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Abstract
We consider nonlinear multistage stochastic optimization problems in the spaces of
integrable functions. We allow for nonlinear dynamics and general objective func-
tionals, including dynamic risk measures. We study causal operators describing the
dynamics of the system and derive the Clarke subdifferential for a penalty function
involving such operators. Thenwe introduce the concept of subregular recourse in non-
linear multistage stochastic optimization and establish subregularity of the resulting
systems in two formulations: with built-in nonanticipativity and with explicit nonan-
ticipativity constraints. Finally, we derive optimality conditions for both formulations
and study their relations.

Keywords Nonlinear Causal Operators · Subregularity · Nonanticipativity

Mathematics Subject Classification 49K27 · 90C15

1 Introduction

The concepts of metric regularity and subregularity of multifunctions are at the core
of modern variational analysis, with applications to stability theory of systems of
inclusions and derivation of optimality conditions. We refer the readers to the mono-
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graph [9] and to [14,19] for a comprehensive exposition of this vast field and its
applications. However, most research on these properties and their implications in
infinite-dimensional spaces focuses on fairly abstract settings in general metric or
Banach spaces.

Our objective is to concentrate on specific questions arising in the analysis of
nonlinear optimization problems in the spaces of p-integrable functions defined on a
probability space (Ω,F , P), with p ∈ [1,∞). The decision vector x is an element
of the spaceX = Lp(Ω,F , P;Rn). The constraints of the problem are defined by
a nonlinear operator F : X → Y , where Y = Lp(Ω,F , P;Rm), multifunctions
X : Ω ⇒ Rn and Y : Ω ⇒ Rm , and a subspaceN ⊂ X . The problem has the form

min ϕ(x)

s.t. F(x) ∈ Y a.s.,

x ∈ X a.s.,

x ∈ N .

The objective function ϕ : X → R is a Lipschitz continuous functional.
In stochastic optimization and control, the constraint operator is causal, as defined

in Sect. 3; it is given pointwise:

F(x)(ω) = f (x(ω), ω), ω ∈ Ω,

where f : Rn × Ω → Rm describes the dynamics of the system.
The existing theory of stochastic multistage optimization provides optimality

conditions for convex problems with linear dynamics and expected-value objective
functionals involving convex integrands. Our goal is to analyze problems with nonlin-
ear dynamics, which are prevalent in applications. Unfortunately, in the nonlinear case,
the assumption of the Fréchet differentiability of F(·), common in the optimization
theory in abstract Banach spaces, is unrealistic, except for very special cases (see Sect.
3). This poses a challenge in developing optimality conditions. Additionally, standard
constraint qualification conditions are not satisfied.

Furthermore, we allow for general objective functionals ϕ(·) which include com-
plex risk functionals that cannot be expressed as expected values of stage-wise costs.
The classical approaches, exploiting the properties of convex integral functionals and
conjugate duality, are inapplicable to such models.

Our contributions can be summarized as follows.

• Exact Clarke subdifferentials of penalty functions involving causal operators.
• A new concept of subregular recourse for multistage stochastic optimization prob-
lems with nonlinear dynamics in two settings: with built-in nonanticipativity and
with explicit nonanticipativity constraints. It allows to deduce subregularity of
the infinite-dimensional constraint system from the subregularity of the finite-
dimensional systems associated with each stage and each elementary event.

• Optimality conditions for nonlinear multistage stochastic optimization problems
with general objective functions in both settings.
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Subregular recourse in multistage stochastic optimization…

The paper is organized as follows. In Sect. 2, we review several concepts and results
on sets, tangent cones, and subregularity in spaces of integrable functions, which are
essential for our analysis. In Sect. 3, we derive useful properties of causal operators
describing the dynamics of the system. Finally, Sect. 4 is devoted to the analysis
of multistage stochastic optimization problems with nonlinear causal operators and
general objective functionals.

2 Preliminaries

For a givenprobability space (Ω,F , P), the notationX = Lp(Ω,F , P;Rn) stands
for the vector space ofmeasurable functions x : Ω → Rn , such that

∫ ‖x(ω)‖p P(dω)

< ∞, where p ∈ [1,∞). We denote the norm in X by ‖ · ‖; it will be clear from
the context in which space the norm is taken. The distance function to a set A in
a functional space will be denoted by dist(·, A), while the distance to B in a finite
dimensional space will be denoted by d(·, B).

We pair the space X with the space X ∗ = Lq(Ω,F , P;Rn), 1/p + 1/q = 1,
and with the bilinear form

〈y, x〉 =
∫

Ω

y(ω)
x(ω) P(dω), y ∈ X ∗, x ∈ X .

Here, y(ω)
 refers to the transposed vector y(ω) ∈ Rn .

Definition 1 Suppose A is a closed subset of X and x ∈ A. The contingent cone to
A at x is the set

TA(x) = {v ∈ X : lim inf
τ↓0

1

τ
dist(x + τv, A) = 0

}
.

Recall that for a cone K ⊂ X its polar cone is defined as follows:

K ◦ = {y ∈ X ∗ : 〈y, x〉 ≤ 0 for all x ∈ K
}
.

Definition 2 A set A ⊂ X is derivable at x ∈ A if for every v ∈ TA(x)

lim
τ↓0

1

τ
distX (x + τv, A) = 0.

We recall the notion of a decomposable set inX (cf. [2]).

Definition 3 A setK ⊂ X is decomposable if a measurable multifunction K : Ω ⇒
Rn exists, such that K = {x ∈ X : x(ω) ∈ K (ω) a.s.

}
.

The following fact is well-known in set-valued analysis (see, e.g., [2, Cor. 8.5.2]).
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Lemma 1 Suppose A ⊂ X is decomposable and A(ω) are closed and derivable sets
for P-almost all ω ∈ Ω . Then

TA(x) = {v ∈ X : for P-almost all ω, v(ω) ∈ TA(ω)

(
x(ω)
)}

.

Polar cones of convex decomposable cones are also decomposable. We provide a
simple proof for convenience of the readers.

Lemma 2 The polar cone K ◦ of a convex decomposable cone K ⊂ X is a convex
decomposable cone, and K ◦(ω) = (K (ω)

)◦
a.s.

Proof Consider the convex decomposable cone D : Ω ⇒ Rn defined pointwise as
follows: D(ω) = (K (ω)

)◦. Evidently, if y ∈ D then for all x ∈ K we have

〈y, x〉 =
∫

Ω

y(ω)
x(ω) P(dω) ≤ 0.

Hence, y ∈ K ◦ and D ⊂ K ◦. We show thatK ◦ = D by contradiction. Suppose an
element y ∈ K ◦ exists, such that the event

S = {y(ω) /∈ (K (ω)
)◦}

has positive probability. Then, for every C > 0 we can find a function x ∈ X such
that x(ω) ∈ K (ω) and 〈y(ω), x(ω)〉 > C for all ω ∈ S. For ω ∈ Ω\S we select
x(ω) ∈ K (ω) ∩ Bδ , where Bδ is a ball inRn of radius δ > 0. Then

〈y, x〉 =
∫

S
y(ω)
x(ω) P(dω) +

∫

Ω\S
y(ω)
x(ω) P(dω) ≥ C P(S) − δ‖y‖X ∗ .

The number C may be arbitrarily large, and δ may be arbitrarily small, which leads to
a contradiction. This concludes the proof. ��
Remark 1 When deriving optimality conditions, we shall use normal cones to convex
sets defined as follows:

NA(x) = [TA(x)
]◦

.

It follows from Lemmas 1 and 2 that if A is decomposable, then the normal cone is
decomposable as well and consists of all measurable selectors n(ω) ∈ NA(ω)

(
x(ω)
)
.

We recall the subregularity concept regarding set-constrained systems [9, sec. 3H];
see also [8,17] and the references therein. For a multifunction H : X ⇒ Y , where
Y is a Banach space, we consider the relation

0 ∈ H(x). (1)
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Definition 4 The multifunction H is subregular at x̂ ∈ X with 0 ∈ H(x̂), if δ > 0
and C > 0 exist such that for all x ∈ X with ‖x − x̂‖X ≤ δ a point x̃ satisfying (1)
exists such that

‖x̃ − x‖X ≤ C distY (0,H(x)).

In our analysis ofmultistage stochastic optimization problems, we shall use systems
of the form

F(x) ∈ Y , (2)

where Y is an Lp-space, F : X → Y is Lipschitz continuous, and Y ⊂ Y is a
closed convex set.With themultifunctionH = F(x)−Y , the property of subregularity
of (2) means that a constant C exists, such that for all x in a neighborhood of x̂ ,

dist
(
x, F−1(Y )

) ≤ C dist
(
F(x), Y

)
.

The subregularity of (2) at x̂ is equivalent to the calmness of the multifunction

M(z) = {x : F(x) ∈ Y − z
} = F−1(Y − z)

at the point (0, x̂), with the concept of calmness of a multifunction defined in [24]
(under the name of the “upper Lipschiz property”); see also [15,16] and [9, Thm. 3H3].

3 Causal operators

We are interested in nonlinear operators acting between two spaces of sequences
of integrable functions. For a probability space (Ω,F , P) with filtration {∅,Ω} =
F1 ⊂ F2 ⊂ · · · ⊂ FT = F , we define the spaces Xt = Lp(Ω,Ft , P;Rn) and
Yt = Lp(Ω,Ft , P;Rm) with p ∈ [1,∞), t = 1, . . . , T . LetX = X1 × · · · ×XT

and Y = Y1 × · · · × YT . We use x1:t as the shorthand notation for (x1, . . . , xt ), and
X1:t forX1 × · · · × Xt .

We adapt the following concept from the dynamical system theory (see [7] and the
references therein).

Definition 5 An operator F : X → Y is causal, if functions ft : Rnt × Ω → Rm

exist, such that for all t = 1, . . . , T

Ft (x)(ω) = ft (x1:t (ω), ω), ω ∈ Ω, (3)

and each ft (·, ·) is superpositionally measurable.

Superpositional measurability is discussed in detail in [1]; this property is guaran-
teed for Carathéodory functions, in particular, for functions that satisfy the assumption
below (op. cit., Thm. 1.1).
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We use the notation

f (x(ω), ω) = { ft (x1:t (ω), ω)
}

t=1,...,T .

Then F(x)(ω) = f (x(ω), ω).

Assumption 1 For all t = 1, . . . , T :

(i) ft (ξ, ·) is an element of Yt for all ξ ∈ Rnt ;
(ii) For almost all ω ∈ Ω , ft (·, ω) is continuously differentiable, with the Jacobian

f ′
t (·, ω);

(iii) A constant C f exists, such that ‖ f ′
t (·, ω)‖ ≤ C f , almost surely.

Under Assumption 1, each Ft given by (3) indeed maps the product space X1:t into
a subset of Yt . In fact, condition (iii) is related to the necessary condition for the
Lipschitz continuity of F(·); see [1, Thm. 3.10].

Notice that each Jacobian f ′
t (x1:t (ω), ω) acts on the realization of the subvector

h1:t (ω) of an element h ∈ X . For simplicity, we use the same notation as if it were
acting on the entire h(ω). Then we can write

f ′(x(ω), ω) = { f ′
t (x1:t (ω), ω)

}
t=1,...,T

to represent the Jacobian of [F(x)](ω) with respect to x(ω).

Lemma 3 A causal operator F(·) satisfying Assumption 1 is Gâteaux differentiable
with the derivative F ′(x) defined by

[F ′(x) h](ω) = f ′(x(ω), ω) h(ω), ω ∈ Ω. (4)

Proof We define J (x) : X → Y by using the right hand side of formula (4):

[J (x) h](ω) = f ′(x(ω), ω) h(ω), ω ∈ Ω.

Notice that J (·) is a continuous linear operator.
We calculate the directional derivative of the function F at x in the direction h.

First, we observe that for any h ∈ X and τ > 0

1

τ

∥
∥ f (x(ω) + τh(ω), ω) − f (x(ω), ω) − τ f ′(x(ω), ω)h(ω)‖ ≤ 2C f ‖h(ω)‖ a.s.

and the function at the right-hand side is p-integrable. This yields the following esti-
mate:

1

τ

∥
∥F(x + τh) − F(x) − τ J (x) h

∥
∥
Y

=
(∫ ∥
∥ 1

τ

(
f (x(ω) + τh(ω), ω) − f (x(ω), ω) − τ f ′(x(ω), ω)h(ω)

)∥∥p P(dω)

)1/p

≤ 2C f

(∫
‖h(ω)‖p P(dω)

)1/p
= 2C f ‖h‖Y .
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Using Lebesgue’s dominated convergence theorem, we obtain

lim
τ↓0

1

τ

∥
∥F(x + τh) − F(x) − τ J (x) h

∥
∥
Y

=
(∫

lim
τ→0

∥
∥ 1

τ

(
f (x(ω) + τh(ω), ω) − f (x(ω), ω) − τ f ′(x(ω), ω)h(ω)

)∥∥p
P(dω)

)1/p

= 0.

Therefore, J (x) is the Gâteaux derivative of F(·) at x . ��
It is worth mentioning that our assumptions do not guarantee the Fréchet dif-

ferentiability of F(·). Unfortunately, in a nonlinear stochastic setting, the Fréchet
differentiability of F(·) is very difficult to guarantee, except for very special cases [1,
Sec. 2.7 and Thm. 3.12]. As an illustration, we provide the following example.

Example 1 Let Ω = [0, 1] and P be the Lebesgue measure on [0, 1]. We define the
spaces X = Y = L1(Ω,F , P), and the operator F : X → Y given by

F(x)(ω) = f (x(ω), ω) =
{(

x(ω)
)2 if − 1 ≤ x(ω) ≤ 1,

2
∣
∣x(ω)

∣
∣− 1 otherwise.

Note that ‖F(x)‖ ≤ 2‖x‖, and thus indeed F : X → Y . Unfortunately, F(·) is not
Fréchet differentiable at 0. By Lemma 3, the Gâteaux derivative of F at 0 is 0, and
thus the Fréchet derivative, if it existed, would be F ′(0) = 0 as well. Consider the
sequence of functions

xn(ω) =
{
1 if 0 ≤ ω ≤ 1

n ,

0 otherwise,
n = 1, 2, . . .

We have
∥
∥xn
∥
∥ = 1

n and thus xn → 0. By construction, F(xn) = xn , F(0) = 0, and
then, by the definition of the Fréchet derivative, we would have

0 = lim
n→∞

F(xn) − F(0) − F ′(0)xn

‖xn‖ = lim
n→∞

xn

‖xn‖ .

This is a contradiction, because all elements on the right hand side have norm 1. ��
In the next result, we calculate the Clarke subdifferential of the function

Φ(·) = dist
(
F(·), Y

)
(5)

with F(·) being only Gâteaux differentiable.

Theorem 1 Suppose F(·) is a causal operator satisfying Assumption 1, Y ⊂ Y is
convex and closed, and F(x) ∈ Y . Then

∂Φ(x) = [F ′(x)
]∗ (

NY (F(x)) ∩ BY ∗
)
,
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where
[
F ′(x)

]∗
is the adjoint operator to the Gâteaux derivative F ′(x), and BY ∗ is

the closed unit ball in Y ∗.

Proof Since Y is convex, the function dist(·, Y ) is convex as well, and we can use the
subgradient inequality:

dist
(
F(z + τh), Y

)− dist
(
F(z), Y

) ≤ 〈g, F(z + τh) − F(z)
〉
,

for any g ∈ ∂dist(y, Y ) at y = F(z + τh). The Clarke directional derivative of Φ(·)
at x in the direction h can thus be bounded from above as follows:

Φ0(x; h) = lim sup
z→x
τ↓0

1

τ

(
dist
(
F(z + τh), Y

)− dist
(
F(z), Y

))

≤ lim sup
z→x
τ↓0

〈
g,

1

τ

(
F(z + τh) − F(z)

)〉
, (6)

for any g ∈ ∂dist(F(z+τh), Y ).Consider arbitrary sequences {zk} → x and {τk} ↓ 0,
as k → ∞. By the mean value theorem, for each ω ∈ Ω , each component of the
quotient on the right hand side of (6) can be expressed as follows:

1

τk

[
f j (zk(ω) + τkh(ω), ω) − f j (zk(ω), ω))

]

= f ′
j (z̄k, j (ω), ω) h(ω), j = 1, . . . , mT ,

where z̄k, j (ω) = zk(ω) + τkθk, j (ω)h(ω) with θk, j (ω) ∈ [0, 1]. Then
1

τk

[
f (zk(ω) + τkh(ω), ω) − f (zk(ω), ω))

] = [F ′(x) h](ω) + Δk(ω), (7)

with the error Δk(ω) having coordinates

Δk, j (ω) = [ f ′
j (z̄k, j (ω), ω) − f ′

j (x(ω), ω)
]
h(ω), j = 1, . . . , mT .

We shall verify that {Δk} → 0 in Y , as k → ∞. For an arbitrary ε > 0, we define the
events

Ωk,ε =
{
ω ∈ Ω : max

1≤ j≤mT
‖z̄k, j (ω) − x(ω)‖ > ε

}
.

Since {z̄k, j } → x inX , as k → ∞, the convergence in probability follows:

lim
k→∞ P

[
Ωk,ε

] = 0. (8)

Let

δ(ε, ω) = sup
‖w−x(ω)‖≤ε

max
1≤ j≤mT

∥
∥ f ′

j (w, ω) − f ′
j (x(ω), ω)

∥
∥.
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By the boundedness and continuity of the derivatives, δ(ε, ω) ≤ 2C f , and δ(ε, ω) → 0
a.s., when ε ↓ 0. The error from our desired representation of the differential quotient
can be bounded as follows:

‖Δk(ω)‖ ≤ 2C f 1Ωk,ε
(ω)‖h(ω)‖ + δ(ε, ω)1Ωc

k,ε
(ω)‖h(ω)‖. (9)

Consider the first term on the right hand side of (9). Suppose that with some α > 0,

∫
1Ωk,ε

‖h(ω)‖p P(dω) > α, for k ∈ K ⊂ N , (10)

where the set of indicesK is infinite. By the Banach–Alaoglu theorem [3, Ch.VII,§7],
the sequence

{
1Ωk,ε

}
k∈K of elements in the unit ball of L∞(Ω,F , P) must have a

weakly∗ convergent subsequence, indexed by k ∈ K1 ⊂ K . By (8), its weak∗ limit
is zero. Consequently,

lim
k→∞
k∈K1

∫
1Ωk,ε

‖h(ω)‖p P(dω) = 0,

which contradicts (10). Therefore, for any α > 0, the inequality (10) may be satisfied
only finitely many times, and thus 1Ωk,ε

h → 0 in Y .
Combining this with (9), we obtain (in the space Y )

lim sup
k→∞

∥
∥Δk
∥
∥ ≤
(∫
(
δ(ε, ω)‖h(ω)‖)p P(dω)

)1/p

.

Letting ε ↓ 0 and using the Lebesgue dominated convergence theorem, we conclude
that {Δk} → 0 in Y .

For arbitrary gk ∈ ∂dist(F(zk + τkh), Y ), in view of (7),

Φ0(x; h) ≤ lim sup
zk→x
τk↓0

〈
gk,

1

τk

(
F(zk + τkh) − F(zk)

)〉 ≤ lim sup
zk→x
τk↓0

〈
gk, F ′(x)h + Δk

〉
.

All subgradients gk are bounded by the Lipschitz constant 1 of the distance function.
Therefore, 〈gk,Δk〉 → 0. Consider an arbitrary accumulation point α of the sequence〈
gk, F ′(x) h

〉
. By the Banach–Alaoglu theorem, we can choose a sub-subsequence

{gk}k∈K which is weakly∗ convergent to some g in Y ∗. Then α = 〈g, F ′(x) h
〉
.

By the norm-to-weak∗ upper semicontinuity of the subdifferential [23, Prop. 2.5],
g ∈ ∂dist(F(x), Y ). Therefore,

Φ0(x; h) ≤ max
g∈∂dist(F(x),Y )

〈
g, F ′(x) h

〉
. (11)
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The converse inequality follows from (6) by setting z = x and using Lemma 3:

Φ0(x; h) ≥ lim sup
τ↓0

1

τ

(
dist
(
F(x + τh), Y

)− dist
(
F(x), Y

))

≥ lim sup
τ↓0

1

τ
〈g, F(x + τh) − F(x)〉 = 〈g, F ′(x) h

〉
,

for any g ∈ ∂dist(F(x), Y ). Therefore,

Φ0(x; h) ≥ max
g∈∂dist(F(x),Y )

〈
g, F ′(x) h

〉
.

Combining this with (11), we infer that

Φ0(x; h) = max
g∈∂dist(F(x),Y )

〈[F ′(x)]∗g, h
〉
.

Since Φ0(x; h) is the support function of ∂Φ(x) (cf. [6, Proposition 2.1.2]) and the
support function provides a unique description of a weakly∗ closed and convex set,
we conclude that

∂Φ(x) = {[F ′(x)]∗g : g ∈ ∂dist(F(x), Y )
}
.

Having in mind that ∂dist(y, Y ) = NY (y) ∩ BY ∗ whenever y ∈ Y , we obtain the
stated result. ��
Corollary 1 The same argument provides the Clarke subdifferential of a composition
of a convex subdifferentiable functional ρ : Y → R and a causal F(·) satisfying
Assumption 1: ∂(ρ ◦ F)(x) = [F ′(x)]∗ ∂ρ(F(x)).

4 Multistage stochastic optimization and nonanticipativity

We study nonlinear multistage stochastic optimization with general objective func-
tionals which include dynamic measures if risk. The multistage problems can be
formulated in two different ways regarding the way implementability of the solution
is reflected in the model. One possibility is to formulate the model in such a way that
the definition of the decision spaces includes the Ft -measurability of the decisions
at time t , t = 1, . . . , T . In another formulation, we consider decision spaces of F -
measurable decisions at each stage, but we add additional linear constraints enforcing
Ft -measurability.

4.1 Themodel with built-in nonanticipaticity

A probability space (Ω,F , P)with filtration {∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F
is given. At each stage t = 1, . . . , T , a decision xt with values in Rn is made. We
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require that xt be an element of the spaceXt = Lp(Ω,Ft , P;Rn)with p ∈ [1,∞).
We define the space X = X1 × · · · × XT . We denote the spaces in which our
dynamics operators will take values by Yt = Lp(Ω,Ft , P;Rm), t = 1, . . . , T .

The dynamics of the system is represented by the relation

F(x) ∈ Y , (12)

where F : X → Y is a causal operator, and Y = Y1 × · · · × YT , with each
Yt : Ω ⇒ Rm , t = 1, . . . , T , being anFt -measurable multifunction with convex and
closed values. In a more explicit way, the relation (12) has the form:

Ft (x1:t ) ∈ Yt , t = 1, . . . , T , (13)

and, due to the causality of F(·) and the decomposability of Y ,

ft (x1:t (ω), ω) ∈ Yt (ω), t = 1, . . . , T , ω ∈ Ω.

Additionally, Ft -measurable mulitifunctions with closed convex images Xt : Ω ⇒
Rn , t = 1, . . . , T , are defined.

The objective function is a Lipschitz continuous functional ϕ : X → R. The
multistage stochastic optimization problem is formulated as follows:

minϕ(x1:T ) (14)

s.t.Ft (x1:t ) ∈ Yt a.s., t = 1, . . . , T , (15)

xt ∈ Xt a.s., t = 1, . . . , T . (16)

Evidently, we could have aggregated the relations (15) and (16) into one inclusion, but
it is convenient to distinguish between the causal relations describing the dynamics of
the system, and the stage-wise constraints.

The existing theory of stochastic optimization provides optimality conditions for
convex versions of problem (14)–(16), with linear operators Ft (·) and expected value
functionals

ϕ(x1, . . . , xT ) = E

[
T∑

t=1

ct (xt (ω), ω)

]

, (17)

involving convex integrands ct (·, ·), see [10,11,22,27–29,31]. Here, E[·] is the
expected value operator. A formulation with nonlinear constraints is analyzed in [22],
with the use of Mordukhovich calculus and fuzzy proximal subgradients. It is unclear,
though, how these fairly abstract objects can be calculated and applied.

We expand the theory by allowing non-linear dynamics and more general function-
als in the model description. Consider stage-wise random cost operators Ct : Xt →
Zt , given by Ct (xt )(ω) = ct (xt (ω), ω), whereZt = Lp(Ω,Ft , P). A fairy general
class of objective functionals results from replacing the expected value operator with
a dynamic measure of risk � : Z1 × · · · × ZT → R:
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ϕ(x1:T ) = �
(
C1(x1), . . . , CT (xT )

)
. (18)

We refer the readers to [32, Ch. 6] and the references therein for the theory of dynamic
riskmeasures and their use inmultistage stochastic optimization. An important formof
�(·), resulting from time-consistency and other technical assumptions, is the following

�
(
C1(x1), . . . , CT (xT )

)

= C1(x1) + ρ1

(
C2(x2) + ρ2

(
C3(x3) + · · · + ρT −1(CT (xT )) · · · )

)
. (19)

In this formula, each ρt : Zt+1 → Zt , t = 1, . . . , T −1, is a one-step conditional risk
measure. It generalizes the conditional expected value operator Et [ · ] = E[ · |Ft ].
With the special selection of ρt (·) = Et [ · ] the formula (18) reduces to (17). Other
popular choices of ρt (·) lead to objective functionals ϕ(·) which cannot be expressed
as expected values and are highly nonlinear in decisions and the underlying probability
measure. One such example is the mean–semideviation conditional mapping:

ρt (Zt+1) = Et
[
Zt+1
]+ κ

(

Et

[(
max
(
0, Zt+1 − Et

[
Zt+1
]))p])1/p

, κ ∈ [0, 1].

With this, and many other choices of the conditional risk mappings, the operator
�(Z1, . . . , ZT ) is convex and Lipschitz continuous. Therefore, the composition (18)
is Lipschitz continuous, as long as the cost operators Ct (·) are Lipschitz continuous.
In our further considerations, we will only use the Lipschiz continuity of ϕ(·), without
specificity resulting from the structure mentioned above.

Our key idea is to use uniform parametric subregularity of deterministic finite-
dimensional set-constrained systems associated with each stage t = 1, . . . , T and
each elementary event ω ∈ Ω:

ft (ζ1:t−1, ξ, ω) ∈ Yt (ω), (20)

ξ ∈ Xt (ω). (21)

Here, ζ1:t−1 ∈ Rn(t−1) represents the history of decisions at the particular elementary
event, and the elementary event ω ∈ Ω itself are parameters of the system. For
uniformity of notation, for t = 1 the parameter ζ1:t−1 is non-existent.

We introduce the following concept.

Definition 6 The system (20)–(21) admits complete subregular recourse, if a constant
C exist, such that for almost all ω ∈ Ω , every ζ1:t−1 ∈ X1:t−1(ω) and every η ∈ Rn ,
a solution ξ of (20)–(21) exists, satisfying the inequality

‖ξ − η‖ ≤ C
(
d( ft (ζ1:t−1, η, ω), Yt (ω)) + d(η, Xt (ω))

)
.

In two-stage stochastic linear programming the concept of relatively complete recourse
is well-established (see [32, sec. 2.1.3] and the references therein). It means the solv-
ability of the system (20)–(21) for almost all ω ∈ Ω and every ζ1 ∈ X1(ω). But even
in this case, the uniform subregularity of this system is not guaranteed.
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We shall prove subregularity of the entire infinite-dimensional system of constraints
(15)–(16) when complete subregular recourse is admitted.

Theorem 2 If the system (20)–(21) admits complete subregular recourse, then the
system (15)–(16) is subregular at any feasible point x̂ = (x̂1, . . . , x̂T ).

Proof Let u = (u1, . . . , uT ) ∈ X be chosen from a sufficiently small neighbor-
hood of x̂ . We shall construct a solution x̄ of (15)–(16) which is close to u, with an
appropriate error bound.

For t = 1, . . . , T we consider the system in the space Xt :

Ft (x̄1:t−1, xt ) ∈ Yt ,

xt ∈ Xt .

Our intention is to find a solution x̄t to this system, which is sufficiently close to ut .
By Lipschitz continuity of Ft (·, ·),

∥
∥Ft
(
x̄1:t−1, ut

)∥∥ ≤ ∥∥Ft
(
u1:t
)∥∥+ L

∥
∥x̄1:t−1 − u1:t−1

∥
∥. (22)

We define a multifunction G : Ω ⇒ Rn by the relations

G(ω) =
{
ξ ∈ Rn : ft (x̄1:t−1(ω), ξ, ω) ∈ Yt (ω), ξ ∈ Xt (ω),

∥
∥ξ − ut (ω)

∥
∥ ≤ C

(
d
(

ft (x̄1:t−1(ω), ut (ω), ω
)
, Yt (ω)

)+ d
(
ut (ω), Xt (ω)

))}
.

We observe that both distance functions in the definition of G(·) are Ft -measurable
by [2, Corollary 8.2.13]. Therefore, the multifunctionG isFt -measurable. It has non-
empty images due to Definition 6 applied with η = ut (ω) and ζ1:t−1 = x̄1:t−1(ω).
Hence, a measurable selection x̄t of G exists (cf. [18]). From the construction of the
multifunction G,

∥
∥x̄t (ω) − ut (ω)

∥
∥ ≤ C

(
d
(

ft (x̄1:t−1(ω), ut (ω), ω
)
, Yt (ω)

)+ d
(
ut (ω), Xt (ω)

))
.

Therefore, with the norms and distances in the spaces Xt and Yt ,

∥
∥x̄t − ut

∥
∥ ≤ C

(
dist
(
Ft (x̄1:t−1, ut

)
, Yt
)+ dist

(
ut , Xt

))
. (23)

Combining inequalities (23) and (22), we infer that

∥
∥x̄t − ut

∥
∥ ≤ C

(
dist
(
Ft (u1:t

)
, Yt
)+ L

(∥∥x̄1:t−1 − u1:t−1
∥
∥) + dist

(
ut , Xt

))
. (24)

We can now prove by induction that constants C̄t exist such that

‖x̄t − ut‖ ≤ C̄t

t∑

�=1

(
dist
(
F�

(
u1:�
)
, Y�

)+ dist
(
u�, X�

))
.
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For t = 1, the result is provided by (24), because the term
∥
∥x̄1:t−1 − u1:t−1

∥
∥ is not

present there. Supposing it is true for t − 1, we verify it for t using (24). The last
relation for t = T establishes the subregularity of the system (15)–(16). ��

Under Assumption 1, we denote:

F ′
t (x̂1:t ) = At = (At,1, . . . , At,t

)
, t = 1, . . . , T ,

with partial Jacobians At,� : X� → Yt ,

At,� = ∂ Ft (x̂1:t )
∂x�

, � = 1, . . . , t, t = 1, . . . , T . (25)

These linear operators are defined pointwise:

At,�(ω) = ∂ ft (x̂1:t (ω), ω)

∂x�(ω)
, � = 1, . . . , t, t = 1, . . . , T , ω ∈ Ω. (26)

Due to Assumption 1, all operators At,� are continuous linear operators.
Now, we establish necessary conditions of optimality for problem (14)–(16).

Theorem 3 Suppose the system (20)–(21) admits complete subregular recourse and
the policy x̂ is a local minimum of problem (14)–(16). Then a subgradient ĝ ∈ ∂ϕ(x̂),
multipliers ψ̂t ∈ NYt (Ft (x̂1:t )), t = 1, . . . , T , and normal elements n̂t ∈ NXt (x̂t ),
t = 1, . . . , T , exist, such that for P-almost all ω ∈ Ω we have:

ĝt + A

t,t ψ̂t + Et

[ T∑

�=t+1

A

�,t ψ̂�

]

+ n̂t = 0, t = 1, . . . , T . (27)

Proof Since ϕ(·) is Lipschitz continuous about x̂ with some constant Lϕ , then for
every K > Lϕ the point x̂ is a local minimum of the function

ϕ(x) + Kdist(x, X ∩ F−1(Y ));

see [6, Prop. 2.4.3]. The system (15)–(16) is subregular with some constant C̄ by virtue
of Theorem 2. Consequently, x̂ is a local minimum of the function

ϕ(x) + K C̄
(
dist(F(x), Y ) + dist(x, X)

)
.

This type of argument is discussed in detail in [4,13,15]. We use Clarke’s necessary
conditions of optimality for Lipschitz continuous functions:

0 ∈ ∂ϕ(x̂) + K C̄ ∂
[
dist(F(·), Y )

]
(x̂) + K C̄ ∂

[
dist(·, X)

]
(x̂).

The Clarke subdifferential of the function dist(F(·), Y ) is calculated in Theorem 1:

∂Φ(x̂) = [F ′(x̂)
]∗ (

NY (F(x̂)) ∩ BY ∗
)
.
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The subdifferential of dist(x̂, X) is NX (x̂) ∩ BX ∗ . We infer that a subgradient
ĝ ∈ ∂ϕ(x̂), an element ψ̂ ∈ NY (F(x̂)), and a normal vector n̂ ∈ NX (x̂) exist, such
that

ĝ + [F ′(x̂)
]∗

ψ̂ + n̂ = 0.

We can derive a more explicit form of the vector
[
F ′(x̂)

]∗
ψ̂ . Due to the decompos-

ability of Xt the normal cone NXt (x) is composed of elements which are selectors
of NXt (·)

(
x(·)) (cf Remark 1); we have NXt (x̂t )(ω) = NXt (ω)

(
x̂t (ω)

)
a.s.. Using the

same argument and the causality of Ft , we obtain

ψ̂t (ω) ∈ NYt (ω)

(
ft (x̂1:t (ω), ω)

)
t = 1, . . . , T , for almost all ω ∈ Ω.

Now, using the block-triangular form of A = F ′(x̂), for any h ∈ X we can write

〈A∗ψ̂, h〉 = 〈ψ̂, Ah〉 =
T∑

t=1

〈ψ̂t , At h〉

=
T∑

t=1

t∑

�=1

〈ψ̂t , At,�h�〉 =
T∑

�=1

T∑

t=�

〈A∗
t,�ψ̂t , h�〉. (28)

It follows that A∗
t,�ψ̂t = E

[
A


t,�ψ̂t
∣
∣F�

]
. This yields the equations (27). ��

4.2 Nonanticipativity constraints

A different situation arises with the use of nonanticipativity constraints. The funda-
mental idea reflected in this formulation, due to [33], is to consider extended spaces
X̃t = Lp(Ω,F , P;Rn), t = 1, . . . , T and a relaxed policy

x = (x1, . . . , xT ) ∈ X̃1 × · · · × X̃T = X̃ .

In order to enforce that the relaxed policy can be identifiedwith an element of the space
X , we impose the following requirement known as the nonaticipativity constraint:

xt = E[xt |Ft ], t = 1, . . . , T . (29)

The equations (29) define a closed subspaceN in X̃ . This subspace can be identified
with the space X in the original problem.

Several important theoretical and practical advantages are associatedwith this refor-
mulation (see [32, Ch. 3] and the references therein). It allows to study individual
scenario models, for each ω ∈ Ω , and to analyze the effect of the information con-
straint. It may also serve as the theoretical foundation for a variety of decomposition
methods, similar to the case of linear dynamics and integral functionals (see [30] and
the references therein).
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In order to formally define the nonlinear problem in the space X̃ we need to extend
the domains of the functional ϕ(·) and the domain and range of the operator F(·). We
denote by ϕ̃ : X̃ → R a Lipschitz continuous extension of ϕ, that is, ϕ̃(x) = ϕ(x)

for all x ∈ N (here we identify N with X ). Such an extension may be defined in
various ways, for example, as

ϕ̃(x1, x2, . . . , xT ) = ϕ
(
E1[x1],E2[x2], . . . ,ET [xT ]).

An extension of a causal operator F(·) is natural from its definition; it is still given
by (3). Its value space is Ỹ = Ỹ1 × · · · × ỸT with Ỹt = Lp(Ω,F , P;Rm),
t = 1, . . . , T . The decomposable sets Xt and Yt can still be viewed as subsets X̃t of
X̃t and Ỹt of Ỹt :

X̃t = {xt ∈ X̃t : xt (ω) ∈ Xt (ω) a.s.},
Ỹt = {yt ∈ Ỹt : yt (ω) ∈ Yt (ω) a.s.}, t = 1, . . . , T .

Notice that the sets X̃t and Ỹt contain more elements than their counterparts in the
previous formulation, because they allow for a broader class of measurable selections
from Xt (·) and Yt (·), respectively.

The problem is re-formulated as follows:

min ϕ̃(x1, . . . , xT ) (30)

s.t. xt − Et xt = 0 a.s., t = 1, . . . , T , (31)

Ft (x1:t ) ∈ Ỹt a.s., t = 1, . . . , T , (32)

xt ∈ X̃t a.s., t = 1, . . . , T . (33)

Simplified versions of this problem are considered in [12,26], under the assumption
that ϕ(x1, . . . , xT ) = E

[∑T
t=1 ct (xt (ω), ω)

]
, with ct (·, ·) being convex normal inte-

grands. The authors use the space L∞(Ω,F , P;Rn) to allow for the interior point
conditions for the sets X̃t , but the price for this setting was that the dual elements
live in the spaces of bounded finitely additive measures and can contain singular com-
ponents. Specific properties of subdifferentials of expected value functionals in L∞
spaces (see, [25] and [5, Ch. VII]) allow for the restriction of the dual elements to
L1(Ω,Ft , P;Rn).

Our approach is different. We work in the space Lp(Ω,F , P;Rn), with p ∈
[1,∞). We consider general Lipschitz continuous functionals ϕ(·), and a nonlinear
causal operator F(·). Our idea is to require the existence of subregular recourse and
to exploit its properties, as well as specific properties of causal operators to derive
the optimality conditions. In this way, we relate assumptions on finite-dimensional
systems associated with elementary events ω ∈ Ω and stages 1, . . . , T with the
optimality conditions for the entire system.

First, we prove subregularity of the constraints present in the problem formulation
with explicit nonaticipativity constraints.
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Theorem 4 If the system (20)–(21) admits complete subregular recourse, then the
system (31)–(33) is subregular at any feasible point x̂ = (x̂1, . . . , x̂T ).

Proof Let u = (u1, . . . , uT ) ∈ X̃ be fixed. We shall construct a solution x̄ of (31)–
(33) which is close to u, with an appropriate error bound.

For t = 1, . . . , T , we consider the following system in the space X̃t :

Ft (x̄1:t−1, xt ) ∈ Ỹt ,

xt − Et [xt ] = 0,

xt ∈ X̃t .

Our intention is to find a solution x̄t to this system,which is sufficiently close toEt [ut ].
Using the Lipschitz continuity of Ft (·), we obtain
∥
∥Ft
(
x̄1:t−1,Et [ut ]

)∥∥ ≤ ∥∥Ft
(
u1:t
)∥∥+ L

(∥∥x̄1:t−1 − u1:t−1
∥
∥+ ∥∥ut − Et [ut ]

∥
∥).(34)

We define a multifunction G : Ω ⇒ Rn by the relations

G(ω) =
{
ξ : ft (x̄1:t−1(ω), ξ, ω) ∈ Yt (ω), ξ ∈ Xt (ω),
∥
∥ξ − Et [ut ](ω)

∥
∥

≤ C
(

d
(

ft
(
x̄1:t−1(ω),Et [ut ](ω), ω

)
, Yt (ω

))+ d
(
Et [ut ](ω), Xt (ω)

))}
.

We observe that both distance terms on the right hand side are Ft -measurable by [2,
Corollary 8.2.13]. Therefore, the multifunctionG isFt -measurable. It has non-empty
images due toDefinition 6 appliedwith η = Et [ut ](ω) and ζ1:t−1 = x̄1:t−1(ω). Hence,
an Ft -measurable selection x̄t of G exists (cf. [18]). From the construction of G,

∥
∥x̄t (ω) − Et [ut ](ω)

∥
∥

≤ C
(

d
(

ft
(
x̄1:t−1(ω),Et [ut ](ω), ω

)
, Yt (ω

))+ d
(
Et [ut ](ω), Xt (ω)

))
.

(35)

We view both sides of this inequality as nonnegative elements of the space
Lp(Ω,Ft , P). Since it is a Banach lattice, the functional norm of the element on
the left hand side does not exceed the functional norm of the element on right hand
side. The triangle inequality yields:

∥
∥x̄t − Et [ut ]

∥
∥ ≤ C

(
dist
(
Ft (x̄1:t−1,Et [ut ]

)
, Yt
)+ dist

(
Et [ut ], Xt

))
. (36)

For every x̃t ∈ X̃t , Jensen inequality implies that

∥
∥Et [ut ] − Et [x̃t ]

∥
∥ ≤ ∥∥Et [ut ] − x̃t

∥
∥
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andEt [x̃t ] ∈ Xt by convexity. Therefore, dist
(
Et [ut ], Xt

) = dist
(
Et [ut ], X̃t

)
. Using

a similar argument, we have dist
(
Ft (x̄1:t−1,Et [ut ]

)
, Yt
) = dist

(
Ft (x̄1:t−1,Et [ut ]

)
,

Ỹt
)
.
We observe that both distances above are finite because

∥
∥ ft (x̄1:t−1(·),Et [ut ](·), ·

)∥∥

has a finite Lp-norm by virtue of (34) and the term d
(
Et [ut ](·), X0

t (·)) is bounded
from above by ‖Et [ut ](·) − x̂t (·)‖, which has a finite Lp-norm by assumption.

Combining these observations with inequalities (36) and (34), we infer that

∥
∥x̄t − Et [ut ]

∥
∥ ≤ C

(
dist
(
Ft
(
u1:t
)
, Ỹt
)+ L

(∥
∥x̄1:t−1 − u1:t−1

∥
∥

+∥∥ut − Et [ut ]
∥
∥) + dist

(
Et [ut ], X̃t

))
.

Since dist
(
Et [ut ], X̃t

) ≤ dist
(
ut , X̃t

)+ ∥∥ut − Et [ut ]
∥
∥, we conclude that

‖x̄t − ut‖ ≤ (1 + C + C L)
∥
∥ut − Et [ut ]

∥
∥

+ C
(
dist
(
Ft
(
u1:t
)
, Ỹt
)+ L

∥
∥x̄1:t−1 − u1:t−1

∥
∥ + dist

(
ut , X̃t

))
. (37)

We can now prove by induction that constants C̄t exist such that

‖x̄t − ut‖ ≤ C̄t

t∑

�=1

(∥
∥u� − E�[u�]

∥
∥+ dist

(
F�(u1:�), Ỹ�

)+ dist
(
u�, X̃�

))
.

For t = 1, the result follows from (37), because the term
∥
∥x̄1:t−1 − u1:t−1

∥
∥ is not

present. Supposing it is true for t − 1, we verify it for t using (37). The last relation
for t = T establishes the subregularity of the system (31)–(33). ��

Abusing notation, we shall use the same notation for the operators

F ′
t (x̂1:t ) = At = (At,1, . . . , At,t

)
, t = 1, . . . , T ,

referring to the partial Jacobians At,� : X̃� → Ỹt , which are defined by (25)-(26), but
are acting as linear operators between larger spaces.

Now, we can formulate the main result of this section.

Theorem 5 Suppose the system (20)–(21) admits complete subregular recourse. If a
policy x̂ is a local minimum of problem (30)–(33) then a subgradient g̃ ∈ ∂ϕ̃(x̂),
multipliers λt ∈ X̃ ∗

t , ψ̃t ∈ NỸt
(Ft (x̂1:t )), t = 1, . . . , T , and normal elements ñt ∈

NX̃t
(x̂t ), t = 1, . . . , T , exist, such that for P-almost all ω ∈ Ω we have:

g̃t + λt +
T∑

�=t

A

�,t ψ̃� + ñt = 0, t = 1, . . . , T , (38)

Et [λt ] = 0, t = 1, . . . , T . (39)
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Proof We follow a similar line of argument as in Theorem 3. Using the Lipschitz
continuity of ϕ̃(·) about x̂ with some Lipschitz constant Lϕ , we infer that, for every
K > Lϕ , the point x̂ is a local minimum of the function

ϕ̃(x) + K dist(x, X̃ ∩ F−1(Ỹ ) ∩ N ).

We define the linear operator Π : X̃ → X̃ , by

Π(x1, . . . , xT ) = (E1[x1], . . . ,ET [xT ]). (40)

Theorem 4 implies that the system (31)–(33) is metrically subregular with some con-
stant C̄ . Consequently, x̂ is a local minimum of the function

ϕ̃(x) + K C̄
(
dist(F(x), Ỹ ) + dist(x, X̃) + ‖x − Πx‖).

We use necessary conditions of optimality for Lipschitz continuous functions:

0 ∈ ∂ϕ(x̂) + K C̄ ∂x
[
dist(F(x̂), Ỹ )

]+ K C̄ ∂
[
dist(x̂, X̃)

]+ K C̄ ∂‖x̂ − Π x̂‖.

By virtue of Theorem 1, the subdifferential of the function dist(F(·), Ỹ ) it is equal
to
[
F ′(x̂)

]∗ (
NỸ (F(x̂)) ∩ BỸ ∗

)
. The subdifferential of dist(x̂, X̃) is NX̃ (x̂) ∩ BX̃ ∗ .

The subdifferential of the last term is (I − Π∗)BX̃ ∗ . Using the tower property of
conditional expectations, we see that

Π∗(v1, . . . , vT ) = (E1[v1], . . . ,ET [vT ]).

Therefore,

∂‖x̂ − Π x̂‖ = (I − Π∗)BX̃ ∗ = [ker(Π∗)] ∩ BX̃ ∗ .

Summing up, it follows that a subgradient g̃ ∈ ∂ϕ̃(x̂), an element ψ̃ ∈ NỸ (F(x̂)), a
normal vector ñ ∈ NX̃ (x̂), and a multiplier λ ∈ ker(Π∗) exist, such that

g̃ + λ + [F ′(x̂)
]∗

ψ̃ + ñ = 0.

The condition λ ∈ ker(Π∗) is equivalent to (39). Equations (38) can now be derived
as in the proof of Theorem 3, using the block-triangular form of A = F ′(x̂), and
equation (28) for any h ∈ X̃ . Since both spaces, Ỹ ∗

t and X̃ ∗
� , are defined with the

use of the full σ -algebraF , we simply have A∗
t,� = A


t,�. That is why no conditional
expectation appears in (38). ��

It may be of interest to explore the relations of two sets of optimality conditions of
Theorems 3 and 5.

Corollary 2 The subgradient ĝ ∈ ∂ϕ(x̂) given by ĝt = Et [g̃t ], t = 1, . . . , T , together
with the multipliers ψ̂t = Et [ψ̃t ], t = 2, . . . , T , and normal vectors n̂t = Et [ñt ]
satisfy the optimality conditions (27).
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Proof We take the conditional expectation of both sides of a typical relation in (38),
first with respect to with respect to Ft . Since Et [πt ] = 0, using the tower property
and F�-measurability of A�,t , we obtain

0 = Et
[
g̃t ] + Et

[ T∑

�=t

A

�,t ψ̃�

]

+ Et
[
ñt
] = Et

[
g̃t
]

+Et

[ T∑

�=t

A

�,tE�[ψ̃�]

]

+ Et
[
ñt
]
.

We shall verify that ĝ is a subgradient of ϕ(·) at x̂ . Having in mind that g̃ ∈ ∂ϕ̃(x̂),
for any x ∈ X , we have

ϕ(x) − ϕ(x̂) ≥
T∑

t=1

〈g̃t , xt − x̂t 〉 =
T∑

t=1

〈
g̃t ,Et [xt − x̂t ]

〉 =
T∑

t=1

〈
Et [g̃t ], xt − x̂t

〉
,

and, thus, ĝ ∈ ∂ϕ(x̂).
In a similar way, if ñt ∈ NX̃t

(x̂t ), then, for every xt ∈ Xt , we have

0 ≥ 〈ñt , xt − x̂t 〉 = 〈ñt ,Et [xt − x̂t ]
〉 = 〈Et [ñt ], xt − x̂t

〉
.

This proves that n̂t ∈ NXt (x̂t ), t = 1, . . . , T . Likewise, we obtain ψ̂t ∈ NYt (Ft (x̂1:t ))
for t = 1, . . . , T . ��

5 Conclusions and future research

The concepts ofmetric subregularity and calmness and the associated penalty approach
are very fruitful in the derivation of optimality conditions for nonlinear multistage
stochastic optimization problems with general cost functionals. These new optimality
conditions rest on two main contributions.

First, the concept of subregular recourse of Definition 6 allows for the verification
of the subregularity of the constraint system in abstract spaces by establishing subseg-
ularity of finite-dimensional systems associated with each stage and each elementary
event.

Second, the calculation of theClarke subdifferential of a composition of the distance
function and a causal operator (Thm. 1) allows for exact subdifferentiation of the
penalty function associated with system’s dynamics.

In the course of these derivations we have introduced novel analysis techniques.
We believe that this approach has much potential in addressing nonlinear stochastic
dynamic optimization problems.

One direction of research would be to focus on specific dynamic risk measures and
exploit their specific structure to further refine the conditions.
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Another important avenue of research would be to adopt the setting of [20, Prop.
5.3] and [21, Thm. 5]. This requires restricting the spaces X and Y to those with
p ∈ (1,∞). However, it would allow for the treatment of non-convex sets Xt and Yt in
the problem formulation, and the use of more accurate subdifferentials of non-convex
objective functionals. The main challenge in this setting is to derive the explicit form
of the coderivative of the operator F(·) describing the dynamics of the system.

Finally, the necessary conditions of optimality are a prerequisite for the development
of numerical methods for solving nonlinear stochastic programming problems. We
hope that this formidable challenge will be undertaken soon.
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