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GEOMETRY OF NONTRANSITIVE GRAPHS

JOSIAH OH AND MARK PENGITORE

We study nontransitive graphs and prove a number of results when they
satisfy a coarse version of transitivity. Also, for each finitely generated
group G, we produce continuum many pairwise non-quasiisometric regular
graphs that have the same growth rate, number of ends, and asymptotic
dimension as G.

1. Introduction

Woess [1991] asked the following natural question: does every transitive graph
“look like” a Cayley graph? To be more precise, is every connected, locally finite,
vertex-transitive graph quasiisometric to a Cayley graph of some finitely generated
group? Diestel and Leader [2001] constructed infinite, vertex-transitive graphs of
exponential growth, denoted DL(m, n), and conjectured that these graphs would
provide a negative answer to Woess’ question. Eskin, Fisher, and Whyte [2012;
2013] confirmed this by demonstrating that DL(m, n) is not quasiisometric to any
finitely generated group when m ̸= n. They also constructed a class of nonuni-
modular, three-dimensional, solvable, nonnilpotent Lie groups that do not admit a
nonpositively curved, left-invariant metric, and showed that these groups are not
quasiisometric to any finitely generated group.

The spaces in both of the above collections all have exponential volume growth,
which leads us to ask: Does there exist a simply connected nilpotent Lie group or a
vertex-transitive graph of polynomial growth that is not quasiisometric to any finitely
generated group? The answer is yes for simply connected nilpotent Lie groups.
Recall that there are uncountably many quasiisometry classes of simply connected
nilpotent Lie groups. (In particular, there are uncountably many quasiisometry
classes of Carnot groups.) Note that a finitely generated group which is quasiiso-
metric to a simply connected nilpotent Lie group is virtually nilpotent by Gromov’s
polynomial growth theorem [Gromov 1981], and hence is quasiisometric to a finitely
generated nilpotent group. Now, all finitely generated nilpotent groups are finitely
presented. So whenever a simply connected nilpotent Lie group is quasiisometric
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to a finitely generated group, it must lie in the quasiisometry class of some finitely
presented group. Since there are uncountably many quasiisometry classes of simply
connected nilpotent Lie groups, and only countably many finitely presented groups,
there must be uncountably many simply connected nilpotent Lie groups which are
not quasiisometric to any finitely generated group. On the other hand, the answer is
no for locally finite vertex-transitive graphs of polynomial growth. Trofimov [1984]
proved that such graphs are quasiisometric to finitely generated nilpotent groups.

Given the above discussion, we choose to look beyond the world of vertex-
transitive graphs. Since the class of non-vertex-transitive graphs is so large, one
expects that there are many graphs with geometric properties that are not shared
by Cayley graphs of finitely generated groups. Thus, we aim to find a class of
non-vertex-transitive graphs that are as close as possible to being quasiisometric to
finitely generated groups. We start our discussion by considering a class of graphs
that satisfy a coarse notion of vertex-transitivity. To this end, we introduce the
following definition. We say that a graph X is coarsely transitive if there exists
a constant K ≥ 1 such that for any two vertices x and y, there exists a (K , K )-
quasiisometry X → X which maps x to within K -distance of y. One can see
that every vertex-transitive graph is coarsely transitive, but conversely, one can
construct a coarsely transitive graph which is not vertex-transitive by starting with
any vertex-transitive graph and attaching a new vertex to it. Thus, one may ask
what properties of vertex-transitive graphs pass to coarsely transitive graphs. With
this in mind, we come to our first result.

Corollary 5. Let X be a connected, locally finite graph. If X is coarsely transitive
and has two ends, then it is quasiisometric to Z.

One may view this result as the coarsely transitive generalization of the well
known fact, due to Freudenthal and Hopf, that a finitely generated group with two
ends is necessarily a finite extension of Z. Freudenthal and Hopf also proved that
finitely generated groups can only have zero, one, two, or infinitely many ends. Our
next theorem shows that this phenomenon generalizes to coarsely transitive graphs.

Theorem 7. Let X be a connected, locally finite graph. If X is coarsely transitive,
then it has zero, one, two, or infinitely many ends.

Although every locally finite vertex-transitive graph of polynomial growth is
quasiisometric to a finitely generated nilpotent group, we do find continuum many
locally finite regular graphs with integral degree of polynomial growth, one or two
ends, and finite asymptotic dimension, which are not quasiisometric to any finitely
generated group.

Theorem 13. Given an infinite, locally finite, connected, vertex-transitive graph X ,
there exist continuum many pairwise non-quasiisometric 3-regular graphs that have
the same growth rate, number of ends, and asymptotic dimension as X.



GEOMETRY OF NONTRANSITIVE GRAPHS 425

In particular, for any infinite, finitely generated nilpotent group G, there exist
continuum many pairwise non-quasiisometric 3-regular graphs that have the same
degree of polynomial growth, number of ends, and asymptotic dimension as G.

Taking G to be the discrete Heisenberg group, Theorem 13 implies that there
are continuum many pairwise non-quasiisometric 3-regular graphs with one end,
polynomial growth rate of order four, and asymptotic dimension equal to three.

The proof of Theorem 13 proceeds by attaching line segments to our base Cayley
graph X along an infinite geodesic ray in the following way. After fixing a base
point and a parameter α ∈ (0, 1], we attach a segment of length ⌈log(n)α⌉ to the
vertex on the ray at distance n2 from the ray’s endpoint. Calling this graph Xα , we
then demonstrate that the image of any quasiisometric embedding of X into Xα

lies in a bounded neighborhood of X ⊂ Xα. Since the attached segments along
the ray grow without bound, it then follows that Xα and X are not quasiisometric.
Moreover, the parameter α controls the growth rate of the attached line segments in
such a way that Xα and Xβ are not quasiisometric for distinct α, β in (0, 1]. On
the other hand, since the attached segments are sparse and grow slowly in length,
the graphs Xα share several large-scale geometric properties with X .

2. Notation and basic definitions

For a metric space X , we use d(x, y) to denote the distance between x and y. We
denote the r-ball about x by BX (x, r) and the r-sphere about x in X by SX (x, r).
When the metric space X is clear from context, we simply write B(x, r) and S(x, r).

Let f : (X, dX ) → (Y, dY ) be a map of metric spaces. We say that f is an
(L , A)-quasiisometric embedding if there are constants L ≥ 1, A ≥ 0 such that
for every a, b ∈ X ,

1
L dX (a, b) − A ≤ dY ( f (a), f (b)) ≤ LdX (a, b) + A.

An (L , A)-quasiisometric embedding f is an (L , A)-quasiisometry if there is an
(L ′, A′)-quasiisometric embedding g : Y → X such that dX (g ◦ f, IdX ) < ∞ and
dY ( f ◦ g, IdY ) < ∞, and we call g a quasiinverse of f . Equivalently, an (L , A)-
quasiisometric embedding f is an (L , A)-quasiisometry if it is coarsely surjective,
that is, if there is a C ≥ 0 such that the image of f is C-dense in Y . A map
f : X → Y is a quasiisometry between X and Y if it is an (L , A)-quasiisometry
for some L ≥ 1, A ≥ 0. Two metric spaces X and Y are quasiisometric if there
exists a quasiisometry between them.

A graph is a pair of sets X = (V, E) where E ⊂ V × V . We call V the set of
vertices and E the set of edges. We denote the vertices of a graph X as V (X)

and the edges of a graph as E(X). Given an edge {x, y}, we call x and y the
endpoints of {x, y} and we say that x and y are adjacent. A graph isomorphism
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between graphs X and Y is a bijection f : V (X) → V (Y ) such that x and y are
adjacent in V (X) if and only if f (x) and f (y) are adjacent in V (Y ). A graph
automorphism of a graph X is a graph isomorphism from X to itself. A graph is
vertex-transitive (or simply transitive) if its automorphism group acts transitively
on its vertices.

A graph is connected if any two vertices can be connected by a path. For any
connected graph X , a natural metric is induced on the set of vertices by defining the
distance between two vertices as the length of a shortest path between them. Since
we are mainly interested in viewing graphs as metric spaces, we use the symbol X
to denote both the graph and the corresponding metric space. If S ⊂ V (X), then
the subgraph of X induced by S is the graph whose vertex set is S and whose
edge set is the subset of edges in E(X) that have both endpoints in S. We reuse the
symbol S to denote this induced subgraph, and we use X \ S to denote the subgraph
of X induced by V (X) \ S. For the entirety of this note, unless stated otherwise,
we assume graphs are connected, locally finite, and unbounded as metric spaces.

Next we recall the definitions of some large-scale geometric properties of graphs.
For a graph X and subgraph S, let U (X, S) denote the set of unbounded connected
components of X \ S. Letting X be a connected graph, we define the number of
ends of X to be

e(X) = sup{|U (X, B)| : B is a bounded subgraph of X}.

Note that in particular, a graph has zero ends if and only if it is bounded. We
also give an equivalent definition in terms of rays. A ray in X is a semiinfinite
simple path; that is, it is an infinite sequence of vertices v0, v1, . . . such that each
vertex appears at most once in the sequence and every two consecutive vertices are
adjacent. Two rays r1 and r2 are said to be equivalent if there is a ray r3 that contains
infinitely many of the vertices in each of r1 and r2. This defines an equivalence
relation on the set of rays in X . Then the ends of X are defined to be the equivalence
classes of rays in X , and e(X) is equal to the cardinality of the set of ends of X .

Let X be a metric space, and let n ≥ 0 be an integer. We say that asdim(X) ≤ n
if for every R ≥ 1 there is a uniformly bounded cover U of X such that every
ball in X of radius R intersects at most n + 1 elements of U (here U is uniformly
bounded if supU∈U diam(U ) < ∞). Then the asymptotic dimension of X , denoted
by asdim(X ), is the smallest integer n ≥ 0 such that asdim(X) ≤ n. If no such n
exists, we define asdim(X) = ∞.

Let f, g : N → N be increasing functions. We write f ⪯ g if there is a c ∈ N such
that f (n) ≤ cg(cn + c) for all n ∈ N. If f ⪯ g and g ⪯ f , then we write f ≈ g and
say that f and g are (asymptotically) equivalent. Note that ≈ defines an equivalence
relation on the set of increasing functions N → N. Suppose that X is an unbounded,
locally finite graph, and fix a vertex x0 ∈ X . Let fX,x0 : N → N be defined by
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fX,x0(n) = |BX (x0, n)|. Observe that if x1 is another vertex and c = d(x0, x1), then
B(x1, n) ⊂ B(x0, n + c). So fX,x1(n) ≤ fX,x0(n + c), which means fX,x1 ⪯ fX,x0 .
By symmetry we get fX,x0 ≈ fX,x1 . Hence the equivalence class of fX,x0 , which we
define to be the growth rate of X , does not depend on the choice of x0. Thus we
can talk about the growth function fX of X , which is well-defined up to equivalence.
In particular, two graphs X and Y are said to have the same growth rate if their
growth functions fX and fY are equivalent, that is, fX ≈ fY . If fX ⪯ nd for some
integer d ≥ 0, then we say that X has a polynomial growth rate. In this case, the
smallest d for which fX ⪯ nd is called the order of polynomial growth.

Recall that growth rate, number of ends, and asymptotic dimension are invariant
under quasiisometry.

3. Coarsely transitive graphs

Let K ≥ 1. A graph X is said to be K -coarsely transitive if for any pair of vertices
x, y in X , there exists a (K , K )-quasiisometry f : X → X such that d( f (x), y)≤ K .
A graph is said to be coarsely transitive if it is K -coarsely transitive for some
K ≥ 1. Note that all transitive graphs are coarsely transitive.

Suppose X is K -coarsely transitive, and take vertices x and y in X . By definition,
there is a (K , K )-quasiisometry f : X → X with d( f (x), y)≤ K . Define f ′

: X → X
by f ′(x) = y and f ′(z) = f (z) for all z ̸= x . Then f ′ is a (K , 2K )-quasiisometry
with f ′(x) = y. Hence, we obtain the following lemma.

Lemma 1. A metric space X is coarsely transitive if and only if there is some
K ≥ 1 such that for any pair of vertices x, y in X , there is a (K , K )-quasiisometry
f : X → X with f (x) = y.

Moving forward, we take K -coarsely transitive to mean this equivalent condition.
First, we observe a basic obstruction to coarse transitivity. By an abuse of

notation, we use Zd to denote the Cayley graph of Zd with respect to the standard
symmetric generating set. Let Bn = B(0, n) be the subgraph of Z induced by the
vertex set {k ∈ Z : |k| ≤ n}.

Lemma 2. Let L ≥ 1 and A ≥ 0 be given. For all sufficiently large n, if f : Bn → Z

is an (L , A)-quasiisometric embedding, then either f (−n) < f (0) < f (n) or
f (n) < f (0) < f (−n).

Proof. Letting n > L2
+ 2L A, we have that for each k = −n, −n + 1, . . . , 0,

d( f (n), f (k)) ≥
1
L (n − k) − A ≥

1
L n − A > L + A.

Similarly, d( f (−n), f (k)) > L + A for each k = 0, 1, . . . , n. On the other hand,
for each k = −n, −n + 1, . . . , n − 1, we have

d( f (k), f (k + 1)) ≤ L + A.
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First, suppose that f (−n) < f (0). If m ≤ f (−n), then

d(m, f (0)) ≥ d( f (−n), f (0)) > L + A.

Since d( f (1), f (0)) ≤ L + A, we must have f (−n) < f (1). By induction we get
f (−n) < f (n). Now, if f (n) < f (0), then by a similar argument, we would get
f (n) < f (−n) which contradicts f (−n) < f (n). Thus, f (0) < f (n), and we have
f (−n) < f (0) < f (n), as desired.

Now suppose that f (0) < f (−n). Then by a symmetric argument, we get
f (n) < f (0) < f (−n). □

Let Tn be the subgraph of Z2 induced by the vertex set {(k, 0) : |k| ≤ n} ∪

{(0, k) : 0 ≤ k ≤ n}. Then Tn can be thought of as a tripod with legs of length n.

Proposition 3. Let L ≥ 1 and A ≥ 0 be given. Then for all sufficiently large n, there
does not exist an (L , A)-quasiisometric embedding Tn → Z.

Proof. The union of any two legs of Tn is isometric to Bn . Therefore, Tn contains
three distinct subgraphs, S1, S2, and S3, each of which is isometric to Bn . Suppose
for contradiction that there is an (L , A)-quasiisometric embedding f : Tn →Z. Then
for i = 1, 2, 3, the restriction f |Si is an (L , A)-quasiisometric embedding of Si ∼= Bn

into Z. Using the previous lemma, we may assume without loss of generality that
f (−n, 0)< f (0, 0)< f (n, 0). Then f (−n, 0)< f (0, 0) implies f (0, 0)< f (0, n),
and f (0, 0) < f (n, 0) implies f (0, n) < f (0, 0). This is impossible, so no such f
exists. □

Hence, a graph which has arbitrarily large parts which coarsely look like Tn

and Bn cannot be coarsely transitive. For example, the subgraph of Z2 induced by the
vertex set {(x, y) : |y| ≤ |x |} is not coarsely transitive, because for each K ≥ 1, there
is an n ≫ K such that no (K , K )-quasiisometry which maps (n, 0) to (0, 0) exists.

It is known that connected transitive graphs which are unbounded have either
one, two, or infinitely many ends [Diestel et al. 1993], and moreover that two-ended
transitive graphs are quasiisometric to Z [Miraftab and Rühmann 2018]. We show
that these two properties extend to coarsely transitive graphs.

Proposition 4. Let X be a coarsely transitive graph with at least two ends, and let
B0 = B(x0, r) be a ball with |U (X, B0)| ≥ 2. Then there is an R > 0 such that for
any ball B of radius R, we have |U (X, B)| ≥ |U (X, B0)|.

Proof. Suppose X is K -coarsely transitive. Set R = Kr + 3K 2, and let B1 =

B(x1, R) where x1 is arbitrary. Since X is K -coarsely transitive, there is a (K , K )-
quasiisometry f : X → X with f (x1)= x0. We will show that f induces a surjection
U (X, B1) → U (X, B0). First, we observe that

(1) y /∈ B1 =⇒ d(x0, f (y)) = d( f (x1), f (y)) ≥
1
K d(x1, y) − K

> 1
K R − K = r + 2K .
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Figure 1. γ must intersect B0.

That is, f maps the complement of B1 to the complement of B(x0, r + 2K ). Let
C ∈ U (X, B1), and pick any y ∈ C . Then f (y) /∈ B0. Hence, let D be the connected
component of X \ B0 which contains f (y). We now show that f (C) ⊂ D. Let
z ∈ C be adjacent to y. Then

d( f (y), f (z)) ≤ K d(y, z) + K = 2K .

Let γ be a path of minimal length in X between f (y) and f (z). If f (z) /∈ D, then
there must exist a point w ∈ γ ∩ B0 (see Figure 1).

In this case,

d(x0, f (y))≤d(x0, w)+d(w, f (y))≤ r +length(γ )= r +d( f (y), f (z))≤ r +2K ,

contrary to (1). Therefore, f (z)∈ D. Since C is connected, it follows that f (C)⊂ D.
Since C is unbounded and f is a quasiisometry, D must be unbounded. Therefore,
D ∈ U (X, B0), and we let F(C) = D. Thus we get a well-defined map F :

U (X, B1)→U (X, B0) which we will show is surjective. Let D ∈U (X, B0), and let
g be a quasiinverse of f . Without loss of generality we may assume that g(x0) = x1.
Like before, take a ball B2 = B(x0, R′) of sufficiently large radius R′ such that

x /∈ B2 =⇒ d(x1, g(x)) > R + 2K .

Then by similar reasoning used before, g maps each element of U (X, B2) into an
element of U (X, B1). Since D is an unbounded component of X\B0, and B2 is just a
bounded neighborhood of B0, there must be a D′

∈U (X, B2) with D′
⊂ D. Then like

before, g(D′) ⊂ C for some C ∈ U (X, B1). Since f and g are quasiinverses and D′

is unbounded, there is a point in C that f maps into D′
⊂ D. Hence f (C) ⊂ D, and

therefore F(C) = D. Thus, F is surjective, and |U (X, B1)| ≥ |U (X, B0)|. Since
B1 was an arbitrary ball of radius R, we are done. □

When X is two-ended, we get the following corollary.

Corollary 5. If X is a coarsely transitive graph with e(X) = 2, then there is an
R > 0 such that every ball B of radius R satisfies |U (X, B)| = 2.
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Figure 2. Constructing a sequence of balls.

Proof. Since e(X) = 2, there is a ball B0 with |U (X, B0)| = 2. Thus, Proposition 4
implies that there is an R > 0 such that every ball B of radius R has |U (X, B)| ≥

|U (X, B0)| = 2. On the other hand, since e(X) = 2, every such ball B has
|U (X, B)| ≤ 2. □

We first show that a two-ended, coarsely transitive graph X is quasiisometric
to Z. By Corollary 5, any ball of sufficiently large radius (independent of the center
point) will roughly separate X into two unbounded components. Thus, we may
construct a biinfinite, pairwise-disjoint sequence of such balls, and this sequence of
balls will look like the integers when viewing X from afar. Indeed, the map which
sends the integers to the centers of the balls will be the desired quasiisometry.

Theorem 6. Let X be a coarsely transitive graph. If e(X) = 2, then X is quasiiso-
metric to Z.

Proof. Using Corollary 5, let r > 0 such that any ball B of radius r satisfies
|U (X, B)| = 2. Fix a vertex x0 and let B0 = B(x0, r). Let P0 and N0 denote the
two elements of U (X, B0). Pick a vertex x1 ∈ P0 with d(x0, x1) = 2r + 1. Let
B1 = B(x1, r) and note that B1 ⊂ P0. Then N0 ∪ B0 is an unbounded connected
subgraph of X \ B1 and thus must be contained in one of the two elements of
U (X, B1). Let N1 ∈ U (X, B1) denote the component containing N0 ∪ B0, and
let P1 ∈ U (X, B1) denote the other element. Since N0 ∪ B0 ⊂ N1, it follows that
P1 ⊂ P0. Then pick a vertex x2 ∈ P1 with d(x1, x2) = 2r + 1, and similarly define
B2, P2, and N2 (see Figure 2).

We continue this process, as well as a symmetric process in the direction of N0

instead of P0, to construct xk , Bk , Pk , and Nk for all k ∈ Z, such that

• d(xk, xk+1) = 2r + 1,

• Bk+1 ∪ Pk+1 ⊂ Pk ,

• Nk ∪ Bk ⊂ Nk+1.
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Figure 3. The subpaths η j .

Now, consider the map Z → X given by k 7→ xk . We show that this is a bi-Lipschitz
embedding. Let m, n ∈ Z with m < n. By the triangle inequality,

d(xm, xn) ≤ d(xm, xm+1) + · · · + d(xn−1, xn)

= (2r + 1) + · · · + (2r + 1) = (2r + 1)(n − m).

For the other inequality, let γ be a path between xm and xn of minimal length.
Since Bk+1∪ Pk+1 ⊂ Pk and Nk ∪ Bk ⊂ Nk+1, we have xn ∈ Pj and xm ∈ N j for each
j = m + 1, . . . , n − 1. Since γ is a path between N j and Pj , it must intersect B j .
Hence, for each j = m, . . . , n − 1, γ contains a subpath η j between B j and B j+1,
and since γ has minimal length, the η j have nonoverlapping edges (see Figure 3).

Since the Bk are pairwise disjoint, length(η j ) ≥ 1. Hence

d(xm, xn) = length(γ ) ≥

n−1∑
j=m

length(η j ) ≥

n−1∑
j=m

1 = n − m.

It remains to show that our given map is coarsely surjective. For each k ∈ Z, let
γk be a path between xk and xk+1 of length d(xk, xk+1) = 2r + 1, and define L to
be the union of the γk .

Let x ∈ X be arbitrary and let B = B(x, r). Let δ =d(x, x0), and let N ≥3r+δ+1
be such that xN /∈ B. Let C be the component of X \ B which contains xN . Suppose
for contradiction that {xk}k≥N is not entirely contained in C , and let n > N be the
smallest index with xn /∈C . Thus, xn−1 ∈C , and we let γ be a path of minimal length
between xn−1 and xn . Since xn /∈ C , γ must intersect B at a point, say, w. Then

d(xn, x0) ≤ d(xn, w)+ d(w, x) + d(x, x0) ≤ (2r + 1) + r + δ = 3r + δ + 1,

and
d(xn, x0) ≥ n − 0 > N ≥ 3r + δ + 1,

which is a contradiction. Thus, {xk}k≥N ⊂ C which means that C ∈ U (X, B).
Similarly, we may assume (by taking possibly larger N ) that {xk}k≤−N is contained
in an element of U (X, B). Let m > N be such that Bm ⊂ C . If {xk}k≤−N ⊂ C , then
we would have |U (X, B ∪ Bm)| ≥ 3 (see Figure 4).

This would contradict e(X) = 2; therefore {xk}k≤−N must be contained in the
other unbounded component of X\B. Since x−N and xN are in separate components
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Figure 4. x−N cannot be in the same component as xN .
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Figure 5. An infinite branching.

of X\B, every path between them must intersect B. In particular, L must intersect B
at some point v. Then v ∈ γk for some k ∈ Z, and therefore

d(xk, x) ≤ d(xk, v)+ d(v, x) ≤ (2r + 1) + r = 3r + 1.

Since x was chosen arbitrarily, coarse surjectivity follows. □

We finish this section with the coarsely transitive generalization of the classifica-
tion of ends of transitive graphs.

Theorem 7. A coarsely transitive graph has either zero, one, two, or infinitely many
ends.

Proof. Let X be a coarsely transitive graph with more than two ends. By Proposi-
tion 4, there is an r > 0 such that any ball B of radius r satisfies |U (X, B)| ≥ 3.
Fix a vertex x0 ∈ X , and let B0 = B(x0, r). Then U (X, B0) has at least three
elements, which we call U0, V0, W0. Pick a vertex x1 ∈ W0 with d(x0, x1) = 2r +1.
Let B1 = B(x1, r) and note that B1 ⊂ W0. Then B0 ∪ U0 ∪ V0 is an unbounded
connected subgraph of X \ B1, and hence is contained in an element, say U1,
of U (X, B1). Let V1 and W1 denote two other elements of U (X, B1). Then
U0, V0, V1, W1 ∈ U (X, B0 ∪ B1) which implies that |U (X, B0 ∪ B1)| ≥ 4 (Figure 5).
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Continuing in this way, we pick a vertex x2 ∈ W1, and consider B2 = B(x2, r).
We then find that |U (X, B0 ∪ B1 ∪ B2)| ≥ 6. Hence, we construct pairwise-disjoint
balls Bk for all k ∈ N so that for any M > 0, there is an n ∈ N for which
|U (X,

⋃n
k=0 Bk)| > M . Thus, e(X) = ∞. □

4. Quasiisometry classes of graphs of polynomial growth

Our goal for this section is to show that given an infinite, locally finite, connected,
transitive graph X , there exist continuum many 3-regular graphs that are pairwise
non-quasiisometric and yet share several large-scale geometric properties. We define
a geodesic P in X to be a biinfinite path such that for any two vertices x, y on P , P
contains a shortest-length path between x and y. In other words, d(x, y) = dP(x, y)

where d is the path metric on X and dP is the restriction of d to P . By Theorem 4.1
in [Watkins 1986], every vertex in X lies on a geodesic. Thus, take any geodesic P
in X and label its vertices by {xn}n∈Z such that d(xm, xn) = |m −n| for all m, n ∈ Z.
We construct a family of graphs from X as follows. For each 0 < α ≤ 1, define
gα : (0, ∞) → N by gα(x) = ⌈log(x)α⌉ and note that gα(n) ≤ n for all n ∈ N.
For each positive integer n, let Sα

n be the subgraph of Z induced by the vertex set
{k : 0 ≤ k ≤ gα(n)}. Define

Xα :=

(
X ⊔

⊔
n>0

Sα
n

)
/ ∼,

where for each positive integer n, we identify xn2 ∈ X with 0 ∈ Sα
n . From now on,

we denote the vertex k ∈ Sα
n ⊂ Xα by kn . For example, 0n and xn2 denote the same

vertex in Xα, and gα(n)n denotes the “tip” of the segment Sα
n in Xα. To reduce

clutter, we define tα
n = gα(n)n for all n > 0 (see Figure 6).

For the remainder of this section, X will denote an infinite, locally finite, con-
nected, transitive graph, and if 0 < α ≤ 1, then Xα will denote the graph we
constructed from X above.

Proposition 8. The graphs X and Xα have the same number of ends, asymptotic
dimension, and growth rates.

t2

x4

t3

x9

t8

x64x0
... ...

Figure 6. The graph Xα when X = Z and α = 1.
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Proof. Recall that the ends of a graph are given by equivalence classes of rays
(semiinfinite paths with no self-intersection). Let r be an arbitrary ray in Xα.
Since rays are infinite and do not have repeating vertices, by possibly removing an
initial finite subpath of r we obtain a ray r ′ which intersects each Sα

n at most once
at 0n = xn2 ∈ X . So r ′ is a ray in X ⊂ Xα. Hence, each ray in Xα is equivalent to
a ray in X , and thus, the ends of Xα are identified with the ends of X . Therefore,
e(Xα) = e(X).

Let P be the geodesic in X with respect to which Xα is defined, and consider
the subgraph of Xα defined by

Y := P ∪

⋃
n>0

Sα
n .

For example, if X = Z, then Y is all of Xα . We claim that Y isometrically embeds
into the 3-regular tree T . Indeed, let γ0 be a geodesic in T with vertices {vk}k∈Z,
and map P isometrically onto γ0. Then for each n ∈ N, since T is a 3-regular tree,
we may take a (necessarily geodesic) ray γn , which emanates from vn and does not
intersect γ0 elsewhere. Note that since T is a tree, the rays γn are pairwise disjoint.
Then we may isometrically embed Sα

n into γn with the condition that 0 ∈ Sα
n is

mapped to vn . The result is an isometric embedding of Y into T . Since trees have
asymptotic dimension 1, we have asdim(Y ) ≤ 1. Then

asdim(Xα) = asdim(X ∪ Y ) ≤ max{asdim(X), asdim(Y )} = asdim(X).

On the other hand, asdim(X) ≤ asdim(Xα) because X ⊂ Xα. Thus asdim(Xα) =

asdim(X).
Lastly, we show that X and Xα have the same rate of growth. First, note that

since X ⊂ Xα , we have |BX (x0, n)| ≤ |BXα
(x0, n)|. Next, we show that SXα

(x0, n)

has at most one more element than SX (x0, n), in which case,

|BXα
(x0, n)| = 1 +

n∑
i=1

|SXα
(x0, i)| ≤ 1 +

n∑
i=1

(|SX (x0, i)| + 1)

= |BX (x0, n)| + n ≤ 2|BX (x0, n)|,

where n ≤|BX (x0, n)| because {x1, . . . , xn}⊂ BX (x0, n). First note that d(x0, jm)<

d(x0, km) for all m > 0 and j < k ≤ gα(m). Moreover,

d(x0, tα
m) = m2

+ gα(m) ≤ m2
+ m = m(m + 1) < (m + 1)2

= d(x0, 0m+1).

Since |SXα
(x0, 1)| = |SX (x0, 1)|, we let n > 1, and let m2 be the largest square such

that m2
≤ n. Note that the intersection of SXα

(x0, n) with X ⊂ Xα is SX (x0, n).
Since d(x0, 0m)≤ n, it follows from the above observations that SXα

(x0, n) does not
intersect Sα

k for any k < m. Also, since d(x0, 0m+1) > n, SXα
(x0, n) does not

intersect Sα
k for any k > m. Finally, SXα

(x0, n) intersects Sα
m once if m2

≤ n ≤



GEOMETRY OF NONTRANSITIVE GRAPHS 435

m2
+ gα(m), and otherwise, the intersection is empty. Hence, |SXα

(x0, n)| ≤

|SX (x0, n)| + 1. Thus

|BX (x0, n)| ≤ |BXα
(x0, n)| ≤ 2|BX (x0, n)|,

which implies that X and Xα have the same rate of growth. □

While X and Xα share some large-scale geometric properties, it turns out by the
following proposition that they are not quasiisometric to each other.

Proposition 9. If f : X → Xα is a quasiisometric embedding, then

sup
x∈X

d( f (x), X) < ∞.

Proof. Suppose f : X → Xα is an (L , A)-quasiisometric embedding. Assume for
contradiction that for some x ∈ X ,

d( f (x), X) > L3
+ 2L2 A + A.

Let P = {xn}n∈Z be the geodesic with respect to which Xα is defined. Since X is
transitive, we may assume without loss of generality that x = x0. Then f (x0) ∈ Sα

k
for some k, but since Sα

k is bounded, there must be an m <0 such that f (xm) /∈ Sα
k and

f (xm+1) ∈ Sα
k , and an n > 0 such that f (xn−1) ∈ Sα

k and f (xn) /∈ Sα
k (see Figure 7).

We then have that

d( f (xm), f (xn)) ≤ d( f (xm), 0k) + d(0k, f (xn))

≤ d( f (xm), f (xm+1)) + d( f (xn−1), f (xn))

≤ (L + A) + (L + A) = 2L + 2A.

...

f (x  )0

f (x  )n −1

f (x  )m +1

f (x  )m 0k f (x  )n

L> +3 L A A2 +2

≤ L A2 2+

Figure 7. X cannot be pulled too high up a single Sα
k .
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For all y ∈ X with d(x0, y) ≤ L2
+ 2L A, it follows that

d( f (x0), f (y)) ≤ L(L2
+ 2L A) + A = L3

+ 2L2 A + A.

Since f (xm), f (xn) /∈ Sα
k and d( f (x0), X) > L3

+ 2L2 A + A, it follows that
|m|, n > L2

+ 2L A, and hence n − m > 2L2
+ 4L A. Thus

d( f (xm), f (xn)) > 1
L (2L2

+ 4L A) − A = 2L + 3A,

which is a contradiction. Therefore, supx∈X d( f (x), X) ≤ L3
+ 2L2 A + A. □

Corollary 10. X and Xα are not quasiisometric for any 0 < α ≤ 1.

Proof. By Proposition 9, the image of any quasiisometric embedding X → Xα

lies in a bounded neighborhood of the base graph X ⊂ Xα. But in Xα, since the
lengths of the segments Sα

n increase without bound, the distance from the tips tα
n of

those segments to the base X ⊂ Xα grow arbitrarily large. Thus, any quasiisometric
embedding X → Xα cannot be coarsely surjective. □

Our next result states that furthermore, Xα and Xβ are not quasiisometric if
α ̸= β. The proof uses a similar argument. We show that any quasiisometric
embedding Xα → Xβ , for α < β, fails to be coarsely surjective. If f : Xα → Xβ is
a quasiisometric embedding, then Proposition 9 implies that f maps the base graph
X ⊂ Xα to a neighborhood of the base graph X ⊂ Xβ . Hence, the segments Sα

n in Xα

must be coarsely mapped to the segments Sβ
n in Xβ . Now, the lengths of Sβ

n grow
faster than the lengths of Sα

n , but since the consecutive distances between the Sα
n

grow quadratically, and f distorts distances up to a fixed linear factor, we will see
that the distances between the tips tβ

n in Xβ and f (Xα) grow arbitrarily large.
For the proof, we first need a lemma.

Lemma 11. Let 0 < α < β. If T : R → R is affine and p ∈ R[x] is a polynomial
such that p > 0 on (0, ∞), then

lim
x→∞

T
(
gα(p(x))

)
gβ(x)

= 0.

Proof. Firstly, log(x)α−β
→0 as x →∞; thus gα(x)/gβ(x)→0 as x →∞. Let d =

deg p. Since limx→∞ log(p(x))/ log(x) → d , we have that gα(p(x))/gα(x) → dα

as x → ∞. Hence

lim
x→∞

gα(p(x))

gβ(x)
= lim

x→∞

(
gα(p(x))

gα(x)
·

gα(x)

gβ(x)

)
= lim

x→∞

gα(p(x))

gα(x)
· lim

x→∞

gα(x)

gβ(x)
= dα

· 0 = 0.

Since T is affine and gβ(x) → ∞ as x → ∞, we obtain the desired equality. □



GEOMETRY OF NONTRANSITIVE GRAPHS 437

Proposition 12. For 0 < α, β ≤ 1, if α ̸= β, then Xα and Xβ are not quasiisometric.

Proof. Assume α <β, and let f : Xα → Xβ be an (L , A)-quasiisometric embedding.
Since f is arbitrary, we are done if we show that f is not coarsely surjective. Recall
that for 0 < γ ≤ 1, we denote the “tip” of the segment Sγ

n ⊂ Xγ by tγ
n . Let M > 0.

We show that if n is sufficiently large, then d( f (Xα), tβ
n ) > M .

Since f |X is a quasiisometric embedding X → Xβ , Proposition 9 implies there
is a D > 0 such that supx∈X d( f (x), X) ≤ D. By Lemma 11, we have

lim
n→∞

Lgα(L(n + 2n2
+ A)) + A

gβ(n)
→ 0.

In particular, there is an N > 0 such that for all n ≥ N , we have

gβ(n) > Lgα(L(n + 2n2
+ A)) + A + (M + D).

Fix an integer n ≥ N large enough so that d( f (x0), 0n) ≤ 2n2, and set

R = L(n + d( f (x0), 0n) + A).

Then for all x ∈ Xα with d(x0, x) > R, we have that

d( f (x0), f (x)) ≥
1
L d(x0, x) − A > n + d( f (x0), 0n)

≥ gβ(n) + d( f (x0), 0n) ≥ d( f (x0), tβ
n ),

where the last inequality is strict when f (x0) ∈ Sβ
n \ {0n}; otherwise equality

holds. We now claim that d( f (x), tβ
n ) > M . Suppose for contradiction that

d( f (x), tβ
n )≤ M . Since d(tβ

n , X)= gβ(n)> M +D and d( f (x0), X)≤ D, we must
have that d( f (x0), tβ

n ) > M . It follows that f (x) lies on Sβ
n and in particular, f (x)

lies on every path from f (x0) to tβ
n . This implies d( f (x0), f (x)) ≤ d( f (x0), tβ

n )

which is a contradiction.
It remains to show that d( f (x), tβ

n ) > M for all x ∈ Xα with d(x0, x) ≤ R.
Observe that

BXα
(x0, R) ⊂ BX (x0, R) ∪

⌊
√

R⌋⋃
i=1

Sα
i .

If x ∈ BX (x0, R), then we have x ∈ X and thus, d( f (x), X) ≤ D. That implies
d( f (x), tβ

n ) > M because gβ(n) > M + D. On the other hand, if x ∈ Sα
k , where

k2
≤ R, then

d( f (0k), f (x)) ≤ Ld(0k, x) + A ≤ Lgα(k) + A

≤ Lgα(R) + A ≤ Lgα(L(n + 2n2
+ A)) + A.

Therefore

d( f (x), tβ
n ) ≥ d( f (0k), tβ

n ) − d( f (0k), f (x))

≥ (gβ(n) − D) − (Lgα(L(n + 2n2
+ A)) + A) > M.
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Figure 8. Replacements to obtain a 3-regular graph [Bermudo
et al. 2013, p. 1582].

Thus, d( f (x), tβ
n ) > M for all x ∈ Xα with d(x0, x) ≤ R. We have now shown that

d( f (x), tβ
n ) > M for all x ∈ Xα . Since M can be arbitrarily large, f is not coarsely

surjective. □

Theorem 13. Given an infinite, locally finite, connected, transitive graph X , there
exist continuum many pairwise non-quasiisometric 3-regular graphs that have the
same growth rate, number of ends, and asymptotic dimension as X.

In particular, given any infinite, finitely generated nilpotent group G, there exist
continuum many pairwise non-quasiisometric 3-regular graphs that have the same
degree of polynomial degree of growth, number of ends, and asymptotic dimension
as G.

Proof. By Proposition 8, each element of the set {Xα : 0 < α ≤ 1} has the same
number of ends, asymptotic dimension, and growth rate as X . By Proposition 12,
they are all in distinct quasiisometry classes. To show that Xα is quasiisometric to
a 3-regular graph we mimic the argument used to prove Theorem 19 in [Bermudo
et al. 2013]. The main idea of the proof is to replace vertices of degree ̸= 3 with
certain structures, as seen in Figure 8.

The graphs considered in [Bermudo et al. 2013] allow for edges of any length,
so the replacing structures are defined with appropriate edge lengths in order to
have bounded diameters. In our setting all edges have fixed length 1, but since
X is transitive, the vertices of Xα have bounded degree. As a result, the replacing
structures for us (with all edge lengths 1) do have bounded diameters. Thus we
obtain a 3-regular graph that is quasiisometric to Xα. □

5. Further questions

We finish this article by discussing some open questions concerning the geometry
of coarsely transitive graphs. We start with the following question.

Question 1. Does there exist a coarsely transitive graph that is not quasiisometric
to a transitive graph? If so, can we ensure that it is locally finite?
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From the definition of vertex-transitivity, we have that the automorphism group
of a transitive graph is always nontrivial. A similar property holds for coarsely
transitive graphs in that the group of quasiisometries is always nontrivial. Thus, if
one could construct a coarsely transitive graph where every graph in its quasiisometry
class has a trivial automorphism group, one would have an answer to the above
question. In particular, such a graph would have coarse symmetries but no actual
symmetries.

Another question one may consider is whether there are examples of polynomially
growing graphs, which fail to be quasiisometric to any finitely generated group, but
have more symmetries than the ones found in Theorem 13. After all, one can see
that by Proposition 3, the constructed graphs Xα are not even coarsely transitive.
Therefore, we have the following question.

Question 2. Does there exist a locally finite, coarsely transitive graph of polynomial
growth and finite asymptotic dimension that is not quasiisometric to any finitely
generated group?

In light of Trofimov’s result, a positive answer to Question 2 would provide a
positive answer to Question 1. If such a graph exists, it would be the most symmetric
one could hope to have for a locally finite graph of polynomial growth which fails
to be quasiisometric to a finitely generated group.
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