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QUASI-2-SEGAL SETS

MATT FELLER

Abstract. We show that the 2-Segal spaces (also called decomposition spaces) of
Dyckerhoff-Kapranov and Gálvez-Kock-Tonks have a natural analogue within simplicial
sets, which we call quasi-2-Segal sets, and that the two ideas enjoy a similar relationship
as the one Segal spaces have with quasi-categories. In particular, we construct a model
structure on the category of simplicial sets whose fibrant objects are the quasi-2-Segal
sets which is Quillen equivalent to a model structure for complete 2-Segal spaces (where
our notion of completeness comes from one of the equivalent characterizations of com-
pleteness for Segal spaces). We also prove a path space criterion, which says that a
simplicial set is a quasi-2-Segal set if and only if its path spaces (also called décalage)
are quasi-categories, as well as an edgewise subdivision criterion.
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1. Introduction

In the decade since its introduction, the theory of 2-Segal spaces has seen a variety of
applications and connections to a number of diverse areas of mathematics. 2-Segal spaces
were first studied by Dyckerhoff-Kapranov in 2012 (in a preprint version of [7]), with
applications ranging from representation theory and Hall algebras to homological algebra
as well as geometry. Around the same time, Gálvez-Kock-Tonks [11], [12] independently
began exploring the equivalent notion of decomposition spaces in order to extend the
theory of Möbius inversion beyond the realm of posets and categories. An important
example of a 2-Segal space which both sets of authors identified independently is the
output of Waldhausen’s S• construction from algebraic K-theory. Subsequent work by
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2 M. FELLER

other authors has further expanded the scope of the theory; in [2] it is shown that 2-
Segal objects can be viewed equivalently through the lens of double categories, in [27]
they are seen to be equivalent to algebras of spans, while [28] shows that they can
also be viewed as invertible operads. There has also been further development in the
direction of Hall algebras in [29], as well as continued work exploring Möbius inversion
from Gálvez-Kock-Tonks and others, such as [4].

The idea at the heart of 2-Segal theory is that of a 2-Segal set, a simplicial set which
behaves like a “multi-valued category,” which has objects, morphisms, and notion of
composition which is associative in a certain sense, but which is not necessarily unique
or even defined for a given pair of morphisms x → y and y → z. A 2-Segal space is a
simplicial space which behaves like a multi-valued category up to homotopy, in the same
way that Segal spaces are simplicial spaces that behave like categories up to homotopy.
The reason for the “2” in “2-Segal” becomes more clear from the explicit definition,
which we give in Section 2. The idea is that the associativity encoded by the 2-Segal
condition can be expressed as a kind of composition of 2-simplices, compared to the
composition of 1-simplices encoded by the Segal condition.

Much unlike the situation for Segal spaces and categories, there are relatively few
examples of (strict) 2-Segal sets compared to the homotopical version, 2-Segal spaces.
To illustrate why examples naturally tend to be up-to-homotopy, it is helpful to consider
the S• construction mentioned above, as it actually characterizes 2-Segal spaces in a
certain sense as shown in [2]. Let us stick with a relatively friendly input, the category
of abelian groups Ab, to show that homotopy considerations enter even in the most basic
case. The simplicial object S•(Ab) has as n-simplices diagrams of abelian groups of the
form

0 A1,0 0 A1,0 A2,0 0 A1,0 A2,0 A3,0

0 0 A2,1 0 A2,1 A3,1

0 0 A3,2

0

for n = 1, 2, 3, where the horizontal maps are injective, the vertical maps are surjective,
and each square is both a pushout and a pullback. Each face map di amounts to deleting
the entries Aj,k such that j or k equals i. In S•(Ab), the 1-simplices are effectively abelian
groups (since the maps to and from 0 add no data), and the 2-simplices are short exact
sequences. That is, given two abelian groups A and B, a choice of composite of A and
B is a short exact sequence

0 A C B 0 .

In the context of S•(Ab), the 2-Segal condition amounts to saying that a 3-simplex
diagram, as shown above, is uniquely determined by the sub-diagram with the A3,1 term
missing, or by the sub-diagram with the A2,0 term missing. Where the “up to homotopy”
consideration enters here is that pullbacks and pushouts are only determined up to
isomorphism, meaning that if we were to define S•(Ab) as a simplicial set, it would not
quite satisfy the strict 2-Segal condition. The usual way to address this issue is to define
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S•(Ab) instead as a simplicial groupoid ∆op → Gpd or as a simplicial space ∆op → sSet,
making S•(Ab) a 2-Segal space.

When considering up-to-homotopy versions of categories, Segal spaces are just one of
the different models in the literature. Some work has been done to develop Segal space
theory—for example, in [25] and [24]—but the model with the most robust theory is
that of quasi-categories, thanks largely to Joyal [19] and Lurie [21]. The two ideas are
equivalent via two adjunctions between simplicial sets sSet and simplicial spaces ssSet,
as shown in [20]. These adjunctions give us a way to move between the two models,
exploiting the nice properties of one model or the other depending on the situation.

Recall that a quasi-category is a simplicial set X with fillers of all horn inclusions
Λi[n] →֒ ∆[n] which are inner (meaning 0 < i < n), where the horn Λi[n] is the union
of all but the di face of ∆[n]. We think of the 0-simplices of X as the objects, the
1-simplices of X as the morphisms, and the 2-simplices as witnessing its d1 face as a
composite of its d2 and d0 faces. Having fillers with respect to Λ1[2] →֒ ∆[2] tells us that
there always exists a composite of two morphisms x → y and y → z, but does not say
anything about uniqueness. Instead, the horn conditions for n ≥ 3 end up implying that
any choice of composition is unique up to coherent homotopy.

Let us denote by Sset
• (Ab) the version of S•(Ab) where we only take sets instead of

groupoids or spaces. Given the data of a 3-simplex diagram except for the A3,1 term,
even though there are many choices of pushout which fill in the diagram, they are all
isomorphic. We therefore might ask whether this isomorphism is witnessed by the higher
simplices of Sset

• (Ab), just like how in a quasi-category different composites are homotopic
as witnessed by higher simplices. In other words, is Sset

• (Ab) : ∆op → Set an example of
what one might call a quasi-2-Segal set? The goal of this paper is to answer “yes!”

To give our definition of quasi-2-Segal sets, we must describe a 2-Segal analogue of
inner horns. Instead of an ordinary horn Λi[n] which is the union of all but one face,
we take horns of the form Λi,j[n] where we take the union of all but the di and dj faces.
Instead of the inner condition, we require that i < j − 1 and that if i = 0 then j 6= n;
in other words, i and j are not adjacent mod (n + 1). We call a horn Λi,j[n] satisfying
this condition a 2-Segal horn. We can then define quasi-2-Segal sets in analogy with
quasi-categories.

Definition 3.6. A simplicial set X is a quasi-2-Segal set if it has fillers of all 2-Segal
horn inclusions Λi,j[n] →֒ ∆[n].

One can check that Sset
• (Ab) satisfies this definition, using arguments similar to those

sketched above for the n = 3 case.
Just as in the case of quasi-categories, it is not immediately clear from the definition

that higher simplices provide a good notion of homotopy in quasi-2-Segal sets. Hence,
a primary goal of this paper is to prove the following 2-Segal analogues of fundamental
results from quasi-category theory.

Theorem. The following hold:

(1) (Corollary 5.6) A simplicial set X is quasi-2-Segal if and only if the induced maps
Map(∆[3], X)→ Map(Λ0,2[3], X) and Map(∆[3], X)→ Map(Λ1,3[3], X) are trivial
fibrations.
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(2) (Lemma 6.1, Proposition 6.2) The n-simplices in a quasi-2-Segal set X with in-
vertible edge i→ i+ 1 behave like “homotopies of (n− 1)-simplices.”

(3) (Theorem 6.6) There exists a model structure on the category of simplicial sets
whose fibrant objects are precisely the quasi-2-Segal sets.

In particular, we see that for Sset
• (Ab), the choices of fillers of horns of the form Λ0,2[3]

and Λ1,3[3] are indeed unique up to homotopy in the sense we would hope for.
An important result from 2-Segal theory, proved independently in [7, Thm. 6.3.2] and

[11, Thm. 4.10], is the path space criterion, which says that a simplicial space is 2-Segal if
and only if its path spaces are Segal. We prove the analogous criterion for quasi-2-Segal
sets.

Theorem 4.6 (Path space criterion). A simplicial set is a quasi-2-Segal set if and only
if its path spaces are quasi-categories.

In particular, this criterion tells us that one only needs to check for fillers of horns of
the form Λ0,j [n] for 2 ≤ j ≤ n and Λi,n[n] for 0 ≤ i ≤ n − 2 to see if a simplicial set is
a quasi-2-Segal set. Together with the path space criterion from 2-Segal spaces, it also
unlocks a way to get examples of quasi-2-Segal sets as discrete versions of 2-Segal spaces,
similar to how Sset

• (Ab) is the discrete version of S•(Ab).
Our final main result recreates the equivalence between quasi-categories and complete

Segal spaces proved in [20]. To do so, we first define a notion of completeness for 2-Segal
spaces. Recall that a Segal space W is complete if a certain subspace Whoequiv ⊆ W1

of homotopy equivalences is weakly equivalent to W0. However, for Segal spaces, this
condition turns out to be equivalent to being local with respect to a certain inclusion
p∗1({0} →֒ J). We choose this latter condition as our definition for completeness of 2-
Segal spaces. By localizing the model structure for 2-Segal spaces at p∗1({0} →֒ J), we
get a model structure on simplicial spaces where the fibrant objects are precisely the
complete 2-Segal spaces, which we show is Quillen equivalent to the model structure for
quasi-2-Segal sets.

Theorem 7.2. The quasi-2-Segal set model structure is Quillen equivalent to the model
structure for complete 2-Segal spaces via the same adjunctions as for quasi-categories
and complete Segal spaces.

In the same way that the Quillen equivalences from [20] witness complete Segal spaces
and quasi-categories as equivalent models of (∞, 1)-categories, we can interpret our result
as saying that complete 2-Segal spaces and quasi-2-Segal sets are equivalent models of
(∞, 1)-multi-valued categories. We hope that further work in 2-Segal theory might
benefit from the interplay between the two models.

Our work has just scratched the surface in terms of generalizing the vast theory of
quasi-categories. As just one example of possible future work, it would be nice to have
a 2-Segal version of Quillen’s Theorem A, generalizing the one for quasi-categories [21,
Thm. 4.1.3.1]. But we also expect that the path space criterion and edgewise subdivision
criterion, which say that a simplicial set is quasi-2-Segal if and only if certain construc-
tions are quasi-categories, will allow for a direct application of quasi-category theory in
some situations. One avenue for future work, attempting to generalize our results to the
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d-Segal case for d > 2, turns out to be somewhat of a dead end for reasons we explain
in Section A.2.

1.1. Organization. In Section 2, we give a broad overview of the necessary background
for the paper. In Section 3, we define 2-Segal horns and quasi-2-Segal sets and show
that one arrives naturally at our definition of 2-Segal horns by beginning the “2-Segal
spines” which define 2-Segal spaces. In Section 4, we prove for quasi-2-Segal sets a
version of the path space criterion for 2-Segal spaces. In Section 5, we prove some
technical results about pushout-products and pushout-joins of 2-Segal horns which yield
the characterization of quasi-2-Segal sets in terms of having a contractible space of fillers
of horns of the form Λ0,2[3] and Λ1,3[3]. In Section 6, we show that quasi-2-Segal sets
satisfy a version of the special horn lifting property from quasi-categories, and we show
that there is a model structure for quasi-2-Segal sets. In Section 7 we define a notion
of completeness for 2-Segal spaces, and we show that the complete 2-Segal space model
structure is Quillen equivalent to the model structure for quasi-2-Segal sets. We conclude
with Section A.2, which is a brief remark about the issues with extending this theory to
d-Segal objects for d > 2.

1.2. Acknowledgements. I would like to thank Julie Bergner for suggesting this topic
and for her valuable feedback on the write-up, Tim Campion for pointing out that left
and right inverses of 1-simplices often do not agree in S•(Sp), Nima Rasekh for his
comments on an earlier draft, and Walker Stern for a number of helpful conversations
and for teaching a wonderful course on quasi-categories which inspired some of the results
proved here. I am also grateful to the referee for their incisive feedback and thoughtful
suggestions.

2. Background

2.1. Simplicial sets. We give a brief overview of our terminology and notation for
simplicial sets; see [6, §1.2] or [26] for a more thorough treatment.

The simplex category ∆ is the category with objects the finite linearly ordered sets

[n] = {0 ≤ 1 ≤ . . . ≤ n} for each n ≥ 0,

whose morphisms are monotone maps. A simplicial set is a functor ∆op → Set. We
denote the category of simplicial sets by sSet. We denote by ∆[n] the standard n-simplex,
which is the simplicial set corresponding to [n] via the Yoneda embedding ∆ →֒ sSet.

Given a simplicial set X : ∆op → Set, we denote by Xn the set to which X maps [n],
and we call an element in Xn an n-simplex of X . We often refer to a 0-simplex as a vertex
and a 1-simplex as an edge. By the Yoneda Lemma, an n-simplex in X is equivalently a
map of simplicial sets ∆[n]→ X .

The injective morphisms in ∆ are generated by co-face maps di : [n− 1] →֒ [n], which
give us the face maps di : Xn → Xn−1 of a simplicial set X for each n ≥ 1 and 0 ≤ i ≤ n.
The boundary of the standard n-simplex ∆ is the union of all of its faces, denoted by
∂∆[n].

The surjective morphisms in ∆ are generated by co-degeneracy maps si : [n+1]→ [n],
which give us the degeneracy maps si : Xn → Xn+1 of a simplicial set X for each n ≥ 0
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and 0 ≤ i ≤ n. An n-simplex is degenerate if it is in the image of a degeneracy map,
and is non-degenerate otherwise.

We say that a simplicial set Y is a subcomplex of X if Yn ⊆ Xn, and these inclusions
form a simplicial map X → Y . Given a simplicial set X and a set of vertices ν ⊆ X ,
the full subcomplex of X on ν is the subcomplex Z ⊆ X consisting of the simplices of X
whose vertices are all in ν.

Given two simplicial sets X and Y , there is a simplicial set Map(X, Y ) where

(Map(X, Y ))n = Hom(X ×∆[n], Y ).

2.2. The nerve functor. Denote by Cat the category of small categories. The nerve
functor is a fully faithful embedding N : Cat →֒ sSet; see [6, §1.4]. For example, the
nerve of the category 0 → 1 → . . . → n is the standard n-simplex ∆[n]. The nerve
functor has a left adjoint which we denote by τ1; see [26] for an explicit description of
this functor (the “fundamental category” functor, there denoted by h).

Denote by I the free-living isomorphism, i.e., the category with two objects and exactly
one morphism in each hom-set. We let J = N(I), and denote its two vertices by 0 and
1.

2.3. Lifting properties and saturated classes. We say that a map g : X → Y has the
right lifting property with respect to f : A→ B, denoted by f � g, if for all commutative
squares

A X

B Y ,

f

u

g

v

∃ℓ

there exists a lift, i.e., a dotted arrow ℓ making each triangle commute. More generally,
we say that a map g has the right lifting property with respect to a class of maps B if
f � g for all f in B.

A class of morphisms is saturated if it is closed under taking isomorphisms, pushouts,
transfinite compositions, and retracts. Given a class of morphisms B, we can take its
saturated closure B. If a class B′ equals B, we say that B′ is generated by B. For example,
the set of boundary inclusions Bdry = {∂∆[n] → ∆[n]}n≥0 generates the class Mono of
monomorphisms in sSet. A map has the right lifting property with respect to a set S if
and only if it has the right lifting property with respect to the class S. For any classes
of maps S and T , the containment S ⊆ T implies S ⊆ T . See [26] or [6, §2.1] for more
details about lifting properties and saturated classes.

2.4. Model structures. A model structure on a complete and cocomplete category
consists of a choice of three classes of morphisms, the cofibrations, the fibrations, and the
weak equivalences, subject to certain axioms; see [6, Def. 2.2.1] or [16]. We say that a
morphism which is both a (co)fibration and a weak equivalence is a trivial (co)fibration.
The fibrant objects are those such that the map to the terminal object is a fibration, and
the cofibrant objects are those such that the map from the initial object is a cofibration.

Instead of describing the axioms of a model category in general, let us only state the
main properties we use in this paper.



QUASI-2-SEGAL SETS 7

(1) The class of weak equivalences satisfies the 2-out-of-3 property: if two of f , g,
and gf are weak equivalence, then so is the third.

(2) The class of trivial cofibrations forms a saturated class.
(3) [19, Prop. E.1.10] A model structure is determined by its class of cofibrations

together with its class of fibrant objects.

We restrict our focus to Cisinski model structures, which are cofibrantly generated
model structures on a presheaf category whose cofibrations are precisely the monomor-
phisms. A model structure is cofibrantly generated if there are sets I and J such that I
generates the cofibrations and J generates the trivial cofibrations in the sense of Sub-
section 2.3; see [6, 2.4.1]. Given two Cisinski model structuresM andM′ on sSet whose
classes of weak equivalences are W and W ′ respectively, we say thatM′ is a localization
of M if W ′ ⊇ W . Given a Cisinski model structure M and a set of morphisms S, the
localization ofM at S is the model structure with the smallest class of weak equivalences
which contains S as well as the weak equivalences ofM. By fact (3) above, a Cisinski
model structure is uniquely determined by its class of fibrant objects.

2.5. Horns and Kan complexes. Given n ≥ 1 and 0 ≤ i ≤ n, the union of every face
of ∆[n] except di is a horn, denoted by Λi[n]. More generally, given some proper subset
S ⊆ {0, 1, . . . , n}, a generalized horn ΛS[n] is the union of every face di∆[n] for i ∈ S.
Note that this notation is “additive,” in the sense that the S in ΛS[n] tells us which
faces are included instead of excluded. This notation is sometimes convenient, but it
is also often convenient to denote by Λi1,i2,...,ir [n] the generalized horn missing the faces
di1, . . . , dir .

A simplicial set X is a Kan complex if the map X → ∗ has the right lifting property
with respect to the set of all horn inclusions. We think of a Kan complex as a simplicial
set which behaves like a topological space. A way to make this statement more precise
is via the Kan-Quillen model structure on sSet [23], which is a Cisinski model structure
whose fibrant objects are the Kan complexes. One can show that this model structure
is equivalent to a model structure on the category of topological spaces.

2.6. Inner horns and quasi-categories. We say that a face di∆[n] is inner if 0 < i <
n and outer if i = 0 or i = n. Similarly, a horn Λi[n] is inner if 0 < i < n and outer if
i = 0 or i = n. If, for a set S ⊆ {0, 1, . . . , n}, there exist i < j < k such that i, k ∈ S
and j 6∈ S, then the generalized horn ΛS[n] is a generalized inner horn. We denote the
set of all inner horn inclusions by IH, and the set of all generalized inner horn inclusions
by GIH. One can show that IH = GIH; see an appendix in [26] for a proof.

A simplicial set X is a quasi-category if X → ∗ has the right lifting property with
respect to IH. We think of the 0-simplices of a quasi-category as objects and the 1-
simplices as morphisms. There is a Cisinski model structure on sSet due to Joyal [19]
whose fibrant objects are the quasi-categories.

Every quasi-category has the special outer horn lifting property as shown by Joyal
[17], which says that a quasi-category X does have fillers of outer horns Λ0[n] → X
(resp. Λn[n]) as long as the 0→ 1 edge (resp. (n− 1)→ n edge) is sent to an invertible
morphism.
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2.7. Simplicial spaces. A simplicial space is a functor W : ∆op → sSet. We denote
by ssSet the category of simplicial spaces. Since each Wn for n ≥ 0 is a simplicial set,
we can view a simplicial space as a grid of sets, where the nth column is the simplicial
set Wn. There is a functor p∗1 : sSet → ssSet where (p∗1(X))n is the discrete simplicial
set corresponding to the set Xn; in other words, p∗1 gives us a horizontal embedding
of sSet into ssSet. Similarly, there is a vertical embedding p∗2, and given two simplicial
spaces W and Z, there is a simplicial set Map(W,Z) given by (Map(W,Z))n = Hom(W×
p∗2(∆[n]), Z)n. In particular, Map(p∗1(∆[n]),W ) ∼= Wn for every n ≥ 0.

There is a model structure on ssSet which we call the vertical Reedy model struc-
ture with respect to the Kan-Quillen model structure, or just the vertical Reedy model
structure, whose fibrant objects are those such that for every n ≥ 0, the map

Map(p∗1(∆[n]),W )→ Map(p∗1(∂∆[n]),W )

induced by the boundary inclusion is a Kan-Quillen fibration. If W is a vertical Reedy
fibrant simplicial space, then in particular Wn is a Kan complex for every n ≥ 0. We
use the word “vertical” here because we follow the convention of [20] and picture the
simplicial sets Wn as the columns of the simplicial space W .

We say a simplicial space W is local with respect to a map f : Z → Z ′ if the induced
map Map(Z ′,W )→ Map(Z,W ) is a Kan-Quillen weak equivalence. Given a set of maps
S, the fibrant objects in the vertical Reedy fibrant model structure localized at S is
precisely the Reedy fibrant simplicial spaces which are local with respect to S. See [15]
for more about localizations of this sort.

2.8. Segal objects and spines. Given n ≥ 2, we say that the union of the edges
i→ (i+1) in ∆[n] is its spine, denoted by Sp[n]. The inclusion Sp[n] →֒ ∆[n] is a spine
inclusion. A simplicial set X is isomorphic to the nerve of a category precisely if it has
unique fillers of spine inclusions. A homotopical version of this idea yields the notion of a
Segal space, which is a vertical Reedy fibrant simplicial space W such that each induced
map Map(p∗1(∆[n]),W ) → Map(p∗1(Sp[n]),W ) is a Kan-Quillen weak equivalence. In
other words, a Segal space is a fibrant object in the localization of vertical Reedy model
structure at the horizontal embedding of the set of spine inclusions.

We say that a Segal space is complete if it is local with respect to the map p∗1({0} →֒ J).
(Note that this definition is equivalent to, but not precisely the same as, the original
given in [25]).) Complete Segal spaces give an alternative notion of (∞, 1)-category to
that of quasi-categories, although the two are equivalent as shown in [20].

2.9. 2-Segal objects and 2-Segal spines. We can define a two-dimensional analogue
of spines, which we call 2-Segal spines. Given n ≥ 3, a 2-Segal spine T ⊆ ∆[n] is a union
of 2-simplices of ∆[n] which gives a triangulation of the (n+1)-gon formed by the edges
0→ n and i→ i+1 for each 0 ≤ i < n. For example, here are two 2-Segal spines inside
of ∆[5]:
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0 1

2

34

5

T :

0 1

2

34

5

T ′ :

.

A 2-Segal set is a simplicial set with unique fillers of all 2-Segal spine inclusions. We
can think of a 2-Segal set as being like a weak version of a category, where we view the
0-simplices as objects, the 1-simplices as morphisms, and the 2-simplices as witnessing
composition of morphisms, except that the composite of two morphisms x → y → z
need not be unique or even defined. Having unique fillers of 2-Segal spine extensions
implies that this weak notion of composition is still associative in a certain sense, given
by the correspondence between the two 2-Segal spines of ∆[3]:

23T :

0 1

23T ′ :

0 1 .

A 2-Segal space, first defined in [7], is a vertical Reedy fibrant simplicial space which
is local with respect to p∗1(T →֒ ∆[n]) for every 2-Segal spine inclusion T →֒ ∆[n]. An
equivalent notion of decomposition spaces was defined in [11] (one part of a series of
six papers), although the condition is stated very differently. In particular, it was only
observed relatively recently in [10] that a certain condition called unitality, which is built
into the definition of decomposition spaces and was often assumed as an extra axiom for
2-Segal spaces, is actually automatic from the 2-Segal condition.

In general, Segal implies 2-Segal; every Segal space is a 2-Segal space and the nerve
of a category (a “Segal set”) is a 2-Segal set.

2.10. Pushout-products and pushout-joins. One can define pushout-products of
arbitrary morphisms in a monoidal category, but for our purposes it suffices to consider
monomorphisms in the monoidal category (sSet,×). Given monomorphisms A →֒ B and
C →֒ D of simplicial sets, the monomorphism

(D × A) ∪ (C ×B) →֒ D ×B

is called the pushout-product of A →֒ B and C →֒ D, denoted by (A →֒ B)�(C →֒ D).
Given two classes S and T of maps, we denote by S�T the class of maps of the form
f�g for f in S and g in T . Given morphisms A →֒ B, C →֒ D, and X → Y , there is a
correspondence of lifting problems
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(A×D) ∪ (B × C) X C Map(B,X)

B ×D Y D Map(A,X)×Map(A,Y ) Map(B, Y ) ,

and a correspondence of lifts given by the adjoint correspondence Hom(B × D,X) ∼=
Hom(D,Map(B,X)).

Given two simplicial sets X and Y , we define their join X ⋆ Y by (X ⋆ Y )n =
∐

i+j=n−1(Xi × Yj) (where −1 ≤ i ≤ n and we consider X−1 and Y−1 to be one point

sets). The dℓ and sℓ maps out of (X ⋆ Y )n correspond to di and si of Xi if ℓ ≤ i and
correspond to dℓ−i−1 and sℓ−i−1 of Yj if ℓ ≥ i+1. For example, the join ∆[0]⋆X contains
a copy of ∆[0], a copy of X , and an (n+ 1)-simplex σ′ corresponding to each n-simplex
σ of X where the 0th vertex of σ′ is ∆[0] and d0σ

′ = σ. Given n, k ≥ 0, we have
∆[n] ⋆∆[k] ∼= ∆[n + k + 1], where ∆[n] includes as the full subcomplex on {0, 1, . . . , n}
and ∆[k] includes as the full subcomplex on {n+ 1, n+ 2, . . . , n+ k + 1}.

Given monomorphisms A →֒ B and C →֒ D of simplicial sets, the monomorphism

(D ⋆ A) ∪ (C ⋆ B) →֒ D ⋆ B

is called the pushout-join of A →֒ B and C →֒ D, which we denote by (A →֒ B) ⋆ (C →֒
D).

For a detailed overview of pushout-products and joins, see [26].

3. 2-Segal horns

In this section, we define 2-Segal horns and show that they are necessarily weak
equivalences in any model structure on sSet where the 2-Segal spine extensions are weak
equivalences. We define quasi-2-Segal sets to be simplicial sets with fillers of 2-Segal
horn inclusions, in analogy with quasi-categories.

3.1. Fundamental definitions. Recall that an ordinary horn Λi[n] is the union of all
but the di face of a simplex ∆[n], and that a horn Λi[n] is an inner horn if 0 < i < n. We
define a 2-Segal horn to be the union of all but two faces of a simplex, where we need
a slightly more complicated condition on which faces are missing, using the following
definition.

Definition 3.1. Given n ≥ 3, a subset S ⊆ {0, . . . , n} is broken if there exist 0 ≤ i <
j < k < ℓ ≤ n such that either i and k are in S and j and ℓ are not, or vice versa.

The idea behind Definition 3.1 is that a subset S ⊆ {0, . . . , n} is broken if it has a gap
modulo n+1, as illustrated in the following example. Note that a subset S ⊆ {0, 1, . . . n}
is broken if and only if its complement {0, 1, . . . n}r S is broken in {0, 1, . . . n}.

Example 3.2. Figure 1 shows two examples of subsets S ⊆ {0, 1, . . . , 7}, where in (a)
S is not broken but in (b) it is.

Definition 3.3. Given n ≥ 3 and a broken subset S ⊆ {0, . . . , n}, we say that the
generalized horn ΛS[n] is a generalized 2-Segal horn. If |S| = n − 1, then we say that
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Figure 1.

5 4 (5) (4)

(6) 3 6 (3)

(7) 2 7 2

(0) (1) (0) (1)

(a) Not Broken (b) Broken

ΛS[n] is a 2-Segal horn. An inclusion is 2-Segal anodyne if it is in the saturated class
generated by the 2-Segal horn inclusions.

Note that the condition |S| = n− 1 implies that a 2-Segal horn is the union of all but
two of the faces of an n-simplex (which has a total of n+ 1 faces).

Remark 3.4. Recall that we use two notations for generalized horns, depending on
context. The notation ΛS[n], for S ⊆ {0, 1, . . . , n}, indicates that ΛS[n] is the union of
the dℓ faces for ℓ ∈ S, whereas the notation Λi1,...,ik [n] indicates that the di1, . . . , dik faces
are precisely the missing faces. It is therefore often more convenient to use the latter
notation and denote 2-Segal horns by Λi,j[n], for broken {i, j} ⊆ {0, 1, . . . n}.

Recall that the lowest dimensional inner horn Λ1[2] is precisely the 2-spine. We see
that the analogous thing happens for 2-Segal horns in the following example.

Example 3.5. The two broken subsets of {0, 1, 2, 3} are {0, 2} and {1, 3}. The cor-
responding 2-Segal horns Λ0,2[3] and Λ1,3[3] are precisely the two triangulations of the
square, our two 2-Segal spines from Subsection 2.9.

Having defined 2-Segal horns as the 2-Segal analogue of inner horns, we define quasi-
2-Segal sets to be simplicial sets with the corresponding filling condition, in analogy with
quasi-categories which are defined in terms of having fillers of inner horns.

Definition 3.6. A simplicial set X is a quasi-2-Segal set if it has fillers of all 2-Segal
horn inclusions.

Example 3.7. Every quasi-category is a quasi-2-Segal set, because every 2-Segal horn
inclusion is a generalized inner horn inclusion. Thinking of quasi-categories as “quasi-1-
Segal sets,” we recover the general fact that 1-Segal implies 2-Segal.

Example 3.8. In [11], Gálvez-Kock-Tonks define a 2-Segal groupoid H where H0 is a
point and Hk for k > 1 is the groupoid of forests of rooted trees with k − 1 admissible
cuts. Let Hset be the simplicial set where Hset

k is the set of objects of Hk for each k ≥ 0.
Given a 2-Segal horn Λi,j[k] → Hset, we can recover the data of a k-simplex as follows:
each of the inner faces of the horn (dℓ for 0 < ℓ < k not equal to i or j) specifies the
underlying forest and k − 2 of the cuts, while an outer face (either d0 if i > 0 or dn
if j < n) specifies the remaining cut. Any remaining faces must agree with the cuts
already specified in order to form the horn Λi,j[k]→ Hset in the first place. We therefore
see that Hset is a quasi-2-Segal set.
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A primary goal of this paper is to justify these definitions by proving various funda-
mental results about 2-Segal horns and quasi-2-Segal sets. For example, we see in Section
4 that another sensible definition in terms of path spaces turns out to be equivalent, and
in Section 6 we see that there is an associated model structure on sSet in which quasi-
2-Segal sets are precisely the fibrant objects. We devote the remainder of this section
to showing that 2-Segal spine inclusions “generate” the 2-Segal horn inclusions, in the
sense that assuming all 2-Segal spines in a Cisinski model structure on sSet are weak
equivalences implies that all generalized 2-Segal horn inclusions must be weak equiva-
lences as well. As a consequence, the model structure we construct in Section 6 is in fact
the localization of the minimal model structure at the set of 2-Segal spine extensions.

3.2. From 2-Segal spines to 2-Segal horns. We begin by making a couple of obser-
vations about triangulations of the (n+ 1)-gon.

Definition 3.9. Given n ≥ 2 and a triangulation T of the (n + 1)-gon, we say that a
vertex 0 < i < n is extreme if the triangle (i− 1)→ i→ (i+1) is in T . We say that the
vertex 0 is extreme if the triangle 0 → 1 → n is in T and that the vertex n is extreme
if the triangle 0→ (n− 1)→ n is in T .

Lemma 3.10. Given n ≥ 2, every triangulation T of the (n + 1)-gon has at least two
extreme vertices, at least one of which is not 0 or n.

Proof. Let us proceed by induction on n. If n = 2, then every vertex of T = ∆[2] is
extreme. Now suppose that for some n > 2, the hypothesis holds for every triangulation
of the (k + 1)-gon for every 2 ≤ k < n. Given a triangulation T of the (n + 1)-gon, let
i be the vertex such that 0 → i → n is a triangle in T . Then we can subdivide T into
three pieces

n

i

0

T ′′

T ′

where T ′ is trivial if i = 1 and T ′′ is trivial if i = n − 1. If T ′ is nontrivial, then by
induction it has at least one extreme vertex 0 < j < i, and hence that vertex is also
extreme in T . A similar argument shows that there is an extreme vertex i < ℓ < n if
T ′′ is nontrivial. In the case that T ′ is trivial because i = 1, then 0 itself is an extreme
vertex of T , and similarly n is extreme in the case that T ′′ is trivial because i = n− 1.
In any case, there are at least two extreme vertices, one of which is not 0 or n, proving
the claim. �

The above observation has the following converse of sorts, which says that any two
non-adjacent vertices of the (n+ 1)-gon are extreme vertices of some triangulation.

Lemma 3.11. Given n ≥ 3 and i < j such that {i, j} ⊆ {0, 1, . . . , n} is broken, there
exists some triangulation T of the (n+1)-gon in which the vertices i and j are extreme.
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Proof. For n = 3, we note that the two broken subsets of {0, 1, 2, 3} are {0, 2} and
{1, 3}, and that these are the extreme vertices in the triangulations of the square Λ1,3[3]
and Λ0,2[3], respectively. For n > 3, we begin with the (n + 1)-gon and add the edge
(i− 1)→ (i+1) (or 1→ n if i = 0) as well as the edge (j− 1)→ (j+1) (or 0→ (n− 1)
if j = n). We can then triangulate the remaining (n− 1)-gon however we like, resulting
in a triangulation in which the edges i and j are extreme. �

We are now ready to begin proving statements relating 2-Segal spine extensions to
generalized 2-Segal horns. The following few results, culminating in Proposition 3.14,
are essentially a 2-Segal analogue of [20, Lem. 3.5].

Lemma 3.12. Given a Cisinski model structureM on sSet, suppose that every 2-Segal
spine extension is a weak equivalence. Then, given n ≥ 3 and a triangulation T of the
(n+ 1)-gon with extreme vertex 0 ≤ i ≤ n, the inclusion

T ∪∆[n− 1] ∆[n]T ∪di

is also a weak equivalence.

Proof. Because the vertex i is extreme in T , the triangulation restricts along di : ∆[n−
1] →֒ ∆[n] to a triangulation T ′ →֒ ∆[n−1]. We can therefore factor the weak equivalence
T →֒ ∆[n] as

T →֒ T ∪∆[n− 1] →֒ ∆[n]

where the inclusion T →֒ T ∪ ∆[n − 1] is a pushout of the 2-Segal spine inclusion
T ′ →֒ ∆[n−1] and hence is a weak equivalence. By the 2-out-of-3 property, the remaining
map is also a weak equivalence. �

Lemma 3.13. Given a Cisinski model structureM on sSet, suppose that every 2-Segal
spine extension is a weak equivalence. Then, given n ≥ 3 and 0 ≤ i < j ≤ n such that
{i, j} ⊆ {0, 1, . . . , n} is broken, the generalized 2-Segal horn inclusion Λ{i,j}[n] →֒ ∆[n]
is also a weak equivalence.

Proof. For n = 3, the 2-Segal horn inclusions are automatically weak equivalences be-
cause they are also 2-Segal spine inclusions, so we may assume n > 3. By Lemma 3.11,
there exists a triangulation T of the (n+1)-gon in which the vertices i and j are extreme.
The inclusion

T ∪∆[n− 1] ∆[n],T ∪di

which is a weak equivalence by the previous lemma, can be factored as

T ∪∆[n− 1] −֒→ Λ{i,j}[n] →֒ ∆[n],

where the first inclusion is a pushout of the 2-Segal spine inclusion

T ′ ∪∆[n− 2] ∆[n− 1],T ′∪di

where T ′ is the restriction of T along dj : ∆[n−1] →֒ ∆[n] (which is again a triangulation
because j is extreme). The remaining map Λ{i,j}[n] →֒ ∆[n] is then a weak equivalence
by the 2-out-of-3 property. �
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Having shown that generalized 2-Segal horn inclusions of the form Λ{i,j}[n] →֒ ∆[n]
are necessarily weak equivalences in a Cisinski model structure where the 2-Segal spine
extensions are weak equivalences, we may now inductively show that all generalized
2-Segal horn inclusions must be weak equivalences in the following lemma.

Proposition 3.14. Given a Cisinski model structure M on sSet, suppose that every
2-Segal spine extension is a weak equivalence. Then every generalized 2-Segal horn in-
clusion ΛS[n] →֒ ∆[n] is a weak equivalence inM.

Proof. Let N = |S|. We proceed by induction on N , with the base case N = 2 being
precisely the scenario of the previous lemma. Therefore, given N ≥ 2, suppose that every
generalized 2-Segal horn inclusion ΛS[n] →֒ ∆[n] where |S| = N and n ≥ 3 is arbitrary is
a weak equivalence. Given a generalized 2-Segal horn inclusion ΛS[n] →֒ ∆[n] for some
n ≥ 4 with |S| = N+1, we would like to show that it is also a weak equivalence. Because
|S| > 2, there exists a subset T ⊆ S with |T | = N where T is broken in {0, 1, . . . , n}.
Let i be the element of S such that T ∪ {i} = S, and denote by T ′ the preimage
(di)−1(T ) ⊆ {0, 1, . . . , n− 1} which is also broken because T is. We can therefore factor
the inclusion

ΛT [n] →֒ ∆[n],

which is a weak equivalence by the inductive hypothesis, as

ΛT [n] →֒ ΛS[n] →֒ ∆[n],

where the first inclusion is a pushout of the inclusion

ΛT ′

[n− 1] →֒ ∆[n− 1]

which is also a weak equivalence by the inductive hypothesis. By the 2-out-of-3 property
the remaining inclusion ΛS[n] →֒ ∆[n] must be a weak equivalence as well. �

3.3. 2-Segal horns as generators. Now that we see that (generalized) 2-Segal horn
inclusions are necessarily weak equivalences in a Cisinski model structure where the 2-
Segal spine inclusions are weak equivalences, our remaining goal is to prove the converse
by showing that the 2-Segal horn inclusions are sufficient to build all generalized 2-Segal
horn inclusions and 2-Segal spine extensions. We begin with the generalized 2-Segal horn
inclusions.

Proposition 3.15. Every generalized 2-Segal horn inclusion ΛS[n] →֒ ∆[n] is a com-
posite of pushouts of 2-Segal horn inclusions.

Proof. We proceed by induction on N = n + 1 − |S|, the number of missing faces of
ΛS[n]. The base case is N = 2, which is when ΛS[n] →֒ ∆[n] is already a 2-Segal horn
inclusion. So, assuming the inductive hypothesis for N ≥ 2, we would like to show that
a given generalized 2-Segal horn ΛS[n] →֒ ∆[n] for which n + 1 − |S| = N + 1 (i.e., the
number of missing faces is N + 1) is a composite of pushouts of 2-Segal horn inclusions.
We do so by showing it is a composite of pushouts of generalized 2-Segal horn inclusions
where the number of missing faces is equal to N .

Since n + 1 − |S| > 2, there exists 0 ≤ i ≤ n not in S such that S ∪ {i} is broken in
{0, 1, . . . , n}. Let T = S∪{i}, and denote by S ′ the preimage (di)−1(S) ⊆ {0, 1, . . . , n−1}
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which is also broken because S is. We can therefore factor the inclusion

ΛS[n] →֒ ∆[n]

as

ΛS[n] →֒ ΛT [n] →֒ ∆[n],

where the first inclusion is a pushout of the inclusion

ΛS′

[n− 1] →֒ ∆[n− 1].

The number of missing faces is N for both ΛS′

[n− 1] and ΛT [n], as desired. �

We now check that the 2-Segal spine inclusions can be built out of 2-Segal horn
inclusions.

Lemma 3.16. Given n ≥ 3 and a triangulation T of the (n+1)-gon with extreme vertex
i, both the 2-Segal spine inclusion T →֒ ∆[n] and the inclusion T ∪ di : T ∪∆[n− 1] →֒
∆[n] are composites of pushouts of 2-Segal horn inclusions.

Proof. We induct on n, with the base case n = 3 following from the observation that the
2-Segal spine inclusions T →֒ ∆[3] are already 2-Segal horn inclusions, and that if i is
an extreme vertex of T in this case then di∆[n] is contained in T , so that the inclusion
T ∪ di is the same as T →֒ ∆[n].

Now assume that the hypothesis holds for some n ≥ 3. Given a triangulation T of
the (n + 2)-gon with extreme vertex i, there must also be another extreme vertex j by
Lemma 3.10. We factor T →֒ ∆[n + 1] as

T −֒→ T ∪∆[n] −֒→ Λ{i,j}[n+ 1] −֒→ ∆[n + 1],

where the inclusion T ∪∆[n] →֒ ∆[n+1] is T ∪ di. The last inclusion is a generalized 2-
Segal horn inclusion (because i and j being extreme implies that they cannot be adjacent
on the (n+ 2)-gon), and so is a composite of pushouts of 2-Segal horn inclusions by the
previous lemma.

The inclusion T ∪∆[n] →֒ Λ{i,j}[n + 1] is a pushout of the inclusion

T ′ ∪∆[n− 1] ∆[n],T ∪di
′

where T ′ is the restriction of T to the dj face of ∆[n+1], and where i′ is the extreme vertex
of T ′ corresponding to the vertex i of T . By the inductive hypothesis, this inclusion
is a composite of pushouts of 2-Segal horn inclusions, and hence so is the composite
T ∪∆[n] →֒ ∆[n + 1].

The inclusion T →֒ T ∪∆[n] is a pushout of the inclusion T ′ →֒ ∆[n] and so is also a
composite of pushouts of 2-Segal horn inclusions by the inductive hypothesis. Therefore,
the entire composite inclusion T →֒ ∆[n+1] is such a composite of pushouts as well. �

For clarity, let us restate the main takeaway of the above lemma in the following
corollary.

Corollary 3.17. Every 2-Segal spine inclusion is a composite of pushouts of 2-Segal
horn inclusions.
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Because quasi-2-Segal sets are defined as simplicial sets with 2-Segal horn extensions,
Proposition 3.15 and Corollary 3.17 have the following corollary.

Corollary 3.18. Every quasi-2-Segal set has fillers of all 2-Segal spine inclusions and
generalized 2-Segal horn inclusions.

The above results are 2-Segal analogues of those about ordinary spines and (gener-
alized) inner horn inclusions first proved by Joyal [18, 52.6] [19, Prop. 2.12 & 2.13].
Putting them together, we get the following proposition.

Proposition 3.19. Given a Cisinski model structureM on sSet, the following are equiv-
alent:

(1) Every 2-Segal spine inclusion is a weak equivalence inM.
(2) Every 2-Segal horn inclusion is a weak equivalence inM.
(3) Every generalized 2-Segal horn inclusion is a weak equivalence inM.

Proof. That (3) follows from (1) is the content of Proposition 3.14. It is immediate that
(2) follows from (3) because every 2-Segal horn is also a generalized 2-Segal horn. That
(1) follows from (2) uses Corollary 3.17 plus the observation that all of the maps in
question are cofibrations (being monomorphisms) and hence are trivial cofibrations if
they are weak equivalences. Any composite of pushouts of trivial cofibrations is again a
trivial cofibration, hence a weak equivalence. �

Remark 3.20. One can show using arguments similar to this section’s that a simplicial
set X has unique 2-Segal spine extensions if and only if it has unique (generalized)
2-Segal horn inclusions, and hence that every 2-Segal set is a quasi-2-Segal set.

4. Path space criterion

One of the fundamental results of 2-Segal theory is that a simplicial space is 2-Segal if
and only if its path spaces (also known as its upper and lower décalage) are Segal spaces,
as first proved independently in [7, Thm. 6.3.2] and [11, Thm. 4.10]. The goal of this
section is to show that the analogous fact is true of quasi-2-Segal sets: a simplicial set
is quasi-2-Segal if and only if its path spaces are quasi-categories. We then see that this
criterion gives us access to a wide class of examples of quasi-2-Segal sets.

4.1. Path space criterion. We begin by recalling the definition of the path spaces of
a simplicial set.

Definition 4.1. Given a simplicial set X , the left path space P ⊳(X) is the simplicial
set whose n-simplices are maps ∆[0] ⋆ ∆[n] → X , and the right path space P ⊲(X) has
n-simplices given by maps ∆[n] ⋆∆[0]→ X .

Remark 4.2. In both cases, the n-simplices of the path space are (n+1)-simplices of X
because the join of ∆[0] and ∆[n] is ∆[n + 1]. However, the face and degeneracy maps
are inherited from X differently depending on which side we take the join.

Let us unpack what it means for the left path space P ⊳(X) to be a quasi-category.
Given n ≥ 2, an n-simplex in the path space ∆[n] → P ⊳(X) is an (n + 1)-simplex
∆[n + 1] → X , and the jth face of the n-simplex in the path space corresponds to the
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(j + 1) face of the (n + 1)-simplex in X . Therefore, an inner horn in the path space
Λi[n]→ P ⊳(X) corresponds to the 2-Segal horn Λ0,i+1[n+1]→ X . Notice that 0 < i < n
is precisely what we needed for 0, i+ 1 to be broken in {0, 1, . . . , n+ 1}. We record this
observation and the corresponding one for right path spaces in the following lemma.

Lemma 4.3. Given a simplicial set X, the left path space P ⊳(X) is a quasi-category if
and only if X has fillers of 2-Segal horns of the form Λ0,j[n], and the right path space
P ⊲(X) is a quasi-category if and only if X has fillers of 2-Segal horns of the form Λi,n[n].

Another way to phrase this observation is that the set of 2-Segal horn inclusions
missing the d0 face

{Λ0,j[n] →֒ ∆[n]}

is isomorphic to ∆[0]⋆IH. Similarly, the set of generalized 2-Segal horn inclusions missing
the d0 face is isomorphic to ∆[0] ⋆ GIH. Because the generalized inner horn inclusions
are in the saturated class generated by the inner horn inclusions, we also have

∆[0] ⋆ GIH ⊆ ∆[0] ⋆ IH,

as well as the dual statement taking the join on the other side, so we can strengthen this
statement as in the following corollary.

Corollary 4.4. Given a simplicial set X, the left path space P ⊳(X) is a quasi-category
if and only if X has fillers of generalized 2-Segal horns of the form Λ0,j1,j2,...,jr [n], and the
right path space P ⊲(X) is a quasi-category if and only if X has fillers of 2-Segal horns
of the form Λi1,i2,...,ir,n[n].

The path spaces of a simplicial set being quasi-categories is therefore an ostensibly
weaker condition than our definition of quasi-2-Segal set, because it does not directly say
that there are fillers of 2-Segal horns such as Λ1,3[4]. However, we see in the following
proposition that the remaining 2-Segal horns can be built from generalized 2-Segal horns
of the form Λ0,j1,j2,...,jr [n] and Λi1,i2,...,ir,n[n], so that the desired path space criterion does
in fact hold.

Proposition 4.5. Given 0 < i < j−1 < n−1, the 2-Segal horn inclusion Λi,j[n] →֒ ∆[n]
is a retract of a composite of pushouts of generalized 2-Segal horn inclusions which are
each missing an outer face.

Proof. We form the following retract diagram

Λi,j[n] Λ0,i,j,n,n+1[n + 1] ∪ (d0dn+1∆[n + 1]) ∪ (dndn+1∆[n + 1]) Λi,j[n]

∆[n] ∆[n+ 1] ∆[n] .
dn+1 sn

To see that the left-hand square is valid, observe that the d0 and dn faces of ∆[n]
correspond respectively to the d0dn+1 face and dndn+1 face of ∆[n+1], and for 0 < k < n
with k 6= i, j, the dk face of ∆[n] is sent to the dn face of the dk face of ∆[n+ 1], and so
is in dk∆[n + 1] ⊆ Λ0,i,j,n,n+1[n+ 1].
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For the right-hand square, the d0dn+1 face and dndn+1 face are respectively mapped
back to the d0 and dn faces of ∆[n], and for 0 < k < n with k 6= i, j, the dk face of
∆[n + 1] is collapsed onto the dk face of ∆[n], and so is in Λi,j[n].

This middle map can be built out of generalized 2-Segal horns which are each missing
an outer face, as shown in the following diagram:

Λ0,i,j[n] ∆[n]

Λ0,i,j,n,n+1[n + 1] ∪ (d0dn+1) ∪ (dndn+1) Λ0,i,j,n+1[n + 1] ∪ (d0dn+1) Λi,j,n+1[n+ 1] ∆[n + 1]

Λi−1,j−1,n[n] ∆[n] .

dn

d0

�

In other words, we have shown that the sets of inclusions ∆[0] ⋆ IH and IH ⋆ ∆[0]
generate the class of 2-Segal anodyne maps, yielding the following theorem.

Theorem 4.6 (Path Space Criterion). A simplicial set X is a quasi-2-Segal set if and
only if its path spaces are quasi-categories.

4.2. Examples. As a corollary of Theorem 4.6, we get a wide class of examples of quasi-
2-Segal sets coming from 2-Segal spaces. Recall that we view a simplicial space W as a
grid whose nth column is the simplicial set Wn, which is a Kan complex if W is vertical
Reedy fibrant.

Corollary 4.7. Given a vertical Reedy fibrant 2-Segal space W , each row of W is a
quasi-2-Segal set.

Proof. The left (resp. right) path space of a row of W is precisely the corresponding
row of the left (resp. right) path space of W , which is a Segal space by the path space
criterion for 2-Segal spaces [7, Thm. 6.3.2]. By [20, Cor. 3.6], each row of a Segal space is
a quasi-category. Since each of the path spaces of a given row of W are quasi-categories,
each row of W is a quasi-2-Segal set by Theorem 4.6. �

This corollary implies that for many constructions which output 2-Segal spaces, the
corresponding construction where one simply takes a set of n-simplices instead of a Kan
complex outputs quasi-2-Segal sets. In particular, our motivating example, the discrete
S• construction, indeed outputs quasi-2-Segal sets.

Example 4.8. (Discrete S•) Recall that every quasi-category X contains a maximal
Kan complex coreX ⊆ X . Dyckerhoff-Kapranov [7, Def. 7.3.1] define a simplicial space
S•(C) for C an exact quasi-category by taking a full subcomplex

Sn(C) ⊆ core(Map(N(Tn), C))

for each n ≥ 0, where T is a certain cosimplicial object in Cat they define in [7, §2.4].
This full subcomplex is taken to span the set of diagrams N(Tn)→ C satisfying axioms
they call (WS1), (WS2), and (WS3). To get a discrete version of this construction, we
can define

Sset
n (C) ⊆ Hom(N(Tn), C)
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as the subset of diagrams satisfying those three axioms. This discrete construction
Sset
• (C) is then the 0th row of the original construction S•(C), and so is a quasi-2-Segal

set by Corollary 4.7 because S•(C) is a 2-Segal space [7, Thm. 7.3.3].

5. Pushout-products and pushout-joins of 2-Segal anodyne maps

A compelling feature of quasi-categories is their characterization in terms of “having
a contractible space of composites for every composable pair of morphisms.” More
accurately, a simplicial set X is a quasi-category if and only if the map Map(∆[2], X)→
Map(Λ1[2], X) is a trivial fibration. This fact follows from the fact that the set (Λ1[2] →֒
∆[2])�Bdry generates the class of inner anodyne morphisms together with the adjoint
correspondence

(A×∆[n]) ∪ (B × ∂∆[n]) X ∂∆[n] Map(B,X)

B ×∆[n] ∗ ∆[n] Map(A,X) ,

in the case A →֒ B is the inner horn inclusion Λ1[2] →֒ ∆[2]. The goal of this section is to
show that the sets (Λ0,2[3] →֒ ∆[3])�Bdry and (Λ1,3[3] →֒ ∆[3])�Bdry together generate
the same saturated class as the 2-Segal horn inclusions. With that fact, we can apply
the correspondence above to conclude that a simplicial set X is quasi-2-Segal if and only
if the maps Map(∆[3], X) → Map(Λ0,2[3], X) and Map(∆[3], X) → Map(Λ1,3[3], X) are
trivial fibrations.

To show that (Λ0,2[3] →֒ ∆[3])�Bdry ∪ (Λ1,3[3] →֒ ∆[3])�Bdry generates the class of
2-Segal anodyne maps, we use the following diagram

2SH ((Λ0,2[3] →֒ ∆[3])�Bdry) ∪ ((Λ1,3[3] →֒ ∆[3])�Bdry)

∆[0] ⋆ IH ∪ IH ⋆∆[0] ((Λ0,2[3] →֒ ∆[3])�Mono) ∪ ((Λ1,3[3] →֒ ∆[3])�Mono)

(a)

(b)

(c)

(d)

where an arrow S → T indicates that S ⊆ T . We may conclude that all four sets
generate the same saturated class once we prove the existence of each of these arrows.
We note that (a) is the observation from Section 4 that the set ∆[0] ⋆ IH is the set of
2-Segal horn inclusions of the form Λ0,j[n] →֒ ∆[n] and the corresponding statement for
IH ⋆∆[0], while (c) follows from the fact that S�T ⊆ S�T for any sets of maps S and
T together with the fact that Bdry = Mono. Our task for the remainder of this section
is therefore to prove (b) and (d). We begin by proving (b).

Proposition 5.1. Every 2-Segal horn inclusion of the form Λ0,j[n] →֒ ∆[n] is a retract
of the inclusion (Λ0,2[3] →֒ ∆[3])�(Λ0,j[n] →֒ ∆[n]), and every 2-Segal horn inclusion of
the form Λi,n[n] →֒ ∆[n] is a retract of the inclusion (Λ1,3[3] →֒ ∆[3])�(Λi,n[n] →֒ ∆[n]).

Proof. By symmetry, it suffices to prove the first statement. Our retract diagram is
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Λ0,j[n] (Λ0,2[3]×∆[n]) ∪ (∆[3]× Λ0,j[n]) Λ0,j[n]

∆[n] ∆[3]×∆[n] ∆[n]
f p

where we define f and p as the following poset maps:

f(ℓ) =



















(0, ℓ) if ℓ = 0

(1, ℓ) if 0 < ℓ < j

(2, ℓ) if ℓ = j

(3, ℓ) if ℓ > j

and

p(a, b) =







































0 if a = 0

b if a = 1 and 0 ≤ b ≤ j

j if a = 1 and b > j

j if a = 2

j if a = 3 and b ≤ j

b if a = 3 and b > j .

A case-by-case check shows that pf = id∆[n]. We also have f(Λ0,j[n]) ⊆ ∆[3] × Λ0,j [n]
since f is the identity on the second component, justifying the lefthand square. It
now remains to verify the righthand square by checking that the restriction of p to
Λ0,2[3]×∆[n] and to ∆[3]× Λ0,j[n] lands in Λ0,j[n] ⊆ ∆[n].

To see that Λ0,2[3]×∆[n] lands in Λ0,j [n], we observe that

p(d3∆[3]×∆[n]) ⊆ d{0,1,...,j}∆[n] ⊆ Λ0,j[n]

because j < n (since {0, j} ⊆ {0, 1, . . . , n} is broken). We also have

p(d1∆[3]×∆[n]) ⊆ d{0,j,j+1,...,n}∆[n] ⊆ Λ0,j[n]

because j > 1 (so d{0,j,j+1,...,n}∆[n] ⊆ d1∆[n]).
To see that ∆[3]× Λ0,j[n] lands in Λ0,j [n], first take 0 < k < j. We then have

p(∆[3]× dk∆[n]) ⊆ dk∆[n] ⊆ Λ0,j[n]

because the only vertex of ∆[3]×∆[n] which maps to k is (1, k) which is not in ∆[3]×
dk∆[n]. Now if we take j < k ≤ n, we similarly have

p(∆[3]× dk∆[n]) ⊆ dk∆[n] ⊆ Λ0,j[n]

because the only vertex of ∆[3]×∆[n] which maps to k is (3, k) which is not in ∆[3]×
dk∆[n]. �

We now turn to proving (d), for which we first need a lemma about pushout-joins.

Lemma 5.2. Given an anodyne inclusion f and an inner anodyne inclusion g, their
pushout-joins f ⋆ g and g ⋆ f are 2-Segal anodyne.
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Proof. By symmetry, it suffices to show that f ⋆ g is 2-Segal anodyne. Furthermore, it
suffices to consider the special case where f is a horn inclusion Λi[n]→ ∆[n] and g is an
inner horn inclusion Λj[k] →֒ ∆[k]. In this case, the pushout-join

(Λi[n] ⋆∆[k]) ∪ (∆[n] ⋆ Λj[k]) −֒→ ∆[n] ⋆∆[k]

turns out to be isomorphic to the 2-Segal horn inclusion

Λi,n+j+1[n + k + 1] →֒ ∆[n + k + 1].

To see why, we start with the fact that ∆[n] ⋆∆[k] ∼= ∆[n+ k+ 1]. We then observe for
0 ≤ ℓ ≤ n that dℓ∆[n] ⋆∆[k] corresponds to the dℓ face of ∆[n+ k+1], and similarly for
0 ≤ ℓ ≤ k that ∆[n]⋆dℓ∆[k] corresponds to the dn+ℓ+1 face of ∆[n+k+1]. We therefore
have that Λi[n] ⋆∆[k] is the union of the d0 to dn faces of ∆[n+ k+1] except for di and
that ∆[n]⋆Λj [k] is the union of the dn+1 to dn+k+1 faces of ∆[n+k+1] except for dn+j+1,
hence they together form Λi,n+j+1[n + k + 1], which is 2-Segal because 0 < j < k. �

Remark 5.3. The argument in the previous lemma also works to show that if f and g
are both left anodyne or both right anodyne then their pushout-join is 2-Segal anodyne,
since i and n+ j + 1 are not adjacent modulo n+ k + 1 in those cases as well.

We are now ready to prove (d). In fact, we prove a stronger statement, and (d) is the
special case when A →֒ B is Λ1[2] →֒ ∆[2].

Proposition 5.4. Given an inner anodyne map A →֒ B, the pushout-products

(∂∆[n] →֒ ∆[n])�(∆[0] ⋆ A →֒ ∆[0] ⋆ B)

and
(∂∆[n] →֒ ∆[n])�(A ⋆∆[0] →֒ B ⋆∆[0])

are 2-Segal anodyne.

Proof. By symmetry, it suffices to prove the first claim, so we would like to show that
the inclusion

(∂∆[n]× (∆[0] ⋆ B)) ∪ (∆[n]× (∆[0] ⋆ A)) −֒→ (∆[n]× (∆[0] ⋆ B))

is 2-Segal anodyne. Let us denote these simplicial sets by Y = (∂∆[n] × (∆[0] ⋆ B)) ∪
(∆[n]× (∆[0] ⋆ A)) and Z = ∆[n]× (∆[0] ⋆ B).

We begin by observing that Z decomposes into a set of pieces Z0, Z1, . . . , Zn, where
Zi is the full subcomplex spanning (the set of vertices of)

(d{0,1,...,i}∆[n]× ∗) ∪ (d{i,i+1,...,n}∆[n]×B).

Here is a schematic of what these pieces are for n = 2:

Z2 Z1 Z0

0 0 0 B

1 1 B B

2 B B B .
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For each 0 ≤ i < n, denote by Wi+1,i the intersection of Zi and Zi+1, which is the full
subcomplex spanning (the set of vertices of)

(d{0,1,...,i}∆[n]× ∗) ∪ (d{i+1,i+2,...,n}∆[n]×B).

Note that for any other 0 ≤ i < j ≤ n, the intersection Zj ∩Zi is contained in Wℓ+1,ℓ for
each i ≤ ℓ < j, so in the following poset of subcomplexes of ∆[n]× (∆[0] ⋆ B)

Zn Zn−1 Zi+1 Zi Z1 Z0

Wn,n−1 · · · Wi+1,i · · · W1,0

each intersection (Zn ∪ Zn−1 ∪ . . . Zi+1) ∩ Zi is still Wi+1,i.
We now observe that each Zi is isomorphic to ∆[i] ⋆ (∆[n − i] × B) while Wi+1,i is

isomorphic to ∆[i] ⋆ (∆[n− i− 1]×B). We can more suggestively write Wi+1,i → Zi ←
Wi,i−1 as

(d{0,...,i}∆[n]) ⋆ (d{i,...,n}∆[n]×B)

(d{0,...,i}∆[n]) ⋆ (d{i+1,...,n}∆[n]× B) (d{0,...,i−1}∆[n]) ⋆ (d{i,...,n}∆[n]× B) .

We now use the breakdown above to describe how to build Z from Y = (∂∆[n] ×
(∆[0] ⋆ B)) ∪ (∆[n]× (∆[0] ⋆ A)). We do so by gluing in the missing part of each Zi one
at a time, starting with Zn and working down to Z0.

Let Yn denote the intersection of Y with Zn. We would like to see that the inclusion
Yn →֒ Zn is 2-Segal anodyne. In the case i = n, the isomorphism noted above reduces
to Zn

∼= ∆[n] ⋆B. The pieces of Yi from ∆[n]× (d{n}∆[n] ⋆ A) correspond to ∆[n] ⋆ A ⊆
∆[n] ⋆ B and the pieces of Yi from ∂∆[n]× (d{n}∆[n] ⋆ B) correspond to (dn∆[n] ⋆ B) ∪
(Λn[n] ⋆B). To see the latter claim, take 0 ≤ ℓ < n, then (dℓ∆[n]×B)∩Zn corresponds
to dℓ∆[n] ⋆ B in ∆[n] ⋆ B. Meanwhile, the intersection of dn∆[n] × B with Zn is only
dn∆[n] ⊆ ∆[n] ⋆ B. Altogether, we see that Yn →֒ Zn is isomorphic to the pushout-join
(Λn[n] →֒ ∆[n]) ⋆ (A →֒ B), which we know is 2-Segal anodyne by Lemma 5.2 because
A →֒ B is inner anodyne.

Now, assume we have glued in Zn, Zn−1, . . . , Zi+1 for some 0 < i < n. Let Yi denote
the intersection of Zi with Y ∪Wi,i+1, which is precisely the part of Zi which has not
been glued in yet. We claim that Yi →֒ Zi is isomorphic to the inclusion of

(

Λi[i] ⋆ (∆[n− i]× B)
)

∪ (∆[i] ⋆ (∂∆[n− i]× B)) ∪ (∆[i] ⋆ (∆[n− i]× A))

into ∆[i] ⋆ (∆[n− i]× B), which is precisely the inclusion

(Λi[i] →֒ ∆[i]) ⋆ ((∂∆[n − i] →֒ ∆[n− i])�(A →֒ B)) ,

which is 2-Segal anodyne by Lemma 5.2 because (∂∆[n − i] →֒ ∆[n − i])�(A →֒ B)
is inner anodyne. Let us justify our claim. First, the part of Zi in ∆[n] × (∆[0] ⋆ A)
corresponds to ∆[i] ⋆ (∆[n− i]×A). For 0 ≤ ℓ < i, the intersection of Zi with dℓ∆[n]×
(∆[0] ⋆ B) corresponds to dℓ∆[i] ⋆ (∆[n − i] × B), which together form Λi[i] ⋆ (∆[n −
i] × B). For i < ℓ ≤ n, the intersection of Zi with dℓ∆[n] × (∆[0] ⋆ B) corresponds to
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∆[i]⋆ (dℓ−i∆[n− i]×B), which together form ∆[i]⋆ (Λ0[n− i]×B). The remaining piece
is ∆[i] ⋆ (d0∆[n− i]× B), which corresponds to Wi+1,i.

Suppose now that we have glued in each Zi except for Z0, and let Y0 denote the
intersection of Z0 with Y ∪W0,1, which is precisely the part of Z0 which has not been
glued in yet. A similar check as for i > 0 shows that Y0 →֒ Z0 is isomorphic to

∆[0] ⋆ ((∂∆[n] →֒ ∆[n])�(A →֒ B)) .

�

We have now proved our desired proposition.

Proposition 5.5. The class of 2-Segal anodyne maps is generated by the set
(

(Λ0,2[3] →֒ ∆[3])�Bdry
)

∪
(

(Λ1,3[3] →֒ ∆[3])�Bdry
)

,

as well as by the class
(

(Λ0,2[3] →֒ ∆[3])�Mono
)

∪
(

(Λ1,3[3] →֒ ∆[3])�Mono
)

.

Using the adjoint correspondence discussed in the beginning of the section, we have
the following corollary.

Corollary 5.6. A simplicial set X is quasi-2-Segal if and only if the maps

Map(∆[3], X)→ Map(Λ0,2[3], X) and Map(∆[3], X)→ Map(Λ1,3[3], X)

are trivial fibrations.

The following corollary is one of our ingredients for producing a model structure in
the next section.

Corollary 5.7. The pushout-product of a 2-Segal anodyne map with a monomorphism
is again 2-Segal anodyne, i.e.,

2SH�Mono ⊆ 2SH.

Proof. Using Proposition 5.5, we have

2SH�Mono = ((Λ0,2[3] →֒ ∆[3]) ∪ (Λ0,2[3] →֒ ∆[3]))�Bdry�Mono,

which is contained in

((Λ0,2[3] →֒ ∆[3]) ∪ (Λ0,2[3] →֒ ∆[3]))�Bdry�Mono.

Since the pushout-product preserves monomorphisms, this class is contained in

((Λ0,2[3] →֒ ∆[3]) ∪ (Λ0,2[3] →֒ ∆[3]))�Mono,

which is precisely 2SH by Proposition 5.5. �

As a further corollary, we see that mapping spaces of quasi-2-Segal sets are themselves
quasi-2-Segal sets, generalizing another fundamental property of quasi-categories.

Corollary 5.8. Given a simplicial set X and a quasi-2-Segal set Y , the simplicial set
Map(X, Y ) is quasi-2-Segal.
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Proof. Given a 2-Segal anodyne map A →֒ B, the inclusion A × X →֒ B × X is also
2-Segal anodyne by applying Corollary 5.7 with the inclusion ∅ →֒ X . Therefore, given
a lifting problem as on the right below,

A×X Y A Map(X, Y )

B ×X ∗ B ∗ ,

there is a lift because we can solve the adjoint lifting problem on the left. �

6. The model structure for quasi-2-Segal sets

In this section, we show that quasi-2-Segal sets have fillers of J-augmented horn inclu-
sions, which is analogous to the special outer horn lifting property of quasi-categories.
By combining this result with our previous results, we get a model structure for quasi-
2-Segal sets. We then use our model structure to prove a quasi-2-Segal version of the
edgewise subdivision criterion from [3].

6.1. Augmented horn lifting. Recall that J is the nerve of the free-living isomorphism
(which has two objects and exactly one morphism in every hom set), and that a J-
augmented horn inclusion Λi[n]Jj→j+1 →֒ ∆[n]Jj→j+1 is an ordinary horn inclusion Λi[n] →֒
∆[n] for n ≥ 2 and 0 ≤ i ≤ n with a copy of J glued in along the j → j + 1 edge, where
j = i − 1 or j = i. We think of ∆[n]Jj→j+1 as a homotopy from the dj+1 face to the dj
face, and that the J-augmented horn is a homotopy of the boundaries of those faces.

We begin by showing that in a quasi-2-Segal set we can “invert” a given homotopy
∆[n]Jj→j+1, and in fact that we may (coherently) specify the inverse of any subset of its

faces dk∆[n]Jj→j+1 for k 6= j, j + 1 (which are each isomorphic to ∆[n− 1]Jj′→j′+1).

Lemma 6.1. Let X be a quasi-2-Segal set. Given n ≥ 2 and an n-simplex h of X whose
j → j + 1 edge is the 0→ 1 edge of some a : J → X, there exists an (n + 2)-simplex H
where d{j,j+1,j+2,j+3}H is the 3-simplex 0→ 1→ 0→ 1 of a : J → X, and where dj+1H
is sjh and dj+2H = sj+1h. Furthermore, we are free to specify any number of the faces
dkH for 0 ≤ k < j and j +3 < k ≤ n as long as they agree with the given data and with
each other.

Proof. We proceed by induction on n. For the base case n = 2, we form a 2-Segal horn
Λj,j+3[4]→ X as follows: for k 6∈ {j, j+1, j+2, j+3} (so k = 0 if j = 1 and k = 4 if j = 0)
we let dkΛ

j,j+3[4] be the 0→ 1→ 0→ 1 face of a : J → X , while we let dj+1Λ
j,j+3[4] be

sjh and let dj+2Λ
j,j+3[4] = sj+1h. Because X is quasi-2-Segal, this 2-Segal horn has a

filler H : ∆[4] → X which satisfies the desired conditions by construction because dkH
is precisely d{j,j+1,j+2,j+3}H in this case, which also shows that the additional claim does
not add anything for this case.

Now assume the hypothesis holds for some n ≥ 2. Given an (n + 1)-simplex h of X
whose j → j + 1 edge is the 0 → 1 edge of some a : J → X , take any 0 ≤ k < j or
j+3 < k ≤ n and apply the inductive hypothesis to dkh, yielding an (n+2)-simplex H ′.
We then form the generalized 2-Segal horn Λ{k,j+1,j+2}[n+3]→ X where the dk face is H

′

and we let the dj+1 face be sjh and let the dj+2 face be sj+1h. The filler H : ∆[n+3]→ X
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then satisfies the desired conditions by construction. To specify a certain subset of the
faces of H corresponding to a set of indices S ⊆ {0, 1, . . . , j − 1, j + 4, j + 5, . . . , n},
rather than apply the inductive hypothesis we instead form the generalized 2-Segal horn
ΛS∪{j+1,j+2}[n+3]→ X where the dj+1 and dj+2 are as before, but the dk faces for k ∈ S
are those we are specifying. �

Proposition 6.2 (J-augmented horn lifting). Every quasi-2-Segal set has fillers of J-
augmented horn inclusions.

Proof. Let X be a quasi-2-Segal set, and take a horn λ : Λi[n] → X for some n ≥ 2,
0 ≤ i ≤ n, and whose j → j + 1 edge is the 0 → 1 edge of some a : J → X for either
j = i− 1 or j = i. Without loss of generality assume j = i.

If n = 2, again without loss of generality assume j = 0. Then we can form the 2-Segal
horn Λ0,2[3] → X where the d3 face is the 2-simplex 0 → 1 → 0 of J and the d1 face is
s1d1λ. This 2-Segal horn has a filler τ where d2τ is a filler for the original horn λ.

Now assume n ≥ 3. Our goal is to construct a 2-Segal horn λ′ : Λi,i+2[n + 1] → X
which restricts to Λi[n] along di+2. First, we let the di+1 face be sidi+1λ. Then, for
each k < i, we apply the previous lemma to dkλ to get an (n + 1)-simplex Hk and let
dkλ

′ = Hk, and similarly for k > i + 1 we apply the lemma to dkλ to get Hk and let
dk+1λ

′ = Hk. We may ensure that these faces agree on their intersection by building
each Hk one at a time and specifying its faces, as allowed by the lemma. �

Remark 6.3. The special outer horn lifting property is usually stated in terms of the
edge 0→ 1 or the edge (n−1)→ n being an equivalence in our quasi-category X , mean-
ing it becomes an isomorphism in the homotopy category of X , rather than extending
to a copy of J . However, these two conditions are the same in quasi-categories. Given
that fact, our approach here gives a more direct proof of the special outer horn lifting
property of quasi-categories than in previous sources, such as the original [17], whose
arguments involve more abstract methods, transferring the special horn lifting problem
to an adjoint lifting problem.

Remark 6.4. A missing ingredient for making this result a true generalization of special
outer horn lifting is a proof that an edge in a quasi-2-Segal set X extends to some
J → X if and only if it becomes an “isomorphism” in the “homotopy 2-Segal set”.
While something along these lines might be turn out to be true, we see in Appendix
A.1 that the idea of the “homotopy 2-Segal set of a quasi-2-Segal set” does not work as
nicely as that of the homotopy category of a quasi-category does.

6.2. The model structure. Recall from [8] the notion of a homotopically-behaved model
structure, which is a Cisinski model structure on sSet whose fibrant objects have fillers of
all J-augmented horn inclusions. One of our main results from that paper is a relatively
simple criterion for a set of inclusions to yield such a model structure.

Corollary 6.5. [8] Given a set of monomorphisms S of simplicial sets such that the set
of pushout-products S�(∂∆[1] →֒ ∆[1]) is contained in S, there exists a homotopically-
behaved model structure on sSet whose fibrant objects are those with lifts against S and
all J-augmented horn inclusions.
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We showed that the set S = 2SH satisfies the hypothesis of Corollary 6.5 in Corollary
5.7, which means that we have a homotopically-behaved model structure on sSet where
the fibrant objects are precisely the quasi-2-Segal sets with fillers of J-augmented horn
inclusions. However, we saw in Proposition 6.2 that all quasi-2-Segal sets have fillers of
J-augmented horn inclusions, so the fibrant objects of this model structure are in fact
precisely the quasi-2-Segal sets. Furthermore, Proposition 3.19 implies that this model
structure is the localization of the minimal model structure at the set of 2-Segal spine
inclusions. We have therefore proved the following theorem.

Theorem 6.6. There exists a Cisinski model structure on sSet whose fibrant objects are
precisely the quasi-2-Segal sets. This model structure is the localization of the minimal
model structure at the set of 2-Segal spine inclusions, and it is homotopically-behaved in
the sense of [8].

By [19, Prop. E.1.10], a model structure is uniquely determined by its cofibrations and
fibrant objects, so the model structure in Theorem 6.6 is necessarily unique. A more
complete description of this model structure, including a characterization of the weak
equivalences, comes from Cisinski’s general theory; see [6, Def. 2.4.18].

6.3. Edgewise subdivision. We may use our model structure to prove a quasi-2-Segal
set analogue of the edgewise subdivision criterion from [3], which says that a simplicial
object is 2-Segal if and only if its edgewise subdivision is Segal. Recall that there is a
functor ε : ∆ → ∆ which sends [n] to [n]op ⋆ [n] ∼= [2n + 1], which induces a functor
esd : sSet → sSet sending a simplicial set X to its edgewise subdivision esdX = X ◦ ε.
The goal of this subsection is to show that a simplicial set X is a quasi-2-Segal set if and
only if its edgewise subdivision is a quasi-category.

We begin by unpacking what it means for the edgewise subdivision to be a quasi-
category. An n-simplex of the edgewise subdivision esdX corresponds to a (2n + 1)-
simplex of X , with the dℓ face corresponding to the dn−ℓdn+1+ℓ face of that (2n + 1)-
simplex. A horn Λi[n] in the edgewise subdivision therefore corresponds to a map Ai[2n+
1]→ X where Ai[2n+1] →֒ ∆[2n+ 1] is the union of each dn−ℓdn+1+ℓ face for 0 ≤ ℓ < i
and i < ℓ ≤ n. We therefore see that the edgewise subdivision being a quasi-category is
equivalent to the simplicial set X having lifts of each Ai[2n + 1] → X for every n ≥ 2
and 0 < i < n. We also observe that the j → j+1 edge of an n-simplex in the edgewise
subdivision corresponds to the 3-simplex (n−j−1)→ (n−j)→ (n+j+1)→ (n+j+2)
of ∆[2n + 1], so the spine of the n-simplex corresponds to the union I[2n + 1] of those
3-simplices for 0 ≤ j < n. With these preliminary observations, we are ready to prove
the edgewise subdivision criterion.

Proposition 6.7 (Edgewise subdivision criterion). A simplicial set X is a quasi-2-Segal
set if and only if its edgewise subdivision is a quasi-category.

Proof. We begin by showing the forward implication. Because the quasi-2-Segal sets are
the fibrant objects in our model structure, they have lifts of all inclusions which are
weak equivalences. Therefore, to show that the edgewise subdivision of every quasi-2-
Segal set is a quasi-category, it suffices to show that each Ai[2n + 1] →֒ ∆[2n + 1] is
a weak equivalence in our model structure. However, the arguments in [20, Lem. 3.5]
apply just as readily to show that every Ai[2n + 1] →֒ ∆[2n + 1] (corresponding to an
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inner horn inclusion) is a weak equivalence if every I[2n + 1] →֒ ∆[2n + 1] is a weak
equivalence. But restricting I[2n + 1] along Λ0,2[3] →֒ ∆[3] for each non-degenerate 3-
simplex of I[2n + 1] yields a triangulation T of the (2n + 2)-gon, and therefore a weak
equivalence T →֒ I[2n+1]. Because the inclusion T →֒ ∆[2n+1] is a weak equivalence,
so is I[2n + 1] →֒ ∆[2n + 1] by the 2-out-of-3 property. We have therefore shown that
the edgewise subdivision of a quasi-2-Segal set is necessarily a quasi-category.

We now show the reverse implication. As discussed above, the edgewise subdivision of
X being a quasi-category is equivalent to X having fillers of the inclusions Ai[2n+1] →֒
∆[2n+1]. To show that this condition impliesX is a quasi-2-Segal set, we show that every
2-Segal horn inclusion of the form Λ0,j[k] →֒ ∆[k] is a retract of Aj−1[2k−1] →֒ ∆[2k−1].
This fact, together with its dual, implies that X is a quasi-2-Segal set by Theorem 4.6.

Given k ≥ 3 and 2 ≤ j ≤ k, let us show that Λ0,j[k] →֒ ∆[k] is a retract of Aj−1[2k −
1] →֒ ∆[2k − 1]. First, we define the retract

∆[k] ∆[2k − 1] ∆[k] .
f p

where f maps 0 7→ k− j and ℓ 7→ k− 1+ ℓ for ℓ > 0, and where p maps ℓ 7→ 0 for ℓ < k
and ℓ 7→ ℓ− k + 1 for ℓ ≥ k. We then have

f(dℓ∆[k]) ⊆ dk−ℓdk+ℓ−1 ⊆ Aj−1[2k − 1]

if 0 < ℓ < j or j < ℓ ≤ k, as well as

p(dk−1+ℓ∆[2k − 1]) ⊆ dℓ∆[k]

for each 1 < ℓ ≤ k, which altogether says we have our desired retract diagram

Λ0,j[k] Aj−1[2k − 1] Λ0,j[k]

∆[k] ∆[2k − 1] ∆[k] .
f p

We have therefore shown that a simplicial set is a quasi-2-Segal set if its edgewise sub-
division is a quasi-category. �

Remark 6.8. We expect a stronger statement to hold, that the set of inclusions {Ai[2n+
1] →֒ ∆[2n+1]} actually generates the class of 2-Segal anodyne inclusions, which would
yield a direct proof of the edgewise subdivision criterion without appealing to a model
structure. Our proof of Proposition 6.7 shows one of the necessary containments of this
stronger statement, but we do not show that each Ai[2n + 1] →֒ ∆[2n + 1] is 2-Segal
anodyne, only that each is a weak equivalence in the quasi-2-Segal model structure.

7. Quasi-2-Segal sets vs 2-Segal spaces

A vital aspect of (∞, 1)-category theory is the pair of adjunctions between simplicial
sets and simplicial spaces providing Quillen equivalences between the Joyal model struc-
ture and Rezk’s model structure for complete Segal spaces, first proved in [20]. (The
idea of a Quillen equivalence is that it provides the appropriate notion of equivalence for
model categories; see [16, §1.3] for an explicit definition.) Since each model of (∞, 1)-
category has its benefits in different situations, it can be extremely helpful to be able to
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move freely between them. Our goal in this section is to prove that the same adjunc-
tions provide Quillen equivalences between our quasi-2-Segal set model structure and
a model structure for complete 2-Segal spaces. This result follows with relatively little
extra work from very general results of Ara [1], building on Cisinski’s work in [5], which
gives an explicit description of a model structure on ssSet that is Quillen equivalent to
our quasi-2-Segal set model structure. What we show here is that the model structure
from Ara’s framework is precisely the same as the model structure one gets by naively
generalizing the model structure for complete Segal spaces due to Rezk [25].

Recall the adjunctions

sSet ssSet sSet

p∗1

i∗1

t!

t!

⊣⊣

from [20], where p∗1 is the functor sending a simplicial set X its corresponding discrete
simplicial space, and where the functors t! and t! are as described in the paragraph before
[20, Lem. 2.11]. Viewing a simplicial space W as a grid of sets where the nth column is
the simplicial set Wn, the functor p∗1 gives a “horizontal embedding” of sSet into ssSet.

One of the characterizations of completeness for Segal spaces is being local with re-
spect to the inclusion p∗1({0} →֒ J) [25, Prop. 6.4]. We take this as our definition for
completeness of 2-Segal spaces.

Definition 7.1. We say that a vertical Reedy fibrant 2-Segal space W is complete if the
map

Map(p∗1(J),W )→ Map(p∗1∆[0],W ) ∼= W0

induced by p∗1({0} →֒ J) is a Kan-Quillen weak equivalence.

We therefore get a Cisinski model structure on ssSet whose fibrant objects are complete
2-Segal spaces by localizing the 2-Segal model structure from [7] at the map p∗1({0} →֒ J).
We can now state the main theorem of this section.

Theorem 7.2. The adjunctions p∗1 ⊣ i∗1 and t! ⊣ t! are Quillen equivalences between
the model structure for quasi-2-Segal sets and the model structure for complete 2-Segal
spaces.

Warning 7.3. Other notions of completeness for 2-Segal spaces have been defined in
the literature—Dyckerhoff-Kapranov offer a definition in [7, Rmk. 9.3.13], and Gálvez-
Kock-Tonks also have a different definition in [12, Def. 2.1]—but neither of these is a
generalization of completeness for Segal spaces in the spirit of our definition.

However, Gálvez-Kock-Tonks also refer to a condition they call Rezk completeness
[12, 5.13], which is in the same spirit as our definition of completeness, but is a direct
generalization of the definition in [25, §6]. This definition of Rezk completeness for 2-
Segal spaces is also used in [13] and [14]. (Recall that these sources refer to 2-Segal
spaces as decomposition spaces.) For a general 2-Segal space their definition of Rezk
completeness is stronger than Definition 7.1, as we discuss below in Subsection 7.1.

The goal of the remainder of this section is to prove Theorem 7.2. We begin by
explaining the model structure on simplicial spaces we get from Ara’s theory, and then
showing this model structure is precisely the complete 2-Segal space model structure.
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Let us state Ara’s theorem in our particular setting.

Proposition 7.4. The adjunctions p∗1 ⊣ i∗1 and t! ⊣ t! are Quillen equivalences between
the model structure for quasi-2-Segal sets and the localization of the vertical Reedy model
structure on ssSet at the class of maps

p∗1(S) ∪ {p
∗
1(({0} × Y ) →֒ (J × Y )) | Y ∈ sSet},

where S is the set of 2-Segal spine inclusions, or, equivalently, where S = 2SH.

Proof. Apply [1, Thm. 4.11] to the case where A = ∆ and where the model structure is
our model structure for quasi-2-Segal sets. The description of the localizing maps is [1,
4.1]. Either choice of the set S works because the model structure for quasi-2-Segal sets
is the localization of the minimal model structure either at 2SH or at the set of 2-Segal
spine inclusions by Proposition 3.19. �

In other words, the model structure from Ara’s theory is the localization of the model
structure for complete 2-Segal spaces at the maps

{p∗1(({0} × Y ) →֒ (J × Y )) | Y ∈ sSet}.

Our goal is therefore to show that these model structures are the same by showing that
these maps must necessarily be weak equivalences in the model structure for complete
2-Segal spaces. Because each of the maps in

p∗1(2SH) ∪ {p
∗
1({0} →֒ J)}

is a monomorphism and hence a trivial cofibration, it suffices to show that each p∗1(({0}×
Y ) →֒ (J×Y )) is in the saturated class generated by p∗1(2SH)∪{p

∗
1({0} →֒ J)}. However,

because p∗1 is a left adjoint and so preserves colimits, it suffices to show that each ({0}×
Y ) →֒ (J×Y ) is in the saturated class generated by 2SH∪{{0} →֒ J)} in sSet. But each
({0} × Y ) →֒ (J × Y ) is the pushout-product (∅ →֒ Y )�({0} →֒ J), and we showed in
[9] that these pushout-products are in the saturated class generated by a set of certain
inclusions we call iso-horn inclusions. It therefore suffices to show that these iso-horn
inclusions are each in 2SH ∪ {{0} →֒ J}. Let us give a definition of iso-horn inclusions.

Definition 7.5. Fix n ≥ 1 and 0 ≤ i ≤ n−1, denote by ∇i[n] the nerve of the category
[n]i

0 . . . i− 1 i i+ 1 i+ 2 . . . n .

We call ∇i[n] an isoplex. For 0 ≤ j ≤ n, we let the jth face of the isoplex ∇i[n], denoted
dj∇i[n], be the full subcomplex on all but the jth vertex. Let Vi[n] be the union of
all of the faces dj∇i[n] except for j = i. We call Vi[n] an iso-horn, and the inclusion
Vi[n] →֒ ∇i[n] an iso-horn inclusion. Denote by IsoHorn the set of all iso-horn inclusions.

Observe that when j = i or i+1, the jth face of ∇i[n] is an (n− 1)-simplex ∆[n− 1],
and otherwise it is an (n − 1)-isoplex. We can view an isoplex as an “isomorphism of
(n− 1)-simplices” from the i+1 face to the ith face. Similarly, we can view an iso-horn
Vi[n] as an (n− 1)-simplex extended by an isomorphism along its boundary.

We get the following proposition as a consequence of our results in [9].
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Proposition 7.6. For every simplicial set Y , the inclusion ({0} × Y ) →֒ (J × Y ) is in
IsoHorn.

Proof. Since the inclusion ({0}×Y ) →֒ (J×Y ) is the pushout-product (∅ →֒ Y )�({0} →֒
J), we may use the fact that the class of pushout-products (X →֒ Y )�({0} →֒ J) for all
inclusions X →֒ Y generates the same saturated class as the set of iso-horn inclusions,
as we showed in [9]. �

By this proposition, to show that each inclusion ({0} × Y ) →֒ (J × Y ) is in the
saturated class generated by 2SH ∪ {{0} →֒ J}, it is enough to prove that the set

IsoHorn is contained in 2SH ∪ {{0} →֒ J}. Furthermore, because {0} →֒ J is precisely
the iso-horn V0[1] →֒ ∇0[1], it suffices to prove the following lemma.

Lemma 7.7. For each n ≥ 2 and 0 ≤ i < n, the iso-horn inclusion Vi[n] →֒ ∇i[n] is in
2SH.

Proof. Let Bℓ be the unique (n + 2ℓ− 1)-simplex of ∇i[n] traced by the path

0→ 1→ . . .→ i→ (i+1)→ i→ (i+1)→ . . .→ i→ (i+1)→ i→ (i+2)→ . . .→ n,

which passes through the i+1 vertex ℓ times. The (n−1)-simplex B0 is simply di+1∇i[n]
which is in Vi[n]. Every k-simplex of ∇i[n] is contained in Bn for some n ≥ 0, so we can
decompose our iso-horn inclusion as

Vi[n] = Vi[n] ∪B0 →֒ Vi[n] ∪ B1 →֒ . . . →֒ Vi[n] ∪ Bi →֒ . . .∇i[n].

But each inclusion Vi[n] ∪ Bℓ−1 →֒ Vi[n] ∪ Bℓ is a pushout of a 2-Segal horn inclusion
Λi,i+2ℓ[n + 2ℓ − 1] →֒ ∆[n + 2ℓ − 1]. To see why, observe that each face djBℓ for j < i
or j > i + 2ℓ is contained in Vi[n + 2ℓ − 1], while for i < j < i + 2ℓ the face djBℓ

is a degeneracy of a simplex contained in Bℓ−1. Meanwhile, the face didi+2ℓBℓ is not
contained in Bℓ−1 because it is non-degenerate yet passes through the i + 1 vertex ℓ
times, and it is not contained in Vi[n] because it contains the di face of ∇i[n]; the faces
diBℓ and di+2ℓBℓ are therefore not in Vi[n]∪Bℓ either. We have shown that our iso-horn
inclusion is a countable composite of pushouts of 2-Segal horn inclusions, proving the
lemma. �

We have now proved Theorem 7.2. Let us summarize the argument.

Proof of Theorem 7.2. By Proposition 7.6, the inclusions ({0} × Y ) →֒ (J × Y ) are in

IsoHorn, and by Lemma 7.7 we have IsoHorn ⊆ 2SH ∪ {{0} →֒ J}. Because the left
adjoint p∗1 preserves colimits, we therefore have that each inclusion

p∗1 (({0} × Y ) →֒ (J × Y ))

is a trivial cofibration, and hence a weak equivalence in the model structure for complete
2-Segal spaces because it is contained in the saturated class generated by the set of in-
clusions p∗1(2SH)∪{p

∗
1({0} →֒ J)} which are all trivial cofibrations. The model structure

for complete 2-Segal spaces is therefore precisely the model structure from Proposition
7.4. �

We conclude by showing that the path space criterion also applies to complete 2-Segal
spaces.
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Proposition 7.8. Given a vertical Reedy fibrant 2-Segal space W , the following are
equivalent.

(1) The 2-Segal space W is complete.
(2) One of the path spaces of W is complete.
(3) Both of the path spaces of W are complete.

Proof. By symmetry, it suffices to show that a 2-Segal space is complete if and only if
its left path space P ⊳(X) is complete. The completeness condition for the path space
says that

Map(p∗1(J), P
⊳W )→ (P ⊳W )0

is a Kan-Quillen weak equivalence, but this map is the map

Map(p∗1(∇1[2]),W )→W1

induced by d2 : ∆[1] →֒ ∇1[2] (which is the join of {0} →֒ J with a point). Hence, we
see that the path space P ⊳W being local with respect to {0} →֒ J is equivalent to W
itself being local with respect to d2 : ∆[1] →֒ ∇1[2].

To show that the path space P ⊳W is complete if W is, it suffices to show that the
inclusion p∗1(d2 : ∆[1] →֒ ∇1[2]) is a weak equivalence in the complete 2-Segal space model
structure. Again, because p∗1 preserves colimits, it suffices to observe that d2 : ∆[1] →֒
∇1[2] is a composite of pushouts of iso-horn inclusions

∆[1] →֒ V1[2] →֒ ∇1[2],

where the first inclusion is a pushout of V0[1] →֒ ∇0[1], i.e., {0} →֒ J .
To show the converse, we observe that {0} →֒ J is a retract of d2 : ∆[1] →֒ ∇1[2],

inducing the retract diagram

Map(p∗1(J),W ) Map(p∗1(∇1[2]),W ) Map(p∗1(J),W )

W0 W1 W0 ,

where the center map is a Kan-Quillen weak equivalence if P ⊳W is complete, hence the
outer vertical map is also a weak equivalence. �

Corollary 7.9. Given an exact quasi-category C, the simplicial space S•(C) as in [7,
Def. 7.3.1] is a complete 2-Segal space.

Proof. The proof of [7, Thm. 7.3.3] shows that the path spaces of S•(C) are in fact
complete Segal spaces. �

7.1. Equivalences inside quasi-2-Segal sets and 2-Segal spaces. Let us expand
upon Warning 7.3 and discuss the different ways to define completeness for 2-Segal
spaces. At the heart of the issue is generalizing the notion of equivalence for quasi-
categories and Segal spaces to the 2-Segal setting.

Definition 7.10. Given an edge in a simplicial set (or simplicial space) f : ∆[1] → X ,
let us say that f is bi-invertible if it has a left inverse and a right inverse. That is, there
exist 2-simplices σ and σ′ such that d1σ and d1σ

′ are degenerate and d2σ = d0σ
′ = f .

Let us say that f is a true equivalence if f : ∆[1]→ X factors through ∆[1] →֒ J .
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In general, all true equivalences are bi-invertible, but being a true equivalence is much
stronger, since it says that there is a single edge which is both a left and a right inverse
in a coherent way. However, if X is a quasi-category (or a Segal space), the converse
holds, and both notions agree with the usual notion of “equivalence.” The same does
not hold in the 2-Segal world, as the following example demonstrates.

Example 7.11. Let Sp be the stable quasi-category of spectra, and let W be the simpli-
cial set Sset

• (Sp) or the simplicial space S•(Sp). Given a spectrum Y , which corresponds
to an edge in W , we see in the following diagrams that suspension and loops give us a
left and a right inverse of Y .

∗ ΩY ∗ ∗ Y ∗

∗ Y ∗ ΣY

∗ ∗

Thus, every edge of W is bi-invertible. Meanwhile, the higher coherence data in a
map J →W implies that only contractible spectra are true equivalences in W .

This example also shows that our definition of completeness is strictly weaker than
the other sensible notion of Rezk completeness used in other sources. Recall that for
Segal spaces there are two equivalent characterizations of completeness: the first is
that a Segal space W is local with respect to ∗ → J , as in Definition 7.1, while the
second (and actually what Rezk takes as the definition) is that s0 : W0 → Wequiv is a
weak equivalence of Kan complexes, where Wequiv ⊆ W1 is the full sub-Kan complex
on the set of equivalences. One can show that a 2-Segal space is complete in the first
sense if and only if s0 : W0 → Wtrueequiv is a weak equivalence of Kan complexes, where
Wtrueequiv ⊆W1 is the full sub-Kan complex on the set of true equivalences. However, as
the above example shows, the subspace of bi-invertible edges need not be equivalent to
the subspace of true equivalences. Demanding instead that s0 : W0 → Wbi-inv be a weak
equivalence of Kan complexes, as in the definition of Rezk completeness used in [12],
[13], and [14], yields a stronger condition. In particular, we see via Corollary 7.9 that
S•(Sp) is complete in the sense of Definition 7.1 but is not Rezk complete in the sense
of [12], [13], and [14].

Appendix A. Additional Remarks

A.1. A remark about “homotopy 2-Segal sets”. Recall that, by identifying cat-
egories with their nerves, we can view τ1, the left adjoint of the nerve functor, as a
functor sSet → sSet. The simplicial set τ1X has the universal property that any map
from a simplicial set X to the nerve of a category factors uniquely through the unit map
X → τ1X . When X is a quasi-category, we call τ1X the homotopy category of X . An
edge in a quasi-category ∆[1]→ X is called an equivalence if ∆[1]→ X → τ1X extends
to a map J → τ1X , i.e., if the edge becomes an isomorphism in the homotopy category.

One reasonable definition of equivalence for quasi-2-Segal sets would be analogous:
let τ2 denote the left adjoint to the inclusion of the full subcategory of 2-Segal sets into
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sSet, then an edge in a quasi-2-Segal set X is an equivalence if its image in X → τ2X
extends to a copy of J → τ2X . However, we have avoided this discussion because τ2 is
much harder to describe explicitly than τ1 and we do not expect τ2 to play as important
of a role in quasi-2-Segal theory as τ1 does for quasi-categories.

One of the ways in which τ2 is not as nicely behaved as τ1 is that if X is a quasi-2-Segal
set, then τ2X is not quite the “homotopy 2-Segal set” of X in the way that one might
hope. In particular, if we view an (n + 1)-simplex H with degenerate edge i→ i+ 1 to
be a homotopy from its di+1 face to its di face, then we view two n-simplices σ and σ′

of a simplicial set X as homotopic to one another, denoted by σ ∼ σ′, if there exists a
zig-zag of homotopies connecting them. When X is a quasi-category, one can show that
the n-simplices of τ1X correspond to equivalence classes of n-simplices in X under the
relation ∼. However, the same cannot necessarily be said of τ2X for a quasi-2-Segal set
X . It is true that homotopic simplices of X are identified in τ2X because 2-Segal sets
do not have nontrivial homotopies by [10], but the converse is not true.

Example A.1. We find a counterexample in Sset
• (Ab), where one can show that two

n-simplices are homotopic in Sset
• (Ab) if and only if they are isomorphic as diagrams in

Ab. Consider the 3-simplices

0 Z/2Z Z/4Z Z/4Z⊕ Z/2Z 0 Z/2Z Z/2Z⊕ Z/2Z Z/4Z⊕ Z/2Z

0 Z/2Z Z/2Z⊕ Z/2Z 0 Z/2Z Z/2Z⊕ Z/2Z

0 Z/2Z 0 Z/2Z

0 0

π1

1⊕1

i0

1⊕1

i1

π0

π1

2⊕1i0i0

of Sset
• (Ab). The d0 and d2 faces of these simplices are respectively isomorphic, and

so are respectively identified in τ2S
set
• (Ab), which means that these 3-simplices are also

identified by uniqueness of 2-Segal spine extensions. However, these 3-simplices are not
homotopic in Sset

• (Ab) because they are not isomorphic as diagrams in Ab.

A.2. A remark about higher Segal conditions. In [7], Dyckerhoff-Kapranov also
introduced d-Segal spaces for d > 2, defined in terms of d-dimensional cyclic polytopes.
For each d ≥ 2, there is an “upper” and a “lower” d-Segal condition, and we say that
a simplicial object is d-Segal if it satisfies both the upper and lower d-Segal conditions.
We refer to [22] for explicit definitions. For our present purposes, it suffices to note the
following facts:

• [22, Prop. 2.10] If a simplicial object X is upper or lower n-Segal, then it is also
(fully) d-Segal for all d > n. In particular, if a simplicial set is lower or upper
2-Segal then it is d-Segal for all d > 2.

• [22, Prop. 2.7] A simplicial object X is lower (resp. upper) 2-Segal if and only if
its left (resp. right) path space is Segal.
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One might wonder whether there exists a good notion of quasi-d-Segal space for all
d ≥ 1. Unfortunately, the situation is not as nice for d > 2 because there cannot be a
Cisinski model structure whose fibrant objects are precisely the quasi-d-Segal sets. The
reason is that there exist 3-Segal simplicial sets (and hence d-Segal for all d > 3 too)
which are not fibrant in any Cisinski model structure, as in the following example.

Example A.2. The iso-horn V1[2] is lower 2-Segal, and hence d-Segal for all d ≥ 3 by the
first fact above. To see why, by the second fact above it suffices to observe that the left
path space P ⊳(V1[2]) is Segal, i.e., the nerve of a category. This path space decomposes
as P ⊳(V1[2]) ∼= ∆[1] ⊔ P ⊳(J), which is the disjoint union of nerves of categories. (Since
J is the nerve of a category, so is its path space.)

As explained in [9], the fibrant objects in a Cisinski model structure on sSet must have
fillers of all iso-horn inclusions, so the iso-horn V1[2] itself cannot be fibrant in any such
model structure.

It could still be possible that for d > 2 there are model structures whose fibrant objects
are precisely the quasi-d-Segal sets if we work with a different class of cofibrations, but
it would likely yield a theory which looks quite different from that of quasi-categories
and quasi-2-Segal sets.
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