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Abstract 
Mangrove forests deliver incredible ecosystem goods and services and are 

enormously relevant to sustainable living. An accurate assessment of the global status 

of mangrove forests warrants the necessity of datasets with sufficient information on 

spatial distributions and patch patterns. However, existing datasets were mostly 

derived from ~30 m resolution satellite imagery and used pixel-based image 

classification methods, which lacked spatial details and reasonable geo-information. 

Here, based on Sentinel-2 imagery, we created a global mangrove forest dataset at 

10-m resolution, namely, High-resolution Global Mangrove Forests (HGMF_2020), 

using object-based image analysis and random forest classification. We then analyzed 
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the status of global mangrove forests from the perspectives of conservation, threats, 

and resistance to ocean disasters. We concluded the following: (1) globally, there were 

145,068 km2 mangrove forests in 2020, among which Asia contained the largest 

coverage (39.2%); at the country level, Indonesia had the largest amount of mangrove 

forests, followed by Brazil and Australia. (2) Mangrove forests in South Asia were 

estimated to be in the better status due to the higher proportion of conservation and 

larger individual patch size; in contrast, mangrove forests in East and Southeast Asia 

were facing intensive threats. (3) Nearly, 99% of mangrove forest areas had a patch 

width greater than 100 m, suggesting that nearly all mangrove forests were efficient in 

reducing coastal wave energy and impacts. This study reports an innovative and 

up-to-date dataset and comprehensive information on mangrove forests status to 

contribute to related research and policy implementation, especially for supporting 

sustainable development. 

Keywords: Remote sensing, Sentinel-2, Object-based image analysis, World 

heritage sites, Ramsar convention sites 

 

1. Introduction 
Mangrove forests are one of the most biologically diverse and productive 

ecosystems on Earth [1,2]. Globally, approximately 75% of low-lying tropical 

coastlines receiving freshwater drainage support mangrove systems [3]. They provide 

coastal area protection by attenuating wave energy and storm surges and stabilizing 

shorelines from flooding and erosion [4-6]. Mangrove forests are also important for 

climate mitigation due to their capacity for efficient carbon sequestration and storage 

[7-9]. Globally, hundreds of millions of people directly rely on mangrove forests to 

provide a variety of resources to local communities [10-12]. Therefore, mangrove 

forests play an essential role in a sustainable future for human beings [13]. The unique 

and important ecosystem functions warrant the necessity of detailed spatial 

information on global mangrove forests to provide essential information for related 

scientific research and coastal management, as well as to facilitate the implementation 

of sustainable development [14,15]. 



Mangrove forests growing along coastlines always appear in narrow strips and 

small patches [16]. Thus, current existing global mangrove forest datasets may be 

insufficient to support the increasing requirements of in-depth scientific research and 

precision management. Existing datasets can be generally divided into two categories, 

i.e., statistical reports from various sources and maps derived from satellite images. 

The statistical reports were collective efforts by various management and research 

institutions and international organizations published from 1981 to 2020 [14,17-21]. 

These reports offered a glance at areas of mangrove forests in various administrative 

units but lacked spatial distribution details. 

Satellite remote sensing, which is considered accurate, rapid, and cost effective, 

provides a solution to produce globally consistent mangrove forests maps [15,22,23]. 

One of the earliest global mangrove forests mapping datasets was the World 

Mangrove Atlas, which was published in 1997 [24,25]. The atlas was surveyed and 

mapped from a range of different data sources, such as thematic maps, literature, and 

remote sensing images. The first global consistent mangrove forest dataset with more 

spatial and thematic details was published in 2011 [26]. Then, Hamilton and Casey 

[27] interpreted the extents of world’s mangrove forests during 2000-2012. 

Furthermore, Thomas et al. [28] and Bunting et al. [29] mapped mangrove 

deforestation and conversions during 1996-2016 using L-band SAR and Landsat 

imagery, respectively. These datasets were named Global Mangrove Watch (GMW). 

The above maps and datasets were all derived from ~30 m resolution remote sensing 

images in which small mangrove patches could be omitted [30]. Recently, Bunting et 

al. updated the GMW dataset to GMW v2.5 by revising 204 regions using Sentinel-2 

imagery [30] and then solely used L-band SAR to detect changes from v2.5 and built 

GMW v3.0 [31]. However, due to the limitations of data sources and classification 

methods, these datasets still contained regions with considerable errors. The errors 

can largely affect the evaluations of global mangrove forests status. Inconsistencies in 

data quality, cartographic standards, modeling methods, and spatiotemporal coverage 

of data sources often produce different results, resulting in difficulties in conducting 

accurate, reliable, and comprehensive socioeconomic assessments [32]. 



In addition to spatial distributions, previous global-scale mangrove studies have 

focused on rates and drivers of deforestation [28,33], biomass and carbon estimation 

[27,34,35], fragmentation [36], and climate change [37-40]. Most recently, the Global 

Mangrove Alliance (GMA) published a report of the State of the World’s Mangroves  

(https://www.mangrovealliance.org/mangrove-forests/), which mentioned little about 

mangrove conservation and threats. However, spatial details were not presented. 

Furthermore, models indicated that abelt of mangrove forests with a 100 m width 

could significantly reduce wave energy [41,42]. Previous studies also indicated that 

mangrove patches with a width greater than 1500 m would reduce 1-m high waves to 

0.05 m [43,44]. Thus, the patch widths are strongly related to the capacity of 

mangrove forests in ocean disaster resilience and coastal property protection. 

However, a specific analysis of global mangrove forests as coastal protectors does not 

exist. The essential barrier is the lack of finer resolution global mangrove forests 

datasets with patches of reasonable geo-information. 

To solve the abovementioned issues, in this study, we first produced an 

up-to-date high spatial resolution (10 m) global mangrove forest dataset, namely, 

High-resolution Global Mangrove Forests (HGMF_2020), based on object-based 

image analysis (OBIA) and a massive collection of Sentinel-2 images acquired during 

2020. Second, we analyzed the geographical characteristics and patch patterns of 

global mangrove forests. Finally, we discussed the status of global mangrove forests 

conservation and threats. The HGMF_2020 dataset and our state-of-the-art global 

mangrove forests analyses provide baseline data for scientific research to provide 

decision-makers with an accessible reference for designing sustainable mangrove 

management policies. 

2. Materials and methods 

2.1 Sentinel-2 satellite imagery and auxiliary data 

The Sentinel-2 MultiSpectral Instrument (MSI) sensor contains 13 spectral bands. 

In this study, four spectral bands (Bands 2, 3, 4, and 8) at 10 m and six bands (Bands 

5, 6, 7, 8A, 11, and 12) at 20 m spatial resolutions were chosen to identify mangrove 



forests and other land covers. This study used 124,000 scenes of Sentinel-2 Level-2A 

products, which covered the entire study area within 2020. 

For other auxiliary data, global protected areas of mangrove forests were 

downloaded from the official websites of the Ramsar Convention on Wetlands 

(https://www.ramsar.org/), World Heritage Convention (https://whc.unesco.org/), and 

Protected Planet (https://www.protectedplanet.net/en), which contain the World 

Database on Protected Areas, Global Database on Protected Area Management 

Effectiveness, World Database on other effective area-based conservation measures, 

and a wealth of national and local reserves. 

To obtain globally evenly distributed validation samples, three steps were 

conducted by an independent team. First, samples were downloaded from two global 

crowdsourced datasets, i.e., Collect Earth (https://openforis.org/tools/collect-earth) 

and Global Biodiversity Information Facility (https://www.gbif.org/). Then, to ensure 

the credibility of crowdsourced samples, we visually examined all these samples in 

Google Earth. Finally, for regions with sparse ground samples, we visually interpreted 

ground samples from submeter resolution imagery in Google Earth. We generated the 

number of ground samples for mangroves and non-mangroves in a 1:3 ratio. In total, 

21,704 and 60,243 points were collected as ground truth samples for the categories of 

mangrove forest and others, respectively. The distributions of these samples are 

illustrated in Fig. S1 (online). 

2.2 Methodology of mangrove forest classification 

To obtain robust spatial information on mangrove forests, we developed a 

classification methodology that contained three steps: (1) identifying specific study 

areas based on four available global-scale mangrove datasets; (2) building global 

Sentinel-2 composite images in the Google Earth Engine (GEE) platform; and (3) 

applying OBIA and random forest (RF) classification to map mangrove forests. To 

undertake the processing, study areas were divided into 144 project tasks that were 

grouped into 1° × 1° tiles, GEE was used to composite and download images for each 

task, and eCognition software was used to segment images, run RF classification, and 



conduct postprocessing. Finally, ArcGIS was used to merge all the classification 

results. Fig. 1a shows the workflow for mapping mangrove forests. We also provided 

a typical application in Dongzhaigang, China (Fig. 1b–d). 

 
 

Fig. 1. Workflow of mapping mangrove forests and a typical application in Dongzhaigang, China. (a) Workflow of 

the mapping approach; (b) NDVI-MSIC image of Dongzhaigang; (c) object segmentation result; (d) object-based 

image analysis and random forest (OBRF) classification result. R: the red channel, G: the green channel, B: the 

blue channel.  

 

(1) Identifying specific study areas. First, we merged four large-scale mangrove 

datasets to generate a baseline map as the reference. We then created 1-km buffers for 

all patches of the baseline map. Finally, we generated the study areas by combining 

the patches in the baseline map and their buffers. The areal extent of the study area 

was 637,844 km2. Mangrove datasets used as references in this step included Global 

Mangrove Forests Distribution (GMFD) [26], Global Mangrove Watch (v2.0, v2.5 

and v3.0) [29-31], Continuous Global Mangrove Forest Cover for the 21st Century 

(2000-2012) (CGMFC-21) [27], and CAS_Mangroves [45,46]. 

(2) Building Sentinel-2 composite images. To rapidly and robustly acquire 

images suitable for mangrove forest mapping, we conducted a maximum spectral 

index composite (MSIC) process to produce working images. For each location of an 

individual pixel, the MSIC selected a pixel with the maximum spectral index in a 

time-series image collection and then composited a new image. In this study, the 

normalized difference vegetation index (NDVI) [47] was selected to conduct the 

MSIC, which ensured that pixels in a composite image represented the highest NDVI 

values. We named the composite images NDVI-MSIC images (Fig. 1b). All bands in 

the NDVI-MSIC images were then resampled to a 10-m resolution. The procedure 

was performed in the GEE platform, and the code can be found in the Resource 

Availability section. 

(3) Classification of mangrove forest and other land covers. The OBIA was 

successfully applied to map mangrove forests and other wetlands [48]. Image 



segmentation is the first and most important step of OBIA, and it can reduce 

“within-class” variation by segmenting images into objects. The RF classifier is an 

ensemble machine learning method that constructs a number of decision trees to 

conduct classification. The RF classifier has been proven efficient in mapping 

mangrove forests [49]. In this study, the combination of OBIA and RF contained two 

procedures: first, segmenting the NDVI-MSIC image into image objects based on an 

optimal image segmentation algorithm (Fig. 1c, shape, compactness, and scale were 

0.17, 0.75, and 20, respectively [50]); and second, operating the RF classifier on these 

objects and deriving classification results of mangrove forest and others (Fig. 1d). The 

combination of OBIA and RF can contribute more features for classifying land covers. 

In addition to spectral features and indices, spatial features such as shape and texture 

could be used to distinguish mangrove forests and non-mangrove forests. These 

procedures were performed in eCognition software. 

2.3 Post-processing of initial classification results 

The main purpose of post-processing is to generate highly reliable classification 

results. First, to obtain the best interpretation, for each project task, misclassified 

objects were manually modified by remote sensing experts. To facilitate manual 

interpretation, a false color composite of MSI bands 11 (red), 8 (green), and 4 (blue) 

was generated [51]. As shown in Fig. 1b, in the false color composite image, 

mangrove forests are dark green with a smooth texture, which is significantly 

different from terrestrial vegetation. Then, to reduce noise, patch filtering was applied 

to remove small patches. Considering the patch characteristics of mangrove forests, 

the potential usage of the HGMF_2020 dataset, and the detectability of Sentinel-2 

imagery, the threshold parameter (minimal number of pixels in a patch) was set to 6. 

We used 8-connectedness to identify and eliminate the isolated small patches. Thus, 

patches that were smaller than six 10-m resolution pixels (600 m2) were merged with 

the largest patch within the 8-connected pixels. 

2.4 Independent accuracy assessments 



The accuracy of HGMF_2020 was validated by two independent assessment 

approaches, i.e., standard remote-sensing error matrix [52] and bootstrapping [53]. 

The bootstrapping approach is proven to be effective in validating classification 

datasets of coastal ecosystems. In addition to mean mapping accuracy, it provides 

confidence intervals (CIs) [54,55]. During the bootstrapping procedure, we took 1000 

iterations to resample the samples and conducted validations. We adopted the mean of 

the distribution as an estimate and the 95% quantile (0.025 and 0.975 percentiles) as 

the corresponding CI. 

In addition, our validation results indicated asymmetry between omission 

(1-user’s accuracy) and commission (1-producer’s accuracy) errors. To allow 

propagation of this asymmetry into our resultant areal extents, we used the 95% 

interval on the resampled distribution of omission and commission errors to estimate 

the upper and lower bounds for the areal extents of each land cover with 
𝐴𝑖95%CIlower = 𝐴𝑖 − (𝐴𝑖 × CP95),                  （1） 
𝐴𝑖95%CIupper = 𝐴𝑖 + (𝐴 × OP95),                  （2） 

where 𝐴𝑖 is the mapped area of the HGMF_2020 class 𝑖, and CP95 and OP95 are the 

95% percentile of the commission and omission accuracies corresponding to class 𝑖, 

respectively. 

2.5 Patch width analyses 

Mangrove patches are irregular polygons, and the morphology of coastlines is 

uncertain; thus, directly calculating the perpendicular widths of the polygons to the 

coastlines is not practical. To solve this issue, we first created the largest circle inside 

each polygon and then selected polygons containing a circle greater than 100 or 1500 

m in diameter. Thus, the selected polygons had widths exceeding 100 or 1500 m, 

regardless of the angles of the coastlines. Finally, we named these patches W100 and 

W1500, respectively. 

3. Results 

3.1 Accuracy of HGMF_2020 

Standard error matrices and bootstrapping results are shown in Tables S1–S3 



(online). The overall accuracy of HGMF_2020 was 95.2%, and the user’s accuracy 

and producer’s accuracy of mangrove forest were 91.8% and 90.3%, respectively 

(Table S1 online). According to the regional assessment results, the commission and 

omission errors of mangrove forest mapping in southeastern Asia, western Africa, and 

South America were higher than those in other regions (Table S2 online). The errors 

were mainly caused by confusing mangrove forests with lowland wetlands. In contrast, 

the mapping accuracies of southern Africa, southern Asia, and western Asia were 

much higher than those of other regions. Because the climates of these regions are 

relatively dry, mangrove forests are significantly different from surrounding land 

covers. Table S3 (online) shows 1000 iterations of bootstrapping results. The overall 

accuracy was 93.6% with a 95th CI of 91.4% to 95.7%, and the user’s accuracy and 

producer’s accuracy of mangrove forest are 92.0% (90.2%–93.8%, 95th CI) and 91.0% 

(89.6%–92.3%, 95th CI), respectively. 

3.2 Area and spatial distribution of global mangrove forests in 2020 

The spatial distribution and areal extent of global mangrove forests are shown in 

Fig. 2 and Table 1. The area of global mangrove forests was 145,068 km2 (130,850 to 

160,153 km2, 95th CI) in 2020. Approximately 96% of mangrove forests were 

distributed in tropical regions (Fig. 2c). Asia had the largest amount of mangrove 

forests (39.2%), followed by Africa (19.3%), South America (15.4%), North America 

(14.3%), and Oceania (11.9%). For the United Nations (UN) statistics geographic 

regions [56], mangrove forests in southeastern Asia, South America, Western Africa, 

Central America, and Australia and New Zealand ranked the top five largest, with 

areal extents all exceeding 10,000 km2 (Table 1). Fig. 2b lists the top twenty 

mangrove-rich countries, and these countries comprised more than 80% of the global 

mangrove forests. Indonesia had the largest amount of mangrove forests, followed by 

Brazil and Australia. Specific areas of mangrove forests in different countries are 

listed in Table S4 (online). 
 

Fig. 2. Areal extent and distribution of global mangrove forests in 2020. (a) Area and proportion of mangrove 

forests on each continent. (b) Areal extents of mangrove forests in the top twenty mangrove-rich countries. (c) 

Distributions of mangrove forests summarized in each decimal degree square. 



 

Table 1. Area of mangrove forests with 95% confidence intervals (95th CI) for each United Nations (UN) statistics 

geographic region. 

Geographic region Area (km2) 95th CI (km2) Proportion (%) 

Northern Africa 7.5 6.7–8.2 0.0 

Eastern Africa 7132.2 6390.4–7831.1 4.9 

Middle Africa 4137.2 3706.9–4542.7 2.9 

Southern Africa 22.4 20.0–24.6 0.0 

Western Africa 16657.1 14924.8–18289.5 11.5 

Caribbean 5518.9 4944.9–6059.7 3.8 

Central America 12715.7 11393.3–13961.8 8.8 

North America 2487.8 2229.1–2731.6 1.7 

South America 22288.0 19970.0–24472.2 15.4 

Eastern Asia 340.8 304.1–372.6 0.2 

Southeastern Asia 47008.2 42119.3–51615.0 32.4 

Southern Asia 9333.2 8362.6–10247.9 6.4 

Western Asia 197.8 177.2–217.2 0.1 

Australia and New Zealand 10994.0 9850.7–12071.4 7.6 

Melanesia 6091.4 5457.9–6688.4 4.2 

Micronesia 129.5 116.0–142.2 0.1 

Polynesia 6.0 5.4–6.6 0.0 

 

3.3 Patch size of global mangrove forests 

Globally, the number of mangrove patches was 336,972 in 2020 (Fig. 3a). Asia 

had the largest percentage of total patch number (36.5%), followed by North America 

(20.8%), Oceania (18.7%), South America (12.4%), and Africa (11.6%). In total, 95% 

of mangrove patches were smaller than 1 km2. For the width of global mangrove 

patches, 59,751 patches had a width greater than 100 m, with a sum area of 142,998 

km2, accounting for 98.5% of the global total. The number of patches with a width 

greater than 1500 m was 1782, with a total area of 35,831 km2, accounting for 25% of 

the global total. For the United Nations (UN) statistics geographic regions, the mean 

patch size of Melanesia was 1.5 km2, which was the largest, followed by Western 

Africa and Southern Asia, with mean patch sizes of 1.0 and 0.7 km2, respectively. For 

other geographic regions, the mean patch sizes were all smaller than 0.5 km2. Fig. 3b 

shows the top ten countries with the largest mean patch size. The mean patch size of 



mangrove forests in Bangladesh ranked the largest, followed by Congo and Cayman 

Is. In terms of individual patches, only 88 patches had an area larger than 100 km2, 

and the largest patch was found in Everglades National Park, Florida, United States, 

with an area of 989 km2 (Fig. 3c). Large patches were also found in the estuary of the 

Amazon River (Fig. 3d), the Sundarbans along the Bay of Bengal (Fig. 3e), and 

Sembilang National Park in Indonesia’s South Sumatra Province (Fig. 3f). 
 

Fig. 3. Number and size of global mangrove patches and regional subsets of four large patches. (a) Number and 

proportion of mangrove patches on each continent. (b) Top ten countries with the largest mean mangrove patch 

size. Subset of the HGMF_2020 dataset overlaid on Google Earth image in Everglades National Park, Florida, the 

United States (c), the estuary of the Amazon River, Brazil (d), Sundarbans along the Bay of Bengal (e), and 

Sembilang National Park in Indonesia’s South Sumatra Province (f). 

 

4. Discussion 
4.1 Status of global mangrove forests under conservation and threats 

For years, many nongovernmental organizations, community groups, research 

institutions, and governmental agencies have been working globally on such efforts. 

For example, in 2018, the International Union for Conservation of Nature, World 

Wildlife Fund, Conservation International, Wetlands International, the Nature 

Conservancy, and many other partners formed the Global Mangrove Alliance, which 

aims to accelerate a coordinated and comprehensive approach for global mangrove 

restoration and conservation. A large number of mangrove forests are under 

conservation and management with intergovernmental treaties, such as the World 

Heritage Convention, the Convention on Biological Diversity, and the Ramsar 

Convention on Wetlands [15]. 

With efforts over the last 20 years, mangrove forests have shifted from being one of 

the fastest diminishing ecosystems on Earth to one of the most protected 

(https://www.mangrovealliance.org/mangrove-forests/). As of March 2023, 302 

Ramsar sites, 23 World Heritage sites, and tens of federal or national ministry or 

agency reserves have been established to protect mangrove forests worldwide. As 

shown in Table 2 and Fig. 4a, b, mangrove forests in Australia were sparse, whereas 

natural reserves along these coasts were relatively large. In contrast, the coasts of 



southern and southeastern Asia had large areas of mangrove forests; however, the 

areal extents of mangrove forests that were protected were less. 

Although more than 300 mangrove natural reserves have been established in recent 

decades, the conservation effectiveness of these reserves is highly variable. For 

positive examples, in China, mangrove forests located in the Ramsar sites and 

national natural reserves all recovered after the establishment of the reserves [46,57]; 

in Belize, due to high protection attention during 1996-2017, the annual rate of 

mangrove loss in the Belize Barrier Reef Reserve System (World Heritage site) was 

significantly lower than that outside the reserve [58]. In contrast, a series of studies 

indicated that there were large gaps between mangrove conservation policies and 

actions, and the root of mangrove degradation had been attributed to coastal economic 

development targets [59-62]. In Ecuador, even in protected areas, the construction of 

aquaculture ponds caused serious deforestation of mangrove forests [63]. In Brazil, 

approximately seventy percent of mangrove forests are inside protected areas; 

however, the strength of protection is weakened by a lack of economic interest and 

conservation policies [64]. 

Moreover, a focus only on mangrove extent could mask the degradation 

associated with reductions in habitat quality [15]. For example, the area of mangrove 

forests in the Xuan Thuy Natural Wetland, Vietnam, was relatively constant since 

1989, when it was included in the List of Ramsar Wetlands of International 

Importance. However, in the reserve, the expansion of aquaculture was not slowed, 

and the patches of mangrove forest have become fragmented [65]. Indeed, successful 

management, restoration, and conservation relied on the efforts of national, state, and 

local governments along with local communities [62]. However, due to a lack of 

funding and enforcement [15], local people benefited little in participating in 

co-management activities [66]. A previous study also indicated that financial support 

for mangrove protection benefits harvesters, especially by engaging local women in 

small business activities [66]. In addition to the World Heritage Convention, the 

Convention on Biological Diversity, and the Ramsar Convention on Wetlands, 

information provided by the HGMF_2020 dataset can be used to support a series of 



worldwide conservation policies, such as the UN Sustainable Development Goals 

(SDGs), including SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 6 (Clean Water 

and Sanitation), SDG 13 (Climate Action), SDG 14 (Life under Water), and SDG 15 

(Life on Land), UN Framework Convention on Climate Change, Convention on 

Biological Diversity, Sendai Framework on Disaster Risk Reduction, Bonn Challenge, 

and IUCN General Assembly and World Conservation Congress [67]. 

 
Table 2. Areas and proportions of protected mangrove forests for each UN statistical geographic region. 

Geographic region Area (km2) Proportion (%) 

Northern Africa 2.2 29.7 

Eastern Africa 4028.7 56.5 

Middle Africa 2554.1 61.7 

Southern Africa 15.0 67.0 

Western Africa 11581.2 69.5 

Caribbean 3454.4 62.6 

Central America 8631.9 67.9 

North America 1928.7 77.5 

South America 13012.8 58.4 

Eastern Asia 124.1 36.5 

Southeastern Asia 8958.1 19.1 

Southern Asia 7150.8 76.6 

Western Asia 13.7 6.9 

Australia and New Zealand 2071.7 18.8 

Melanesia 445.1 7.3 

Micronesia 10.2 7.9 

Polynesia 0.0 0.0 

Global total 63982.6 44.1 

 
 

Fig. 4. Spatial information on global mangrove forest conservation. (a) Area of mangrove forests in each natural 

reserve. (b) Areal extent of each natural reserve, including Ramsar site, World Heritage site, and federal or national 

ministry or agency reserve.  

 

4.2 Status of mangrove forests in resisting natural disasters 

Coastal zones have a large exposed population and integrated high-value assets 

[68]. Mangrove forests have been considered a sustainable coastal green belt to 

protect lives and property [42]. For example, in Kendrapada District, Orissa state, 

India (Fig. 5a), during the Indian super cyclone in 1999, compared to villages with 



narrower or no mangrove forests, villages with wider mangrove forests had 

significantly fewer reported deaths [69]. As we calculated from the HGMF_2020 

dataset, nearly 99% of mangrove forests had a width greater than 100 m, suggesting 

that mangrove forests play a critical role in providing protection services globally. Fig. 

5a illustrates that the W100 and W1500 mangrove patches along the coastlines of 

Central and South America, western Africa, and eastern and southeastern Asia 

protected large coastal zones. Fig. 5b shows Lagos, Nigeria, with a population over 15 

million, as a typical city protected by W1500 patches. Fig. 5c shows large areas of 

aquaculture ponds near Hai Phong, Vietnam, which were protected by W1500 

patches. 
 

Fig. 5. 100-km buffer zone of W100 and W1500 mangrove patches. W100 and W1500 represent patches wider 

than 100 and 1500 m, respectively. (a) Kendrapada District, Orissa state, India. (b) Lagos, Nigeria, protected by 

W1500 patches. (c) Aquaculture ponds protected by W1500 patches in Hai Phong, Vietnam. 

 

4.3 Comparisons to previous global-scale mangrove forest datasets 
The HGMF_2020 is the first 10-m spatial resolution global mangrove forest 

dataset derived by consistent Sentinel-2 imagery and OBIA. In this section, we 

compared this dataset with seven remote sensing-based global-scale mangrove forest 

datasets (Table 3), i.e., GMFD [26], GMW v2.0, v2.5 and v3.0 [29-31], CGMFC-21 

[27], LREIS_GLOBALMANGROVE, and GMF30_2000-2020. GMW v3.0 was built 

mainly by L-band synthetic aperture radar (SAR). The other six datasets were built 

mainly from optical remote sensing data. For the optical-based datasets, except for 

CGMFC-21 and LREIS_GLOBALMANGROVE, which reported obviously larger 

mangrove forest extents than the others, the area of mangrove forests in HGMF_2020 

was higher than the other four. The differences could be ascribed to imagery, i.e., 

Sentinel-2 vs. Landsat-5/7. A previous study indicated that Sentinel-2 imagery with 

10-m resolution is helpful in discriminating smaller mangrove patches [30]. GMW 

v3.0 adopted GMW v2.5 as a baseline and detected mangrove changes using L-band 

SAR. However, using L-band SAR to separate mangrove forests from other woody 

wetlands is challenging [29-31]. Specifically, low-land wet forests adjacent to 



mangrove swamps could be misclassified as mangrove forests. 

LREIS_GLOBALMANGROVE was built by deep learning methods and Sentinel-2 

between 2018 and 2020. LREIS_GLOBALMANGROVE is online shared data 

(https://www.scidb.cn), and as we calculated from the vector, the total area of 

mangrove forests was much higher than that of HGMF_2020. GMF30_2000-2020 is 

also an online published dataset (https://data.casearth.cn), and the total area of 2020’s 

mangrove forests in GMF30_2000-2020 was much lower than that in HGMF_2020. 

To further discuss the differences between the 10-m resolution datasets of 

HGMF_2020, GMW v3.0, and LREIS_GLOBALMANGROVE, three typical subsets 

are illustrated in Fig. 6, i.e., Bahía de Panamá, Panama (Ramsar site no. 1319, Fig. 

6a–c), Apoi Creek Forests, Nigeria (Ramsar site no. 1751, Fig. 6d–f), and Lorentz 

National Park, Indonesia (World Heritage Site, Fig. 6g–i). As shown in Fig. 6, the 

superiority of the HGMF_2020 dataset can be supported based on three aspects. First, 

the integrity of patches in HGMF_2020 is much higher than that in the other datasets. 

Thus, the HGMF_2020 dataset provides geo-information that can be immediately 

used by scientists and managers. As shown in Fig. 6, the integrity of patches in 

HGMF_2020 performed better than the other two datasets. The difference can be 

attributed to different classification methods. GMW v3.0 was built using a pixel-based 

algorithm, LREIS_GLOBALMANGROVE was built based on mixed methods, and 

HGMF_2020 was consistently built based on OBIA. Second, HGMF_2020 delineated 

considerable small patches of mangrove forests, especially those along coastal edges. 

Therefore, HGMF_2020 can support precision management of mangrove ecosystems 

not only at the global scale but also at the regional and local scales. For example, 

HGMF_2020 contained more linear patches outside aquaculture ponds. Third, 

HGMF_2020 contained reasonable geographical spatial details. As shown in the 

subset of Lorentz National Park (Fig. 6g–i), mangrove patches in HGMF_2020 were 

split only by tidal creeks (Fig. 6g), whereas unreasonable noise widely existed in the 

patches of the other two. 
 
Table 3. Areas of mangrove forests in HGMF_2020 and other remote sensing-based global-scale datasets. 

Dataset Reference year Data source Resolution (m) Areas (km2) 



HGMF_2020 2020 Sentinel-2 MSI 10 145,068 

GMFD 2000 Landsat-TM/ETM+ 30 137,760 

GMW v2.0 2010 ALOS PALSAR 

Landsat-TM/ETM+ 

30 137,600 

GMF30_2000-2020 2020 Landsat-TM/OLI 30 113,779 

GMW v2.5 2010 Landsat TM/ETM+ 

ALOS PALSAR 

Sentinel-2 MSI 

10–30 140,260 

GMW v3.0 2020 ERS-1 SAR 

ALOS PALSAR 

ALOS-2 PALSAR-2 

25 147,359 

CGMFC-21 2012 Landsat-TM/ETM+ 30 167,387 

LREIS_GLOBALMAN

GROVE 

2020 Sentinel-2 MSI 10 168,659 

 
 

Fig. 6. Typical subsets of HGMF_2020, GMW v3.0, and LREIS_GLOBALMANGROVE in Bahía de Panamá, 

Panama (Ramsar site no. 1319. (a) HGMF_2020; (b) GMW v3.0; (c) LREIS_GLOBALMANGROVE), Apoi 

Creek Forests, Nigeria (Ramsar site no. 1751. (d) HGMF_2020; (e) GMW v3.0; (f) 

LREIS_GLOBALMANGROVE), and Lorentz National Park, Indonesia (World Heritage site. (g) HGMF_2020; (h) 

GMW v3.0; (i) LREIS_GLOBALMANGROVE). 

 

4.4 Reliability, updateability and uncertainties of the HGMF_2020 dataset 

The reliability of the HGMF_2020 database could be attributed to three factors, 

i.e., the higher spatial resolution of Sentinel-2 imagery, the robust images obtained by 

MSIC, and the better performance of OBIA. First, compared to Landsat imagery, the 

finer spatial resolution of Sentinel-2 imagery offers great opportunities to obtain 

mangrove patches with more spatial details. Second, the MSIC overcomes the 

uncertainties derived from tidal variations within a scene. Third, the OBIA has 

advantages over pixel-based classification because it uses spectral, textural, and 

neighborhood information during classification and generally produces higher 

accuracy [70,71] and reduces salt-and-pepper effects [72]. Therefore, the 

classification result can be directly used for further analysis. 

Compared to previous global mangrove forest databases, the advantages of the 

HGMF_2020 database not only lie in the higher spatial resolution but also the 

addition of information on patch patterns. Owing to this advantage, the HGMF_2020 

database has more potential to support a range of policy mechanisms, such as 



informing global policy frameworks about trends in mangrove health and distribution, 

identifying drivers of loss and recovery, mapping mangrove values, and setting and 

monitoring targets for conservation and rehabilitation. 

In addition, HGMF_2020 is an updatable dataset. The current availability of 

advanced satellite imagery allows for the acquisition of rapid and robust updatable 

products, especially Sentinel-2 imagery, which has a short revisit cycle of 2-5 days. 

The GEE platform enabled swift processes of a large number of satellite images 

across large scales [73]. The HGMF_2020 dataset can be updated annually by 

applying image classifications only to locations with changes. 

Uncertainties in HGMF_2020 were mainly caused by three factors. First, 

commission errors were caused by misclassification with lowland wet forests. For 

example, in Lorentz National Park, lowland wet forests with spectral and texture 

features similar to those of mangrove forests are directly connected to mangrove 

forests, and thus, they are difficult to differentiate from mangrove forests. Second, 

data gaps emerged from cloud coverage. Although NDVI-MSIC has great potential to 

remove cloud pixels, clouds may still exist in small regions. Third, due to the spatial 

resolution of Sentinel-2 imagery and the capacity of the OBIA, the minimum mapping 

unit of HGMF_2020 was set to 600 m2 (six 10-m resolution pixels); thus, smaller 

patches could not be identified or mapped. 
 

5. Conclusions 

Up-to-date information and assessment of mangrove forests distributions and 

patch structures are essential in supporting the implementation of relevant sustainable 

management. This study produced the first 10-m resolution dataset of global 

mangrove forests, i.e., HGMF_2020, which contains the abovementioned information. 

Based on the HGMF_2020 dataset, we conducted further analysis of the status of 

global mangrove forests from different perspectives. From the perspective of 

ecosystem conservation and threats, mangrove forests located on the coasts of western 

Africa had a better status due to the higher proportion of conservation and larger area 



of natural reserves; in contrast, mangrove forests in eastern and southeastern Asia 

were in a disadvantageous situation due to the lower proportion of conservation and 

vast extent of anthropogenic land cover. From the perspective of resisting natural 

disasters, mangrove forests in southern, eastern and southeastern Asia, North America, 

and western Africa greatly contributed to protecting properties due to the larger patch 

size. This study presents a quantitative analysis of global mangrove forests status in 

association with conservation, threats, and coastal protection. HGMF_2020, with 

consistent spatial and temporal fine resolution, offers the critical baseline for 

evaluating the role of mangrove forests toward sustainability and the assessment of 

SDGs. 
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