marked lean-scaled simplicial sets), since every thin triangle
in the target is lean scaled in the sourcewe see that themorphisms areMB-anodyne.

��
Though the preceding arguments may seem an abuse of the reader’s patience, now that

the pushout-product is established, we can freely use it without directly working with these
technicalities. In particular, we gain access to well-behaved mapping spaces, mapping cat-
egories, and mapping bicategories for (Setmb

� )/S—a key convenience in the work to come.

Definition 3.18 Given two MB simplicial sets (K , EK , TK ⊆ CK ), (X , EX , TX ⊆ CX ) we
define anotherMB simplicial set denoted byFunmb(K , X) and characterized by the following
universal property

HomSetmb
�

(
A,Funmb(K , X)

)

 HomSetmb

�

(
A × K , X

)
.

As a direct consequence of Proposition 3.14 we obtain the following corollary.

Corollary 3.19 Let f : (X , EX , TX ⊆ CX ) → (Y , EY , TY ⊆ CY ) be a MB-fibration.
Then for every K ∈ Setmb

� the induced morphism Funmb(K , X) → Funmb(K , Y ) is a
MB-fibration.
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2-Cartesian fibrations I: A model... 1363

Definition 3.20 Let f : X → Y be a MB-fibration and consider another map of MB sim-
plicial sets g : K → Y . The previous corollary and Lemma 3.10 allows us to define an
∞-bicategory MapY (K , X) by means of the pullback square

MapY (K , X) Funmb(K , X)

�0 Funmb(K , Y )
g

Proposition 3.21 Let f : X → Y be a MB-fibration. Suppose that we are given morphisms
ofMB simplicial sets

L → [h]K → [g]Y
such that h is a cofibration (resp.MB-anodyne). Then the induced morphism

h∗ : MapY (K , X) → MapY (L, X)

is a fibration of scaled simplicial sets (resp. trivial fibration).

Proof Suppose that h is a cofibration and let A → B be a MB-anodyne morphism. To show
that h∗ has the right lifting property against the class of scaled anodyne maps we consider
the adjoint lifting problem

A MapY (K , X) L × B
∐

L×A
K × A X

B MapY (L, X) K × B Y

h∗

and conclude that the dotted arrow exists due to Proposition 3.14.
Note that according to Lemma 3.10 the marking on both∞-bicategories is precisely given

by equivalences. Therefore using (A5) in Definition 3.7 we see that h∗ is an isofibration. We
can conclude from the construction of the model structure on Setsc� as a Cisinski model
structure in [7] that h∗ is a fibration of ∞-bicategories. The case where h is a MB-anodyne
follows immediately from Proposition 3.14. ��

3.2 TheModel Structure

Let S ∈ Setsc� for the rest of the section we will denote (Setmb
� )/S the category of MB

simplicial set over (S, 	, TS ⊂ 	). In this section we will establish the existence of model
structure on (Setmb

� )/S using a refinement of Jeff Smith’s theorem due to Lurie [11, Prop.
A.2.6.13].

Definition 3.22 We say that an object π : X → S in (Setmb
� )/S is an outer 2-Cartesian

fibration if it is aMB-fibration.

Remark 3.23 Wewill frequently abuse notation and refer to outer 2-Cartesian as 2-Cartesian
fibrations.

Remark 3.24 Given a scaled simplicial set (S, TS) we will frequently abuse notation and
denote theMB simplicial set (S, 	, TS ⊂ 	) simply by S.
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1364 F. Abellán García, W. H. Stern

Definition 3.25 Let π : X → S be a morphism ofMB simplicial sets. Given an object K →
S, we define MapthS (K , X) to be the MB simplicial subset of MapS(K , X) consisting only
of the thin triangles. Note that if π is a 2-Cartesian fibration this is precisely the underlying
∞-category of MapS(K , X).

We similarly denote byMap

S (K , X) theMB simplicial subset consisting of thin triangles

and marked edges. As before, we note that if π is a 2-Cartesian fibration, the simplicial set
Map


S (K , X) can be identified with the maximal Kan complex in MapS(K , X).

Definition 3.26 We define a functor I : Set+� → Setmb
� mapping a marked simplicial set

(K , EK ) to the MB simplicial set (K , EK , 	). If K is maximally marked we adopt the
notation I (K 	) = K 	

	

Remark 3.27 Note that we can endow the (Setmb
� )/S with the structure of a Set+�-enriched

category by means of MapthS (−,−). In addition given K ∈ Set+� and π : X → S we define
K ⊗ X := I (K ) × X equipped with a map to S given by first projecting to X and then
composing with π . This construction shows that (Setmb

� )/S is tensored over Set+�. One can
easily show that (Setmb

� )/S is also cotensored over Set+�.
In a similar way one can use Map


S (−,−) to endow (Setmb
� )/S with the structure of a

Set�-enriched category. In this case the cotensor is given by K ⊗ X = I (K 	) × X .

Definition 3.28 Let L → [h]K → [p]S be a morphism in (Setmb
� )/S . We say that h is a cofi-

bration when it is a monomorphism ofMB simplicial sets. We will call h a weak equivalence
if for every 2-Cartesian fibration π : X → S the induced morphism

h∗ : MapS(K , X) → MapS(L, X)

is a bicategorical equivalence.

Definition 3.29 Given two MB simplicial sets p : X → S and q : Y → S over S, we call a
morphism

(�1, 	, 	) × X Y

S

h

p q

a marked homotopy over S from h|{0}×X to h|{1}×X . We say that a morphism f : X → Y
is a marked homotopy equivalence if there is a morphism g : Y → X over S and marked
homotopies from f ◦ g to idY and from g ◦ f to idX .

Proposition 3.30 Suppose we are given a pushout diagram in (Setmb
� )/S

L K

R P

u

v

w

where u is a cofibration and v is a weak equivalence. Then w is also a weak equivalence.

Proof Let π : X → S be a 2-Cartesian fibration. Then it follows that we have a pullback
diagram of fibrant scaled simplicial sets

MapS(P, X) MapS(R, X)

MapS(K , X) MapS(L, X)

w∗

u∗
v∗
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2-Cartesian fibrations I: A model... 1365

where u∗ is a fibration according to Proposition 3.21 and v∗ is a bicategorical equivalence.
Since this pullback already represents the homotopy pullback it follows that w∗ is also a
bicategorical equivalence. ��

Proposition 3.31 Let L → [h]K → [p]S be a morphism in (Setmb
� )/S. Then the following

are equivalent

(i) The map h : L → K is a weak equivalence.
(ii) For every 2-Cartesian fibration π : X → S the induced morphism

MapthS (K , X) → [
]MapthS (L, X)

is an equivalence of ∞-categories.
(iii) For every 2-Cartesian fibration π : X → S the induced morphism

Map

S (K , X) → [
]Map


S (L, X)

is a homotopy equivalence of Kan complexes.

Proof The implications (i) �⇒ (ii) �⇒ (iii) are obvious. To show (iii) �⇒ (i) we apply
the small object argument to factor the morphism p (resp. q = p ◦ h)

K → FK → S

where the first morphism isMB-anodyne and the second has the right lifting property against
the class of MB-anodyne morphisms and similarly for q . In particular we obtain 2-Cartesian
fibrations πK : FK → S and πL : FL → S. The functoriality of the small object argument
implies the existence of a commutative diagram over S

L FL

K FK

ϕ

Using Proposition 3.21 we obtain for every 2-Cartesian fibration π : X → S a commutative
diagram

MapS(FK , X) MapS(FL , X)

MapS(K , X) MapS(L, X)


 


where the horizontal morphisms are trivial fibrations of ∞-bicategories. This shows that the
map FL → FK satisfies condition (iii). It will therefore suffice to show that FL → FK is a
weak equivalence.

We observe that we have an equivalence of Kan complexes

Map

S (FK , FL) → [
]Map


S (FL , FL)

It follows that we have a morphism γ : FK → FL over S and a homotopy (again over S)
expressing γ ◦ ϕ ∼ idπL . Observe that both ϕ ◦ γ and idπK get mapped under

Map

S (FK , FK ) → [
]Map


S (FL , FK )
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1366 F. Abellán García, W. H. Stern

to equivalent objects. Using our hypothesis it follows that ϕ ◦ γ ∼ idπK . To finish the proof
we observe that given a 2-Cartesian fibration X → S we can use the morphism γ to construct
an inverse up to marked homotopy for the map

MapS(FK , X) → MapS(FL , K )

thus concluding the proof. ��
Lemma 3.32 Let L → [h]K → [p]S be a morphism in (Setmb

� )/S such that p : K → S and
p ◦ h : L → S are 2-Cartesian fibrations. Then the conditions (i)–(iii) in Proposition 3.31
are additionally equivalent to

(iv) The morphism f is a marked homotopy equivalence over S.

Proof The equivalence of (iv) and (iii) is purely formal, so the result follows from Proposi-
tion 3.31 ��
Definition 3.33 We say that a morphism L → [h]K → S is a trivial fibration it it has the
right lifting property against the class of cofibrations.

Remark 3.34 Observe that every trivial fibration is in particular a weak equivalence. Indeed,
if h : L → K has the right lifting property against all cofibrations we can produce a section
s : K → L (over S) and an a marked homotopy L × (�1)	 → L between the identity on
L → S and s◦h. This provides us with a deformation retract on themapping∞-bicategories.

Definition 3.35 Suppose we have a morphism

X Y

�n
�

f

p q

of 2-Cartesian fibrations over �n
� , for n ≥ 1, and a commutative diagram

(∂�m, �, �) X

(�m, �, �) Y

α

f
β

such that r = q ◦ β : �m → �n is surjective.
We define jβ ∈ [m] to be the largest element such that r( jβ) < r(m). We additionally

define a simplicial subset Sm+1
jβ

⊂ �m+1 to be the union of:

• all m-simplices of �m+1 other than the faces missing jβ + 2 or jβ + 1;
• the (m − 1) simplex which misses both jβ + 2 and jβ + 1.

See Fig. 2 for a geometric interpretation. We equipp �m+1 with a marking and biscaling as
follows:

• The only non-degenerate marked edge is given by jβ + 1 → jβ + 2.
• A 2-simplex is lean if it contains the edge jβ + 1 → jβ + 2.
• A2-simplex is thin if it is lean and its image in�n

� under themorphism r◦s jβ is degenerate
where s jβ denotes the jβ -th degeneracy map.
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2-Cartesian fibrations I: A model... 1367

Fig. 2 The simplicial subset
S31 ⊂ �3

We denote the resultingMB simplicial set by (�m+1, Eβ, Tβ ⊆ Cβ) and view it as an object
of (Setmb

� )/�n
�
by means of the map r ◦ s jβ . We similarly denote (Sm+1

jβ
, ES

β , T S
β ⊆ CS

β ) the
MB simplicial set obtained from the inherited decorations.

Lemma 3.36 Let n ≥ 1. Suppose we are given a morphism f : X → Y of 2-Cartesian
fibrations over �n

� and a lifting problem

(∂�m, �, �) X

(�m, �, �) Y

α

f
β

as in Definition 3.35. Suppose further that f satisfies condition (ii) from 3.37.
Then there exists a commutative diagram

(Sm+1
jβ

, ES
β , T S

β ⊆ CS
β ) X

(�m+1, Eβ, Tβ ⊆ Cβ) Y

ε

f

θ

such that the following conditions hold:

1. The restriction of θ to be face missing jβ + 1 equals β and similarly, the restriction of ε
to face missing jβ + 1 equals α.

2. Let ξ denote the restriction of θ to the face missing jβ + 2. Then either jξ = jβ + 1 if
jβ < m − 1 or ξ factors through �n−1 and similarly for ε.

Proof We start the proof by fixing the notation α(i) = xi (resp. β(i) = yi ). Let us pick a
marked morphism e : x̂ jβ → x jβ+1. To ease notation, let us just denote jβ simply by j . We
defineMB simplicial sets

Bm
j = (�m, �, �)

∐

�{ j+1}
(�1, 	, 	) , ∂Bm

j = (∂�m, �, �)
∐

�{ j+1}
(�1, 	, 	).

For the rest of the proof we will omit the marking and biscalings to ease the notation. Note
that we have commutative diagrams

Bm
j Y

�m+1 �n

γm
j

q

r◦s j

∂Bm
j X

Sm+1
j �n

ιmj
p

where bottom horizontal map in the second diagram is the restriction of r ◦ s j to Sm+1
j . We

claim that the left vertical maps in both diagrams are MB-anodyne. Once this is proven,
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1368 F. Abellán García, W. H. Stern

we let θ be a solution to the left-most commutative square. Note that we can form another
diagram

∂Bm
j X

Sm+1
j Y

f

where bottom horizontal map is the composite Sm+1
j → �m+1 → [θ ]Y . Since f has the

right lifting property against MB-anodyne morphisms our result follows.
First we will prove the family of cases where j = m − 1 by using induction on m. The

casem = 1 is obviously true. Suppose that our claim holds form−1 and let us prove the case
m. Let Wm−1 = Bm

m−1 and define for 0 ≤ i ≤ m − 1 a MB simplicial subset Wm
i ⊂ �m+1

(with the decorations defined in Definition 3.35) consisting in those simplices that are either
in Wm

i−1 or are contained in the i-th face for 0 ≤ i ≤ m − 1. This yields a filtration

Wm−1 → Wm
0 → · · · → Wm

m−1 = �m+1
m+1

We similarly set ∂Wm−1 = ∂Bm
m−1 and produce an analogous filtration by adding step-wise

the faces 0 ≤ i ≤ m − 1

∂Wm−1 → ∂Wm
0 → · · · → ∂Wm

m−1 = Sm+1
j

It will then suffice to show that each step in both filtrations is MB-anodyne. Let 0 ≤ i ≤
m − 1 then we can produce a pushout squares

Wm−1
i−1 �m

Wm
i−1 Wm

i

Wm−1
i−1 �m

∂Wm
i−1 ∂Wm

i

where the morphism Wm−1
i−1 → Wm

i−1 is given by the restriction of the inclusion of the i-th
face �m → Wm

i to Wm
i−1 and similarly for the other diagram. The claim now follows from

the inductive hypothesis.
The general proof will employ induction on j and each case will be proved using induction

onm. Note that given j ≥ 0 the ground case for the induction onm is given bym = j +1. In
particular we have proved all the ground cases already. Nowwe will deal with ground case of
the induction on j , namely j = 0. Assume the claim to hold for m − 1 ≥ 1 and let us prove
the case m. Let Zm

m+2 = Bm
0 and define for every 3 ≤ i ≤ m + 1 a MB subsimplicial set

Zm
i−1 ⊂ �m+1 consisting in those simplices that are either contained in Zm

i or are contained
in the (i − 1)-th face of �m+1. We similarly denote ∂Zm

m+2 = ∂Bm
0 and consider a pair of

filtrations

Zm
m+2 → Zm

m+1 → · · · → Zm
3 → �m+1

2

∂Zm
m+2 → ∂Zm

m+1 → · · · → ∂Zm
3 → Sm�j

where the last step in both filtrations is given by attaching the face missing 0. A similar
argument as above shows that the claim follows from the inductive hypothesis for the every
step except the last one. To prove that the last map in both filtrations is MB-anodyne we
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2-Cartesian fibrations I: A model... 1369

consider a pushout diagram

�m
1 �m

Zm
3 �m+1

2

where the morphism �m−1
1 → Zm

3 is the restriction to Zm
3 of the inclusion of the 0-th face

into�m+1
2 . Note that the triangle {0, 1, 2}must be already be thin ifm > 3 or it can be chosen

to be thin since it lies above a degenerate triangle in�n . The analogous conclusion also holds
for ∂Zm

3 . Finally let us assume the claim holds for j −1 ≥ 0. The proof of this final inductive
hypothesis is a mix of both previous cases. We will give a sketch here and leave the details
for the interested reader. The idea is to add stepwise to Bn

j (resp. ∂B
n
j ) the faces missing i

for n ≤ i ≤ j + 3. One can check that at each step this result map isMB-anodyne using the
induction hypothesis. Then we add the faces missing � for 0 ≤ � ≤ j and again we find that
each step in this process isMB-anodyne. In the case of ∂Bm

j we have already reached Sm+1
j .

For Bm
j after this process we reach �m+1

j+2 where the triangle { j + 1, j + 2, j + 3} must be
thin since it is lean by construction and lies over a thin triangle. The conclusion now follows.

��

Proposition 3.37 Given a diagram of the form

X Y

S

f

p q

where both p and q are 2-Cartesian fibrations. Then the following statements are equivalent:

(i) The map f is a trivial fibration.
(ii) The map f has the right lifting property againstMB-anodyne maps and for every s ∈ S

the induced map on fibres fs : Xs → [
]Ys is a bicategorical equivalence.

Proof The implication (i) �⇒ (ii) is clear. Now suppose that (ii) holds. Thenwe immediately
see that for every s ∈ S the map fs is a trivial fibration of scaled simplicial sets. First we will
show that we can lift the maps

(
∂�m, �, �

)
→

(
�m, �, �

)
, m ≥ 0.

Suppose we are given a lifting problem of the form

∂�m X

�m Y

α

f
β

and let κβ be the smallest integer such that q ◦β : �m → �κβ → S. Wewill use induction on
κβ . Note that when κβ = 0 the lifting problem occurs in one of the fibres and thus the solution
exists. Suppose the claim holds for 0 < κβ − 1 ≤ m − 1. We will assume without loss of
generality that S = �κβ . Let us remark that by construction the map r = q ◦β : �m → �κβ

must be surjective. Let jβ ∈ [m] be the biggest element such that r( jβ) < r(m) = κβ . We
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can now use Lemma 3.36 to produce a commutative diagram

Sm+1
jβ

X

�m+1 Y

ε

f

θ

satisfying the conditions of the lemma. It follows from the proof Lemma 3.36 that the triangle
θ({ jβ, jβ + 1, jβ + 2})must be scaled. Restricting this diagram along the facemissing jβ +2
yields another commutative square

∂�m X

�m Y

f
ξ

We claim that our original lifting problem admits a solution if this later lifting problem admits
a solution. Indeed, given a solution of this later lifting problemwe can produce a commutative
diagram

Sm+1
jβ

�m+1
jβ+1 X

�m+1 �m+1 Y

where the dotted arrow exists since the triangle θ({ jβ, jβ + 1, jβ + 2}) is scaled. It follows
from Lemma 3.36 that the restriction of this solution to the face missing jβ + 1 is a solution
for our original lifting problem.

We can further see that if jβ = n − 1 then ξ must factor through �κβ−1 and the existence
of the solution follows from the inductive hypothesis. If jβ < m − 1 it follows that q ◦ ξ

must be surjective and that jξ > jβ so we can keep applying Lemma 3.36 until we obtain
the solution. The inductive step is proved and the claim holds.

To finish the proof we must show that f detects marked edges and lean (resp. thin)
triangles. Let e : �1 → X be such that f (e) is marked. Let us denote e(i) = xi for i ∈ {0, 1}
and similarly denote f (xi ) = yi . Pick a marked lift ẽ : x̂0 → x1 and observe that we can
produce a 2-simplex σ : �2 → X such that σ |

�{1,2} = ẽ and σ |
�{0,2} = e. It follows from

Lemma 3.11 that f (σ ) is fully marked and since its restriction to �{0,1} lies in Yq(y0) that
particular edge must be an equivalence. However f detects equivalences in the fibres so it
follows that σ |

�{0,1} is marked in X . The claim follows from Definition 3.7 (S1).

Suppose we are given ϕ : �2 → X such that f (ϕ) is lean-scaled in Y . As usual we
will assume without loss of generality that S = �2

� a minimally scaled 2-simplex. We can
additionally assume that ϕ is not contained in some Xi for i ∈ [2], otherwise the claim

follows immediately. Let s : �2 ϕ−→ X
p−→ S = �2

� and define define jϕ as the biggest integer
such that s( jϕ) < s(2). Then a totally analogous argument to that of Lemma 3.36 shows that
we can produce a 3-simplex T : �3 → X such that:

• The restriction of T to the face missing jϕ + 1 equals ϕ.
• The edge jϕ + 1 → jϕ + 2 is marked.
• Every triangle of T containing the edge jϕ + 1 → jϕ + 2 is lean.

We claim that by construction f (T ) must be fully lean-scaled in Y . There are two cases to
study: jϕ = 0 and jϕ = 1. If jϕ = 0 then it follows that every triangle in f (T ) is lean except
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the 2-nd face. However the triangle given by the vertices {1, 2, 3} is lean by construction and
lies over an edge. Since lean triangles lying over thin triangles are themselves thin it follows
that we can lean-scale the missing face using a morphism of type (S3). If jϕ = 1 then it
follows that every triangle in f (T ) is lean except the 3-rd face. We can lean-scale this face
using a morphism of type (S5).

We proceed now by cases:

(a) The map s is given by a → a → b. Note that in this case we have jϕ = 1 and let us
consider T : �3 → X as before. We see that the face missing 3 is contained in Xa and
since its image in Y is lean (it is in fact thin) it follows that it must be lean in X . It follows
that we can scale ϕ : �2 → X using a morphism of type (S3) since the triangle {1, 2, 3}
gets mapped under T to a thin 2-simplex.

(b) The map s is given by a → b → b. Now we see that we can scale the face missing 2 in
T : �3 → X using the previous case. We can scale ϕ : �2 → X using a morphism of
type (S3) since the triangle {0, 1, 2} gets mapped under T to a thin 2-simplex.

(c) The map s is given by a → b → c. It follows that we can scale the face missing 3 in
T : �3 → X using case b). Since the triangle {1, 2, 3} gets mapped under T to a thin
2-simplex we can scale ϕ : �2 → X using a morphism of type (S3).

To prove that f detects thin triangles we only need to observe that if the image of a
2-simplex ϕ : �2 → X gets mapped under f to a thin triangle then by the discussion for
lean-triangles it follows that ϕ is a lean in X . We can then thin-scale ϕ using a morphism of
type (S2). ��
Proposition 3.38 Suppose we are given a morphism of 2-Cartesian fibrations

X Y

S

f

p q

Then the following are equivalent

(i) The map f is a weak equivalence.
(ii) For every s ∈ S the induced morphism fs : Xs → Ys is an equivalence of scaled

simplicial sets.

Proof The implication (i) �⇒ (ii) is clear since we can construct an inverse up to homotopy
for f as we did in the proof of Proposition 3.31. To prove the converse we will apply the
small object argument and obtain a factorization of f

X → [u]L → [v]Y
where the map u is MB-anodyne and v has the right lifting property against the class of
MB-anodyne maps. It follows from Proposition 3.21 that u must be a weak equivalence.
Now we observe that L → S must be a 2-Cartesian fibration. It follows from 2-out-of-3
that the induced morphism on fibres Ls → Ys must be a bicategorical equivalence for every
s ∈ S. We can now apply Proposition 3.37 to obtain that v must be a trivial fibration. This
finishes the proof. ��
Definition 3.39 Recall from [11, A.2.6.10] that a class of morphisms W in a presentable
category A is perfect if it satisfies the following conditions

1. Every isomorphism belongs to W .
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2. Given a pair of composable morphisms X
f−→ Y

g−→ Z if any two of the morphisms f , g
and g ◦ f belong to W , then so does the third.

3. The class W is stable under filtered colimits.
4. There exists a (small) subset W0 ⊆ W such that every morphism belonging to W can be

obtained as a filtered colimit of morphisms belonging to W0.

Lemma 3.40 The class of weak equivalences in (Setmb
� )/S is perfect in the sense of Defini-

tion 3.39.

Proof Using the small object argument we produce a functor (which preserves filtered col-
imits by our assumptions as seen in [11, Proposition A.1.2.5] and Remark 3.8)

T : (Setmb
� )/S → (Setmb

� )/S

equipped with a natural transformation id �⇒ T such that for every K ∈ (Setmb
� )/S the map

K → T (K ) isMB-anodyne and T (K ) is a 2-Cartesian fibration. It follows that a morphism
h : K → L is a weak equivalence if and only if T (h) is a weak equivalence. We finally
consider the composite

WS : (Setmb
� )/S → [T ](Setmb

� )/S →
∏

s∈S
Setmb

� →
∏

s∈S
Setsc�

where the second functor is given by taking pullback along each fibre and the second functor
is a product of forgetful functors. It follows from a simple inspection that WS preserves
filtered colimits. Let ES = ∏

s∈S
E where E denotes the collection of weak equivalences in

Setsc�. Since E is perfect then so is ES . We claim that the collection of weak equivalences in
(Setmb

� )/S is precisely given by W−1
S (ES). Once this is proved the result will follow from

[11, A.2.6.12].
Let E denote the collection of weak equivalences in (Setmb

� )/S and let α : X → Y be
a morphism. Let us suppose that α ∈ W−1

S (ES) then it follows from Proposition 3.38 that
T (α) ∈ E. Since α ∈ E if and only if T (α) ∈ E it follows thatW−1

S (ES) ⊆ E. The converse
follows easily. ��
Lemma 3.41 Let p : X → S and n ≥ 0. Then the morphism r : X × (�n)

	
	 → X given by

projection to X is a weak equivalence.

Proof Note that the inclusion of the terminal object tn : (�0)
	
	 → (�n)

	
	 induces a section

s : X → X×(�n)
	
	. Since our class of weak equivalences satisfies 2-out-of-3 it follows that it

is enough to show that s is a weak equivalence. We will show that the map tn isMB-anodyne.
Then the claim will follow from Proposition 3.14.

We prove that tn is MB-anodyne using induction on n. If n = 1 then t1 is the generator
(A5). We define for 0 ≤ i ≤ n − 1 a MB subsimplicial set Ai ⊂ (�n, 	, 	) consisting in
those simplices that are contained in the j-th face fo j ≤ i . This produces a filtration

�0 → A0 → · · · → An−2 → An−1 = (�n
n, 	, 	) → (�n, 	, 	).

It is easy to verify that each step in this filtration isMB-anodyne. ��
Theorem 3.42 Let S be a scaled simplicial set. Then there exists a left proper combinatorial
simplicial model structure on (Setmb

� )/S, which is characterized uniquely by the following
properties:
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C) A morphism f : X → Y in (Setmb
� )/S is a cofibration if and only if f induces a

monomorphism betwee the underlying simplicial sets.
F) An object X ∈ (Setmb

� )/S is fibrant if and only if X is a 2-Cartesian fibration.

Proof Wewill use [11, Prop. A.2.6.13] to deduce the existence of a left proper combinatorial
model structure in (Setmb

� )/S . Lemma 3.40 shows that the class of weak equivalences is
perfect. We proved in Proposition 3.30 that weak equivalences are stable under pushouts
along cofibrations. It is also immediate to see that trivial fibrations are in particular weak
equivalences so the conditions of [11, Prop. A.2.6.13] apply. Now we wish to show that this
model structure is compatible with the simplicial structure. This follows from [11, Prop.
A.3.1.7] coupled with Lemma 3.41.

It is clear that everyMB-anodynemorphism is a trivial cofibrationwhich implies that every
fibrant object is a 2-Cartesian fibration. To show that every 2-Cartesian fibration defines a
fibrant object we consider a lifting problem

A X

B S

α

i p
β

where i is a general trivial cofibration and p : X → S is a 2-Cartesian fibration. We consider
the induced morphism of mapping ∞-bicategories

i∗ : MapS(B, X) → MapS(A, X)

and observe that due to Proposition 3.21 the induced morphism is simultaneosly a bicategori-
cal equivalence and afibration. Therefore i∗ is trivial fibration of∞-bicategories. The solution
to our lifting problem is obtained by taking a preimage of the object α ∈ MapS(A, X). ��
Theorem 3.43 The adjunction presented in Remark 3.6

L : Setsc� Setmb
� : U

is a Quillen equivalence where the right-hand side is equipped with the model structure of
MB simplicial sets over the point constructed in Theorem 3.42.

Proof First we will show that L preserves cofibrations and trivial cofibrations. The case of
cofibrations is immediate. Now let us suppose that (A, TA) → (B, TB) is a trivial cofibration
of scaled simplicial sets. LetD be a fibrant object in Setmb

� and note that as stated beforeD
is an ∞-bicategory with all the equivalences marked. It is immediate that the morphism

Funmb(L(B),D) → Funmb(L(A),D))

can be identified with the analogous morphism

Funsc(B,U (D)) → Funsc(A,U (D))

between the underlying scaled simplicial sets. It follows that L � U is a Quillen adjunction.
Note that U ◦ L = id. To conclude the proof suppose that B is a fibrant MB simiplicial set.
In particular, we need to show that the map

(B, �, TB) → (B, EB, TB)

is a weak equivalence. However the above morphism is a pushout of a morphism of type (E)
in Definition 3.7. ��
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4 2-Cartesian Fibrations Over a Fibrant Base

The goal of this section is to give a characterization of 2-Cartesian fibrations in the specific
case where S ∈ Setsc� is an ∞-bicategory. For the rest of this section we will fix a functor of
∞-bicategories p : X → S.

Definition 4.1 Let p : X → S be a weak S-fibration (Definition 2.14). We call a left-
degenerate (Definition 2.3) 2-simplex σ : �2 → X , p-coCartesian if there exists a solution
for any lifting problem of the form

�n
0 X

�n S

f

p

provided f |
�{0,1,n} = σ .

Remark 4.2 Recall the definition of the mapping ∞-category X(a, b) described in Defini-
tion 2.17. Let σ : �2 → X be a p-coCartesian simplex such that σ(0) = a and σ(2) = b.
Since σ is left-degenerate it can be viewed as an edge in X(a, b). We can further observe
that by definition the dotted arrow in the diagram

�n
0 X(a, b)

�n

ρ

exists provided the restriction of ρ to �{0,1} is precisely σ . This shows that p-coCartesian
triangles define coCartesian edges in the mapping space. We wish to show that this property
precisely characterizes coCartesian triangles. The proof of this later fact will involve a little
bit of work.

Lemma 4.3 Let X be an ∞-bicategory and consider an n-simplex σ : �n → X with n ≥ 2.
Suppose that there exists some 0 < k < n such that the restriction of σ to �[0,k], see
Definition 2.4, is degenerate on σ(0) = a. Then there exists a morphism

σ̂ : �n+1 → X

with the following properties:

• The restriction of σ̂ to its (k + 1)-face equals σ .
• The restriction of σ̂ to �[0,k+1] is degenerate on a.
• For every k + 2 ≤ j ≤ n + 1 the 2-simplex �{k+1,k+2, j} is thin in X.

Proof Our first observation is that if k = n − 1 then we can define σ̂ = sn−1(σ ) and this
provides the desired solution.Wewill assume for the rest of the proof that n−k > 1.Wedefine
a simplicial subset ι : Rn

k → �n+1 consisting precisely of those simplices θ : �k → �n+1

satisfying at least one of the following conditions

(a) The simplex θ skips the vertex k + 1.
(b) The simplex θ skips the vertex n + 1.
(c) The simplex θ is one of the triangles �{k+1,k+2, j} for k + 2 < j ≤ n + 1
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We endow �n+1 with a scaling by scaling those triangles contained in �[0,k+1] in addition
to the triangles �{k+1,k+2, j} for k + 2 < j ≤ n + 1. The proof will be performed in two
steps: First we will show that ι is an scaled anodyne morphism. Finally, we will produce an
extension of σ to Rn

k .
We inductively define scaled simplicial subsets An

(k,i) ⊂ �n+1 (where �n+1 carries the
scaling defined above) consisting in those simplices that either belong to An

(k,i−1) or are
contained in the face missing i for 1 ≤ i ≤ k and where we are using the convention
An

(k,0) = Rn
k . Let B

n
(k,n) ⊂ �n+1 be the simplicial subset whose simplices either belong to

An
(k,k) or factor through the n-th face. We inductively define Bn

(k, j) from Bn
(k, j+1) by adding

the face missing j for k + 3 ≤ j ≤ n with the convention An
(k,k) = Bn

(k,n+1). This yields a
filtration

Rn
k → An

(k,1) → · · · → An
(k,k) → Bn

(k,n) → · · · → Bn
(k,k+3) → �n+1

We wish to show that each step in the filtration is given by a scaled anodyne morphism. Note
that Bn

(k,k+3) contains all faces except the face missing 0 and the face missing k+2. Since the

triangle �{k+1,k+2,k+3} is thin it is easy to verify that the last step in our filtration is scaled
anodyne. We observe that we can produce pushout diagrams

An−1
(k−1,i) �n

An
(k,i) An

(k,i+1)

di+1

Bn−1
(k, j−1) �n

Bn
(k, j) Bn

(k, j−1)

d j+1

where the morphism An−1
(k−1,i) → An

(k,i) (resp.B
n−1
(k, j−1) → Bn

(k, j)) is the restriction of the
inclusion of the i-th face (resp ( j − 1)-th face) into An

(k,i−1) (resp. B
n
(k, j)). Suppose that each

step in our filtration is scaled anodyne for κ ≤ n − 1. Then it follows that each An−1
(k,i) → �n

is scaled anodyne. Therefore we can use the pushout diagrams above to show that each step
in the filtration is scaled anodyne for κ = n. The ground case we need to show is n = 3 and
k = 1. In this setting the filtration is of the form

R3
2 → A3

(1,1) → �4.

Note that in this case k + 3 = n + 1 so the filtration terminates at A3
(1,1). In particular, the

morphism B3
(1,4) = A3

(1,1) → �4 is scaled anodyne. To verify that the first morphism is

scaled anodyne we add to R3
2 the face that misses the vertices 0 and 1 by taking a pushout

along the morphism (�2
1, 	) → (�2, 	) obtaining a factorization

R3
2 → Q → A3

(1,1)

It follows that the restriction of the face missing 1 to Q is given by a horn �3
2 where the

triangle {1, 2, 3} is thin. The ground case now follows.
To finish the proof we need to produce the extension from σ : �n → X to a map

ρ : Rn
k → X .We define Ln

k as the subsimplicial of Rn
k consisting in those simplices satisfying

conditions a) or c). We define ρ(k + 1 → k + 2) = σ(k → k + 1) and extend σ to Ln
k by

picking the obvious composites of morphisms. Note that if n − k = 2 then we can produce
the desired extension by just setting dn+1(ρ) = sk(dn(σ )). Therefore will assume that Ln

k
already contains those simplices that factor through �[0,k+2]. To finish the proof we will
show that Ln

k → Rn
k is scaled anodyne. We consider morphisms

αk+ j : �[0,k+ j] → �[0,n] ⊂ Rn
k , for 3 ≤ j ≤ n − k.
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Let us set Cn
(k,2) = Ln

k . We define inductively Cn
(k, j) by attaching the simplices αk+ j to

Cn
(k, j−1). We obtain our final filtration

Ln
k → Cn

(k,3) → · · · → Cn
(k,n−k) = Rn

k .

Note that we have pushout diagrams

R[0,k+ j]
k �[0,k+ j]

Cn
(k, j) Cn

(k, j+1)

αk

where the top horizontal morphism is scaled anodyne by the first part of this proof. The result
follows. ��
Proposition 4.4 Let p : X → S be a weak S-fibration. Then a left-degenerate triangle
σ : �2 → X with σ(0) = a and σ(2) = b is coCartesian if and only if it defines as
coCartesian edge in the mapping space X(a, b).

Proof It is immediate that if σ is coCartesian then it defines a coCartesian edge in the
corresponding mapping space. For the converse let n ≥ 3 and consider a lifting problem

�n
0 X

�n S

f

p

α

such that f |
�{0,1,n} = σ . We define 1 ≤ k ≤ n − 1 to be the biggest integer such that

the restriction of f to �[0,k] is degenerate on a. Note that if n − k = 1 then the lifting
problem takes place in the mapping space X(a, b) and the solution is guaranteed. We define
a subsimplicial set Pn

k ⊂ �n+1 consisting of those simplices ρ : �k → �n+1 satisfying at
least one of the following conditions

(a) The simplex ρ skips the vertex n + 1.
(b) The simplex ρ skips a pair of vertices (k + 1, i) with i �= 0.
(c) The simplex ρ factors through �{k+1,k+2, j} with k + 2 < j ≤ n + 1.

Now we can apply Lemma 4.3 to the simplex α to obtain a map α̂ : �n+1 → S satisfying
the conditions stated in the lemma. Our first goal is to produce a commutative diagram

�n
0 Pn

k X

�n �n+1 S

f

f̂

p

dk+1 α̂

ε

since any dotted arrow as above will provide a solution to the original lifting problem. We
define f̂ as follows:

• On simplices satisfying condition b) the value of f̂ is completely determined by f .
• Wewant to define the map f̂ on simplices satisfying condition a). We consider a simplex

σk+1 : �[0,k+1] −→ �n
0 → X
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We define the image�[0,k+2] → Pn
k in X to be the value of the k-th degeneracy operator

on σk+1. This is compatible with the morphism α̂ as seen in the proof of Lemma 4.3.
Moreover, if n − k = 2 this completes the definition of f̂ on simplices satisfying a). Let
us suppose that n − k > 2 and let Mn

k ⊂ Pn
k be the simplicial subset consisting in those

simplices satisfying b) in addition to those simplices contained in �[0,k+2]. It follows
from the previous discussion that we have a commutative diagram

�n
0 Mn

k X

�n �n+1 S

f

p

dk+1 α̂

To finally construct f̂ it will be enough to show that Mn
k → Pn

k is scaled anodyne.

We define Qn
k ⊂ Pn

k as the simplicial subset consisting in those simplices satisfying condition
a) and b). We will show that each step in the factorization

Mn
k → Qn

k → Pn
k

is scaled anodyne. It is easy to see that Qn
k → Pn

k is scaled anodyne since we can add the
missing triangles by taking the adequate composites. To show the claim for Mn

k → Qn
k we

proceed in an almost identical way as in the proof of Lemma 4.3 we produce a filtration by
inductively adding to to Mn

k the simplex �[0,k+ j] for 3 ≤ j ≤ n − k. We leave the standard
verification that each step in this filtration is scaled anodyne to the interested reader.It follows
that the desired extension f̂ : Pn

k → X exists.
To finish the proof we will construct the dotted arrow ε above. Let Snk be the subsimplicial

subset of �n+1 consisting in those simplices belonging to Pn
k in addition to the faces that

skip the vertices i for 1 ≤ i ≤ k. A totally analogous argument as that for Lemma 4.3 shows
that the map inclusion Pn

k → Snk is scaled anodyne. We can now add the faces that skip the
vertices k+2 ≤ j ≤ n to obtain a new simplicial set T n

k . We observe that T n
k only misses the

(k + 1)-face and the 0-face since the triangle �{k,k+1,k+2} must be thin. It is easy to see that
T n
k → �n+1 is scaled anodyne. To finish the proof provide a solution to the lifting problem

Snk X

T n
k S

p
ϕ

We define Dn
(k,n) by adding to S

n
k the face missing the vertex n. We define Dn

(k, j−1) by adding
to Dn

(k, j) the face missing j for k + 2 ≤ j ≤ n. This produces a filtration

Snk → Dn
(k,n) → · · · Dn

(k,k+2) = T n
k

We will show how to produce the solution by extending the map stepwise. As usual, we
produce a pushout diagram

Dn−1
(k, j−1) �n

Dn
(k, j) Dn

(k, j−1)
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Now we observe that if n − k = 2 then original filtration is of the form

Snn−2 → Dn
(n−2,n) = T n

n−2

the previously depicted pushout diagram particularizes now to

�n
0 �n

Snn−2 T n
n−2

where the left-most �n
0 represents an 0-horn in the mapping space and thus the existence of

the extension is guaranteed. An inductive argument shows that we can produce the map ϕ

and the proof is concluded. ��
Definition 4.5 We say that p : X → S is locally fibred if it satisfies the conditions

(i) The map p : X → S is a weak S-fibration.
(ii) For every left-degenerate σ̃ : �2 → S together with τ : �1 → X such that σ̃ |

�{0,2} =
p(τ ), then there exists a left-degenerate simplex σ : �2 → X such that σ is coCartesian
and p(σ ) = σ̃ .

The following proposition follows immediately from our definitions.

Proposition 4.6 Let p : X → S be locally fibred. The given a, b ∈ X a pair of objects it
follows that the induced morphism on mapping spaces

pa,b : X(a, b) → S(p(a), p(b))

is a coCartesian fibration of ∞-categories.

Definition 4.7 Let σ, τ : �2 → X be a pair of 2-simplices such that τ is left-degenerate. We
say τ is the left-degeneration of σ if there exists a 3-simplex ρ : �3 → X with the following
properties:

• The face d3(ρ) equals s0(d2(σ )).
• The face d2(ρ) equals τ .
• The face d1(ρ) equals σ .
• The face d0(ρ) is thin in X .

See Fig. 3 for a pictorial interpretation.

Remark 4.8 We remark that if X is an∞-bicategory then the left-degeneration of a 2-simplex
always exist. It is trivial to see that every left-degenerate triangle is its own left-degeneration.

Definition 4.9 We say that a triangle σ : �2 → X is coCartesian if its left-degeneration is
coCartesian. We denote the collection of coCartesian triangles by CX .

Lemma 4.10 Let p : X → S be locally fibred. Suppose that we are given a 2-simplex
σ : �2 → X such that σ is p-coCartesian and its image under p is thin in S. Then σ is a
thin simplex of X.

Proof If σ is left-degenerate the claim follows immediately from Proposition 4.6 since σ

represents a coCartesian edge in the mapping space X(a, b) whose image in S(p(a), p(b))
is an equivalence. To show the general case we let τ be the left-degeneration of ρ witnessed
by a 3-simplex ρ : �3 → X . Note that since S is an ∞-bicategory it follows that p(τ ) is
thin in S since every face of p(ρ) is thin except possibly the 2-face. Using the first part of
the proof we see that τ must be thin in X . It follows that we can scale σ in X . ��
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Fig. 3 A 3-simplex ρ displaying
τ (blue) as the left-degeneration
of σ (red). Here, the front left face
�{0,1,2} is degenerate, and the
front-right face �{1,2,3} is thin

Fig. 4 A 3-simplex, as in
Definition 4.11 with i=1.The
three blue-hatched triangles are
coCartesian, and the triangle
�{0,1,2} is thin. When CX is a
functorial family, we can
conclude that the red-hatched
triangle is also coCartesian

Definition 4.11 Let p : X → S be a weak S-fibration. We say that the collection of coCarte-
sian triangles CX , is a functorial family if the following holds:

• Let 0 < i < 3 and suppose we are given a three simplex ρ : �3 → X such that the
face �{i−1,i,i+1} is thin and all of the faces of ρ are coCartesian except possibly the face
missing i . Then the image of ρ only consists in coCartesian triangles.

Definition 4.12 Let p : X → S be a locally fibred morphism. We say that p is functorially
fibred if the collection of coCartesian triangles is functorial.

Lemma 4.13 Let p : X → S be a functorially fibred map. Given a left-degenerate three
simplex ρ : �3 → X such that all of its faces except possibly the 0-face belong to CX then
it follows that the 0-face must also belong to CX .

Proof Let us first suppose that restriction of ρ to �[0,2] is degenerate of ρ(0). Then ρ defines
a 2-simplex in the mapping space X(a, b) where all edges are coCartesian except the edge
1 → 2. By the limited 2-out-of-3 property of coCartesian edges it follows that 1 → 2 is also
coCartesian. Then the result follows from Proposition 4.4.

We suppose now that �[0,2] is not degenerate on ρ(0). We apply Lemma 4.3 to obtain a
simplex � : �4 → X . Note that 4-th face of � can be chosen to be s1(d3(ρ)). It follows that
every triangle in the 4-th face of � is coCartesian. We further note that the triangle �{1,2,4}
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is the left-degeneration of d0(ρ). We claim that every triangle in d1(�) = σ is coCartesian:
First we observe that d0(σ ) is thin and that d1(σ ) = d1(ρ). Since every triangle of d4(�) is
coCartesian we see that d3(σ ) is coCartesian. It follows that every triangle of σ is coCartesian
except possibly the 2-nd face. Since the map is functorially fibred the claim follows.

To finish the proof we consider d3(�) = θ and observe that the restriction of θ to �[0,2]
is degenerate of θ(0) = ρ(0). Moreover it follows that d1(θ) = d2(σ ). We see that every
triangle of θ is coCartesian except possible the 0-th face. We can apply now the first part of
the proof to conclude.

Definition 4.14 Let p : X → S be a functorially fibredmap.We say that an edge e : �1 → X
is strongly p-cartesian (resp. p-Cartesian) if every lifting problem

�n
n X

�n S

f

p

σ

f̂

admits a solution for n ≥ 3 provided the following conditions are satisfied:

(i) f |
�{n−1,n} = e.

(ii) f |
�{0,n−1,n} is coCartesian (resp. thin).

In the case n = 2, we distinguish two cases:

• If f |
�{1,2} = e is strongly p-Cartesian the solution of the lifting problem f̂ exists and

defines a coCartesian triangle in X .
• If f |

�{1,2} = e is p-Cartesian and σ : �2 → S is thin then the solution of the lifting

problem f̂ exists and defines a thin triangle in X .

Definition 4.15 We say that a functorially fibred map p : X → S is an outer 2-fibration or
O2-fibration, if every degenerate edge is strongly p-Cartesian.

Remark 4.16 Recall from [9, Definition 2.1.1] that a map of scaled simplicial sets p : X → S
is a weak fibration if it has the right lifting property against the following types of maps

i) The inner horn inclusions
(
�n

i , {�{i−1,i,i+1}}) → (
�n, {�{i−1,i,i+1}}) , n ≥ 2 , 0 < i < n;

ii) The left-horn inclusions
(
�n

0

∐

�{0,1}
�0, {�{0,1,n}}

)
→

(
�n

∐

�{0,1}
�0, {�{0,1,n}}

)
, n ≥ 2.

iii) The right-horn inclusions
(
�n

n

∐

�{n−1,n}
�0, {�{0,n−1,n}}

)
→

(
�n

∐

�{n−1,n}
�0, {�{0,n−1,n}}

)
, n ≥ 2.

Observe that an O2-fibration is a weak fibration in the terminology of [9].

Lemma 4.17 Let p : X → S be a O2-fibration. Given a 3-simplex ρ : �3 → X such that

• The restriction ρ|
�{2,3} is a p-Cartesian edge.

• Every face of ρ belongs to CX except possibly the face missing 3.
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Then every face of ρ belongs to CX .

Proof Let us fix some notation before diving into the proof. We denote a = ρ(0), c = ρ(2),
d = ρ(3) and ρ|

�{2,3} = α. First let us assume that ρ|
�{0,1} is degenerate on a. Using

Proposition 2.3.3 in [9] we obtain a homotopy pullback diagram

X(a, c) X(a, d)

S(p(a), p(c)) S(p(a), p(d))

α◦−

p(α)◦−

Let ε ∈ X(a, c) denote the morphism represented by the 3-face in ρ. We claim that our
hypothesis imply that its image under postcomposition with α must be coCartesian. Let
ρ(0 → 2) = u and ρ(1 → 2) = v and pick composites α ◦ u and α ◦ v represented
by the corresponding thin 2-simplices. We construct a 3-simplex τ : �3 → X such that
d3(τ ) = d3(ρ), d0(τ ) = α ◦ v and d1(τ ) = α ◦ u. This definitions gives a �3

2 → X such
that the triangle {1, 2, 3} is thin and thus we can pick an extension to �3 to yield the desired
τ . It is clear that d2(τ ) = γ is the image of ε under post-composition with α.

We now apply Lemma 4.3 to ρ to obtain a 4-simplex ν : �4 → X . Observe that the 0-th
face of d3(ν) is the left-degeneration of d0(ρ) which implies that it must be coCartesian. We
see that every face of d3(ν) must be coCartesian except possibly the face missing 1. Since
the triangle {0, 1, 2} is thin it follows every face of d3(ν) is coCartesian.

To finish the proof of the claim we construct a map κ : �4
3 → X as follows:

• The 4-th face is given by s0(d3(ρ)).
• The 1-st face is given by d1(ν).
• The 0-th face is given by τ .
• The 2-nd face is given by picking a lift of the morphism �3

2 → X which sends the 0-th
face to α ◦ u, the 1-st face to d1(ρ) and the 3-rd face to s0(u). Let us note that the 2-nd
face of any extension must be coCartesian.

Since the triangle {2, 3, 4} is thin we can pick an extension κ : �4 → X . It follows that
every face of d3(κ) is coCartesian except possibly the face missing 0 which is precisely γ .
The claim now follows from Lemma 4.13.

Since X(a, c) can be expressed as a homotopy pullback it follows that ε must be coCarte-
sian as an edge in X(a, c). The claim now follows from Proposition 4.4

To prove the general version of the lemma we will reduce it to the previous case. We will
fix once and for all the notation regarding ρ by means of the diagram below

a b c

d

u

w

f

v

g
h

Let us consider �2
1 sitting inside the 3-face of ρ and another such horn sitting inside the 2-

face of ρ. Let σ3 (resp. σ2) denote the corresponding thin 2-simplices obtained by extending
the horns. We denote the 1-face of these thin simplices by v ◦ u (resp. g ◦ u). We define a
morphism

�3
2 → X
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by sending the 0-face to σ3, the 1-face to d3(ρ), the 3-face to s0(u). Since X is an ∞-
bicategory we can produce a lift to a 3-simplex that we call θ4. Observe that if d2(θ4) belongs
to CX then every face of θ4 is coCartesian except possibly the 1-face. Since {0, 1, 2} is thin
(in fact degenerate) it follows that d3(ρ) ∈ CX . We define a morphism

�3
1 → X

by sending the 0-face to d0(ρ), the 2-face to σ2 and the 3-face to σ3. We extend this horn to
a 3-simplex that we call θ0. By construction it follows that every face of θ0 is coCartesian
except possibly the face missing 1. Since the triangle {0, 1, 2} is thin by definition we see
that every face of θ0 belongs to CX . Finally, let us define

�3
2 → X

by sending the 0-face to σ2, the 1-face to d2(ρ) and the 3-face to s0(u). We call θ3 the
extension of this horn to a 3-simplex. We observe that every face of θ3 belongs to CX .

Let θ1 = ρ and observe that the 3-simplices θi for i ∈ [4], i �= 2 assemble into a �4
2 and

that the face �{1,2,3} is thin by construction. We take our final extension θ : �4 → X and
observe that d2(θ) satisfies the conditions of the lemma and its first edge is degenerate. We
finish the proof by noting that d3d2(θ) is coCartesian if and only if d3(ρ) is. ��

Given an O2-fibration p : X → S, the condition that an edge e of X be strongly p-
Cartesian edge is prima facie stronger than the condition that e be p-Cartesian. It turns out,
however, that these two notions coincide. To prove this, we must first establish a purely tech-
nical result (Corollary 4.19). The reader interested only in the characteristics of p-Cartesian
edges may safely skip to Proposition 4.20.

Lemma 4.18 Let S be an ∞-bicategory. There is a map

E : ∐
n≥2 Sn

∐
n≥3 Sn

which raises the dimension of each simplex by 1, and such that, for σ : �n → S, the map
E(σ ) : �n+1 → S has the following properties.

• Every triangle in�n+1 which contains the edge (n−1) → n is mapped to a thin triangle
in S.

• The nth face of E(σ ) is σ .
• E(σ ) sends the triangle �n−1,n,n+1 to s1(σ |�{n,n+1}).
• When the dimension of σ is greater than 2, the following identities hold:

di E(σ ) =
{
E(di (σ )) i ≤ n − 2, n > 2

σ i = n

Proof Wewill prove the lemma by induction on the dimension of a simplex σ . For simplicity,
we denote the last edge in the spine of an n-simplex σ by eσ = σ |�{n,n+1} .

We begin by defining E on simplices of dimension 2. Consider the restriction

� : �2
1 → �2 → [σ ]S

and pick an extension of � to a thin 2-simplex σ̂ . We fix the notation ĥ = d1(σ̂ ) and
h = d1(σ ). We construct a morphism �3

1 → S as follows:

• The face missing the vertex 0 equals s1(eσ ).
• The face missing the vertex 2 equals σ .
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• The face missing the vertex 3 equals σ̂

Since the triangle �{0,1,2} = σ̂ is thin by construction we can extend this inner horn to a
3-simplex E(σ ) : �3 → S.

We then proceed by induction. Suppose we have defined E for k < n, and let σ : �n → S.
Define a simplicial subset An ⊂ �n+1 which consists of all of the n-dimensional faces except
two. The face which skips the vertex (n − 1), and the face which skips the vertex n + 1. The
final condition on E requires that E(σ ) restrict to a map

α : An S

such that

di E(σ ) =
{
E(di (σ )) i ≤ n − 2, n > 2

σ i = n.

Toassure that this definition is valid,wemust show that it agrees on shared (n−1)-dimensional
faces. We must check the case n = 3 separately, since we do not have recourse to the above
identities for 2-simplices.

• The case n = 3. We consider the intersection of the i th and j th faces, where i < j . We
will abusively denote our presumptive definition for the i th face of α by di (α)

First suppose that i = 0 and j = 1. Then

d0(d1(α)) = d0(E(d1(σ )))

By construction, the latter is s1(ed1(σ )) = s1(e(σ )). On the other hand, we have that

d0(d0(α)) = d0(E(d0(σ ))) = s1(ed0(σ )) = s1(σ ).

so that the simplices agree on the overlap.
We then consider i ≤ 1 and j = 3. On the one hand,

di (d3(α)) = di (σ ).

On the other hand,

d2(di (α)) = d2(E(di (σ ))) = di (σ )

by construction. We thus see that the map α : A3 → S is well-defined.
• The case n > 3. We once again consider i < j , and abusively denote the presumptive

definition of the i th face of α by di (α).
First suppose i < j ≤ n − 2. We then compute

di (d j (α)) = di (E(d j (σ )) = E(di (d j (σ )))

= E(d j−1(di (σ ))) = d j−1(E(di (σ ))) = d j−1(di (α))

so that the definitions of α agree on the intersection of the i th and j th faces. Notice that
we have used the final defining identity of E(σ ) twice, thus necessitating the hypothesis
that n > 3.
Finally, suppose i ≤ n − 2 and j = n. Then

di (dn(α)) = di (σ ) = dn−1(E(di (σ ))) = dn−1(di (α))

as desired. Thus, the map α : An → S is well-defined.
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We can then complete the inductive argument. It is easy to see that we have pullback
diagram

�n
n−1 �n

An �n+1

dn+1

Note that the triangle �{n−2,n−1,n} in An gets mapped to a thin triangle in S by the inductive
hypothesis. In particular we can extend α to a morphism �n+1

n−1 → S. We finish the proof of
the lemma by choosing an extension to E(σ ) : �n+1 → S. ��
Corollary 4.19 Let p : X → S be an O2-fibration. Then for each simplex θ : �n → X, the
simplices E(θ) and E(p(θ)) from Lemma 4.18 can be chosen so that the diagram

�n+1 X

�n+1 S

E(θ)

p

E(p(θ))

commutes and the simplex E(θ) satisfies the following properties:

(i) The map E(θ) sends every triangle containing the edge n − 1 → n to a thin triangle.
(ii) The map E(θ) sends the triangle �{n−1,n,n+1} to s1(e), where e is the final edge of θ .
(iii) The nth face of E(θ) equals θ .
(iv) If the triangle �{0,n−1,n} gets mapped under θ to an element of CX then E(θ) sends the

triangle �{0,n,n+1} to an element of CX .

Proof This is virtually identical to the proof of Lemma 4.18. One simply performs each step
of the argument there relative to the fibration p. Property (iv) holds precisely because CX is
a functorial family.

Proposition 4.20 Let p : X → S be an O2-fibration. Then an edge e : �1 → X is strongly
p-Cartesian if and only if it is p-Cartesian.

Proof The ‘only if’ direction is definitional. To show the other direction, let us suppose that
e is p-Cartesian and consider a lifting problem

�n
n X

�n S

f

p

σ

f̂

such that f |
�{n−1,n} = e and f |

�{0,n−1,n} belongs to CX . Fix a choice of maps E guaranteed
by Corollary 4.19.

Define a simplicial subset Bn ⊂ �n+1 to be the subset containing the i th face for 0 ≤
i ≤ n − 2, as well as the face which skips both the vertices n and n − 1. We construct a
commutative diagram

Bn X

�n+1 S

β

p

E(σ )

as follows:
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• The map β sends the i th face to E(di ( f )) (as constructed above) for 0 ≤ i ≤ n − 2.
• The map β sends the face skipping the vertices n and n − 1 to dn−1( f ).

We then consider the pullback diagram

�n
n �n

Bn �n+1

dn−1

and observe that by construction the restriction of β along the composite

�n
n Bn X

β

maps the final edge of�n
n to an identity morphism and the triangle�{0,n−1,n} to a coCartesian

triangle.
Let B̂n ⊂ �n+1 be the simplicial subset obtained from Bn by adding the face that skips

the vertex n − 1. Since p is an O2-fibration we can extend β to a morphism γ : B̂n → X .
We thus obtain a commutative diagram

B̂n X

�n+1 S

γ

p

E(σ )

We can now consider the pullback diagram diagram

�n
n �n

B̂n �n+1

dn+1

and observe that, since γ maps the final edge of �n
n to e and maps the triangle �{0,n−1,n}

to a thin triangle, it follows from the fact that e is p-Cartesian that we have a commutative
diagram

�n+1
n X

�n+1 S

ε

p

E(σ )

Since ε maps �{n−1,n,n+1} to a thin triangle, the dotted arrow in the diagram exists. This
arrow is the desired morphism E( f ), completing the proof. ��
Corollary 4.21 Let p : X → S be aO2-fibration and let σ : �2 → X be a thin 2-simplex as
pictured below

b

a c

gf

h

Suppose that g is strongly p-Cartesian. Then f is strongly p-Cartesian if and only if h is
strongly p-Cartesian.

123



1386 F. Abellán García, W. H. Stern

Proof By Proposition 4.20 it will suffice to prove the claim replacing strongly p-Cartesian
with simply p-Cartesian. This is shown in Lemma 2.3.8 and Lemma 2.3.9 in [9], which
provide some of the expected limited 2-out-of-3 properties for Cartesian edges. ��
Corollary 4.22 Let p : X → S be a O2-fibration. Then an edge e : b → c in X is strongly
p-Cartesian if and only if for every object a ∈ X post-composition with e induces a homotopy
pullback diagram

X(a, b) X(a, c)

S(p(a), p(b)) S(p(a), p(c))

e◦−

p(e)◦−

Proof Combine Proposition 4.20 with [9, Prop. 2.3.3]. ��
Proposition 4.23 Let p : X → S be an O2-fibration. Given a pair of objects a, b ∈ X and
an (strongly) p-Cartesian edge e : a′ → b such that p(a) = p(a′) we have a pullback
diagram in C at∞

X p(a)(a, a′) X(a, b)

�0 S(p(a), p(b))

e◦−

p(e)

Proof Let X p(e) → �1 denote the pullback of X → S along the map selecting the edge
p(e). We claim that we have a pullback diagram of simplicial sets

X p(e)(a, b) X(a, b)

�0 S(p(a), p(b))
p(e)

Let σ : �n → X p(e)(a, b) with associated (n + 1)-simplex σ : �n+1 → X p(e). We note
that the composite

κ : �n+1 σ−→ X p(e) → �1 p(e)−−→ S

defines an degenerate (n + 1)-simplex in S. We can further see that κ represents a simplex
�n → S(p(a), p(b))which is degenerate on the object p(e). This proves the existence of the
commutative diagram above. It is immediate to see that every simplex�n → X(a, b) whose
image on S(p(a), p(b)) is degenerate on p(e) factors through X p(e)(a, b)which implies that
the diagram in question is in fact, a pullback diagram.

We observe that it follows from Proposition 4.6 that the right-most vertical map is a
coCartesian fibration. This in turn implies that this diagram is a pullback diagram in C at∞.
Therefore to show our claim we need to verify that the induced morphism

X p(a)(a, a′) → X p(e)(a, b)

is an equivalence of ∞-categories. It is immediate to check that X p(a)(a, a′) = X p(e)(a, a′).
The claim now follows from Corollary 4.22. ��
Definition 4.24 Let p : X → S be an O2-fibration. We say that p is an O2C-fibration if for
every edge e : s → p(x) in S there exists a p-Cartesian lift ê : �1 → X such that p(ê) = e.
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Remark 4.25 The terminology O2C-fibration is reminiscent to the alreay defined notion of
outer 2-Cartesian fibration. We will show that both definitions are equivalent whenever S is
an ∞-bicategory in Theorem 4.27.

Corollary 4.26 Let p : X → S be an O2C-fibration and let pc : Xc → S denote the
restriction to p to the simplicial subset Xc consisting only in simplices whose triangles are
in CX . Then pc is an outer Cartesian fibration in the sense of [9]. In particular, p is an outer
Cartesian fibration if and only if all of its triangles belong to CX .

Theorem 4.27 Let p : X → S be a locally fibred map equipped with a coCartesian family of
triangles CX . Let EX denote the collection of p-cartesian edges. Then p is a O2C-fibration
if and only if the map (X , EX , TX ⊆ CX ) → (S, 	, TS ⊂ 	) is a 2-Cartesian fibration in the
sense of Definition 3.22.

Proof Let us suppose that p is a O2C-fibration. We need to show that p has the right lifting
property with respects to the maps of Definition 3.7. The only cases that are not hardcoded
into the definitions are: (S1), (S2), (S4), (S5), and (E). (S1) follows from Corollary 4.21, (S2)
follows from Lemma 4.10, (S4) follows from Lemma 4.13, (S5) follows from Lemma 4.17
and finally (E) follows from Corollary 4.22. The converse is clear. ��
Proposition 4.28 Suppose we are given a morphism of 2-Cartesian fibrations

X Y

S

f

p q

Then the following statements are equivalent:

i) For every s ∈ S the map fs : Xs → Ys is a bicategorical equivalence.
ii) The map f is a bicategorical equivalence.

Proof The implication (i) �⇒ (ii) is a direct consequence of Proposition 3.38. To prove the
converse let us u, v ∈ X such that p(u) = p(v) = s. Then it follows from Proposition 4.23
that we can identify the morphism

Xs(u, v) → Ys( f (u), f (v))

with the the fibre over ids of the map

X(u, v) Y ( f (u), f (v))

S(s, s)

fuv

Since f is a bicategorical equivalence it follows (see [13, Theorem 4.2.2]) that fuv is a
categorical equivalence and we can use [11, Prop. 3.3.1.5] to show that the map fs is fully
faithful. To finish the proof we will show that fs is essentially surjective. Let y ∈ Ys and pick
x ∈ X together with an equivalence α : f (x) → y. Let us pick an inverse to p(α) namely
γ : s → p(x) and a p-Cartesian lift of γ which we call β : x̂ → x . It is easy to see that
β must be an equivalence. To finish the proof we can assemble f (β) and α into a �2

1 and
construct a extension to σ : �2 → X such that the edge �{0,2} belongs to Ys . ��
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4.1 Fibrations of Simplicially Enriched Categories

Definition 4.29 We say that a Set+�-enriched category C is a C at∞-category if it is a fibrant
object in the model structure of Set+�-enriched categories.

Proposition 4.30 Let f : C → D be a fibration of C at∞-categories and recall the functor
N sc : CatSet+� → Setsc� from Definition 2.12. Then the map

N sc( f ) : N sc(C) → N sc(D)

is a functorially fibred morphism if and only if the following hold:

i) For every x, y ∈ C the map C(x, y) → D( f (x), f (y)) is a coCartesian fibration of
∞-categories.

ii) Let x, y, z ∈ C and consider a pair of coCartesian edges e1 : �1 → C(x, y) and
e2 : �1 → C(y, z). Then the composite

�1 C(x, y) × C(y, z) C(x, y)
e1×e2

defines a coCartesian edge in the target.

Proof Observe that since N sc is a right Quillen functor it follows it follows that N sc( f ) is a
fibration in the model structure on scaled simplicial sets. In particular, it is a weak S-fibration.
We will show that condition (i) is satisfied if and only if N sc( f ) is locally fibred and that
condition i i) is satisfied if and only if the collection of coCartesian triangles is functorial.

Let us suppose that f is functorially fibred and recall the Set+�-categories On for n ≥ 0
definedDefinition 2.10. Given a simplex�n → C(x, y), we define a Set+�-category bymeans
of the pushout

On O0

On+1
Q

n

where the left-most horizontal morphism is induced by the map of posets dn+1 : [n] →
[n + 1]. We construct a morphism l̂σ : On+1 → C as follows:

• On objects we set l̂σ (i) = x if 0 ≤ i ≤ n and l̂σ (n + 1) = y.
• Given 0 ≤ i ≤ j ≤ n the morphism On+1(i, j) → C(x, x) is constant on the identity

on x and similarly for On+1(n + 1, n + 1) → C(y, y).
• The morphism On+1(i, n + 1) → C(x, y) for 0 ≤ i ≤ n factors through

On(i, n + 1) → �n σ−→ C(x, y)

where the first morphism sends S ⊆ [n + 1] to max(S \ {n + 1}) ∈ �n .

It is easy to see that our definition of l̂σ factors through the pushout producing a morphism
lσ : Qn → C. Since Csc is a left adjoint it follows that Qn 
 Csc[�n+1 ∐

�n �0].
Suppose we are given a lifting problem

�n
0 C(x, y)

�n D( f (x), f (y))

u
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and let e : �1 → C(x, y) denote the restriction of u to �{0,1} ⊂ �n
0. Let us further suppose

that the morphism Q2 le−→ C corresponds to a left-degenerate coCartesian triangle in N sc(C).
We will show that we can construct the dotted arrow in the diagram. We define Qn

0 =
Csc[�n+1

0

∐
�n �0] and observe that we can construct another commutative diagram

Q
n
0 C

Q
n D

f
ω

which admits a solution since its adjoint lifting problem admits one. The definition of the top
horizontal morphism is induced by our construction lσ applied to the left-horn. We provide
a solution to the original lifting problem by considering the simplex

�n ι−→ Qn(0, n + 1)
ω−→ C(x, y)

where ι sends the vertex i to the subset [0, i]. An analogous argument as before shows that
we can produce coCartesian lifts of morphisms in the base. We conclude that i) holds.

Let σ : �2 → N sc(C) be a left degenerate simplex whose adjoint morphism Q2 → C

defines a coCartesian edge. Let n ≥ 3 and consider a lifting problem

�n
0

∐

�{0,1}
�0 N sc(C)

�n ∐

�{0,1}
�0 N sc(D)

It follows from unraveling the definitions that we only need to solve the adjoint lifting
problem

P
n
0 = Csc[�n

0

∐
�{0,1} �0](∗, n) C(x, y)

P
n = Csc[�n ∐

�{0,1} �0](∗, n) D( f (x), f (y))

where ∗ denotes the collapsed vertex where the vertices 0, 1 get mapped onto. We identify
Pn with the nerve of the poset of subsets S ⊆ [n] such that min(S) = 0 and max(S) = n
ordered by inclusion. It follows that Pn

0 ⊂ Pn is the simplicial subset consisting in those
simplices σ : �k → Pn represented by a chain of inclusions S0 ⊆ S1 ⊆ · · · ⊆ Sk satisfying
at least one of the the following conditions:

• There exists 1 < j ≤ n − 1 such that j ∈ Si for 0 ≤ i ≤ k.
• There exists 1 ≤ j ≤ n − 1 such that j /∈ Si for 0 ≤ i ≤ k.

Note that we can viewPn geometrically as a (n − 1)-dimensional cube. Then it follows that
Pn

0 is the union of all of the (n − 2)-dimensional faces of Pn except the face consisting in
subsets S such that 1 ∈ S. We will further equipp both simplicial sets with a marking given
by the edge 0n → 01n. Since the image of that particular edge is a coCartesian edge in
C(x, y) it will sufice to show that the inclusion Pn

0 → Pn is an anodyne morphism in the
coCartesian model structure.

Let σi : Si0 ⊂ Si1 ⊂ · · · ⊂ Sin−1 for i = 1, 2 be a pair of distinct non-degenerate
simplices of maximal dimension. Observe that by maximality Si0 = 0n for i = 1, 2. Let
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0 ≤ ν ≤ n − 2 be the first index such that S1ν �= S2ν . We say σ1 < σ2 if and only if
max(S1ν \ {n}) < max(S2ν \ {n}). Let us considered the totally ordered set of non-degenerate
simplices of maximal dimension {σ1 < σ2 · · · σn!}. We can now produce a filtration

Pn
0 → Xn! → Xn!−1 → · · · X2 → X1 = Pn

where X j ⊂ Pn consists in those simplices ρ that either factor through Pn
0 or are contained

in a non-degenerate simplex of maximal dimension ρ ⊂ σ� for � ≥ j . The proof is by now
routine and left as an exercise to the reader.

To finish the proof we will show that condition (ii) holds if and only if the collection
of coCartesian triangles is functorial. Let us suppose that (ii) holds and consider a simplex
ρi : �3 → N sc(C) such that the image triangle {i − 1, i, i + 1} is thin in N sc(C). Let
us assume that every triangle of �3 except the i-th face corresponds via the adjoint map
αi : O3 → C to a coCartesian edge in the mapping space of C. We consider a pair of
commutative diagrams

013 0123

03 023



013 0123

03 023




that we interpret as the image of the morphismO3(0, 3) → C(αi (0), αi (3)) for i = 1, 2. We
have circled in both diagrams the coCartesian edges and denoted by “
” the equivalences
associated to the thin triangle {i − 1, i, i + 1}. Note that in the first diagram the edge 013 →
0123 can be obtained from the coCartesian edge 13 → 123 via precomposition with a
degenerate edge. Our assumptions then imply that 013 → 0123 is coCartesian and thus the
whole diagram must consist of coCartesian edges. Since the edge 03 → 023 corresponds
to the face missing 1 of ρ1 the claim holds. The argument for the second diagram is totally
analogous.

To finish the proof let us suppose that the collection of coCartesian triangles is functorial.
Let x, y, z ∈ C, we claim that in order to show that the map

γx,y : C(x, y) × C(y, z) → C(x, z)

preserves coCartesian edges it suffices to prove the particular cases where one of the two
morphisms we want to compose is degenerate. Indeed, given e : �1 → C(x, y) × C(y, z)
determined by a pair of edges ( f → g, u → v) we can produce a 2-simplex

θ : �2 → C(x, z), θ : u ◦ f → v ◦ f → v ◦ g

such that d1(θ) = γx,y(e) and where di (θ) is given by a composition with a degenerate edge
for i = 0, 2.

Let f → g be a coCartesian edge in C(x, y) and let u be an object of C(y, z). We consider
a map τ : O3 → C defined as follows:

• We have τ(0) = τ(1) = x , τ(2) = y and τ(3) = z.
• The map O3(0, 1) → C(x, x) is degenerate on the identity morphism.
• The map O3(0, 2) → C(x, y) selects the morphism f → g
• The map O3(1, 2) → C(x, y) selects the object g.
• The map O3(2, 3) → C(y, z) selects the object u.
• The map O3(1, 3) → C(x, z) selects the degenerate edge on u ◦ g.
• The map O3(0, 3) → C(x, z) factors as O3(0, 3)

π−→ �1 → C(x, y) where the second
morphism selects the edge u ◦ f → u ◦ g and the first morphism is determined by
π(03) = π(023) = 0 and π(013) = π(0123) = 1.
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It follows that the adjoint map κ : �3 → N sc(C) maps the triangle {1, 2, 3} to a thin triangle
in N sc(C) and that every triangle of κ gets mapped to a coCartesian triangle except possible
the face missing 2. Since the collection of coCartesian triangles is functorial it follows that
{0, 1, 3} is also a coCartesian triangle. This shows that u ◦ f → u ◦ g must be a coCartesian
edge in C(x, z). We leave the completely analogous verification that precomposition with
degenerate edges preserves coCartesian edges as an exercise for the reader.

Definition 4.31 Let f : C → D be a map of C at∞-categories. An edge e : x → y is said to
be f -Cartesian if for every z ∈ C the following diagram

C(z, x) C(z, y)

D( f (z), f (x)) D( f (z), f (y))

is a homotopy pullback square in Set+�.
The next theorem follows readily from Proposition 4.30.

Theorem 4.32 Let f : C → D be a fibration of C at∞-categories. Then N sc( f ) is a 2-
Cartesian fibration if and only if the following conditions hold:

i) For every x, y ∈ C the map C(x, y) → D( f (x), f (y)) is a coCartesian fibration of
∞-categories.

ii) Let x, y, z ∈ C and consider a pair of coCartesian edges e1 : �1 → C(x, y) and
e2 : �1 → C(y, z). Then the composite

�1 C(x, y) × C(y, z) C(x, y)
e1×e2

defines a coCartesian edge in the target.
iii) For every morphism e : d → f (y) inD. There exists an f -Cartesian lift ê : d̂ → y with

f (ê) = e.

Remark 4.33 We say that a functor of 2-categories f : C → D is a 2-Cartesian fibration if
and only if N( f ) (see Definition 2.9) satisfies the conditions of Theorem 4.32. It follows that
this definition (after taking the pertinent duals) recovers the notion of 2-fibration presented
in [5]. In particular, it follows from Theorem 4.32 that our definition generalises the classical
notion of a 2-fibration to the realm of ∞-bicategories.
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