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A B S T R A C T   

Eucalyptus plantations promote the economic development of forestry in southern China, but many studies have 
reported their negative environmental impacts, such as high water resource usage of certain species of Euca
lyptus plants and losses in biodiversity. To date, annual maps of Eucalyptus plantations at large scales with high 
spatial resolutions are not yet available. Here, we investigated the spectral properties of Eucalyptus plantations 
and developed a knowledge-based Eucalyptus plantation mapping algorithm. We produced annual maps of 
Eucalyptus plantation at 10-m spatial resolution in the Guangxi Zhuang Autonomous Region (Guangxi), China, 
using our proposed algorithm and images of ALOS PALSAR-2, Sentinel-2, and Landsat (ETM+/OLI) in a single 
year. First, we generated annual evergreen forest maps using PALSAR-2 and Landsat/Sentinel-2-based vegetation 
index time series data. Second, we distinguished Eucalyptus plantations from the evergreen forest layer using the 
unique biophysical features of Eucalyptus plantations, the Sentinel-2 red edge bands, and Landsat/Sentinel-2- 
based enhanced vegetation index (EVI). Our resultant 2020 Eucalyptus plantation map had high producer’s, 
user’s, and overall accuracies of 0.85, 0.89, and 0.96, respectively. There were 3.10 × 106 ha of Eucalyptus 
plantation in Guangxi in 2020. Among the 14 administrative units, Wuzhou City had the largest Eucalyptus 
plantation area in Guangxi, followed by Nanning, Baise, and Chongzuo cities. We demonstrated the potential of 
knowledge-based mapping approaches for identifying evergreen forest and Eucalyptus plantations in complex 
and fragmented landscapes where cloud cover is frequent. Our 10-m Eucalyptus plantation map is the most 
current dataset available and can be used to assist the sustainable production of Eucalyptus, ecological assess
ments, and conservation.   

1. Introduction 

As one of the most planted broadleaf tree species worldwide, Euca
lyptus has become the main tree species for fast-growing and productive 
forests in southern China because of its rapid growth, biomass yield, 
resistance to disease and pests, tolerance to infertile soil, stem shape, 
and its wide range of uses (Deng et al., 2020; Zhang and Wang, 2021). 

Eucalyptus plantations promote the economic development of forestry. 
For example, they provide wood for charcoal, timber, construction 
materials, and firewood. In addition, Eucalyptus oil can be used as a 
cleaning solution and food supplement. However, Eucalyptus growth 
requires large amounts of nutrients and more water than other alter
native plantations in the early growth stage, which may cause envi
ronmental damage such as biodiversity loss (Forrester et al., 2006; 
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White et al., 2022; Zinn et al., 2002). As a result, accurate and timely 
information on the Eucalyptus plantation area is essential for precise 
forestry planning and management. However, no maps of Eucalyptus 
plantations at large scales and high spatial resolutions are publicly 
available. 

During the past few decades, enormous efforts have been devoted to 
mapping and monitoring forests and plantations, including rubber 
plantations (Dong et al., 2013; Dong et al., 2012b) and oil palm plan
tations (Danylo et al., 2021; Dong et al., 2020), at local, regional, and 
global scales using satellite datasets (Hansen et al., 2013; Qin et al., 
2015; Rodríguez et al., 2021). Nevertheless, only a few studies have 
focused on Eucalyptus plantation identification and mapping (Table 1) 
in Portugal (Forstmaier et al., 2020; Oliveira et al., 2021), Brazil (Le 
Maire et al., 2014), Thailand (Huang et al., 2021a), and China (Liang 
et al., 2017; Lu et al., 2020). 

Optical images are the most frequently used data in these Eucalyptus 
plantation mapping studies, which included very high spatial resolution 
(VHSR, meters) images, high spatial resolution (HSR, tens of meters) 
images, and moderate spatial resolution (MSR, hundreds of meters) 
images. For example, Deng et al. (2020) produced a Eucalyptus plan
tation map for Guangxi in 2018. They first used a statistical hypothesis 
test to determine if a pixel belonged to a plantation based on time series 
EVI data derived from Landsat images between 2013 and 2018. Then 
they applied broadleaf/needleleaf classification using the red edge and 
nir infrared (NIR) bands of Sentinel-2 data to distinguish Eucalyptus 
plantations from coniferous trees including pine and fir. Two studies (De 
Luca et al., 2022; Huang et al., 2021a) combined optical and synthetic 
aperture radar (SAR) data to map Eucalyptus plantations, as Sentinel-1 
are freely available to the public and provide complementary informa
tion to optical images (Table 1). The algorithms used in these studies 
were all information-based supervised classification methods, which use 
image data from the regions of interest (ROIs) to train classification 
algorithms (e.g., support vector machine (SVM), neural networks (NN), 
decision tree (DT), and random forest (RF)), and then apply the trained 
algorithms to generate Eucalyptus plantation maps (Chen et al., 2021; 
Deng et al., 2020; Le Maire et al., 2014; Liang et al., 2017). Information- 
based algorithms are powerful and efficient tools for generating Euca
lyptus plantation maps, but their complexity and opacity make it chal
lenging to comprehend how the models made their final decisions. In 
addition, these techniques rely on ample high-quality training data and 
are difficult to be extended to large regions. 

The knowledge-based supervised classification approach analyzes 
time series image data of individual pixels and identifies unique spectral 
and or microwave characteristics of specific land cover types, such as 
phenology-based spectral signatures, and utilizes these unique charac
teristics to identify and map specific land cover types. In contrast to 

information-based algorithms that require large number of training 
samples, knowledge-based algorithms, once developed and validated, 
have the potential to be applied directly to other years or regions 
without the need for new and large training samples. In recent years, a 
number of studies have documented the potential and advantages of 
knowledge-based algorithms to generate maps of rubber plantations 
(Dong et al., 2013; Dong et al., 2012b), mangrove forests (Chen et al., 
2017), paddy rice (Dong et al., 2015; Dong et al., 2016; Xiao et al., 2006; 
Xiao et al., 2005a), and Spartina alterniflora marsh (Zhang et al., 2020b). 
However, the phenology of Eucalyptus plantations and their unique 
biophysical features compared to other evergreen species are poorly 
understood. In addition, the knowledge-based algorithm has not been 
applied to the identification and mapping of Eucalypts plantations, yet. 

Time series Landsat images at 30-m spatial resolution can capture 
leaf/canopy phenology (LCP) of different tree species and the land 
surface phenology (LSP) of individual plantation stands. These charac
teristics are advantageous for plantation mapping as has been demon
strated in several recent studies (Chen et al., 2017; Dong et al., 2013; 
Pasquarella et al., 2018). However, although Landsat has an 8-day 
revisit cycle in a bi-satellite system, it is challenging to acquire 
enough good-quality observations of Landsat to accurately characterize 
tree phenology in many areas with frequent cloud cover (Griffiths et al., 
2019). Since the public release of Sentinel-2 10-m and 20-m data in 
2015, several studies have integrated Landsat and Sentinel-2 images to 
map forests and plantations (Li et al., 2019; Parida and Kumar, 2020; 
Wang et al., 2022). The Sentinel-2A/B together have 5-day revisit cycle, 
which increases the amount of good-quality observations in a year and 
better captures phenological information and changes of the land sur
face (Wang et al., 2020a). The Sentinel-2 red edge bands and red edge 
derived indices have aided plantation mapping, including rubber plan
tations (Xiao et al., 2020), tea plantations (Zhu et al., 2019), and oil 
palm plantations (Nomura and Mitchard, 2018). However, the potential 
of red edge bands for tracking and detecting the phenological differences 
between Eucalyptus plantations and other tree species has not been 
evaluated. 

China is the world’s second largest Eucalyptus plantation country, 
only behind Brazil. As reported by China’s 9th National Forest Inventory 
(NFI) (2014–2018), Guangxi Zhuang Autonomous Region has 47 % of 
the total area of Eucalyptus plantation in China. It is critical to obtain 
detailed knowledge of the spatial distribution of Eucalyptus plantations 
for decision making, research, and ecosystem protection. The objectives 
of this study were to (1) develop a knowledge-based algorithm to 
identify and map Eucalyptus plantations by combining Sentinel-2, 
Landsat, and PALSAR-2, and apply the proposed algorithm to produce 
Eucalyptus plantation map at 10-m in Guangxi for 2020; (2) explore the 
potential of the red edge bands of Sentinel-2 for Eucalyptus plantation 
mapping; and (3) compare and evaluate the proposed Eucalyptus map
ping algorithm using the 2018 Eucalyptus datasets from previous 
studies. 

2. Materials and methods 

2.1. Study area 

Guangxi is located in southern China and comprises 14 cities and 
prefectures with an area of ~236,700 km2. The topography of Guangxi 
is complex with elevation ranging from 0 to 2113 m above sea level 
(Fig. 1). There are large flat plains in the central and southern parts of 
Guangxi, surrounded by mountains and hills. Guangxi belongs to a 
subtropical to tropical climate, where abundant rainfall and warm 
temperatures provide a good growing environment for plants. According 
to the report of China’s 9th NFI, Guangxi had the third highest forest 
(arboreal forest, bamboo forest, and shrub) coverage (60.17 %) in China 
in 2015. Guangxi is China’s largest timber production region with a 
yearly production of ~25 million m3 (Deng et al., 2020; Zeng et al., 
2015). Eucalyptus, pine, and fir are the main timber cultivars in Guangxi 

Table 1 
A summary of satellite images and algorithms for Eucalyptus plantation 
mapping.  

Methods Optical image data Optical +
SAR image 
data 
(Sentinel-2, 
Landsat, 
Sentinel-1, 
PALSAR) 

VHSR (<
10 m; e.g., 
ZiYuan, 
GaoFen) 

HSR (10 m–30 
m; e.g., Sentinel- 
2, Landsat) 

MSR 
(250 
m–500 
m; e.g., 
MODIS) 

Information- 
based 
supervised 
classification 
(e.g., NN, DT, 
SVM, RF) 

(Chen 
et al., 
2021; 
Liang 
et al., 
2017) 

(da Costa et al., 
2021; Deng 
et al., 2020; 
Forstmaier et al., 
2020; Lu et al., 
2020; Oliveira 
et al., 2021) 

(Le Maire 
et al., 
2014) 

(De Luca 
et al., 2022; 
Huang et al., 
2021a) 

Knowledge-based 
supervised 
classification    

This study  
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(Fig. 2), where Eucalyptus accounts for > 70 % of total timber pro
duction (Forestry Bureau of Guangxi, 2018). Both farmers and state- 
owned forestry companies plant Eucalyptus trees, and thus the size of 
Eucalyptus plots varies widely from a few to hundreds of hectares. 

2.2. Datasets 

2.2.1. ALOS PALSAR-2 data 
We used 25-m ALOS PALSAR-2 yearly mosaic L-band images from 

2018 to 2020 in Google Earth Engine (GEE) (Fig. 3). These mosaic data 
were selected from the original observations with the least response to 
surface moisture (Shimada et al., 2014). The PALSAR-2 imagery were 
ortho-rectified and slope corrected using the 90-m SRTM digital eleva
tion model (DEM). The PALSAR-2 data have two polarizations (HH and 
HV). The digital number (DN) values in the two polarization bands were 
converted to gamma naught (γ0) values in decibel unit (dB) using γ0 =

10log10
(
DN2)

−83 dB (Shimada et al., 2009). Difference (HH-HV) and 
ratio (HH/HV) values were calculated. Approximately 4.9 × 106 pixels 
(1.2 % of the total number of pixels) in Guangxi had no PALSAR-2 data 
in 2020 (Fig. 3a), and thus the missing data were gap filled with data 
from 2018 (Fig. 3c, d), as PALSAR-2 data for 2019 in the same pixels 
were also unavailable (Fig. 3b). 

2.2.2. Sentinel-2 data 
We used Sentinel-2A/B Level-2A surface reflectance (SR) data from 

January 1, 2020, to December 31, 2020, and top of atmosphere (TOA) 
reflectance data from January 1, 2018, to December 31, 2018 as SR data 
were not available for 2018. Compared to other multi-spectral satellites 
such as Landsat and MODIS, Sentinel-2 has four additional spectral 
bands in the red edge region, centering at 704 nm (B5 or RE1), 740 nm 
(B6 or RE2), 783 nm (B7 or RE3), and 865 nm (B8A or RE4), which are 
specifically designed to vegetation monitoring (Clevers and Kooistra, 
2011), and are reported to be the most important ranking attributes in 
Sentinel-2 data classification (Sothe et al., 2017). We removed clouds 
and cloud shadows using cloud mask information within the Quality 
Assessment (QA60) bitmask band. Spatial distributions of total obser
vation number and good-quality observation number for Sentinel-2 
images in 2020 are presented in Fig. 4a, c. 

The normalized difference vegetation index (NDVI) (Tucker, 1979), 
enhanced vegetation index (EVI) (Huete et al., 2002; Huete et al., 1997), 
and land surface water index (LSWI) (Xiao et al., 2004; Xiao et al., 
2005b) were calculated for each image using Eqs. (1)–(3). NDVI and EVI 
are used to track the seasonal changes of vegetation canopy (Huete et al., 
2002; Huete et al., 1997; Tucker, 1979). LSWI is used to monitor the 
seasonal changes of vegetation and soil water. 

NDVI =
NIR − Red
NIR + Red

(1)  

EVI = 2.5 ×
NIR − Red

NIR + 6Red − 7.5Blue + 1
(2)  

LSWI =
NIR − SWIR
NIR + SWIR

(3)  

where Blue, Red, NIR, and SWIR are the SR values of blue (496.6 nm), red 
(664.5 nm), near-infrared (835.1 nm), and shortwave-infrared (1613.7 
nm) bands for the Sentinel-2A Multi Spectral Instrument (MSI) sensor. 

2.2.3. Landsat data 
We used Landsat 7/8 Level-2 SR data in GEE from January 1, 2018, 

to December 31, 2018, and January 1, 2020, to December 31, 2020. 
Clouds and cloud shadows were removed using the pixel quality 
assessment (pixel_qa) band. Spatial distributions of the number of total 
observations and good-quality observations of Landsat 7/8 images in 
2020 are shown in Fig. 4b, d. NDVI, EVI, and LSWI were calculated for 
each Landsat image (see Eqs. (1)–(3)). The annual maximum NDVI 
(NDVImax) was calculated by combining NDVI derived from Sentinel-2 

Fig. 1. (a) Eucalyptus plantation area (unit: 104 ha) by province and the location of Guangxi and (b) digital elevation model (DEM) of Guangxi. Eucalyptus 
plantation area by province was reported in China’s 9th NFI. 

Fig. 2. Field photos of main forest types in Guangxi. Photos of (a) Eucalyptus 
and (b) natural forest were downloaded from the Global Geo-Referenced Field 
Photo Library (https://www.ceom.ou.edu/photos/). Photos of (c) fir and (d) 
pine were provided by Xinya Qin. 
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Fig. 3. Spatial distribution of the false-color combinations of PALSAR-2 data (R:G:B = HH:HV: HH-HV) in Guangxi, China. (a)-(c) show PALSAR-2 images for (a) 
2020, (b) 2019, and (c) 2018. (d) Gap filled PALSAR-2 images for 2020. 

Fig. 4. Spatial distributions of total observation amount of (a) Sentinel-2 and (b) Landsat 7/8, and good-quality observation amount of (c) Sentinel-2 and (d) Landsat 
7/8 in 2020. 
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and Landsat. 

2.2.4. Ground reference data 
We used VHSR images from Google Earth, geo-referenced field 

photos, and training samples shared in the literature to collect training 
samples of different tree species. First, we collected field photos and 
KML files with coordinates in Guangxi, China, which are hereafter 
abbreviated to Points of Interest (POIs), from the Global Geo-Referenced 
Field Photo Library (https://www.ceom.ou.edu/photos/), and geo- 
linked them to Google Earth. Second, we downloaded different tree 
species training polygons shared by Deng et al. (2020) as SHP files from 
https://code.earthengine.google.com/?accept_repo=users/siatsiat 
ns/eucalypt. These polygons included 19 Eucalyptus plantations, 27 fir 
plantations, 29 pine plantations, and 10 evergreen natural forests, which 
were obtained by field survey in 2017 and visual identification through 
VHRS images in Google Earth. Third, we overlaid field photos and 
shared training polygons with Google Earth VHSR images to collect 
training samples for Eucalyptus plantations and other evergreen tree 
species. Finally, we collected polygons for 117 Eucalyptus plantations, 
67 natural evergreen forests, 25 fir plantations, and 29 pine plantations 
for image analysis and algorithm development (Fig. 5a). Of these, 107 
Eucalyptus plantations, 67 natural evergreen forests, 8 fir plantations, 
and 5 pine plantations training samples were collected by combing filed 
photos and VHSR images. The remaining training samples were ob
tained and adapted from Deng et al.’s (2020) study. 

2.3. Methods 

We developed a knowledge-based algorithm and workflow to iden
tify and map the annual maps of Eucalyptus plantations in Guangxi 
(Fig. 6). We first identified evergreen forest using PALSAR-2 data and 
Landsat/Sentinel-2-based time-series EVI and LSWI data, and then 
distinguished Eucalyptus plantation within in the evergreen forest layer 
using Sentinel-2 red edge bands and Landsat/Sentinel-2-based time se
ries EVI data. 

2.3.1. Algorithms to identify forest and evergreen forest 
The effective identification of Eucalyptus plantations starts with 

accurate forest and evergreen forest maps. As defined by the Food and 
Agricultural Organization (FAO), forest is land with trees above 5-m and 
a canopy cover of over 10 % (FAO, 2020), and we adopted this definition 
for our study. L-band PALSAR is able to penetrate clouds, smoke, and 
haze to capture the structure and aboveground biomass of forests 
(Imhoff, 1995; Kovacs et al., 2013) and can help distinguish forest from 
non-forest (Reiche et al., 2016). However, some urban lands may have 
similar higher backscatter coefficients with forests (Qin et al., 2015). 
NDVImax has the potential to reduce the commission error caused by 
urban lands (DeFries and Townshend, 1994). Previous studies have 

developed a detailed workflow to identify and map forests by combining 
PALSAR and NDVImax, and produced forest maps with high accuracies in 
China (Qin et al., 2015), Southeast Asia (Dong et al., 2012a), and the 
United States (Yang et al., 2021). We used the same algorithm for forest 
cover mapping in China (i.e., 3 < HH-HV < 7 & −15 < HV < −9 & 0.35 
< HH/HV < 0.75 & NDVImax ≥ 0.5) (Qin et al., 2015) to generate forest 
maps for Guangxi. 

In previous studies, we developed an evergreen vegetation identifi
cation algorithm using time series LSWI and EVI (Dong et al., 2015; Xiao 
et al., 2009). Here we applied the same algorithm LSWI > 0 and EVI >
0.2 with a frequency of > 90 % (Wang et al., 2020a) to identify ever
green forest in the forest map. The resultant annual evergreen forest 
maps were used as the baseline map for Eucalyptus plantation identifi
cation in the next step. 

2.3.2. Phenology analysis of Eucalyptus and other evergreen tree species 
Plant traits, including leaf type (broadleaf vs needleleaf), leaf sea

sonality (evergreen vs deciduous), leaf longevity (one-year vs multiple- 
year old leaf), leaf size and shape (large vs small; long vs short), and leaf 
clumping or cluster, differ among trees in natural forests, Eucalyptus, fir, 
and pine. Eucalyptus leaves are evergreen broadleaves which are narrow 
and thin. Leaves of trees in natural forests are large and thick evergreen 
broadleaves. Fir and pine leaves are evergreen needleleaves. Compared 
to other evergreen tree species in Guangxi, Eucalyptus has several 
unique phenological features in terms of leaf longevity, leaf area index 
(LAI), and leaf growth rate. We collected the information about leaf 
longevity and LAI from the Plant Trait Database (https://www.try-db. 
org/TryWeb/Data.php) and publications (DeRose and Seymour, 2010; 
Mthembu, 2001; Rody et al., 2014; Yan et al., 2019; Zhao et al., 2020; 
Zhu et al., 2015), and then calculated the average and median values to 
quantitatively describe the differences in plant traits between Euca
lyptus tree and other tree species (Table 2). 

Eucalyptus trees have small canopies with the crowns growing at the 
top of the trunks, resulting in an LAI for Eucalyptus that is usually < 2 
m2/m2. Other evergreen trees, such as fir and pine, have larger canopies 
with branches often growing along the trunks, resulting in larger LAI 
values (typically > 2 m2/m2). Eucalyptus leaves live for about 20 
months, while fir and pine can have leaf lifespans of over two years up to 
eight years (Table 2). The shorter leaf lifespan of Eucalyptus results in a 
larger ratio of new to old leaves in the canopy than the other three 
evergreen species. According to the leaf litterfall records of these tree 
species, the leaf litterfall production of these tree species follows a 
seasonal pattern and peaks in the rainy season (March–June) (Kong 
et al., 2022), which means that old leaves are shed and new leaves grow 
during this period. The larger ratio of new to old leaves in the Eucalyptus 
canopies results in higher red edge and near infrared reflectance, which 
in turn leads to higher LSWI and EVI values during winter and spring 
than other evergreen tree species. 

Fig. 5. Spatial distribution of (a) training samples and (b) validation samples for 2020.  
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Temporal profiles of four Sentinel-2 red edge bands and Landsat/ 
Sentinel-2-based EVI and LSWI were constructed to examine the 
unique spectral features of Eucalyptus plantations and other evergreen 
tree species at single pixel level in terms of leaf and plant structure and 
growth rate (Fig. 7). We found that the seasonal dynamics of red edge 
bands and vegetation indices of Eucalyptus differed noticeably from 
those of other evergreen tree species in (1) spring (January to March) 
and (2) winter (November to December). Eucalyptus plantations had 
higher values of RE2-4 reflectance in both spring and winter (Fig. 7b–d), 
which indicates that Eucalyptus plantations have a higher ratio of new 
to old leaves. In addition, Eucalyptus plantations had higher EVI values 
in both spring and winter (Fig. 7e), which suggestes that Eucalyptus 
plantations are more active in the cold season than other evergreen 
species. These unique phenological characteristics of Eucalyptus plan
tations are consistent with their plant traits presented in Table 2. 
Therefore, Eucalyptus plantations can be distinguished from other 
evergreen tree species in spring and winter. 

2.3.3. Algorithm to identify Eucalyptus plantation 
To assess the generality of the phenological differences between 

Eucalyptus and other evergreen tree species in spring and winter (see 
Section 2.3.2), we overlaid the training samples of Eucalyptus planta
tions and other evergreen tree species (described in Section 2.2.4) and 
the phenological metrics for spectral signature analysis. Considering the 
high correlation between the red edge bands and the greater differences 
in RE4 between Eucalyptus plantations and other evergreen tree species, 
we calculated the median values of RE4 and EVI during January to 
March (RE4spring, EVIspring) and November to December (RE4winter, 
EVIwinter) (Fig. 8). The histograms showed that a vast majority (over 95 
%) of Eucalyptus plantations had RE4spring values of ≥ 0.20, RE4winter 
values of ≥ 0.25, and EVIwinter values of ≥ 0.40 (Fig. 8a, c, d). EVIspring 
was not as accurate in separating Eucalyptus plantations from other 
evergreen tree species (Fig. 8b). Eucalyptus plantations in Guangxi are 
widely distributed in hills and low mountains. Almost all (over 99.5 %) 
Eucalyptus plantation pixels had DEM ≤ 650 m and slope < 35◦ (Fig. 9), 
thus we used DEM ≤ 650 m and slope < 35◦ as complementary criteria 
to limit Eucalyptus plantation boundaries. In summary, we developed 

the algorithm described in Eq. (4) to differentiate Eucalyptus plantations 
from other evergreen forests. 

Eucalyptus plantation = (RE4spring ≥ 0.20 & RE4winter ≥ 0.25 & EVIwinter

≥ 0.40 & DEM ≤ 650 & Slope ≤ 35◦

)

(4)  

2.3.4. Accuracy assessment of the resultant Eucalyptus plantation maps 
Validation samples from multi-sources were collected for accuracy 

evaluation. First, we divided the study area into 32 1◦ × 1◦ grid cells. 
Twenty random points and square buffers with 60-m by 60-m were 
generated in each grid cell. Second, we visually checked and interpreted 
Eucalyptus plantation and non-Eucalyptus plantation samples through 
overlaying these buffers with VHSR images from Google Earth and 
Sentinel-2 images in 2020. Field photos from the Global Geo-Referenced 
Field Photo Library were treated as auxiliary references to cross- 
reference land cover types. We excluded buffers that did not have 
explicit land cover information. Finally, 89 Eucalyptus plantation buffer 
areas (3,515 pixels) and 498 non-Eucalyptus buffer areas (18,760 pixels) 
(Fig. 5b) were collected for the accuracy assessment of our resultant 
Eucalyptus map for 2020 by calculating confusion matrices (Foody, 
2002). 

We also applied the same approach to generate randomly 60-m by 
60-m square buffers to collect validation samples for the Eucalyptus and 
non-Eucalyptus map in 2018. In total, 73 Eucalyptus plantation buffer 
areas (2,773 pixels) and 475 non-Eucalyptus buffer areas (18,035 pixels) 
were selected for the validation of the 2018 Eucalyptus map. 

2.3.5. Comparison to other datasets of Eucalyptus plantations 
We compared the Eucalyptus plantation maps for 2018 derived from 

our proposed knowledge-based algorithms and Deng et al.’s (2020) 
study, in terms of accuracy and area estimates. The area comparison was 
conducted at the provincial and municipal levels. 

Since the 1970s, China has established a continuous national forest 
inventory (NFI) system, with an interval of five years, to study the dis
tribution, composition, quantity, quality, and changes of forest re
sources in China (Xu et al., 2019). Taking provinces (autonomous 
regions/municipalities) as the survey units, 415,000 permanent sample 
sites are reviewed every five years to survey, measure, and record 
relevant indicators. Forests in NFI include arboreal forest, bamboo for
est, and shrub. The Eucalyptus plantation area of Guangxi from the 9th 
NFI of China in 2015 was used to compare with that of this study in 
2018. 

3. Results 

3.1. Accuracy assessment for the Eucalyptus plantation map in 2020 

The confusion matrix (Table 3) for the Eucalyptus plantation map in 
Guangxi in 2020 was calculated by overlying the validation samples 

Fig. 6. Flowchart for Eucalyptus plantation mapping.  

Table 2 
Plant traits for major evergreen tree species in Guangxi. The data were collected 
from the Plant Trait Database and publications.    

Evergreen broadleaf forest Evergreen 
coniferous 
forest   

Eucalyptus Natural evergreen 
tree 

Pine Fir 

Leaf lifespan 
(month) 

Average 20 41 33 87 
Median 21 25 32 96 

LAI (m2/m2) Average 1.97 2.52 4.97 4.98 
Median 1.88 2.55 3.85 3.00  
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(Fig. 5b) and the resultant Eucalyptus plantation map. The 2020 Euca
lyptus plantation map had a high OA of 0.96. The Eucalyptus plantation 
had PA and UA of 0.85 and 0.89, and non-Eucalyptus plantation had PA 
and UA of 0.98 and 0.97, respectively. The Kappa coefficient of the 
assessment was 0.85, which indicated that our map had a good consis
tency between the mapped pixels and the ground reference pixels. 

Accuracy assessment of Eucalyptus plantation map in 2020 was also 
carried out by prefecture/city and elevation range (Fig. 10). The PAs of 
Eucalyptus plantations and OAs were ~0.80 or higher for individual 
prefectures/cities. The UAs of Eucalyptus plantations were below 0.80 
in four cities (Guilin, Liuzhou, Chongzuo, and Qinzhou) and above 0.80 
in the ten other prefectures/cities (Fig. 10a). The UAs and OAs of 
Eucalyptus plantations were > 0.90 in all elevation ranges, slightly 
higher than PAs (> 0.80) (Fig. 10b). High values of assessment metrics 
indicated that the resultant 2020 Eucalyptus plantation map had 
reasonable accuracies. 

3.2. Spatial and area distribution of Eucalyptus plantation in Guangxi in 
2020 

There were approximately 9.37 × 106 ha of forest (Fig. 11a) and 
6.96 × 106 ha evergreen forest (Fig. 11b) in 2020, covering 39 % and 29 
% of the land area in Guangxi, respectively. The resultant Eucalyptus 

plantation map estimated the Eucalyptus plantation area of approxi
mately 3.10 × 106 ha (Fig. 11c), which accounted for 45 % of the 
evergreen forest area. Eucalyptus plantations were mainly located in the 
central and southern regions of Guangxi. The large blocks of Eucalyptus 
plantation were under the management of state-owned forestry enter
prises, and the small blocks were plantations owned by local farmers and 
small forestry companies. Among the 14 administrative units, Wuzhou 
City had the largest Eucalyptus plantation area in Guangxi, followed by 
Nanning, Baise, and Chongzuo cities. Beihai City had the smallest 
Eucalyptus plantation area (Table 4). Over half (55 %) of the Eucalyptus 
plantations were distributed at elevations between 50 m and 300 m, 
with the area decreasing gradually as elevation increased (Fig. 12a). 
Moreover, 68 % of the Eucalyptus plantations were located on slopes 
ranging from 10◦ to 25◦, with the area decreasing as the slope either 
increases or decreases (Fig. 12b). The distributions of Eucalyptus plan
tations by elevation and slope (Fig. 12) also demonstrate that the 
training samples of Eucalyptus plantations (Fig. 9) used in the 
knowledge-based algorithm development have the representative of the 
actual distribution of the Eucalyptus plantations. 

3.3. Area comparison with other Eucalyptus plantation data 

China’s 9th NFI (2014–2018) reported that there were 2,560,500 ha 

Fig. 7. Time series of (a) RE1, (b) RE2, (c) RE3, (d) RE4, (e) EVI, and (f) LSWI for Eucalyptus plantation, natural forest, pine, and fir in Guangxi. Eucalyptus 
plantations and other evergreen tree species are evidently different in two typical phenology phases: spring (from January to March, the grey semitransparent boxes) 
and winter (from November to December, the light green semitransparent boxes). 
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of Eucalyptus plantations in Guangxi, which was very close to our total 
(2,567,394 ha in 2018). We also compared the Eucalyptus plantation 
area estimates for 2018 from our study and Deng et al.’s (2020) study at 
the provincial and prefecture/city levels. At the provincial level, 

Eucalyptus plantation area in our dataset is 78 % higher than what Deng 
et al. (2020) reported (1,439,222 ha). Of the 14 prefectures/cities, we 
found more Eucalyptus plantation area in 13 municipalities than in Deng 
et al. (2020) (Fig. 13a). The Pearson’s correlation coefficient between 
these two maps was 0.62 (slope = 0.73, n = 14, p < 0.05) (Fig. 13b). We 
also verified the accuracy of our 2018 Eucalyptus plantation map and 
compare it with Deng et al.’s (2020) data product for 2018. Our Euca
lyptus map had higher OA values (0.96 vs 0.88), as well as higher UA 
(0.86 vs 0.67) and PA (0.82 vs 0.64) of Eucalyptus plantations than Deng 
et al.’s (2020) map. 

4. Discussion 

4.1. The potential of the knowledge-based Eucalyptus plantation mapping 
algorithm 

Guangxi has a complex landscape and a moderate proportion of 

Fig. 8. The histograms of (a) RE4spring, (b) EVIspring, (c) RE4winter, and (d) EVIwinter of Eucalyptus and non-Eucalyptus training samples.  

Fig. 9. Distribution of (a) elevation and (b) slope of Eucalyptus plantation training samples.  

Table 3 
Confusion matrix for the Eucalyptus plantation map in 2020.    

Ground reference Total User’s 
accuracy 
(UA)   Eucalyptus Non- 

Eucalyptus 

Classification Eucalyptus 2985 371 3356  0.89 
Non- 
Eucalyptus 

530 18,398 18,919  0.97 

Total 3515 18,760 22,275  
Producer’s accuracy (PA) 0.85 0.98  Overall: 

0.96  
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Eucalyptus plantations in Guangxi are managed by local farmers. Time 
series 30-m Landsat images have been successfully used to map forests 
and plantations over the last few years (Chen et al., 2017; Dong et al., 
2013; Pasquarella et al., 2018). Nevertheless, it is challenging to acquire 
a sufficient number of high-quality Landsat observations within a year 
for land cover classification in regions with frequent cloud cover (Grif
fiths et al., 2019). In this study, we developed a knowledge-based 
Eucalyptus plantation mapping algorithm by combining PALSAR-2, 
Sentinel-2, and Landsat images. Landsat and Sentinel-2 time-series 
data together have a large amount of good-quality observations in a 
single year, make it possible to better capture phenological information 
or changes in land surface compared to using a single sensor (Chen et al., 
2017; Wang et al., 2020a; Wang et al., 2020b). 

Our approach demonstrates the potential of using the red edge bands 

from Sentinel-2 images to map Eucalyptus plantations on a regional 
scale. Eucalyptus plantations differ noticeably from other evergreen tree 
species in terms of red edge bands, particularly over winter and spring 
seasons (Fig. 7). Many scholars have also emphasized the significance of 
the red edge bands on tree species classification as they are closely 
related to chlorophyll content, leaf structure, leaf demography, and 
canopy structure, which reflect the nature of plant leaves (Immitzer 
et al., 2016; Peerbhay et al., 2013; Sothe et al., 2017). Compared with 
other sensors with only a single red edge band, such as RapidEye, the 
four red edge bands of Sentinel-2 enhance the opportunity to improve 
the classification of various plantations and other land cover types, as 
well as retrieval for important biophysical parameters (Clevers and 
Gitelson, 2013; Forkuor et al., 2018). In Deng et al.’s (2020) study on the 
Eucalyptus plantation mapping, they combined all four red edge bands 

Fig. 10. Accuracy assessment of the Eucalyptus plantation map by (a) prefecture/city and (b) elevation range for 2020. The filling color in (a) indicates the overall 
accuracy (OA); the labelled text is presented in the format of producer’s accuracy (PA)/user’s accuracy (UA). 

Fig. 11. Spatial distribution of (a) forest, (b) evergreen forest, and (c) Eucalyptus plantation in Guangxi in 2020.  
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and NIR bands of Sentinel-2 to distinguish Eucalyptus plantations from 
pine and fir, by using SVM method. However, it is hard to know how the 
SVM model made its final decision and how these red edge bands 
contributed to the identification of Eucalyptus plantations. On the 
contract, by systematically studying and acquiring knowledge of the 
unique biophysics of Eucalyptus plantations and their response on sat
ellite images, the knowledge-based algorithm is able to explain the 
specific role of the red edge bands in Eucalyptus plantation identifica
tion, and thus has the potential to be applied directly to other years or 
regions without the need for large nember of new training samples. 

The comparison of Eucalyptus plantation area estimates showed that 
our Eucalyptus plantation area estimate was substantially higher (78 %) 
than what Deng et al. (2020) reported (Fig. 13), but our area estimates 
were very close to the area reported by China’s 9th NFI. The Eucalyptus 
plantation identification strategies and input image data contributed to 
the inconsistency between our results and those reported by Deng et al. 
(2020). First, Deng et al. (2020) identified tree plantations by detecting 
plantation clear-cuts during the harvest cycle, when EVI dropped 
abruptly after 5 or 6 years. Using time series 3-month median EVI data 
derived from Landsat 8 between 2013 and 2018, they then separated 
Eucalyptus plantations from other tree plantations using Sentinel-2 
images. Landsat 8 with a 16-day revisit cycle may not provide enough 
good-quality observations in regions with frequent cloud cover for all 
three months. Lack of good-quality Landsat images resulted in some 
Eucalyptus plantation pixels being missed in the plantation identifica
tion step. 

Second, the reduction of timber harvesting quotas in recent years due 
to increasingly stringent environmental policies led to a longer rotation 
cycle of more than five years for Eucalyptus trees in some regions. 
Eucalyptus pixels in these regions did not meet the 5- or 6-year rotation 
threshold used in the clear-cut detection algorithm. Third, Deng et al. 
(2020) used four red edge and NIR bands of Sentinel-2 during the peak 
growth season (May through September) to delineate Eucalyptus plan
tations from fir and pine forests. However, we found that the reflectance 
of all red edge bands in Eucalyptus plantations overlapped with that of 
fir during the peak growing season (Fig. 7a–d). We also found that the 
red edge 1 band reflectance was very similar for all tree species (Fig. 7a), 
but that Eucalyptus plantations had higher red edge reflectance in bands 
2, 3, and 4, and higher EVI between November and March (from late fall 
to winter and early spring seasons) (Fig. 7b–e). Finally, differences in 
spatial resolutions between our Eucalyptus map (10-m) and Deng et al.’s 

Table 4 
Estimated area of forest, evergreen forest, and Eucalyptus plantation by pre
fecture/city in 2020.  

City Land 
area 
(106 

ha) 

Forest 
area 
(106 

ha) 

Evergreen 
forest area 
(106 ha) 

Eucalyptus 
area (106 

ha) 

Percentage 
of total 
Eucalyptus 
area 

Guilin  2.77  1.20  0.88  0.24 8 % 
Liuzhou  1.86  0.71  0.55  0.14 5 % 
Hechi  3.35  1.43  0.95  0.24 8 % 
Hezhou  1.18  0.52  0.43  0.21 7 % 
Baise  3.62  1.72  1.17  0.29 9 % 
Laibin  1.34  0.46  0.34  0.18 6 % 
Wuzhou  1.26  0.55  0.48  0.31 10 % 
Guigang  1.06  0.33  0.26  0.18 6 % 
Nanning  2.21  0.66  0.49  0.31 10 % 
Chongzuo  1.73  0.65  0.46  0.28 9 % 
Yulin  1.28  0.45  0.37  0.28 9 % 
Qinzhou  1.08  0.38  0.32  0.25 8 % 
Fangchenggang  0.62  0.25  0.22  0.15 5 % 
Beihai  0.40  0.06  0.04  0.04 1 % 
Total  23.76  9.37  6.96  3.10   

Fig. 12. The histograms for area distribution of Eucalyptus plantations by (a) elevation and (b) slope in 2020.  

Fig. 13. Comparison of Eucalyptus plantation area in 2018 for Guangxi that we identified in our study and the area reported by Deng et al. (2020).  
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(2020) dataset (30-m) contributed to the inconsistency in the plantation 
area estimates to some extent. 

4.2. Source of errors in the annual Eucalyptus plantation maps 

The accuracy of land cover maps is determined by (1) quality of 
satellite observations, (2) in-situ observations, (3) mapping algorithms, 
(4) the temporal and spatial resolutions of satellite data, and (5) land 
cover classification schemes and definitions (Foody, 2002). The Euca
lyptus plantation maps derived from this study also have various error 
sources and limitations. 

Frequent cloud and rain in Guangxi limit the number of good-quality 
optical observations in some regions, although we have combined all 
available Landsat 7/8 and Sentinel-2 images. In our study, over 99.99 % 
of pixels in 2020 had 10 or more good-quality observations when using 
both Sentinel-2 and Landsat7/8 imagery (Fig. 4c, d). Thus, the data were 
frequent enough to use our frequency-based algorithm to map evergreen 
forest (Wang et al., 2020b). However, 12.61 % of pixels had less than 
two good-quality Sentinel-2 observations in certain phenology- 
important months (January through March), which was mainly 
located in the northeast Guangxi (Fig. 14a). Insufficient good-quality 
observations may lead to failure to capture differences between Euca
lyptus and other tree species. 

We utilized three phenology/spectral variables (RE4spring, RE4winter, 
and EVIwinter) and two topography variables (elevation and slope) to 
build the algorithm for mapping Eucalyptus plantations. To evaluate the 
significance of the individual variables, we conducted a sensitivity 
analysis by comparing the changes of producer’s, user’s and overall 
accuracies of the Eucalyptus plantation maps derived from the full 
model (all the five variables; EP_map), and from the partial models by 
removing one variable at a time, RE4spring (EP_w/o_RE4SP), RE4winter 
(EP_w/o_RE4WI), EVIwinter (EP_w/o_EVIWI), DEM (EP_w/o_DEM), and 
slope (EP_w/o_slope) (Fig. 15). The results indicated that all the five 
variables play a crucial role in improving user’s accuracy and reducing 
the commission errors in Eucalyptus plantation maps (Fig. 15). There
fore, the quality and quantity of images during these two specific periods 
(January to March, November to December) may contribute to the error 
and uncertainty in the resultant Eucalyptus plantation maps. 

There are many small patches of Eucalyptus trees planted by local 
farmers, which inevitably introduces mixed pixels in 30-m Landsat im
ages and 25-m PALSAR-2 images, and this may cause slight underesti
mation in Eucalyptus plantation area. Also, young and newly planted 
Eucalyptus plantations may be omitted because of differences in their 
spectral signatures from mature Eucalyptus plantations (Benedek and 
Szirányi, 2009). Although Eucalyptus trees can reach over 5-m in the 
first year (Zeng et al., 2015), which would satisfy the minimum tree 
height in the FAO forest definition, young and newly planted Eucalyptus 
plantations have a small canopy and are mostly surrounded by bare 
land. Thus, the canopy cover can be < 10  %, which might bring un
certainty in Eucalyptus identification. Combining Google Earth VHSR 

images and field surveys to identify the young and newly planted 
Eucalyptus plantations can be considered in the design of future studies. 

Our knowledge-based Eucalyptus plantation mapping algorithm was 
designed to distinguish Eucalyptus plantations from natural evergreen 
trees and coniferous trees. Howecer, our approach might be complicated 
by bamboo, an evergreen perennial plant, which is also extensively 
distributed in Guangxi. According to China’s 9th NFI, Moso bamboo 
forest is the main species of bamboo forest in China, accounting for 
72.96 % of the total bamboo area (Xu et al., 2019). Moso bamboo forest 
covered an area of 163,300 ha in Guangxi, with a primary distribution in 
northeast Guangxi (Qi et al., 2022). Due to the lack of field surveys of 
bamboo forest and the difficulty of identifying bamboo by visually 
checking Google Earth VHSR images, we did not consider bamboo for
ests in Eucalyptus plantation mapping algorithm development. As 
bamboo has a much higher LAI (≥ 3 m2/m2) than Eucalyptus (Huang 
et al., 2021b; Ji et al., 2021; Li et al., 2021), it may have low red edge 
reflectance, similar to natural evergreen and coniferous trees. Never
theless, the applicability of our Eucalyptus mapping algorithm in regions 
with a lot of bamboo forests still needs to be assessed with field surveys 
in the near future. 

4.3. Implications and future development of Eucalyptus plantation 
mapping algorithm 

Our Eucalyptus plantation maps for Guangxi, China at 10-m spatial 
resolution advance our understanding on the area and spatial distribu
tion of Eucalyptus plantations and provide important information for 
Eucalyptus planning and management. Our knowledge-based Euca
lyptus mapping algorithm allows for monitoring Eucalyptus plantation 
dynamics over Sentinel-2 data record. The Eucalyptus plantation clas
sification criteria we developed were derived from the unique pheno
logical features of Eucalyptus plantations. Within a specific region, 
environmental variables such as terrain, climatology, cultivation and 
management practices for Eucalyptus plantation are relatively stable 
across time. Thus, there is promise for using our Eucalyptus plantation 
mapping method to map Eucalyptus plantations in other years. Also, the 
proposed knowledge-based mapping method could potentially to map 
Eucalyptus plantations in other regions and even globally by adjusting 
thresholds of phenology variables with local training samples. These 
adjustments can resolve potential differences in the phenology in
dicators of Eucalyptus plantations among various environmental con
ditions. In addition, our Eucalyptus plantation classification approach 
would be useful for distinguishing coniferous and broadleaf forests 
(Fig. 7) or for detecting other tree species by exploring the unique 
phenological features of plant traits and revising the phenology metrics. 

The improvement in Eucalyptus plantation mapping contains two 
aspects. In terms of input data, the frequent cloud cover in the tropics is a 
major error source. There are two strategies for reducing errors caused 
by poor-quality observations. First, we can integrate optical images with 
comparable spatial resolution to Sentinel-2 data to increase the amount 

Fig. 14. Amount of good-quality Sentinel-2 observations in (a) spring (January to March) and (b) winter (November to December).  
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of good-quality images, such as Worldview-3, which has great potential 
for land use and land cover classification (Chen et al., 2019; Xian et al., 
2019). Second, we can combine weather-independent microwave im
ages, such as Sentinel-1, with optical to override the constraints posed 
by cloud coverage. C-band Sentinel-1 satellite can penetrate part of the 
tree canopy, but mainly captures information on top-of-canopy features, 
and has the potential to distinguish between different types of leaves. 
Incorporating microwave data may also improve the optical-only clas
sification of Eucalyptus plantation. With respect to classification fea
tures, in addition to red edge bands and EVI, we can also combine red 
edge indices such as red edge spectral indices (RESI), which can also 
contain information on the structure of vegetation and have been proven 
useful in plantation classification (Xiao et al., 2020). Additionally, 
several studies have incorporated textural features into plantation 
mapping approaches (Chen et al., 2021; Zhang et al., 2020a), so we can 
also investigate the use of textural features in the future work. 

5. Conclusions 

Here, we proposed a knowledge-based algorithm to identify and 
generate annual maps of Eucalyptus plantations in Guangxi at 10-m 
spatial resolution by combining PALSAR-2, Landsat, and Sentinel-2 in 
a single year. Our approach produced a Eucalyptus plantation map for 
2020 with high overall, producer’s, and user’s accuracies and Kappa 
coefficient, which were higher than previous mapping efforts. Our 
knowledge-based mapping algorithm highlights the potential of 
Sentinel-2 red edge bands for tree species classification and rapid 
mapping of Eucalyptus plantations at large scales using multiple satellite 
data, and our resultant 10-m spatial resolution Eucalyptus plantation 
maps provide vital information for sustainable Eucalyptus plantation 
planning and management as well as ecological assessment 
conservation. 
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F., de Carvalho Júnior, O.A., 2021. Deep semantic segmentation for detecting 
eucalyptus planted forests in the Brazilian territory using sentinel-2 imagery. 
Geocarto Int. 1–13. 

Danylo, O., Pirker, J., Lemoine, G., Ceccherini, G., See, L., McCallum, I., Kraxner, F., 
Achard, F., Fritz, S., 2021. A map of the extent and year of detection of oil palm 
plantations in Indonesia, Malaysia and Thailand. Sci. Data. 8, 1–8. 

De Luca, G., Silva, J.M.N., Di Fazio, S., Modica, G., 2022. Integrated use of Sentinel-1 and 
Sentinel-2 data and open-source machine learning algorithms for land cover 
mapping in a Mediterranean region. Eur. J. Remote Sens. 55, 52–70. 

DeFries, R.S., Townshend, J., 1994. NDVI-derived land cover classifications at a global 
scale. Int. J. Remote Sens. 15, 3567–3586. 

Fig. 15. Sensitivity analysis of parameters for the Eucalyptus plantation mapping. The producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) are 
used as indicators to compare the resultant Eucalyptus plantation map (EP_map) and the Eucalyptus plantation maps without RE4spring (EP_w/o_RE4SP), RE4winter 
(EP_w/o_RE4WI), EVIwinter (EP_w/o_EVIWI), DEM (EP_w/o_DEM), and slope (EP_w/o_slope). 

C. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1569-8432(23)00170-X/h0005
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0005
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0005
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0010
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0010
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0010
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0015
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0015
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0015
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0020
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0020
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0020
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0020
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0025
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0025
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0025
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0030
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0030
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0030
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0035
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0035
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0035
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0035
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0040
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0040
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0040
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0045
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0045
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0045
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0050
http://refhub.elsevier.com/S1569-8432(23)00170-X/h0050


International Journal of Applied Earth Observation and Geoinformation 120 (2023) 103348

13

Deng, X., Guo, S., Sun, L., Chen, J., 2020. Identification of short-rotation eucalyptus 
plantation at large scale using multi-satellite imageries and cloud computing 
platform. Remote Sens. 12, 2153. 

DeRose, R.J., Seymour, R.S., 2010. Patterns of leaf area index during stand development 
in even-aged balsam fir–red spruce stands. Canadian J. Forest Res. 40, 629–637. 

Dong, R., Li, W., Fu, H., Gan, L., Yu, L., Zheng, J., Xia, M., 2020. Oil palm plantation 
mapping from high-resolution remote sensing images using deep learning. Int. J. 
Remote Sens. 41, 2022–2046. 

Dong, J., Xiao, X., Sheldon, S., Biradar, C., Duong, N.D., Hazarika, M., 2012a. 
A comparison of forest cover maps in Mainland Southeast Asia from multiple 
sources: PALSAR, MERIS, MODIS and FRA. Remote Sens. Environ. 127, 60–73. 

Dong, J., Xiao, X., Sheldon, S., Biradar, C., Xie, G., 2012b. Mapping tropical forests and 
rubber plantations in complex landscapes by integrating PALSAR and MODIS 
imagery. ISPRS J. Photogramm. Remote Sens. 74, 20–33. 

Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., 2013. Mapping 
deciduous rubber plantations through integration of PALSAR and multi-temporal 
Landsat imagery. Remote Sens. Environ. 134, 392–402. 

Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., 
Biradar, C., 2015. Tracking the dynamics of paddy rice planting area in 1986–2010 
through time series Landsat images and phenology-based algorithms. Remote Sens. 
Environ. 160, 99–113. 

Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., 
Moore III, B., 2016. Mapping paddy rice planting area in northeastern Asia with 
Landsat 8 images, phenology-based algorithm and google earth engine. Remote Sens. 
Environ. 185, 142–154. 

FAO, 2020. Global Forest Resources Assessment 2020 – Key findings. Rome. https://doi. 
org/10.4060/ca8753en. 

Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sens. 
Environ. 80, 185–201. 

Forestry Bureau of Guangxi, 2018. In: The Planning and Development of Guangxi 
Forestry Industry in the 13th Five-Year.. 

Forkuor, G., Dimobe, K., Serme, I., Tondoh, J.E., 2018. Landsat-8 vs. Sentinel-2: 
examining the added value of sentinel-2’s red-edge bands to land-use and land-cover 
mapping in Burkina Faso. GIsci. Remote Sens. 55, 331–354. 

Forrester, D.I., Bauhus, J., Cowie, A.L., Vanclay, J.K., 2006. Mixed-species plantations of 
Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230. 

Forstmaier, A., Shekhar, A., Chen, J., 2020. Mapping of eucalyptus in Natura 2000 areas 
using Sentinel 2 imagery and artificial neural networks. Remote Sens. 12, 2176. 

Griffiths, P., Nendel, C., Hostert, P., 2019. Intra-annual reflectance composites from 
Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. 
Environ. 220, 135–151. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., 2013. High-resolution global 
maps of 21st-century forest cover change. Sci. 342, 850–853. 

Huang, F., Fan, W., Du, H., Xu, X., Wu, J., Zheng, M., Du, Y., 2021b. Estimation of Leaf 
Area Index of Moso Bamboo Canopies. J. Sustain. For. 1–16. 

Huang, C., Zhang, C., Liu, Q., Li, H., Yang, X., Liu, G., 2021a. Multi-Feature classification 
of optical and SAR remote sensing images for typical tropical plantation species. Sci. 
Sil. Sin. 57, 80–91. 

Huete, A., Liu, H., Batchily, K., Van Leeuwen, W., 1997. A comparison of vegetation 
indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59, 
440–451. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview 
of the radiometric and biophysical performance of the MODIS vegetation indices. 
Remote Sens. Environ. 83, 195–213. 

Imhoff, M.L., 1995. A theoretical analysis of the effect of forest structure on synthetic 
aperture radar backscatter and the remote sensing of biomass. IEEE Trans. Geosci. 
Remote Sens. 33, 341–351. 

Immitzer, M., Vuolo, F., Atzberger, C., 2016. First experience with Sentinel-2 data for 
crop and tree species classifications in central Europe. Remote Sens. 8, 166. 

Ji, J., Li, X., Du, H., Mao, F., Fan, W., Xu, Y., Huang, Z., Wang, J., Kang, F., 2021. 
Multiscale leaf area index assimilation for Moso bamboo forest based on Sentinel-2 
and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 104, 102519. 

Kong, J., Lin, Y., Huang, F., Liu, W., He, Q., Su, Y., Li, J., Wang, G., Qiu, Q., 2022. Effects 
of Fertilization and Dry-Season Irrigation on Litterfall Dynamics and Decomposition 
Processes in Subtropical Eucalyptus Plantations. Front. Ecol. Evol. 10, 919571. 

Kovacs, J., Lu, X., Flores-Verdugo, F., Zhang, C., de Santiago, F.F., Jiao, X., 2013. 
Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded 
black mangrove (Avicennia germinans) forest. ISPRS J. Photogramm. Remote Sens. 
82, 102–111. 

Le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R.A., Hakamada, R., 2014. Mapping short- 
rotation plantations at regional scale using MODIS time series: Case of eucalypt 
plantations in Brazil. Remote Sens. Environ. 152, 136–149. 

Li, X., Du, H., Zhou, G., Mao, F., Zheng, J., Liu, H., Huang, Z., He, S., 2021. 
Spatiotemporal dynamics in assimilated-LAI phenology and its impact on subtropical 
bamboo forest productivity. Int. J. Appl. Earth Obs. Geoinf. 96, 102267. 

Li, L., Li, N., Lu, D., Chen, Y., 2019. Mapping Moso bamboo forest and its on-year and off- 
year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 
data. Remote Sens. Environ. 231, 111265. 

Liang, W., Liu, J., Chen, Q., Chen, X., Zhong, S., 2017. A comparison of object-oriented 
methods of extracting eucalyptus information based on GF-2 images. For. Res. 
Manag 54–59. 

Lu, X., Huang, Y., Yan, H., Wei, W., Li, Z., 2020. Research on eucalyptus extraction based 
on automatic threshold decision tree classification. For. Res. Manag. 4, 117–126. 

Mthembu, S.L., 2001. Estimating leaf area index (LAI) of gum tree (Eucalyptus grandis X 
camaldulensis) using remote sensing imagery and LiCor-2000 [University of Natal]. 

Nomura, K., Mitchard, E.T., 2018. More than meets the eye: Using Sentinel-2 to map 
small plantations in complex forest landscapes. Remote Sens. 10, 1693. 

Oliveira, D., Martins, L., Mora, A., Damásio, C., Caetano, M., Fonseca, J., Ribeiro, R.A., 
2021. Data fusion approach for eucalyptus trees identification. Int. J. Remote Sens. 
42, 4087–4109. 

Parida, B.R., Kumar, P., 2020. Mapping and dynamic analysis of mangrove forest during 
2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Trop. 
Ecol. 61, 538–549. 

Pasquarella, V.J., Holden, C.E., Woodcock, C.E., 2018. Improved mapping of forest type 
using spectral-temporal Landsat features. Remote Sens. Environ. 210, 193–207. 

Peerbhay, K.Y., Mutanga, O., Ismail, R., 2013. Investigating the capability of few 
strategically placed Worldview-2 multispectral bands to discriminate forest species 
in KwaZulu-Natal, South Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 
307–316. 

Qi, S., Song, B., Liu, C., Gong, P., Luo, J., Zhang, M., Xiong, T., 2022. Bamboo forest 
mapping in China using the dense Landsat 8 image archive and google earth engine. 
Remote Sens. 14, 762. 

Qin, Y., Xiao, X., Dong, J., Zhang, G., Shimada, M., Liu, J., Li, C., Kou, W., Moore III, B., 
2015. Forest cover maps of China in 2010 from multiple approaches and data 
sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J. Photogramm. Remote 
Sens. 109, 1–16. 

Reiche, J., Lucas, R., Mitchell, A.L., Verbesselt, J., Hoekman, D.H., Haarpaintner, J., 
Kellndorfer, J.M., Rosenqvist, A., Lehmann, E.A., Woodcock, C.E., 2016. Combining 
satellite data for better tropical forest monitoring. Nat. Clim. Change. 6, 120–122. 

Rodríguez, A.C., D’Aronco, S., Schindler, K., Wegner, J.D., 2021. Mapping oil palm 
density at country scale: An active learning approach. Remote Sens. Environ. 261, 
112479. 

Rody, Y.P., Ribeiro, A., Pezzopane, J.E.M., Gleriani, J.M., Almeida, A.Q., Leite, F.P., 
2014. Estimates of the leaf area index (LAI) using LAI-2000 and hemispherical 
photos in Eucalyptus plantations. Ciência Florestal 24, 925–934. 

Shimada, M., Isoguchi, O., Tadono, T., Isono, K., 2009. PALSAR radiometric and 
geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932. 

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R., 
2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). 
Remote Sens. Environ. 155, 13–31. 

Sothe, C., Almeida, C.M.d., Liesenberg, V., Schimalski, M.B., 2017. Evaluating Sentinel-2 
and Landsat-8 data to map sucessional forest stages in a subtropical forest in 
Southern Brazil. Remote Sens. 9, 838. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 
vegetation. Remote Sens. Environ. 8, 127–150. 

Wang, J., Xiao, X., Liu, L., Wu, X., Qin, Y., Steiner, J.L., Dong, J., 2020a. Mapping 
sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, 
Sentinel-2 and Landsat images. Remote Sens. Environ. 247, 111951. 

Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R.B., Chen, B., Zhang, X., 
Chen, Y., 2020b. Mapping coastal wetlands of China using time series Landsat 
images in 2018 and Google Earth Engine ISPRS. J. Photogramm. Remote Sens. 163, 
312–326. 

Wang, M., Zheng, Y., Huang, C., Meng, R., Pang, Y., Jia, W., Zhou, J., Huang, Z., Fang, L., 
Zhao, F., 2022. Assessing Landsat-8 and Sentinel-2 spectral-temporal features for 
mapping tree species of northern plantation forests in Heilongjiang Province, China. 
For. Ecosyst. 9, 100032. 

White, D.A., Ren, S., Mendham, D.S., Balocchi-Contreras, F., Silberstein, R.P., 
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