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ARTICLE INFO ABSTRACT

Keywords: Eucalyptus plantations promote the economic development of forestry in southern China, but many studies have
Forest mapping reported their negative environmental impacts, such as high water resource usage of certain species of Euca-
EVI

lyptus plants and losses in biodiversity. To date, annual maps of Eucalyptus plantations at large scales with high
spatial resolutions are not yet available. Here, we investigated the spectral properties of Eucalyptus plantations
and developed a knowledge-based Eucalyptus plantation mapping algorithm. We produced annual maps of
Eucalyptus plantation at 10-m spatial resolution in the Guangxi Zhuang Autonomous Region (Guangxi), China,
using our proposed algorithm and images of ALOS PALSAR-2, Sentinel-2, and Landsat (ETM+/OLI) in a single
year. First, we generated annual evergreen forest maps using PALSAR-2 and Landsat/Sentinel-2-based vegetation
index time series data. Second, we distinguished Eucalyptus plantations from the evergreen forest layer using the
unique biophysical features of Eucalyptus plantations, the Sentinel-2 red edge bands, and Landsat/Sentinel-2-
based enhanced vegetation index (EVI). Our resultant 2020 Eucalyptus plantation map had high producer’s,
user’s, and overall accuracies of 0.85, 0.89, and 0.96, respectively. There were 3.10 x 10° ha of Eucalyptus
plantation in Guangxi in 2020. Among the 14 administrative units, Wuzhou City had the largest Eucalyptus
plantation area in Guangxi, followed by Nanning, Baise, and Chongzuo cities. We demonstrated the potential of
knowledge-based mapping approaches for identifying evergreen forest and Eucalyptus plantations in complex
and fragmented landscapes where cloud cover is frequent. Our 10-m Eucalyptus plantation map is the most
current dataset available and can be used to assist the sustainable production of Eucalyptus, ecological assess-
ments, and conservation.

Red edge bands
Google Earth Engine

1. Introduction Eucalyptus plantations promote the economic development of forestry.

For example, they provide wood for charcoal, timber, construction

As one of the most planted broadleaf tree species worldwide, Euca-
lyptus has become the main tree species for fast-growing and productive
forests in southern China because of its rapid growth, biomass yield,
resistance to disease and pests, tolerance to infertile soil, stem shape,
and its wide range of uses (Deng et al., 2020; Zhang and Wang, 2021).

materials, and firewood. In addition, Eucalyptus oil can be used as a
cleaning solution and food supplement. However, Eucalyptus growth
requires large amounts of nutrients and more water than other alter-
native plantations in the early growth stage, which may cause envi-
ronmental damage such as biodiversity loss (Forrester et al., 2006;

* Corresponding author at: Department of Microbiology and Plant Biology, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK 73019, USA.

E-mail address: xiangming.xiao@ou.edu (X. Xiao).

https://doi.org/10.1016/j.jag.2023.103348

Received 16 February 2023; Received in revised form 1 May 2023; Accepted 6 May 2023
1569-8432/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


mailto:xiangming.xiao@ou.edu
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2023.103348
https://doi.org/10.1016/j.jag.2023.103348
https://doi.org/10.1016/j.jag.2023.103348
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Zhang et al.

White et al., 2022; Zinn et al., 2002). As a result, accurate and timely
information on the Eucalyptus plantation area is essential for precise
forestry planning and management. However, no maps of Eucalyptus
plantations at large scales and high spatial resolutions are publicly
available.

During the past few decades, enormous efforts have been devoted to
mapping and monitoring forests and plantations, including rubber
plantations (Dong et al., 2013; Dong et al., 2012b) and oil palm plan-
tations (Danylo et al., 2021; Dong et al., 2020), at local, regional, and
global scales using satellite datasets (Hansen et al., 2013; Qin et al.,
2015; Rodriguez et al., 2021). Nevertheless, only a few studies have
focused on Eucalyptus plantation identification and mapping (Table 1)
in Portugal (Forstmaier et al., 2020; Oliveira et al., 2021), Brazil (Le
Maire et al., 2014), Thailand (Huang et al., 2021a), and China (Liang
et al., 2017; Lu et al., 2020).

Optical images are the most frequently used data in these Eucalyptus
plantation mapping studies, which included very high spatial resolution
(VHSR, meters) images, high spatial resolution (HSR, tens of meters)
images, and moderate spatial resolution (MSR, hundreds of meters)
images. For example, Deng et al. (2020) produced a Eucalyptus plan-
tation map for Guangxi in 2018. They first used a statistical hypothesis
test to determine if a pixel belonged to a plantation based on time series
EVI data derived from Landsat images between 2013 and 2018. Then
they applied broadleaf/needleleaf classification using the red edge and
nir infrared (NIR) bands of Sentinel-2 data to distinguish Eucalyptus
plantations from coniferous trees including pine and fir. Two studies (De
Luca et al., 2022; Huang et al., 2021a) combined optical and synthetic
aperture radar (SAR) data to map Eucalyptus plantations, as Sentinel-1
are freely available to the public and provide complementary informa-
tion to optical images (Table 1). The algorithms used in these studies
were all information-based supervised classification methods, which use
image data from the regions of interest (ROIs) to train classification
algorithms (e.g., support vector machine (SVM), neural networks (NN),
decision tree (DT), and random forest (RF)), and then apply the trained
algorithms to generate Eucalyptus plantation maps (Chen et al., 2021;
Deng et al., 2020; Le Maire et al., 2014; Liang et al., 2017). Information-
based algorithms are powerful and efficient tools for generating Euca-
lyptus plantation maps, but their complexity and opacity make it chal-
lenging to comprehend how the models made their final decisions. In
addition, these techniques rely on ample high-quality training data and
are difficult to be extended to large regions.

The knowledge-based supervised classification approach analyzes
time series image data of individual pixels and identifies unique spectral
and or microwave characteristics of specific land cover types, such as
phenology-based spectral signatures, and utilizes these unique charac-
teristics to identify and map specific land cover types. In contrast to

Table 1
A summary of satellite images and algorithms for Eucalyptus plantation

mapping.

Methods Optical image data Optical +
VHSR (<  HSR(10m-30  MSR i:i image
llf) m;e.g., m; e.g., Sentinel- (250 (Sentinel-2,
ZiYuan, 2, Landsat) m-500

Landsat,
GaoFen) m; e.g., .
Sentinel-1,
MODIS) PALSAR)
Information- (Chen (da Costa et al., (Le Maire (De Luca
based etal., 2021; Deng etal., et al., 2022;
supervised 2021; et al., 2020; 2014) Huang et al.,
classification Liang Forstmaier et al., 2021a)
(e.g., NN, DT, et al., 2020; Lu et al.,
SVM, RF) 2017) 2020; Oliveira
et al., 2021)
Knowledge-based This study
supervised
classification
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information-based algorithms that require large number of training
samples, knowledge-based algorithms, once developed and validated,
have the potential to be applied directly to other years or regions
without the need for new and large training samples. In recent years, a
number of studies have documented the potential and advantages of
knowledge-based algorithms to generate maps of rubber plantations
(Dong et al., 2013; Dong et al., 2012b), mangrove forests (Chen et al.,
2017), paddy rice (Dong et al., 2015; Dong et al., 2016; Xiao et al., 2006;
Xiao et al., 2005a), and Spartina alterniflora marsh (Zhang et al., 2020b).
However, the phenology of Eucalyptus plantations and their unique
biophysical features compared to other evergreen species are poorly
understood. In addition, the knowledge-based algorithm has not been
applied to the identification and mapping of Eucalypts plantations, yet.

Time series Landsat images at 30-m spatial resolution can capture
leaf/canopy phenology (LCP) of different tree species and the land
surface phenology (LSP) of individual plantation stands. These charac-
teristics are advantageous for plantation mapping as has been demon-
strated in several recent studies (Chen et al., 2017; Dong et al., 2013;
Pasquarella et al., 2018). However, although Landsat has an 8-day
revisit cycle in a bi-satellite system, it is challenging to acquire
enough good-quality observations of Landsat to accurately characterize
tree phenology in many areas with frequent cloud cover (Griffiths et al.,
2019). Since the public release of Sentinel-2 10-m and 20-m data in
2015, several studies have integrated Landsat and Sentinel-2 images to
map forests and plantations (Li et al., 2019; Parida and Kumar, 2020;
Wang et al., 2022). The Sentinel-2A/B together have 5-day revisit cycle,
which increases the amount of good-quality observations in a year and
better captures phenological information and changes of the land sur-
face (Wang et al., 2020a). The Sentinel-2 red edge bands and red edge
derived indices have aided plantation mapping, including rubber plan-
tations (Xiao et al., 2020), tea plantations (Zhu et al., 2019), and oil
palm plantations (Nomura and Mitchard, 2018). However, the potential
of red edge bands for tracking and detecting the phenological differences
between Eucalyptus plantations and other tree species has not been
evaluated.

China is the world’s second largest Eucalyptus plantation country,
only behind Brazil. As reported by China’s 9th National Forest Inventory
(NFI) (2014-2018), Guangxi Zhuang Autonomous Region has 47 % of
the total area of Eucalyptus plantation in China. It is critical to obtain
detailed knowledge of the spatial distribution of Eucalyptus plantations
for decision making, research, and ecosystem protection. The objectives
of this study were to (1) develop a knowledge-based algorithm to
identify and map Eucalyptus plantations by combining Sentinel-2,
Landsat, and PALSAR-2, and apply the proposed algorithm to produce
Eucalyptus plantation map at 10-m in Guangxi for 2020; (2) explore the
potential of the red edge bands of Sentinel-2 for Eucalyptus plantation
mapping; and (3) compare and evaluate the proposed Eucalyptus map-
ping algorithm using the 2018 Eucalyptus datasets from previous
studies.

2. Materials and methods
2.1. Study area

Guangxi is located in southern China and comprises 14 cities and
prefectures with an area of ~236,700 km?. The topography of Guangxi
is complex with elevation ranging from O to 2113 m above sea level
(Fig. 1). There are large flat plains in the central and southern parts of
Guangxi, surrounded by mountains and hills. Guangxi belongs to a
subtropical to tropical climate, where abundant rainfall and warm
temperatures provide a good growing environment for plants. According
to the report of China’s 9th NFI, Guangxi had the third highest forest
(arboreal forest, bamboo forest, and shrub) coverage (60.17 %) in China
in 2015. Guangxi is China’s largest timber production region with a
yearly production of ~25 million m® (Deng et al., 2020; Zeng et al.,
2015). Eucalyptus, pine, and fir are the main timber cultivars in Guangxi
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Fig. 1. (a) Eucalyptus plantation area (unit: 10* ha) by province and the location of Guangxi and (b) digital elevation model (DEM) of Guangxi. Eucalyptus

plantation area by province was reported in China’s 9th NFI.
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Fig. 2. Field photos of main forest types in Guangxi. Photos of (a) Eucalyptus
and (b) natural forest were downloaded from the Global Geo-Referenced Field
Photo Library (https://www.ceom.ou.edu/photos/). Photos of (c) fir and (d)
pine were provided by Xinya Qin.

(Fig. 2), where Eucalyptus accounts for > 70 % of total timber pro-
duction (Forestry Bureau of Guangxi, 2018). Both farmers and state-
owned forestry companies plant Eucalyptus trees, and thus the size of
Eucalyptus plots varies widely from a few to hundreds of hectares.

2.2. Datasets

2.2.1. ALOS PALSAR-2 data

We used 25-m ALOS PALSAR-2 yearly mosaic L-band images from
2018 to 2020 in Google Earth Engine (GEE) (Fig. 3). These mosaic data
were selected from the original observations with the least response to
surface moisture (Shimada et al., 2014). The PALSAR-2 imagery were
ortho-rectified and slope corrected using the 90-m SRTM digital eleva-
tion model (DEM). The PALSAR-2 data have two polarizations (HH and
HV). The digital number (DN) values in the two polarization bands were
converted to gamma naught (y°) values in decibel unit (dB) using y° =
10log, (DN*) —83 dB (Shimada et al., 2009). Difference (HH-HV) and
ratio (HH/HV) values were calculated. Approximately 4.9 x 10° pixels
(1.2 % of the total number of pixels) in Guangxi had no PALSAR-2 data
in 2020 (Fig. 3a), and thus the missing data were gap filled with data
from 2018 (Fig. 3c, d), as PALSAR-2 data for 2019 in the same pixels
were also unavailable (Fig. 3b).

2.2.2. Sentinel-2 data

We used Sentinel-2A/B Level-2A surface reflectance (SR) data from
January 1, 2020, to December 31, 2020, and top of atmosphere (TOA)
reflectance data from January 1, 2018, to December 31, 2018 as SR data
were not available for 2018. Compared to other multi-spectral satellites
such as Landsat and MODIS, Sentinel-2 has four additional spectral
bands in the red edge region, centering at 704 nm (B5 or RE1), 740 nm
(B6 or RE2), 783 nm (B7 or RE3), and 865 nm (B8A or RE4), which are
specifically designed to vegetation monitoring (Clevers and Kooistra,
2011), and are reported to be the most important ranking attributes in
Sentinel-2 data classification (Sothe et al., 2017). We removed clouds
and cloud shadows using cloud mask information within the Quality
Assessment (QA60) bitmask band. Spatial distributions of total obser-
vation number and good-quality observation number for Sentinel-2
images in 2020 are presented in Fig. 4a, c.

The normalized difference vegetation index (NDVI) (Tucker, 1979),
enhanced vegetation index (EVI) (Huete et al., 2002; Huete et al., 1997),
and land surface water index (LSWI) (Xiao et al., 2004; Xiao et al.,
2005b) were calculated for each image using Egs. (1)-(3). NDVI and EVI
are used to track the seasonal changes of vegetation canopy (Huete et al.,
2002; Huete et al., 1997; Tucker, 1979). LSWI is used to monitor the
seasonal changes of vegetation and soil water.

IR — R

NDVI = NIR — Red 1)
NIR + Red

NIR — Red

EVI=2. 2

X NIR T 6Red —7.5Blue 1 1 &)
IR — SWIR

Lswi = VIR — SWIR 3)

NIR + SWIR

where Blue, Red, NIR, and SWIR are the SR values of blue (496.6 nm), red
(664.5 nm), near-infrared (835.1 nm), and shortwave-infrared (1613.7
nm) bands for the Sentinel-2A Multi Spectral Instrument (MSI) sensor.

2.2.3. Landsat data

We used Landsat 7/8 Level-2 SR data in GEE from January 1, 2018,
to December 31, 2018, and January 1, 2020, to December 31, 2020.
Clouds and cloud shadows were removed using the pixel quality
assessment (pixel_qa) band. Spatial distributions of the number of total
observations and good-quality observations of Landsat 7/8 images in
2020 are shown in Fig. 4b, d. NDVI, EVI, and LSWI were calculated for
each Landsat image (see Egs. (1)-(3)). The annual maximum NDVI
(NDVI,,ax) was calculated by combining NDVI derived from Sentinel-2
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Fig. 3. Spatial distribution of the false-color combinations of PALSAR-2 data (R:G:B = HH:HV: HH-HV) in Guangxi, China. (a)-(c) show PALSAR-2 images for (a)
2020, (b) 2019, and (c) 2018. (d) Gap filled PALSAR-2 images for 2020.
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and Landsat.

2.2.4. Ground reference data

We used VHSR images from Google Earth, geo-referenced field
photos, and training samples shared in the literature to collect training
samples of different tree species. First, we collected field photos and
KML files with coordinates in Guangxi, China, which are hereafter
abbreviated to Points of Interest (POIs), from the Global Geo-Referenced
Field Photo Library (https://www.ceom.ou.edu/photos/), and geo-
linked them to Google Earth. Second, we downloaded different tree
species training polygons shared by Deng et al. (2020) as SHP files from
https://code.earthengine.google.com/?accept_repo=users/siatsiat
ns/eucalypt. These polygons included 19 Eucalyptus plantations, 27 fir
plantations, 29 pine plantations, and 10 evergreen natural forests, which
were obtained by field survey in 2017 and visual identification through
VHRS images in Google Earth. Third, we overlaid field photos and
shared training polygons with Google Earth VHSR images to collect
training samples for Eucalyptus plantations and other evergreen tree
species. Finally, we collected polygons for 117 Eucalyptus plantations,
67 natural evergreen forests, 25 fir plantations, and 29 pine plantations
for image analysis and algorithm development (Fig. 5a). Of these, 107
Eucalyptus plantations, 67 natural evergreen forests, 8 fir plantations,
and 5 pine plantations training samples were collected by combing filed
photos and VHSR images. The remaining training samples were ob-
tained and adapted from Deng et al.’s (2020) study.

2.3. Methods

We developed a knowledge-based algorithm and workflow to iden-
tify and map the annual maps of Eucalyptus plantations in Guangxi
(Fig. 6). We first identified evergreen forest using PALSAR-2 data and
Landsat/Sentinel-2-based time-series EVI and LSWI data, and then
distinguished Eucalyptus plantation within in the evergreen forest layer
using Sentinel-2 red edge bands and Landsat/Sentinel-2-based time se-
ries EVI data.

2.3.1. Algorithms to identify forest and evergreen forest

The effective identification of Eucalyptus plantations starts with
accurate forest and evergreen forest maps. As defined by the Food and
Agricultural Organization (FAO), forest is land with trees above 5-m and
a canopy cover of over 10 % (FAO, 2020), and we adopted this definition
for our study. L-band PALSAR is able to penetrate clouds, smoke, and
haze to capture the structure and aboveground biomass of forests
(Imhoff, 1995; Kovacs et al., 2013) and can help distinguish forest from
non-forest (Reiche et al., 2016). However, some urban lands may have
similar higher backscatter coefficients with forests (Qin et al., 2015).
NDVIpax has the potential to reduce the commission error caused by
urban lands (DeFries and Townshend, 1994). Previous studies have

10q° E 10q° E 107l° E 10§° E 109°E 11q° E 111I° E 112|° E
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developed a detailed workflow to identify and map forests by combining
PALSAR and NDVI ., and produced forest maps with high accuracies in
China (Qin et al., 2015), Southeast Asia (Dong et al., 2012a), and the
United States (Yang et al., 2021). We used the same algorithm for forest
cover mapping in China (i.e., 3<HH-HV <7 & —-15<HV < -9 & 0.35
< HH/HV < 0.75 & NDVI,5x > 0.5) (Qin et al., 2015) to generate forest
maps for Guangxi.

In previous studies, we developed an evergreen vegetation identifi-
cation algorithm using time series LSWI and EVI (Dong et al., 2015; Xiao
et al., 2009). Here we applied the same algorithm LSWI > 0 and EVI >
0.2 with a frequency of > 90 % (Wang et al., 2020a) to identify ever-
green forest in the forest map. The resultant annual evergreen forest
maps were used as the baseline map for Eucalyptus plantation identifi-
cation in the next step.

2.3.2. Phenology analysis of Eucalyptus and other evergreen tree species

Plant traits, including leaf type (broadleaf vs needleleaf), leaf sea-
sonality (evergreen vs deciduous), leaf longevity (one-year vs multiple-
year old leaf), leaf size and shape (large vs small; long vs short), and leaf
clumping or cluster, differ among trees in natural forests, Eucalyptus, fir,
and pine. Eucalyptus leaves are evergreen broadleaves which are narrow
and thin. Leaves of trees in natural forests are large and thick evergreen
broadleaves. Fir and pine leaves are evergreen needleleaves. Compared
to other evergreen tree species in Guangxi, Eucalyptus has several
unique phenological features in terms of leaf longevity, leaf area index
(LAI), and leaf growth rate. We collected the information about leaf
longevity and LAI from the Plant Trait Database (https://www.try-db.
org/TryWeb/Data.php) and publications (DeRose and Seymour, 2010;
Mthembu, 2001; Rody et al., 2014; Yan et al., 2019; Zhao et al., 2020;
Zhu et al., 2015), and then calculated the average and median values to
quantitatively describe the differences in plant traits between Euca-
lyptus tree and other tree species (Table 2).

Eucalyptus trees have small canopies with the crowns growing at the
top of the trunks, resulting in an LAI for Eucalyptus that is usually < 2
m?/m?. Other evergreen trees, such as fir and pine, have larger canopies
with branches often growing along the trunks, resulting in larger LAI
values (typically > 2 m?/m?). Eucalyptus leaves live for about 20
months, while fir and pine can have leaf lifespans of over two years up to
eight years (Table 2). The shorter leaf lifespan of Eucalyptus results in a
larger ratio of new to old leaves in the canopy than the other three
evergreen species. According to the leaf litterfall records of these tree
species, the leaf litterfall production of these tree species follows a
seasonal pattern and peaks in the rainy season (March-June) (Kong
et al., 2022), which means that old leaves are shed and new leaves grow
during this period. The larger ratio of new to old leaves in the Eucalyptus
canopies results in higher red edge and near infrared reflectance, which
in turn leads to higher LSWI and EVI values during winter and spring
than other evergreen tree species.
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Table 2
Plant traits for major evergreen tree species in Guangxi. The data were collected
from the Plant Trait Database and publications.

Evergreen broadleaf forest Evergreen
coniferous
forest

Eucalyptus  Natural evergreen Pine  Fir

tree
Leaf lifespan Average 20 41 33 87
(month) Median 21 25 32 96
LAI (m?/m?) Average  1.97 2.52 497 498
Median 1.88 2.55 3.85 3.00

Temporal profiles of four Sentinel-2 red edge bands and Landsat/
Sentinel-2-based EVI and LSWI were constructed to examine the
unique spectral features of Eucalyptus plantations and other evergreen
tree species at single pixel level in terms of leaf and plant structure and
growth rate (Fig. 7). We found that the seasonal dynamics of red edge
bands and vegetation indices of Eucalyptus differed noticeably from
those of other evergreen tree species in (1) spring (January to March)
and (2) winter (November to December). Eucalyptus plantations had
higher values of RE2-4 reflectance in both spring and winter (Fig. 7b-d),
which indicates that Eucalyptus plantations have a higher ratio of new
to old leaves. In addition, Eucalyptus plantations had higher EVI values
in both spring and winter (Fig. 7e), which suggestes that Eucalyptus
plantations are more active in the cold season than other evergreen
species. These unique phenological characteristics of Eucalyptus plan-
tations are consistent with their plant traits presented in Table 2.
Therefore, Eucalyptus plantations can be distinguished from other
evergreen tree species in spring and winter.

2.3.3. Algorithm to identify Eucalyptus plantation

To assess the generality of the phenological differences between
Eucalyptus and other evergreen tree species in spring and winter (see
Section 2.3.2), we overlaid the training samples of Eucalyptus planta-
tions and other evergreen tree species (described in Section 2.2.4) and
the phenological metrics for spectral signature analysis. Considering the
high correlation between the red edge bands and the greater differences
in RE4 between Eucalyptus plantations and other evergreen tree species,
we calculated the median values of RE4 and EVI during January to
March (RE4spring, EVIspring) and November to December (RE4yinter,
EVIyinter) (Fig. 8). The histograms showed that a vast majority (over 95
%) of Eucalyptus plantations had RE4ying values of > 0.20, RE4winter
values of > 0.25, and EVIyineer values of > 0.40 (Fig. 8a, c, d). EVIgying
was not as accurate in separating Eucalyptus plantations from other
evergreen tree species (Fig. 8b). Eucalyptus plantations in Guangxi are
widely distributed in hills and low mountains. Almost all (over 99.5 %)
Eucalyptus plantation pixels had DEM < 650 m and slope < 35° (Fig. 9),
thus we used DEM < 650 m and slope < 35° as complementary criteria
to limit Eucalyptus plantation boundaries. In summary, we developed

the algorithm described in Eq. (4) to differentiate Eucalyptus plantations
from other evergreen forests.

Eucalyptus plantation

(RE4yping > 0.20 & RE4yiper > 0.25 & EVIineer
0.40&DEM < 650 & Slope < 35°)

\Y

4

2.3.4. Accuracy assessment of the resultant Eucalyptus plantation maps

Validation samples from multi-sources were collected for accuracy
evaluation. First, we divided the study area into 32 1° x 1° grid cells.
Twenty random points and square buffers with 60-m by 60-m were
generated in each grid cell. Second, we visually checked and interpreted
Eucalyptus plantation and non-Eucalyptus plantation samples through
overlaying these buffers with VHSR images from Google Earth and
Sentinel-2 images in 2020. Field photos from the Global Geo-Referenced
Field Photo Library were treated as auxiliary references to cross-
reference land cover types. We excluded buffers that did not have
explicit land cover information. Finally, 89 Eucalyptus plantation buffer
areas (3,515 pixels) and 498 non-Eucalyptus buffer areas (18,760 pixels)
(Fig. 5b) were collected for the accuracy assessment of our resultant
Eucalyptus map for 2020 by calculating confusion matrices (Foody,
2002).

We also applied the same approach to generate randomly 60-m by
60-m square buffers to collect validation samples for the Eucalyptus and
non-Eucalyptus map in 2018. In total, 73 Eucalyptus plantation buffer
areas (2,773 pixels) and 475 non-Eucalyptus buffer areas (18,035 pixels)
were selected for the validation of the 2018 Eucalyptus map.

2.3.5. Comparison to other datasets of Eucalyptus plantations

We compared the Eucalyptus plantation maps for 2018 derived from
our proposed knowledge-based algorithms and Deng et al.’s (2020)
study, in terms of accuracy and area estimates. The area comparison was
conducted at the provincial and municipal levels.

Since the 1970s, China has established a continuous national forest
inventory (NFI) system, with an interval of five years, to study the dis-
tribution, composition, quantity, quality, and changes of forest re-
sources in China (Xu et al., 2019). Taking provinces (autonomous
regions/municipalities) as the survey units, 415,000 permanent sample
sites are reviewed every five years to survey, measure, and record
relevant indicators. Forests in NFI include arboreal forest, bamboo for-
est, and shrub. The Eucalyptus plantation area of Guangxi from the 9th
NFI of China in 2015 was used to compare with that of this study in
2018.

3. Results
3.1. Accuracy assessment for the Eucalyptus plantation map in 2020

The confusion matrix (Table 3) for the Eucalyptus plantation map in
Guangxi in 2020 was calculated by overlying the validation samples
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(Fig. 5b) and the resultant Eucalyptus plantation map. The 2020 Euca-
lyptus plantation map had a high OA of 0.96. The Eucalyptus plantation
had PA and UA of 0.85 and 0.89, and non-Eucalyptus plantation had PA
and UA of 0.98 and 0.97, respectively. The Kappa coefficient of the
assessment was 0.85, which indicated that our map had a good consis-
tency between the mapped pixels and the ground reference pixels.

Accuracy assessment of Eucalyptus plantation map in 2020 was also
carried out by prefecture/city and elevation range (Fig. 10). The PAs of
Eucalyptus plantations and OAs were ~0.80 or higher for individual
prefectures/cities. The UAs of Eucalyptus plantations were below 0.80
in four cities (Guilin, Liuzhou, Chongzuo, and Qinzhou) and above 0.80
in the ten other prefectures/cities (Fig. 10a). The UAs and OAs of
Eucalyptus plantations were > 0.90 in all elevation ranges, slightly
higher than PAs (> 0.80) (Fig. 10b). High values of assessment metrics
indicated that the resultant 2020 Eucalyptus plantation map had
reasonable accuracies.

3.2. Spatial and area distribution of Eucalyptus plantation in Guangxi in
2020

There were approximately 9.37 x 10° ha of forest (Fig. 11a) and
6.96 x 10° ha evergreen forest (Fig. 11b) in 2020, covering 39 % and 29
% of the land area in Guangxi, respectively. The resultant Eucalyptus

plantation map estimated the Eucalyptus plantation area of approxi-
mately 3.10 x 10° ha (Fig. 11c), which accounted for 45 % of the
evergreen forest area. Eucalyptus plantations were mainly located in the
central and southern regions of Guangxi. The large blocks of Eucalyptus
plantation were under the management of state-owned forestry enter-
prises, and the small blocks were plantations owned by local farmers and
small forestry companies. Among the 14 administrative units, Wuzhou
City had the largest Eucalyptus plantation area in Guangxi, followed by
Nanning, Baise, and Chongzuo cities. Beihai City had the smallest
Eucalyptus plantation area (Table 4). Over half (55 %) of the Eucalyptus
plantations were distributed at elevations between 50 m and 300 m,
with the area decreasing gradually as elevation increased (Fig. 12a).
Moreover, 68 % of the Eucalyptus plantations were located on slopes
ranging from 10° to 25°, with the area decreasing as the slope either
increases or decreases (Fig. 12b). The distributions of Eucalyptus plan-
tations by elevation and slope (Fig. 12) also demonstrate that the
training samples of Eucalyptus plantations (Fig. 9) used in the
knowledge-based algorithm development have the representative of the
actual distribution of the Eucalyptus plantations.

3.3. Area comparison with other Eucalyptus plantation data

China’s 9th NFI (2014-2018) reported that there were 2,560,500 ha
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Table 3
Confusion matrix for the Eucalyptus plantation map in 2020.
Ground reference Total User’s
accuracy
Eucalyptus  Non-
(UA)
Eucalyptus
Classification ~ Eucalyptus 2985 371 3356 0.89
Non- 530 18,398 18,919 0.97
Eucalyptus
Total 3515 18,760 22,275
Producer’s accuracy (PA) 0.85 0.98 Overall:
0.96

of Eucalyptus plantations in Guangxi, which was very close to our total
(2,567,394 ha in 2018). We also compared the Eucalyptus plantation
area estimates for 2018 from our study and Deng et al.’s (2020) study at
the provincial and prefecture/city levels. At the provincial level,

Eucalyptus plantation area in our dataset is 78 % higher than what Deng
et al. (2020) reported (1,439,222 ha). Of the 14 prefectures/cities, we
found more Eucalyptus plantation area in 13 municipalities than in Deng
et al. (2020) (Fig. 13a). The Pearson’s correlation coefficient between
these two maps was 0.62 (slope = 0.73, n = 14, p < 0.05) (Fig. 13b). We
also verified the accuracy of our 2018 Eucalyptus plantation map and
compare it with Deng et al.’s (2020) data product for 2018. Our Euca-
lyptus map had higher OA values (0.96 vs 0.88), as well as higher UA
(0.86 vs 0.67) and PA (0.82 vs 0.64) of Eucalyptus plantations than Deng
et al.’s (2020) map.

4. Discussion

4.1. The potential of the knowledge-based Eucalyptus plantation mapping
algorithm

Guangxi has a complex landscape and a moderate proportion of
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Eucalyptus plantations in Guangxi are managed by local farmers. Time
series 30-m Landsat images have been successfully used to map forests
and plantations over the last few years (Chen et al., 2017; Dong et al.,
2013; Pasquarella et al., 2018). Nevertheless, it is challenging to acquire
a sufficient number of high-quality Landsat observations within a year
for land cover classification in regions with frequent cloud cover (Grif-
fiths et al.,, 2019). In this study, we developed a knowledge-based
Eucalyptus plantation mapping algorithm by combining PALSAR-2,
Sentinel-2, and Landsat images. Landsat and Sentinel-2 time-series
data together have a large amount of good-quality observations in a
single year, make it possible to better capture phenological information
or changes in land surface compared to using a single sensor (Chen et al.,
2017; Wang et al., 2020a; Wang et al., 2020b).

Our approach demonstrates the potential of using the red edge bands

from Sentinel-2 images to map Eucalyptus plantations on a regional
scale. Eucalyptus plantations differ noticeably from other evergreen tree
species in terms of red edge bands, particularly over winter and spring
seasons (Fig. 7). Many scholars have also emphasized the significance of
the red edge bands on tree species classification as they are closely
related to chlorophyll content, leaf structure, leaf demography, and
canopy structure, which reflect the nature of plant leaves (Immitzer
et al., 2016; Peerbhay et al., 2013; Sothe et al., 2017). Compared with
other sensors with only a single red edge band, such as RapidEye, the
four red edge bands of Sentinel-2 enhance the opportunity to improve
the classification of various plantations and other land cover types, as
well as retrieval for important biophysical parameters (Clevers and
Gitelson, 2013; Forkuor et al., 2018). In Deng et al.’s (2020) study on the
Eucalyptus plantation mapping, they combined all four red edge bands
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Table 4
Estimated area of forest, evergreen forest, and Eucalyptus plantation by pre-
fecture/city in 2020.

City Land Forest Evergreen Eucalyptus Percentage
area area forest area area (10° of total
(10° a0 (10° ha) ha) Eucalyptus
ha) ha) area

Guilin 2.77 1.20 0.88 0.24 8%

Liuzhou 1.86 0.71 0.55 0.14 5%

Hechi 3.35 1.43 0.95 0.24 8%

Hezhou 1.18 0.52 0.43 0.21 7 %

Baise 3.62 1.72 1.17 0.29 9%

Laibin 1.34 0.46 0.34 0.18 6 %

Wuzhou 1.26 0.55 0.48 0.31 10 %

Guigang 1.06 0.33 0.26 0.18 6 %

Nanning 2.21 0.66 0.49 0.31 10 %

Chongzuo 1.73 0.65 0.46 0.28 9%

Yulin 1.28 0.45 0.37 0.28 9%

Qinzhou 1.08 0.38 0.32 0.25 8%

Fangchenggang 0.62 0.25 0.22 0.15 5%

Beihai 0.40 0.06 0.04 0.04 1%

Total 23.76 9.37 6.96 3.10

and NIR bands of Sentinel-2 to distinguish Eucalyptus plantations from
pine and fir, by using SVM method. However, it is hard to know how the
SVM model made its final decision and how these red edge bands
contributed to the identification of Eucalyptus plantations. On the
contract, by systematically studying and acquiring knowledge of the
unique biophysics of Eucalyptus plantations and their response on sat-
ellite images, the knowledge-based algorithm is able to explain the
specific role of the red edge bands in Eucalyptus plantation identifica-
tion, and thus has the potential to be applied directly to other years or
regions without the need for large nember of new training samples.
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The comparison of Eucalyptus plantation area estimates showed that
our Eucalyptus plantation area estimate was substantially higher (78 %)
than what Deng et al. (2020) reported (Fig. 13), but our area estimates
were very close to the area reported by China’s 9th NFI. The Eucalyptus
plantation identification strategies and input image data contributed to
the inconsistency between our results and those reported by Deng et al.
(2020). First, Deng et al. (2020) identified tree plantations by detecting
plantation clear-cuts during the harvest cycle, when EVI dropped
abruptly after 5 or 6 years. Using time series 3-month median EVI data
derived from Landsat 8 between 2013 and 2018, they then separated
Eucalyptus plantations from other tree plantations using Sentinel-2
images. Landsat 8 with a 16-day revisit cycle may not provide enough
good-quality observations in regions with frequent cloud cover for all
three months. Lack of good-quality Landsat images resulted in some
Eucalyptus plantation pixels being missed in the plantation identifica-
tion step.

Second, the reduction of timber harvesting quotas in recent years due
to increasingly stringent environmental policies led to a longer rotation
cycle of more than five years for Eucalyptus trees in some regions.
Eucalyptus pixels in these regions did not meet the 5- or 6-year rotation
threshold used in the clear-cut detection algorithm. Third, Deng et al.
(2020) used four red edge and NIR bands of Sentinel-2 during the peak
growth season (May through September) to delineate Eucalyptus plan-
tations from fir and pine forests. However, we found that the reflectance
of all red edge bands in Eucalyptus plantations overlapped with that of
fir during the peak growing season (Fig. 7a—d). We also found that the
red edge 1 band reflectance was very similar for all tree species (Fig. 7a),
but that Eucalyptus plantations had higher red edge reflectance in bands
2, 3, and 4, and higher EVI between November and March (from late fall
to winter and early spring seasons) (Fig. 7b-e). Finally, differences in
spatial resolutions between our Eucalyptus map (10-m) and Deng et al.’s
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(2020) dataset (30-m) contributed to the inconsistency in the plantation
area estimates to some extent.

4.2. Source of errors in the annual Eucalyptus plantation maps

The accuracy of land cover maps is determined by (1) quality of
satellite observations, (2) in-situ observations, (3) mapping algorithms,
(4) the temporal and spatial resolutions of satellite data, and (5) land
cover classification schemes and definitions (Foody, 2002). The Euca-
lyptus plantation maps derived from this study also have various error
sources and limitations.

Frequent cloud and rain in Guangxi limit the number of good-quality
optical observations in some regions, although we have combined all
available Landsat 7/8 and Sentinel-2 images. In our study, over 99.99 %
of pixels in 2020 had 10 or more good-quality observations when using
both Sentinel-2 and Landsat7/8 imagery (Fig. 4c, d). Thus, the data were
frequent enough to use our frequency-based algorithm to map evergreen
forest (Wang et al., 2020b). However, 12.61 % of pixels had less than
two good-quality Sentinel-2 observations in certain phenology-
important months (January through March), which was mainly
located in the northeast Guangxi (Fig. 14a). Insufficient good-quality
observations may lead to failure to capture differences between Euca-
lyptus and other tree species.

We utilized three phenology/spectral variables (RE4spring, RE4winter,
and EVIyinter) and two topography variables (elevation and slope) to
build the algorithm for mapping Eucalyptus plantations. To evaluate the
significance of the individual variables, we conducted a sensitivity
analysis by comparing the changes of producer’s, user’s and overall
accuracies of the Eucalyptus plantation maps derived from the full
model (all the five variables; EP_map), and from the partial models by
removing one variable at a time, RE4,ing (EP_W/0_RE4sp), RE4yinter
(EP_w/0_RE4w), EVIyinter (EP_w/0_EVIy), DEM (EP_w/0_DEM), and
slope (EP_w/o_slope) (Fig. 15). The results indicated that all the five
variables play a crucial role in improving user’s accuracy and reducing
the commission errors in Eucalyptus plantation maps (Fig. 15). There-
fore, the quality and quantity of images during these two specific periods
(January to March, November to December) may contribute to the error
and uncertainty in the resultant Eucalyptus plantation maps.

There are many small patches of Eucalyptus trees planted by local
farmers, which inevitably introduces mixed pixels in 30-m Landsat im-
ages and 25-m PALSAR-2 images, and this may cause slight underesti-
mation in Eucalyptus plantation area. Also, young and newly planted
Eucalyptus plantations may be omitted because of differences in their
spectral signatures from mature Eucalyptus plantations (Benedek and
Sziranyi, 2009). Although Eucalyptus trees can reach over 5-m in the
first year (Zeng et al., 2015), which would satisfy the minimum tree
height in the FAO forest definition, young and newly planted Eucalyptus
plantations have a small canopy and are mostly surrounded by bare
land. Thus, the canopy cover can be < 10 %, which might bring un-
certainty in Eucalyptus identification. Combining Google Earth VHSR
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images and field surveys to identify the young and newly planted
Eucalyptus plantations can be considered in the design of future studies.

Our knowledge-based Eucalyptus plantation mapping algorithm was
designed to distinguish Eucalyptus plantations from natural evergreen
trees and coniferous trees. Howecer, our approach might be complicated
by bamboo, an evergreen perennial plant, which is also extensively
distributed in Guangxi. According to China’s 9th NFI, Moso bamboo
forest is the main species of bamboo forest in China, accounting for
72.96 % of the total bamboo area (Xu et al., 2019). Moso bamboo forest
covered an area of 163,300 ha in Guangxi, with a primary distribution in
northeast Guangxi (Qi et al., 2022). Due to the lack of field surveys of
bamboo forest and the difficulty of identifying bamboo by visually
checking Google Earth VHSR images, we did not consider bamboo for-
ests in Eucalyptus plantation mapping algorithm development. As
bamboo has a much higher LAI (> 3 m?%/m?) than Eucalyptus (Huang
et al., 2021b; Ji et al., 2021; Li et al., 2021), it may have low red edge
reflectance, similar to natural evergreen and coniferous trees. Never-
theless, the applicability of our Eucalyptus mapping algorithm in regions
with a lot of bamboo forests still needs to be assessed with field surveys
in the near future.

4.3. Implications and future development of Eucalyptus plantation
mapping algorithm

Our Eucalyptus plantation maps for Guangxi, China at 10-m spatial
resolution advance our understanding on the area and spatial distribu-
tion of Eucalyptus plantations and provide important information for
Eucalyptus planning and management. Our knowledge-based Euca-
lyptus mapping algorithm allows for monitoring Eucalyptus plantation
dynamics over Sentinel-2 data record. The Eucalyptus plantation clas-
sification criteria we developed were derived from the unique pheno-
logical features of Eucalyptus plantations. Within a specific region,
environmental variables such as terrain, climatology, cultivation and
management practices for Eucalyptus plantation are relatively stable
across time. Thus, there is promise for using our Eucalyptus plantation
mapping method to map Eucalyptus plantations in other years. Also, the
proposed knowledge-based mapping method could potentially to map
Eucalyptus plantations in other regions and even globally by adjusting
thresholds of phenology variables with local training samples. These
adjustments can resolve potential differences in the phenology in-
dicators of Eucalyptus plantations among various environmental con-
ditions. In addition, our Eucalyptus plantation classification approach
would be useful for distinguishing coniferous and broadleaf forests
(Fig. 7) or for detecting other tree species by exploring the unique
phenological features of plant traits and revising the phenology metrics.

The improvement in Eucalyptus plantation mapping contains two
aspects. In terms of input data, the frequent cloud cover in the tropics is a
major error source. There are two strategies for reducing errors caused
by poor-quality observations. First, we can integrate optical images with
comparable spatial resolution to Sentinel-2 data to increase the amount
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of good-quality images, such as Worldview-3, which has great potential
for land use and land cover classification (Chen et al., 2019; Xian et al.,
2019). Second, we can combine weather-independent microwave im-
ages, such as Sentinel-1, with optical to override the constraints posed
by cloud coverage. C-band Sentinel-1 satellite can penetrate part of the
tree canopy, but mainly captures information on top-of-canopy features,
and has the potential to distinguish between different types of leaves.
Incorporating microwave data may also improve the optical-only clas-
sification of Eucalyptus plantation. With respect to classification fea-
tures, in addition to red edge bands and EVI, we can also combine red
edge indices such as red edge spectral indices (RESI), which can also
contain information on the structure of vegetation and have been proven
useful in plantation classification (Xiao et al., 2020). Additionally,
several studies have incorporated textural features into plantation
mapping approaches (Chen et al., 2021; Zhang et al., 2020a), so we can
also investigate the use of textural features in the future work.

5. Conclusions

Here, we proposed a knowledge-based algorithm to identify and
generate annual maps of Eucalyptus plantations in Guangxi at 10-m
spatial resolution by combining PALSAR-2, Landsat, and Sentinel-2 in
a single year. Our approach produced a Eucalyptus plantation map for
2020 with high overall, producer’s, and user’s accuracies and Kappa
coefficient, which were higher than previous mapping efforts. Our
knowledge-based mapping algorithm highlights the potential of
Sentinel-2 red edge bands for tree species classification and rapid
mapping of Eucalyptus plantations at large scales using multiple satellite
data, and our resultant 10-m spatial resolution Eucalyptus plantation
maps provide vital information for sustainable Eucalyptus plantation
planning and management as well as ecological assessment
conservation.
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