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Abstract

Bayesian optimization is a coherent, ubiqui-
tous approach to decision-making under uncer-
tainty, with applications including multi-arm ban-
dits, active learning, and black-box optimization.
Bayesian optimization selects decisions (i.e. ob-
jective function queries) with maximal expected
utility with respect to the posterior distribution
of a Bayesian model, which quantifies reducible,
epistemic uncertainty about query outcomes. In
practice, subjectively implausible outcomes can
occur regularly for two reasons: 1) model mis-
specification and 2) covariate shift. Conformal
prediction is an uncertainty quantification method
with coverage guarantees even for misspecified
models and a simple mechanism to correct for
covariate shift. We propose conformal Bayesian
optimization, which directs queries towards re-
gions of search space where the model predictions
have guaranteed validity, and investigate its be-
havior on a suite of black-box optimization tasks
and tabular ranking tasks. In many cases we find
that query coverage can be significantly improved
without harming sample-efficiency.

1 INTRODUCTION

Bayesian optimization (BayesOpt) is a popular strategy to
focus data collection towards improving a specific objective,
such as discovering useful new materials or drugs (Terayama
et al., 2021; Wang and Dowling, 2022). BayesOpt relies on
a Bayesian model of the objective (a surrogate model) to
select new observations (queries) that maximize the user’s
expected utility. If the surrogate does not fit the objective
well, then the expected utility of new queries may not cor-
respond well at all to their actual utility, leading to little or
no improvement in the objective value after many rounds of
data collection.
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The most practical way to check how well the surrogate
fits the objective is to compute its accuracy on a random
heldout subset of the training data. Unfortunately such
a holdout set is not at all representative of points we are
likely to query since the goal is to find queries that are
better than the training data in some way. In other words
there is feedback covariate shift between the likely query
points and the existing training data which degrades the
accuracy of the surrogate (Fannjiang et al., 2022). Even
without covariate shift, we cannot guarantee the accuracy of
the surrogate predictions at all, and instead can only hope
that the predictions are accurate enough to provide a useful
signal for data collection.

The crux of the issue is that the coverage (i.e., the frequency
that a prediction set contains the true outcome over many
repeated measurements) of Bayes credible prediction sets is
directly tied to the correctness of our modeling assumptions,
which we cannot entirely control (Datta et al., 2000; Du-
anmu et al., 2020). We would prefer the price of assumption
error to be lost efficiency (i.e., wider prediction sets), rather
than poor coverage.

Conformal prediction is a distribution-free uncertainty quan-
tification method which provides prediction sets with re-
liable coverage under very mild assumptions (Vovk et al.,
2005). In particular, conformal prediction can accomodate
post hoc covariate shift (i.e., covariate shift that is only
known after training the surrogate) and does not assume the
surrogate is well-specified (e.g., we could use a linear model
on data following a cubic trend). Unfortunately conformal
prediction is challenging to use in a BayesOpt algorithm
since it is non-differentiable, requires continuous outcomes
to be discretized, and needs density ratio estimates for un-
known densities. Furthermore, because conformal predic-
tion sets are defined over observable outcomes, they cannot
distinguish between epistemic and aleatoric uncertainty, a
distinction that is important for effective exploration.

In this work we present conformal Bayesian optimization
with a motivating example in Figure 1. Conformal BayesOpt
adjusts how far new queries will move from the training
data by choosing an acceptable miscoverage tolerance α ∈
(0, 1]. If α = 1 then we recover conventional BayesOpt,
but if α < 1 then the search will be directed to the region
where conformal predictions are guaranteed coverage of at
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Figure 1: A motivating example of feedback covariate shift. We want x∗ ∈ [0, 1]2 which maximizes the Branin objective
(a), starting from 8 examples in the upper right (the black dots). The upper-confidence bound (UCB) acquisition function
(b) selects the next query (the red star) far from any training data, where we cannot guarantee reliable predictions. In higher
dimensions, we will exhaust our query budget long before covering the whole search space with training data. Given a
miscoverage tolerance α = 1/

√
8, conformal UCB (c) directs the search to the region where conformal predictions are

guaranteed coverage of at least (1− α). (d) The dashed line is the set x such that w(x) ∝ pquery(x)/ptrain(x) is exactly α.

least (1− α), keeping feedback covariate shift in check and
accounting for potential error in modeling assumptions.

In summary, our contributions are as follows:

• We show how to integrate conformal prediction into
BayesOpt through the conformal Bayes posterior, with
corresponding generalizations of common BayesOpt
acquisition functions, enabling the reliable coverage of
conformal prediction while still distinguishing between
epistemic and aleatoric uncertainty in a principled way.

• An efficient, differentiable implementation of full con-
formal Bayes for Gaussian process (GP) regression
models, which is necessary for effective query opti-
mization, and a practical procedure to estimate the den-
sity ratio for BayesOpt query proposal distributions.

• Demonstrations on synthetic black-box optimization
tasks and real tabular ranking tasks that conformal
BayesOpt has superior sample-efficiency when the sur-
rogate is misspecified and is comparable otherwise,
while improving query coverage significantly. Note
that while conformal BayesOpt has promising perfor-
mance, our goal is not primarily to “beat” classical al-
ternatives; rather, we show how to introduce conformal
prediction into BayesOpt, and explore the correspond-
ing empirical behaviour and results. 1

2 PRELIMINARIES

In this work we will focus on black-box optimization prob-
lems of the form maxx∈X (f∗1 (x), . . . , f∗d (x)), where each
f∗i : X → R is an unknown function of decision variables
x ∈ X , and d is the number of objectives. We do not ob-
serve f∗ directly, but instead receive noisy outcomes (i.e.
labels) y ∈ Y according to some likelihood p∗(y|f).

1Code is available at github.com/samuelstanton/
conformal-bayesopt.git

2.1 Bayesian optimization

BayesOpt alternates between inference and selection, in-
ferring the expected utility of potential query points from
available data, which then serves as a proxy objective to
select the next batch of observations, which are fed back
into the inference procedure, completing one iteration of
a repeating loop (Brochu et al., 2010; Frazier, 2018). In-
ference consists of applying Bayes rule to a prior p(f), a
likelihood p(y|f) and dataset D = {(xi,yi)}n−1

i=0 to obtain
a Bayes posterior p(f |D). The expected utility of x is given
by an acquisition function a : X → R with the general form

a(x,D) =

∫
u(x, f,D)p(f |D)df, (1)

where u is a user-specified utility function. For example,
taking u(x, f,D) = [f(x)−maxyi∈D yi]+, where [·]+ =
max(·, 0), yields the expected improvement (EI) acquisition
function (Jones et al., 1998). Since a is the Bayes posterior
expectation of u, maximizers x∗ = argmaxx∈X a(x,D)
are Bayes-optimal with respect to u. Bayes-optimality
means a decision is coherent with our posterior beliefs about
f∗. We think of argmaxx∈X a(x,D) as inducing a distri-
bution pquery(x) = p′(x|D) ∝ exp{a(x,D)} (?).

2.2 Bayesian inference and model misspecification

One way to assess the quality of our posterior beliefs is to
check the coverage of the corresponding Bayes β-credible
prediction sets, which are subsets Kβ(x) ⊆ Y satisfying

β =

∫
y∈Kβ(x)

∫
p(y|f(x))p(f |D)dfdy, (2)

where β ∈ (0, 1] is the level of subjective credibility (?).
β-credible sets may exhibit poor coverage, meaning the fre-
quency of “implausible” events outside the set happening is
much more than 1− β (Bachoc, 2013). Note that poor cov-
erage does not necessarily imply that Kβ(x) was computed
incorrectly, it may simply indicate a faulty assumption.
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Figure 2: Constructing a conformal prediction set Cα(xn) in the regression setting. First, (a) we choose some ŷn ∈ Y and
guess yn = ŷn, computing conformal scores s of {(x0,y0), . . . , (xn−1,yn−1), (xn, ŷn)}. (b) we note which examples
score better than our guess (shown in blue), and mask out the corresponding importance weights w. (c) we compute the
partial sums w of the masked importance weights, adding ŷn to Cα(xn) if wn > α, (d) repeat steps (a - c) for many guesses
of yn. Rejected and accepted guesses are shaded light and dark, respectively.

For example, in BayesOpt it is very common to assume
f∗ ∼ GP(0, κ), where κ is a Matérn kernel. Matérn kernels
support functions that are at least once differentiable, and
can struggle to model objectives with discontinuities. As
another example, we typically do not know the true like-
lihood p∗(y|f), and often choose a simple homoscedastic
likelihood p(y|f) = N (f, σ2Id) for convenience. In real-
ity the true noise process may be correlated with x, across
objectives, or may not be Gaussian at all (Assael et al.,
2014; Griffiths et al., 2019; Makarova et al., 2021). These
examples are common instances of model misspecification.

In practice faulty assumptions are nearly inevitable, and
they are not always harmful, since simplifying assumptions
can confer significant practical benefits. Indeed, theoreti-
cal convergence rates for acquisition functions like UCB
(Srinivas et al., 2010) suggest that for BayesOpt we want to
use the smoothest possible model, subject to the constraint
that we can still model f∗ sufficiently well. Similarly Gaus-
sian likelihoods have significant computational advantages,
and there is no guarantee that constructing a task-specific
likelihood for every optimization problem would be worth
the effort. We propose accepting that some assumption er-
ror will always be present, and instead focus on how alter
BayesOpt to accomodate imperfect models.

2.3 Conformal prediction

See Shafer and Vovk (2008) for a complete tutorial on con-
formal prediction, or Angelopoulos and Bates (2021) for a
modern, accessible introduction. Informally, a conformal
prediction set Cα(xn) ⊂ Y is a set of possible labels for a
test point xn given a sequence of observations D. Candi-
date labels ŷn are included in Cα(xn) if the resulting pair
(xn, ŷn) is sufficiently similar to the actual examples in D.
The degree of similarity is measured by a score function s
and importance weights (IWs) w, and the similarity thresh-
old is determined by the miscoverage tolerance α. In Figure
2 we visualize the process of constructing Cα(xn).

Conformal prediction is a distribution-free uncertainty quan-

tification method because it does not assume D is drawn
from any particular distribution, nor does it assume s is de-
rived from a well-specified model. In our context the critical
assumption is that D ∪ {(xn,yn)} is pseudo-exchangeable.
Fannjiang et al. (2022) provide a formal statement of pseudo-
exchangeability (Definition 2), and prove a coverage guar-
antee for conformal prediction sets in the special case when
D is IID from p(x)p∗(y|x) and p(x|D) is invariant to shuf-
fling of D, which we restate below:
Definition 2.1. Let D ∼ p(x)p∗(y|x) and (xn,yn) ∼
p′(x|D)p∗(y|x), where p′(x|D) is chosen such that
D ∪ {(xn,yn)} is pseudo-exchangeable. Given wi ∝
p′(xi|D̂−i)/p(xi) s.t.

∑
i wi = 1, ∀α ∈ (0, 1], the con-

formal prediction set corresponding to score function s is

Cα(xn) :=

{
ŷn ∈ Y

∣∣∣∣ h>w > α

}
, (3)

where hi := 1
{
s(xi,yi, D̂) ≤ s(xn, ŷn, D̂)

}
,

D̂ = D ∪ {(xn, ŷn)}, and p′(x|D̂−i) is the query proposal
density given training data D̂−i = D̂ − {(xi,yi)}. The
importance weights w account for covariate shift (Tibshirani
et al., 2019), and wi = 1/(n + 1) ∀i in the special case
where D ∪ {(xn,yn)} is fully exchangeable (e.g. IID).

Conformal prediction enjoys a frequentist marginal cover-
age guarantee on Cα(xn) with respect to the joint distribu-
tion over D ∪ {(xn,yn)},

P[yn ∈ Cα(xn)] ≥ 1− α, (4)

meaning if we repeatedly draw D ∼ p(x)p∗(y|x), and
(xn,yn) ∼ p′(x|D)p∗(y|x), Cα(xn) will contain the ob-
served label yn with frequency at least (1−α). A prediction
set with a coverage guarantee like Eq. (4) is conservatively
valid at the 1−α level. In Appendix B.1 we discuss random-
ized conformal prediction which is exactly valid, meaning
the long run frequency of errors converges to exactly α.
Marginal coverage is distinct from conditional coverage,
since it does not guarantee the coverage of Cα for any spe-
cific xn, only the average coverage over the whole domain
X .
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Full conformal Bayes corresponds to the score function
s(xi,yi, D̂) = log p(yi|xi, D̂). Conditioning an existing
posterior p(y|xi,D) on the additional observation (xn, ŷn)
is commonly referred to as “retraining” in the conformal
prediction literature. If the surrogate just so happens to be
correctly specified (e.g. f∗ ∼ p(f)), then log p(yi|xi, D̂)
is the optimal choice of score function, meaning it provides
the most efficient prediction sets (i.e. smallest by expected
volume w.r.t. the prior p(f)) among all prediction sets that
are valid at the 1− α level (Hoff, 2021). In the typical situ-
ation where we think our model assumptions are plausible
but do not really believe them, full conformal Bayes rewards
us if our assumptions turn out to be correct, yet it produces
valid predictions as long as the true data generation process
is some pseudo-exchangeable sequence.

BayesOpt and pseudo-exchangeability: unfortunately if
D is collected by some active online selection strategy such
as BayesOpt, then D is not IID and the coverage guarantee
for Defn. 2.1 does not apply. Note that even large offline
datasets are not guaranteed to be IID, so the same issue
may arise even in single-round design setting considered
by Fannjiang et al. (2022). Despite the gap in theory, in
this work we investigate the technical challenges associated
with incorporating conformal prediction sets into BayesOpt,
and find that empirically they can still improve query cov-
erage (Section 5.3). In Appendix A.1 we include further
discussion of the assumptions and limitations of conformal
prediction.

3 RELATED WORK

Conformal prediction: Our work is related to Fannjiang
et al. (2022), who propose a black-box optimization method
based on conformal prediction specifically to address feed-
back covariate shift. However, because they assume new
queries are drawn from a closed-form proposal distribution,
and because exact conformal prediction is not differentiable,
their approach cannot be easily extended to most BayesOpt
methods.2 Bai et al. (2022) propose a differentiable approx-
imation of conformal prediction, but it requires solving a
minimax optimization subproblem. Stutz et al. (2021) inde-
pendently proposed a continuous relaxation of conformal
prediction, like our work, but only for fully exchangeable
classification data. We propose a more general form that
allows for covariate shift, and we also provide an efficient
discretization procedure for regression and show how to
estimate the importance weights when the queries are drawn
from an implicit density.

Robust BayesOpt: There is a substantial body of work on
adaptation to model misspecification in the bandit setting
(i.e. discrete actions), e.g. ? and ?, however we are primar-
ily focused on problems with continuous decisions. Since

2BayesOpt proposal distributions are usually implicit, obtained
through gradient-based optimization of the acquisition function.

the seminal analysis of GP-UCB regret bounds by Srinivas
et al. (2010), follow-up work has proposed UCB variants
for misspecified likelihoods (Makarova et al., 2021), mis-
specified GP priors (Bogunovic and Krause, 2021), or to
guarantee f∗(xi) > c for some threshold c ∈ R (Sui et al.,
2015). These approaches are not easy to extend to other
acquisition functions, and tend to rely on fairly strong as-
sumptions on the smoothness of f∗ or fix a specific kind of
model misspecification.3 Wang et al. (2018) prove regret
bounds for GP-UCB when f∗ is drawn from a GP with
unknown mean and kernel functions, but assume we know
the right hypothesis class of mean and kernel functions and
have a collection of offline datasets available for pretraining.

Finally, Eriksson et al. (2019) propose TuRBO, which is su-
perficially similar to conformal BayesOpt since it constrains
queries to a Latin hypercube trust region around the best
known local optimum. While TuRBO can be very effective
in practice, the size of the trust region is controlled by a
heuristic with five hyperparameters in the single-objective
case, and even more in the multi-objective case (Daulton
et al., 2021b). Despite the additional complexity, the credi-
ble set coverage on queries in TuRBO trust regions can still
vary wildly (see Section 5.3). In contrast, conformal predic-
tion provides distribution-free coverage guarantees under
very mild assumptions, and our approach can be applied to
any reparameterizable acquisition function (Wilson et al.,
2017). To our knowledge our approach is the first BayesOpt
procedure to incorporate conformal prediction.

4 METHOD

We now describe the key ideas behind conformal Bayesian
optimization. First in Section 4.1 we show how to effi-
ciently compute Cα(xn), addressing differentiability and
discretization of continuous outcomes. Our procedure is
summarized in Algorithm 1. In Section 4.2 we introduce
the conformal Bayes posterior pα(f(xn)|D), allowing us to
distinguish between aleatoric and epistemic uncertainty and
combine to conformal prediction with many well-known
BayesOpt utility functions. Finally in Section 4.3 we ad-
dress feedback covariate shift without requiring closed-form
expressions for p(x) and p′(xi|D̂−i). In Appendix D.1 we
provide a detailed overview of the whole method, along with
a discussion of the computational complexity in Appendix
D.4.

4.1 Full conformal Bayes with Gaussian processes

Efficient retraining: full conformal Bayes requires us to
compute log p(yi|xi, D̂) ∀i ≤ n and ∀ŷj ∈ Ycand, where

3For example, it is commonly assumed that f∗ has bounded
RKHS norm w.r.t. the chosen GP kernel, that we know a good
bound in order to set hyperparameters correctly, and that f∗ is
Lipschitz continuous.
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Figure 3: Constructing full conformal Bayes prediction sets starting with a Bayes posterior p(ŷ|x,D). In this example D
is composed of n = 27 noisy observations (shown as black dots) of the true objective (shown as a black dashed line) and
α = 1− β = 0.19. In panel (a) we show Kβ(x), the β-credible prediction set. In panel (b) we show Ycand populated by
samples from p(ŷ|x,D). In panel (c) we show Cα(x), the conformal prediction set. The coverage of Cα(x) is noticeably
better than Kβ(x) in regions where there is little training data, though the nominal confidence level is the same.

Algorithm 1 Differentiable conformal prediction masks

Data: train data D = {(xi,yi)}n−1
i=0 , test point xn, imp.

weights w, label candidates Ycand, score function s,
miscoverage tolerance α, relaxation strength τ > 0.

mj = 0, ∀j ∈ {0, . . . , k − 1}.
for ŷj ∈ Ycand do
D̂ ← D ∪ {(xn, ŷj)}
s← [s(x0,y0, D̂) · · · s(xn, ŷj , D̂)]>.
h← sigmoid(τ−1(s− sn)).
w ← h>w.
mj ← sigmoid(τ−1(w − α)).

end
Result: m

Ycand is some discretization of Y . This incremental poste-
rior update can be done very efficiently if the surrogate is
a GP regression model (Gardner et al., 2018; Stanton et al.,
2021; Maddox et al., 2021), and we will later reuse the condi-
tioned posteriors to estimate expectations w.r.t. pα(f(x)|D).
Note that computing the GP posterior likelihood of training
data can be numerically unstable, which we address in Ap-
pendix D. Other Bayesian predictive posteriors (e.g. from
Bayesian neural networks) are conditioned on training data
via iterative methods such as gradient descent, making full
conformal Bayes very expensive (Fong and Holmes, 2021).

Differentiable prediction masks: the definition of Cα(xn)
in Eq. (3) can be broken down into a sequence of simple vec-
tor operations interspersed with Heaviside functions. The
Heaviside function is piecewise constant, with ill-defined
derivatives, so we replace it with its continuous relaxation,
the sigmoid function (Algorithm 1). Informally, the out-
put mj of the final sigmoid can be interpreted as the proba-
bilility of accepting some ŷj into Cα(xn). The smoothness
of the relaxation is controlled by a single hyperparameter
τ ∈ (0,+∞). As τ → 0 the relaxation becomes exact but
the gradients become very poorly behaved.

Efficient discretization of Y: now we need a good way to
choose Ycand. When y is low-dimensional (e.g. sequen-
tial, single-objective tasks), then Ycand can be a dense grid,
however dense grids are inefficient since they must be wide
enough to capture all possible values of y and dense enough
to pinpoint the boundary of Cα(xn). Even if we do not fully
believe p(y|xn,D), it is still our best guess of where y|xn
should be, so instead of a dense grid we populate Ycand

with proposals ŷj ∼ p(y|xn,D). This approach not only
reduces computational effort for low-dimensional y, it also
allows us to extend to tasks with multiple objectives and
batched queries (Appendix B.6). In Figure 3 we visualize
the computation of a conformal Bayes prediction set.

4.2 Conformal acquisition functions

For the sake of clarity in the following sections we will
omit the subscript from xn. By the sum rule of probability,
we can rewrite p(f(x)|D) as an integral over all possible
outcomes y|x,

p(f(x)|D) =

∫
ŷ∈Y

p(f(x)|D̂)p(ŷ|x,D)dŷ. (5)

In other words, p(f(x)|D) can be seen as a Bayesian model
average, where we condition each component model on a
different potential observation (x, ŷ), and weight the com-
ponents by p(ŷ|x,D).

We are free to change the component weights to any other
valid distribution over ŷ we like. Now we introduce the
conformal Bayes predictive posterior pα(ŷ|x,D),

pα(ŷ|x,D) :=

{
(1− α)/Z1 if ŷ ∈ Cα(x),

αp(ŷ|x,D)/Z2 else,

where Z1, Z2 are normalization constants. See Figure 4 for
an illustration. We are partitioning the outcome space into
two events, either ŷ ∈ Cα(x) or it is not. Since Cα(x) is a



Bayesian Optimization with Conformal Prediction Sets

0.4 0.2 0.0 0.2 0.4
y

0.00

0.05

0.10

0.15
p

(y
|x

,D
)

C (x)

Figure 4: An illustration of pα(ŷ|x,D). The total density
of all outcomes in Cα(x) is set to 1− α.

valid prediction set, ŷ ∈ Cα(x) with frequency (1−α), and
we do not consider any particular ŷ ∈ Cα(x) to be more
likely than another, since the coverage guarantee holds for
Cα(x) as a whole.4 We also expect that ŷ ∈ Y\Cα(x) with
frequency α, and we weight each ŷ /∈ Cα(x) by p(ŷ|x,D)
to form a proper density (i.e. a density that integrates to 1).

If we had noiseless observations (i.e. yi = f(xi)), we
could use pα(ŷ|x,D) directly when computing the acquisi-
tion value of new queries. However managing the explore-
exploit tradeoff with noisy outcomes requires us to dis-
tinguish between epistemic and aleatoric uncertainty. If
we do not, optimistic acquisition functions like UCB may
direct us towards queries whose outcomes are uncertain
due to measurement error. Substituting pα(ŷ|x,D) for
p(ŷ|x,D) in Eq. (5) results in the conformal Bayes poste-
rior pα(f(x)|D),

pα(f(x)|D) :=
1− α
Z1

∫
ŷ∈Cα(x)

p(f |D̂)dŷ (6)

+
α

Z2

∫
ŷ∈Y\Cα(x)

p(f(x)|D̂)p(ŷ|x,D)dŷ.

Given pα(f |D), we can "conformalize" any acquisition
function written in the form of Eq. (1) by substituting
pα(f |D) for p(f |D). In Appendix B.2 we show that
pα(f |D) converges pointwise to p(f |D) as α → 1, and
in Appendix B.4 we explicitly derive conformal variants of
several popular BayesOpt acquisition functions.

Monte Carlo estimates of conformal acquisition values:
in brief, given a query point x and utility function u, we first
draw a candidate grid Ycand and compute the corresponding
prediction mask m according to Section 4.1. Then we

4We could also use a conformal predictive density here (Vovk
et al., 2017; Marx et al., 2022), which we leave for future work.

estimate the conformal acquisition value as follows:

aα(x,D) =

∫
u(x, f,D)pα(f |D)df, (7)

≈ (1− α)u>v + αu>v′,

where u = [u(x, f (0),D) · · · u(x, f (k−1),D)]>,

vi =
mi

p(ŷi|x,D)

∑
j

mj

p(ŷj |x,D)

−1

,

v′i = (1−mi)(1
>(1−m))−1,

and f (j) ∼ p(f |D ∪ {(x, ŷj)}) ∀ŷj ∈ Ycand, which is
cheap since we already computed the conditioned poste-
riors when calculating m. See Appendix B.3 for the full
derivation.

4.3 Accounting for Feedback Covariate Shift

If we were merely ranking queries exchangeable with D,
then there would be no need to correct for covariate shift.
However, our goal is to find queries with exceptional out-
comes, and the more we optimize, the more severe we can
expect the resulting feedback covariate shift to be.

Density ratio estimation: as we saw in Section 2.3, adapt-
ing Cα(x) to covariate shift requires estimating impor-
tance weights wi ∝ r(xi) = p′(xi|D̂−i)/p(xi), where
p′(xi|D̂−i) is the proposal distribution from which we
would have drawn candidate query points if we had training
data D̂−i. If we have closed-form expressions for p(xi)
and p′(xi|D̂−i) then we can compute r(xi) easily, but in
general we only have samples from p(x). Furthermore if we
wish to optimize queries with gradient based methods then
p′(xi|D̂−i) is implicitly defined as the distribution over iter-
ates x(t)

n induced by the gradient field ∇xaα and an initial
distribution on x

(0)
n . Fortunately we can still obtain sam-

ples from p′(xi|D̂−i) by sampling from the energy distribu-
tion, p′(xi|D̂−i) ∝ exp{aα(x, D̂−i)} via stochastic gradi-
ent Langevin dynamics (SGLD) (Welling and Teh, 2011).
Note that this formulation requires us to run (n + 1) × k
SGLD chains, one for each density p′(xi|D̂−i). Since we
are already intending to use a sample-based empirical ap-
proximation of the density ratio, we make another approx-
imation here, assuming aα(x, D̂−i) ≈ aα(x,D), which
allows us to rely on samples from a single SGLD chain.

Once we have samples from p(x) (which are already in
D) and p′(x|D), we estimate r(x) with a probabilistic
classifier (Sugiyama et al., 2012). We assign labels z to
the samples, corresponding to the conditional distributions
p(x) = p(x|z = 0) and p′(x|D) = p(x|z = 1). By Bayes
theorem, we rewrite r(x),

r(x) =
p(z = 0)

p(z = 1)

p(z = 1 | x)

p(z = 0 | x)
, (8)
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Figure 5: Here we evaluate the empirical coverage of Cα(x). The shaded regions in each panel depict a KDE estimate of
the distribution of coverage when n = 64 and α = 0.125, estimated from 32 independent trials. The black dashed line
indicates 1 − α. In panel (a) we compare the coverage of Bayesian β-credible (β = 1 − α) and randomized conformal
prediction sets, if τ = 0 and we have a density ratio oracle. Conformal prediction provides much more consistent coverage.
Next in panel (b) replacing the density ratio oracle with learned density ratio estimates has fairly minimal effect on the
coverage of the resulting conformal prediction sets. In panel (c) we investigate the effect of the sigmoid temperature τ when
p′(x|D) 6= p(x). In panel (d) we investigate the effect of τ when p′(x|D) = p(x). Increasing τ makes the prediction sets
more conservative.
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Figure 6: BayesOpt results on heteroscedastic, single-objective tasks sinc and double-knot (reporting median and its
95% conf. interval, estimated from 16 trials). (a) sinc(x) (left y axis) and ε(x) (right y axis). (b) the sinc task, best
objective value found by conformal BayesOpt with homoscedastic likelihoods compared to baselines, risk-averse UCB
and penalized EI, both with heteroscedastic likelihoods. (c) the double-knot task, same experiment as in panel (b).
Conformal BayesOpt with a misspecified likelihood outperforms the specialized baselines on both tasks.

such that we need only train a probabilistic classifier p̂(z | x)
to discriminate the sample labels. We estimate the prior ratio
p(z = 0)/p(z = 1) empirically.

Which comes first, the acquisition function or the ratio
estimator? To estimate r as just described we clearly must
be able to compute ∇xaα to draw the required samples
from p′(x|D) ∝ exp{aα(x,D)}. Here we find a second
and more serious issue, since aα itself depends on r. We
need an estimator r̂ that simultaneously induces p′(x|D) ∝
exp{aα(x,D)} and accurately estimates p′(x|D)/p(x).
For example, we could assume r̂(x) = 1,∀x, but the in-
duced p′ likely does not satisfy p′(x|D)/p(x) = 1,∀x.

To solve this issue, we begin with an initial estimator
r̂0(x) = 1,∀x, and for t ≥ 0 we sample from p′(x|D) ∝
exp{aα(x,D)} via SGLD using the current estimator r̂t,
then update the classifier on those new samples to produce
an updated estimator r̂t+1 for the next iteration. To keep the
acquisition surface from changing too rapidly (potentially
destabilizing our SGLD chain), we compute an exponential
moving average of the classifier weights, and the averaged
weights are used when computing gradients of aα(x,D).
Our approach is analogous to (and directly inspired by)

bootstrapped deep Q-learning (Mnih et al., 2015).

5 EXPERIMENTS

In Section 5.1 we report the empirical coverage of credible
and conformal prediction sets in a simplified setting. In
Section 5.2 we show that conformal BayesOpt is robust to
a misspecified likelihood. Finally in Section 5.3 we evalu-
ate conformal BayesOpt on synthetic black-box optimiza-
tion tasks, comparing the query coverage of credible and
conformal prediction sets. See Appendix C for results on
multi-objective synthetic tasks and real ranking tasks using
drug and antibody design data, and see Appendix D for all
experimental details.

5.1 Do Our Approximations Impact Coverage?

First we compare the empirical coverage of Bayes credible
sets and randomized conformal prediction sets, and evaluate
the sensitivity of conformal prediction to continuous relax-
ation and density ratio estimation. We consider a simplified
offline regression setting where p(x) and p′(x|D) are known
3D spherical Gaussian distributions with different means, f∗
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Figure 7: Using the same base acquisition function, we compare standard BayesOpt (UCB), TuRBO (TR-UCB), and
conformal BayesOpt (C-UCB) optimizing levy-20d (top row) and ackley-20d (bottom row). The midpoint, lower,
and upper bounds of each curve depict the 50%, 20%, and 80% quantiles, estimated from 25 trials. In the left column we
see credible set coverage varying significantly, despite reasonable coverage on a random holdout subset of the training data
(center column). The right column shows max0≤i≤n f

∗(xi) as n increases, and we see the methods have comparable
sample-efficiency. Conformal BayesOpt improves the objective value while predicting query outcomes much more reliably.

is the 3D Hartmann function, and y|x ∼ N (f∗(x),
√
.05).

If the exact validity guarantee of randomized conformal
prediction holds, then over many trials the coverage should
concentrate around (1 − α). Some deviation is to be ex-
pected due to sample variance and discretization error. In
Figure 5a we see when we have the density ratio oracle
and τ = 0, that the distribution of conformal coverage is
indeed concentrated around (1− α), especially relative to
the distribution of credible coverage. In the other panels of
Figure 5 we show that empirical density ratio estimates and
the continuous relaxation do not compromise validity. In
particular increasing τ makes the corresponding prediction
sets more conservative, which is consistent with the limiting
case limτ→∞ Cα(x) = Y, ∀x.

5.2 Model Misspecification and Sample-Efficiency

Recall from Section 2.2 that BayesOpt surrogates often
use a homoscedastic likelihood p(y|f) = N (f, σ2), where
σ2 is a learned constant. In Figure 6a we plot f∗(x) =
sinc(x) := (10 sin(x) + 1) sin(3x)/x on [−10, 10] with
y|x ∼ N (f∗(x), ε(x)) and ε(x) = 2/(1 + exp{x/2}) In
Figure 6b we compare conformal BayesOpt with p(y|f) =
N (f, σ2) to two baselines specifically designed for tasks
with heteroscedastic noise, risk-averse UCB (Makarova
et al., 2021) and penalized EI (Griffiths et al., 2019), which
both use heteroscedastic likelihoods. Both baselines require
multiple replicates of each query to update their likelihoods,
which significantly reduces sample efficiency. In Figure 6c,
we repeat the same experiment on a second heteroscedastic
task f∗(x) = double-knot(x) := −x1 exp{−x1−x2}
on [−2, 6]2, with y|x ∼ N (f∗(x), ε(x)) and ε(x) =
||x||2) (Gramacy, 2005). Despite having a simpler, mis-

specified noise model, conformal BayesOpt finds a better
solution with fewer queries.

5.3 Good Query Coverage and Good Sample-
Efficiency Are Not Mutually Exclusive

We use the batch UCB acquisition function (q = 3) to op-
timize two synthetic functions levy and ackley, taking
X ⊂ R20. For this experiment y|x ∼ N (f∗(x), (σ∗)2).
To simulate the covariate shift that occurs in many applied
problems, we sampled the initial training data from a ran-
dom orthant of the input space. In Figure 7 we compare
the sample efficiency and coverage of standard BayesOpt,
TuRBO (Eriksson et al., 2019), and conformal BayesOpt.
Each method is comparable in terms of sample efficiency,
and the credible set coverage for standard BayesOpt and
TuRBO looks reasonable on a random subset of the training
data, if a bit unpredictable. However if we look at the query
coverage we see that the credible set coverage varies wildly.
The difference between coverage on a random holdout set
and coverage on the query set is due to feedback covariate
shift. In contrast, we see that the conformal set coverage for
both random holdout points and query points very consis-
tently tracks (1− α), where α = 1/

√
n. In other words, of

the methods considered conformal BayesOpt is the only ap-
proach that improves the objective while reliably predicting
the query outcomes.

In Figure 8 we preview results showing we can also im-
prove query coverage in tabular ranking tasks related to
drug design. See Appendix C.3 for the full experiment.
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Figure 8: We used C-UCB to select small-molecule com-
pounds for dopamine receptor binding affinity, showing
that conformal acquisitions improve query coverage without
harming sample efficiency.

6 DISCUSSION

We have shown that a combination of model misspecifi-
cation and optimization-induced covariate shift can make
Bayesian credible sets unreliable exactly where they are
needed most — where the queries concentrate. Conformal
prediction provides a principled solution to these issues,
with distribution-free validity guarantees that help ensure
robustness to model misspecification, and a natural mecha-
nism to correct for covariate shift. To use conformal predic-
tion inside of BayesOpt, we have developed differentiable
and efficiently discretizable conformal prediction sets and
coupled these with a practical density ratio estimation proce-
dure, addressing key technical challenges in the conformal
prediction literature. With the introduction of the conformal
Bayes posterior, we have derived conformal generalizations
of many popular acquisition functions, allowing us to ac-
commodate features of practical tasks including batched
queries, noisy observations, and multiple objectives. Em-
pirically we find the combination of conformal prediction
and BayesOpt to be very promising, since it improves query
coverage and has sample-efficiency comparable to methods
with no coverage guarantees at all.

Looking forward, although we focus on GP surrogates in
the low-n regime, we expect many of these ideas to trans-
fer to much larger models and datasets by replacing full
conformal Bayes with split conformal Bayes, and either
augmenting GPs with deep kernel learning, or by replac-
ing GPs entirely with Bayesian linear models operating on
pretrained representations learned by large self-supervised
models. Extending conformal BayesOpt to discrete opti-
mization, specifically biological sequence design, is a par-
ticularly exciting direction for future work. There are also
intriguing theoretical directions, such as analyzing the effect
of continuous relaxation and the effect of learned density
ratio estimates on conformal coverage guarantees, and in-
vestigating whether the regret of conformal BayesOpt can
be analyzed with milder assumptions than algorithms like
GP-UCB (Srinivas et al., 2010).

As machine learning systems are deployed for increasingly
impactful applications, we must confront the reality that ma-
chine learning models will be built on faulty assumptions,
and those models will be asked to rank potential decisions
without sufficient training data. The solution is not to blind
ourselves to the error in our assumptions, nor is it to par-
alyze ourselves in pursuit of a perfect model. Instead we
should develop methods that can gracefully accommodate
imperfect models, balancing internal coherence with exter-
nal validity.
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Appendices
The appendices are structured as follows:

• In Appendix A, we describe the assumptions, limitations, and broader impacts of this work.

• In Appendix B, we provide detailed derivations of the randomized differentiable conformal prediction, conformal
Bayes posterior and of conformal acquisition functions.

• In Appendix C, we include more experimental results, in particular multi-objective black-box optimization and
single-objective tabular ranking tasks with real data.

• In Appendix D, we give implementation details for all experiments.
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A ASSUMPTIONS, LIMITATIONS, AND BROADER IMPACTS

A.1 Assumptions

The assumptions underlying the coverage guarantee for conformal prediction are strikingly mild. All else equal, any
real-valued, measurable score function will produce a valid prediction set (Vovk et al., 2005). There are trivial examples that
produce trivially valid prediction sets Cα(x) = Y, ∀x, ∀α. In general if we choose s poorly we pay a price in terms of
efficiency (i.e. the volume of the prediction sets), but validity is still maintained.

The critical assumption is that {(x0,y0), . . . , (xn,yn)} are pseudo-exchangeable.5 A sequence of random variables is
pseudo-exchangeable if the joint density can be factored into terms that only depend on the values of the sequence, not
the ordering (Fannjiang et al., 2022). Informally, we can see that BayesOpt satisfies pseudo-exchangeability because the
likelihood of the training data is just the mixture of all the previous query likelihoods, and the query likelihoods do not
depend on the order of the past observations. Because we make no assumptions about the data distribution beyond pseudo-
exchangeability, conformal prediction belongs to a class of methods known as distribution-free uncertainty quantification.

A.2 Limitations

Marginal vs. conditional coverage guarantees: full and split conformal prediction sets have marginal coverage guarantee
that is easy to confuse with conditional coverage guarantees (Angelopoulos and Bates, 2021). Marginal coverage guarantees
must be interpreted with the same frequentist mindset as other frequentist measures of uncertainty, such as confidence
intervals and p-values, with similar risks of misinterpretation by inexperienced users. We have attempted to make clear
in the main text that the full conformal prediction coverage guarantee is only realized in the aggregate, as the average of
coverages observed in many independent, parallel experiments. Coverage observed within any specific trial for any specific
input can (and does) vary substantially from the aggregate tendency. There is very recent work which seeks to provide a
stronger conditional validity guarantee that can be expected to hold for some (1− δ) fraction of trials, which we hope to
apply to conformal BayesOpt in future work (Bates et al., 2021).

Approximation error: we have introduced some necessary approximations in this work, notably the discretization of
continuous labels and the continuous relaxation of conformal prediction sets. While we have given empirical evidence that
the error introduced by these approximations does not appear to be too severe, practitioners should be aware that some
deviation from the expected coverage level may occur, as we discuss in Section 5. This limitation is analogous to the
numeric limitations of linear algebra implemented with floating point arithmetic. We may be able to make use of Ndiaye
(2022) to avoid discretizing continuous outcomes entirely, which we leave for future work.

A.3 Broader Impacts:

Potential negative social impacts: black-box optimization algorithms are application-agnostic. The same algorithms
that are being used to design new therapeutics could in theory be used to discover new toxins for bioterror or biowarfare.
Similarly, the same algorithms used to design new materials for scientific discovery could be used to design new weapons
or rocket fuels. Our work is not particularly vulnerable to misuse relative to the large body of existing work on black-box
optimization algorithms.

Machine learning research: phenomena like model misspecification and covariate shift are often blamed on complexity in
the external world, but they are also induced by our own behavior, such as choosing a convenient likelihood for a model
(even when a more sophisticated option is available) or actively selecting new training data. We hope this work spurs more
interest in understanding how to reliably interact with the models we have today, in addition to work on “better” models for
tomorrow.

Experimental design: applications like materials science and drug discovery require the coordination of large, interdisci-
plinary teams of scientists and engineers. If machine learning systems are to play a central role in that coordination, they
must be reliable, in the sense that the systems should have stable behavior and consistently valid predictions. That kind of
reliability requires more than faith in an ad hoc collection of modeling assumptions with limited experimental validation.
This work is a step towards machine learning systems with interpretable certificates of reliability that can serve as the
foundation on which to build teams which push the boundaries of experimental science.

5Note that every IID sequence of random variables is exchangeable, but not every exchangeable sequence is IID. Similarly pseudo-
exchangeability does not mean every element of the sequence except for the last is IID.



B PROOFS AND DERIVATIONS

B.1 Smoothed conformal prediction

Algorithm 2 Randomized differentiable conformal prediction masks

Data: train data D = {(xi,yi)}n−1
i=0 , test point xn, imp. weights w, label candidates Ycand, score function s, miscoverage

tolerance α, relaxation strength τ .
mj = 0, ∀j ∈ {0, . . . , k − 1}.
for ŷj ∈ Ycand do
D̂ ← D ∪ {(xn, ŷj)}
s← [s(x0,y0, D̂) · · · s(xn, ŷj , D̂)]>.
h← sigmoid(τ−1(s− sn)).
w ← h>w.
θ ← clip(w−1

n (w − α), 0, 1).
η ∼ Bernoulli(θ).
w′ = w − (1− η)wn.
mj ← sigmoid(τ−1(w′ − α)).

end
Result: m

As discussed in Section 2.3 of the main text, standard conformal prediction (Definition 2.1) is conservatively valid, meaning
in the long run the coverage of conformal prediction sets is at least 1− α. If the prediction sets are too conservative, they
may be too wide to be helpful for decision-making. In the BayesOpt context we want prediction sets that are exactly valid,
neither underconfident nor overconfident. Fortunately with a small change (i.e. randomization) conformal prediction sets
can be made exactly valid.

Informally, exact validity only requires that we treat an edge case more carefully (see “smoothed conformal predictors” in
Vovk et al. (2005) for more details). Specifically there will be some candidate labels ŷj that are right on the boundary of
the prediction set, and we will introduce randomness to sometimes include such points, and sometimes not, depending on
exactly how close to the boundary the points are.

More precisely, there are occasions when

n−1∑
i=0

hiwi < α <

n∑
i=0

hiwi = w.

In standard conformal prediction the corresponding label ŷj would always be accepted into the prediction set. To make a
smoothed conformal predictor, we flip a coin with bias θ = clip(w−1

n (w − α)), 0, 1). We call the outcome of the flip η.
If η = 1, then we accept ŷj , similarly if η = 0 we reject ŷj . Note if w − α < 0 then ŷj is always rejected, similarly if
w − α > wn then ŷj is always accepted. Informally we are checking to see if the contribution of wn is responsible for
pushing w over the threshold α, and if so we are probabilistically accepting ŷj depending on how close w − wn is to α. We
give the continuous relaxation of smoothed conformal prediction in Algorithm 2.

B.2 Characterizing the conformal Bayes posterior

All conditional distributions are also conditioned on D, which we omit from the notation for the sake of clarity. Recall that
the conformal Bayes posterior is written as

p(f(x)|x) =

∫
Y

p(f(x)|x,y)p(y|x)dy,

=

∫
Cα(x)

p(f(x)|x,y)p(y|x)dy +

∫
Y\Cα(x)

p(f(x)|x,y)p(y|x)dy.
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Now we define a new conformal Bayes posterior distribution as a mixture distribution over y,

pα(y|x) = (1− α)q1(y|x) + αq2(y|x) (9)

Z1 =

∫
Cα(x)

1dy, q1(y|x) =

{
1/Z1 if y ∈ Cα(x),

0 else,

Z2 =

∫
Y\Cα(x)

p(y|x)dy, q2(y|x) =

{
0 if y ∈ Cα(x),

p(y|x)/Z2 else,

where the normalizing constants Z1, Z2 ensure that
∫
pα(y|x)dy = 1 (assuming Cα(x) is bounded and non-empty, so Z1

is non-zero and finite). If Cα(x) = Y and Y is unbounded then pα(y|x) is not a proper density.

The corresponding conformal Bayes posterior distribution over f is

pα(f(x)|x) =

∫
Y

p(f(x)|x,y)pα(y|x)dy

=
1− α
Z1

∫
Cα(x)

p(f(x)|x,y)dy +
α

Z2

∫
Y\Cα(x)

p(f(x)|x,y)p(y|x)dy

Finally we can rewrite both integrals over all Y by introducing a binary mask,

Definition B.1.

pα(f(x)|x) :=
1− α
Z1

∫
mα(x,y)p(f(x)|x,y)dy

+
α

Z2

∫
(1−mα(x,y))p(f(x)|x,y)p(y|x)dy,

mα(x,y) :=

{
1 if y ∈ Cα(x),

0 else.

Proposition B.1. Let n > 1 and pα(f |D) be defined according to Definition B.1. Then pα(f |D) converges pointwise in x
to p(f(x)|x, D) as α→ 1,

lim
α→1

pα(f(x)|x) = p(f |x).

Proof:

Let ε > 0, n > 2, and define αk = 1− 1/(k + 1) for k ∈ N.

|pαk(f(x)|x)− p(f(x)|x)| = |∆1 + ∆2|,
≤ |∆1|+ |∆2|,

where

∆1 =
1− αk
Z1

∫
Cαk (x)

p(f(x)|x,y)dy −
∫

Cαk (x)

p(f(x)|x,y)p(y|x)dy,

∆2 =
αk
Z2

∫
Y\Cαk (x)

p(f(x)|x,y)p(y|x)dy −
∫

Y\Cαk (x)

p(f(x)|x,y)p(y|x)dy.

Recalling the definition of Cα(x) (Def. 2.1), we observe that Cαk(x) ⊃ Cαk+1
(x),∀k ∈ N.6 Furthermore we see that since

the importance weights w must sum to 1 that limk→∞ Cαk(x) = ∅.
6A ⊃ B indicates that A is a strict superset of B.



Bounding |∆1|:

|∆1| ≤ |O(1− αk)−O(1− αk)|,
⇒ |∆1| ≤ c1(1− αk).

Bounding |∆2|:

|∆2| ≤ |(αk − 1)O(1)|,
⇒ |∆2| ≤ c2(1− αk).

Choose k ∈ N large enough that (c1 + c2)(1− αk) < ε. �

B.3 Monte Carlo integration of conformal acquisition functions

We want to integrate acquisition functions of the form

a(x,D) =

∫
u(x, f,D)pα(f |D)df

=
1− α
Z1

∫ ∫
u(x, f,D)mα(x,y)p(f(x)|x,y)dydf

+
α

Z2

∫ ∫
u(x, f,D)(1−mα(x,y))p(f(x)|x,y)p(y|x)dydf,

Suppose we have sampled Ycand = {ŷj}k−1
j=0 , with ŷj ∼ p(y|x,D), and f (j) ∼ p(f |D ∪ {(x, ŷj)}). Starting with the first

term in the sum, we have

1− α
Z1

∫ ∫
u(x, f,D)mα(x,y)p(f(x)|x,y)dydf ≈ 1− α

Z1k

k−1∑
j=0

mα(x, ŷj)

p(ŷj |x)
u(x, f (j),D).

We estimate the normalization constant Z1 as follows:

Z1 =

∫
Cα(x)

1dy =

∫
mα(x,y)dy

≈ 1

k

k−1∑
j=0

mα(x, ŷj)

p(ŷj |x)

By similar logic the second term in the sum is estimated as follows:

α

Z2

∫ ∫
u(x, f,D)(1−mα(x,y))p(f(x)|x,y)p(y|x)dydf ≈ α

Z2k

k−1∑
j=0

(1−mα(x, ŷj))u(f (j),D),

where

Z2 =

∫
Y\Cα(x)

p(y|x)dy =

∫
(1−mα(x,y))p(y|x)dy

≈ 1

k

k−1∑
j=0

(1−mα(x, ŷj))
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Upon further inspection we see that k drops out of the equations, and in effect we are simply computing weighted sums,
where the weights have been normalized to sum to 1, i.e.

a(x,D) ≈ â(x,D) = (1− α)u>v + αu>v′,

u = [u(x, f (0),D) · · · u(x, f (k−1),D)]>,

vj =
mα(x, ŷj)

p(ŷj |x)

(
k−1∑
i=0

mα(x, ŷi)

p(ŷi|x)

)−1

,

v′j = (1−mα(x, ŷj))

(
k−1∑
i=0

(1−mα(x, ŷi))

)−1

.

B.4 Conformalized Single Objective Acquisitions

Conformal NEI: rather than taking u(x, f,D) = [f(x)−maxyi∈D yi]+ (which corresponds to EI), take

uNEI(x, f,D) = [f(x)− max
x′
i∈D

f(x′i)]+. (10)

Note that u is now a function of the joint collection of function evaluations {f(x), f(x′0), . . . , f(x′n−1)} (Letham et al.,
2019).

Conformal UCB: the reparameterized form of UCB was originally derived in Wilson et al. (2017) as follows:

UCB(x) =

∫
uUCB(x, f,D)N

(
f

∣∣∣∣µ, λπ2 Σ

)
df,

where λ > 0 is a hyperparameter balancing the explore-exploit tradeoff, µ,Σ are the mean and covariance of p(f |D), and
uUCB(x, f,D) = µ + λπ

2 |µ − f |. Because UCB is optimistic, the conformalization procedure is a little different than
the previous acquisition functions. When marginalizing out the outcomes y to obtain the conformal Bayes posterior, we
integrate over the restricted outcome space Yµ = {y ∈ Y|y ≥ µ}. Hence we derive conformal UCB as

CUCBα(x) =

∫ ∫
Yµ

uUCB(x, f,D)N
(
f

∣∣∣∣µ(y),
λπ

2
Σ(y)

)
pα(y|x,D)dydf,

where µ(y),Σ(y) are the predictive mean and covariance of p(f |D ∪ {(x,y)}).

B.5 Conformalized Multi-Objective Acquisition Functions

When there are multiple objectives of interest, a single best design x∗ may not exist. Suppose there are d objectives,
f∗ : X → Rd. The goal of multi-objective optimization (MOO) is to identify the set of Pareto-optimal solutions such that
improving one objective within the set leads to worsening another. We say that x dominates x′, or f∗(x) � f∗(x′), if
f∗k (x) ≥ f∗k (x′) for all k ∈ {1, . . . , d} and f∗k (x) > f∗k (x′) for some k. The set of non-dominated solutions X ∗ is defined
in terms of the Pareto frontier (PF) P∗,

X ? = {x : f(x) ∈ P?}, where P? = {f(x) : x ∈ X , @ x′ ∈ X s.t. f(x′) � f(x)}. (11)

MOO algorithms typically aim to identify a finite approximation to X ?, which may be infinite, within a reasonable number
of iterations. One way to measure the quality of an approximate PF P is to compute the hypervolume HV(P|rref) of the
polytope bounded by P ∪ {rref}, where rref ∈ Rd is a user-specified reference point.

uEHVI(x, f,D) = HVI(P ′,P|rref) = [HV(P ′|rref)−HV(P|rref)]+, (12)

where P ′ = P ∪ {f̂(x)} (Emmerich, 2005; Emmerich et al., 2011; Daulton et al., 2020). If our measurements of f are
noisy we cannot compute HV exactly and instead must substitute f̂ ∼ p(f |D), i.e.

uNEHVI(x, f,D) = HVI(P̂ ′t, P̂t|rref), (13)

where P̂t = {f̂(x) : x ∈ Xt, @ x′ ∈ Xt s.t. f̂(x′) � f̂(x)} and P̂ ′ = P̂ ∪ {f̂(x)} (Daulton et al., 2021a).

Our derivations hold for so-called composite acquisitions as well, so we could also extend to qParEGO and qNParEGO
variants for multi-objective optimization (Daulton et al., 2020, 2022).
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Figure 9: Here we demonstrate how to generate target functions with known RKHS norm w.r.t. a given kernel κ, in this case
an RBF kernel with lengthscale ` = 0.1 on X = [0, 1]. In the left panel we show prior draws f (i) ∼ GP(0, κ). In the right
panel we show a synthetic target function f∗ with corresponding RKHS norm ||f∗||κ = 2.0934. We produced f∗ according
to Algorithm 3, using n = 16 basis points with dimension d = 1 and noise variance σ2 = 0.04.

B.6 Conformalizing Batch Acquisitions

In general batch acquisitions have the form

a(x0, . . . ,xq−1,D) =

∫
max
i<q

u(xi, f,D)p(f |D)df. (14)

Note that f(x0), . . . , f(xq−1) are sampled jointly when estimating Eq. (14) with Monte Carlo methods. Increasing the query
batch size to q increases the dimensionality of the outcome to q × d, where d is the number of objectives. Our importance-
sampling MC integration procedure introduced in Section 4.1 scales gracefully with higher outcome dimensionality, we
simply sample the elements of Ycand from p(y(x0), . . . , y(xq−1)|x0:q−1,D).

The bigger challenge arises in computing the conformal masks for batched query outcomes. In our current implementation
we compute the conformal scores (the Bayes posterior log-likelihood) pointwise for each query batch element, with
corresponding pointwise conformal prediction masks. We apply the pointwise masks before computing maxi<q u across
query batch elements. The alternative would be to compute a joint conformal score across all query batch elements
(similarly computing joint scores for each of the previous query batches in the training data). Note that this second approach
essentially reduces to replacing each datum (xi,yi) in Eq. (3) with (Xi, Yi) = ([x0 · · ·xq−1]>, [y0 · · ·yq]>). We leave the
implementation of this second approach for future work.

B.7 Out-of-distribution queries

If p′(x|D) 6= p(x), and w(x,D) > α, then every candidate label is automatically accepted to the prediction set and
Cα(x) = Y , which makes pα(x|D) an improper density. Intuitively the issue is there are not enough points in D close
enough to x to guarantee a miscoverage rate of at most α unless every possible label is included in the prediction set. Our
solution is to set any conformal acquisition value aα(x,D) to 0 if w(x,D) > α. In practice we achieve this effect by
introducing a second mask m′ = sigmoid(τ−1(wn − α)) which we apply to Eq. (7). For conformal EI and other similar
acquisition functions, this mask simply means we will favor any point close enough to the dataset to guarantee coverage if it
has positive expected utility over any out-of-distribution point. For conformal UCB, this mask means all out-of-distribution
points are assigned the value 1/n

∑
yi∈D yi (assuming the labels have been mean-centered during preprocessing).

B.8 Generating target functions with known RKHS norm

As we noted in Section 3, many formal regret bounds for BayesOpt rest on the assumption that 1) the RKHS norm of f∗

corresponding to the choice of kernel κ is bounded (i.e. ||f∗||κ <∞) and 2) that we know a reasonable upper bound on the
RKHS norm. Although these assumptions almost certainly do not hold for every f∗ encountered in practice, it is worthwhile
to examine the behavior of conformal acquisition functions when the idealized assumptions do hold, to see what price we
pay for robustness.

Although it is enough to know a bound on ||f∗||κ in this section we will optimize target functions for which we know the
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Algorithm 3 Generating target functions with known RKHS norm
Data: kernel κ, # basis points n, input dimension d, noise variance σ2

Sample basis points X = {x0, . . . ,xn−1} ∼ SobolSequence(n, d)
Sample u = {u0, . . . , un−1} ∼ N (0, κ(X,X)) (GP prior draw with kernel κ)
Sample y = {y0, . . . , yn−1} ∼ N (u, σ2In)
Compute c = (KXX + σ2I)−1y
f∗(·) = κ(·, X)c (GP posterior mean with kernel κ conditioned on D)
B =

√
c>KXXc (RHKS norm ||f∗||κ)

Result: f∗, B

RKHS norm exactly, to remove slack in the bound as a potential experimental confounder. A simple approach, which we
summarize in Algorithm 3, is to choose a random set of n basis points X = {x0, . . .xn−1}, draw random function values
from the GP prior u ∼ N (0, κ(X,X)) (Figure 9a), draw noisy labels y ∼ N (u, σ2In), and take f∗ to be the GP posterior
mean µf |D conditioned on the synthetic dataset D = (X,y) (Figure 9b).

The proof that µf |D ∈ Hκ(X) and ||µf |D||κ =
√
c>KXXc follows directly from the definition of an RKHS (see Chapter

2.2 in ?). Although these are well-established results, we sketch the proof here for the reader’s convenience.

Proof: Recall that by definition, the RKHS corresponding to κ with basis points X can be written as

Hκ(X) = {f : f(·) =

n−1∑
i=0

ciκ(·,xi) for some c ∈ Rn}, (15)

where S is the closure of S.

Since the GP posterior mean conditioned on D is given by

µf |D(·) = κ(·, X)(KXX + σ2I)−1y,

and c = (KXX + σ2I)−1y is in Rn, we’ve verified that µf |D ∈ Hκ(X).

For any f(·) =
∑n−1
i=0 ciκ(·,xi) for some c ∈ Rn we can derive the corresponding RKHS norm as follows:

||f ||2κ = 〈f, f〉κ,

=

〈
n−1∑
i=0

ciκ(·,xi),
n−1∑
j=0

cjκ(·,xj)

〉
κ

,

=

n−1∑
i,j=0

cicj 〈κ(·,xi), κ(·,xj)〉κ ,

=

n−1∑
i,j=0

cicjκ(xi,xj),

⇒ ||f ||κ =
√

c>KXXc. (16)

The second line follows from the linearity of 〈·, ·〉κ, and the third line follows from the reproducing property ofHκ(X) and
symmetry of κ. �

Remark: we are not required to use µf |D, once we have chosen κ and X we could in principle take any linear combination
of {k(·,x0), . . . , k(·,xn−1)}, e.g. by sampling c ∼ N (0, I). However µf |D is convenient and sufficient for our purposes.

When generating target functions in this way, it is important to account for the dimensionality of the input d when choosing
the number of basis points n. Due to the curse of dimensionality, the number of points needed to produce “interesting”
functions (i.e. functions that are not flat almost everywhere) grows exponentially with the dimension of the input when
using default GP kernels (e.g. Matérn).



C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Single-Objective Black-Box Optimization
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Figure 10: BayesOpt best objective value found with conformal and standard acquisition functions on single-objective tasks
Levy-d and Ackley-d (reporting median and its 95% conf. interval, estimated from 25 trials). qEI, qNEI, conformal qEI,
and conformal qNEI all perform similarly, conformal qUCB is best everywhere except Ackley-20, where it comes second
after qUCB.
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Figure 11: BayesOpt empirical coverage of conformal and credible prediction sets evaluated on holdout data from single-
objective task Levy-d (reporting median and its 95% conf. interval, estimated from 25 trials). The conformal coverage curves
track the target 1− α (black dashed line) well, significantly better than the credible curves, which tend to be overconfident.
Median w/ 95% confidence interval is shown.

In Figure 10 we investigate the effect of the choice of acquisition function on sample-efficiency, comparing conventional
and conformal versions. In particular we consider expected improvement (EI), noisy expected improvement (NEI) and
upper confidence bound (UCB) alongside their conformal counterparts. No clear ranking emerges here, however UCB and
conformal UCB both perform well in general.

In Figure 11, we investigate the sensitivity of coverage on random holdout data to the query batch size q and the dimension-
ality of the inputs d. Here, we plot the median and its 95% confidence interval as shading, finding that the conformal sets
are better calibrated in a frequentist sense than Bayesian credible sets.
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C.2 Multi-Objective Black-Box Optimization
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Figure 12: BayesOpt results on multi-objective tasks branin-currin and penicillin (reporting median and its 95%
conf. interval, estimated from 25 trials). Left two panels: Both conformal and standard acquisitions find solution sets with
similar hypervolumes. Right two panels: Credible and conformal empirical coverage curves. The conformal curves track
the target 1− α (black dashed line) better than the credible curves, but both are underconfident.

To demonstrate that our approach scales to multi-objective tasks, we consider two tasks, branin-currin (d = 2)
and penicillin (d = 3) (Liang and Lai, 2021). The goal is not to find a single x∗, but rather to find the set of all
non-dominated solutions, the Pareto front (Appendix B.5). By non-dominated, we mean the set of solutions with the
property that the objective value cannot increase in one dimension without decreasing in another. We report results using
the expected hypervolume improvement (EHVI) (Emmerich, 2005; Emmerich et al., 2011; Daulton et al., 2020) and noisy
expected hypervolume improvement (NEHVI) (Daulton et al., 2021a) as the base acquisition functions in Figure 12. Like
the single-objective case conformal BayesOpt is comparable in terms of sample-efficiency as quantified by the solution
hypervolume relative to a common reference point (Beume et al., 2009), and conformal set coverage tracks (1− α) more
closely than credible set coverage. All black-box functions used in this paper are synthetic with implementations coming
from BoTorch (Balandat et al., 2020). The Penicillin function was originally proposed by Liang and Lai (2021).

In this setting the performance of conventional BayesOpt and conformal BayesOpt is very similar in terms of solution
quality, and the improvement to coverage is fairly small (Figure 12). The root issue appears to be that it is simply much
more difficult to accurately characterize conformal prediction sets in multiple dimensions, since intervals become polyhedra
(?). Although our Bayesian discretization scheme avoids the exponential memory usage of dense grids, its ability to pinpoint
the boundary of conformal prediction sets appears to degrade as the dimensionality of y increases.



C.3 Tabular Ranking with Real-World Drug and Antibody Data
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(a) penalized logP
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Figure 13: Result ranking tabular molecular datasets for drug-related properties such as solubility (logP) (a), empirical
drug-likeness score (QED) (b), dopamine receptor (DRD3) binding affinity (c) and antibody stability (d). Across datasets,
CUCB selects queries with more consistent coverage than UCB (bottom two rows), with identical sample efficiency (top
row). The midpoint, lower, and upper bounds of each curve depict the 50%, 20%, and 80% quantiles, estimated from 4
trials.

Sometimes instead of solving maxx∈X a(x,D), the search space is restricted to a discrete subset of candidates Xcand ⊂ X .
This restriction is particularly common for tasks with discrete decision variables, such as biological sequence design
(Stanton et al., 2022). This existence of a fixed candidate set simplifies the computation of conformal acquisition functions
substantially, since we can use samples from Xcand directly when training the ratio estimator r̂, rather than relying on
bootstrapped SGLD as discussed in Section 4.3.

To emulate this kind of application, we compared standard and conformal UCB on a selection of small and large molecule
ranking tasks. In particular, we ranked a subset of small molecules drawn from the ZINC dataset (Krenn et al., 2020) for
three target properties, penalized logP (solubility), QED (drug-likeness), and DRD3 (dopamine receptor) binding affinity
(Gómez-Bombarelli et al., 2018; Huang et al., 2021). We also ranked a subset of large antibody molecules drawn from
the OAS dataset (Hornung et al., 2014) for stability. For simplicity we did not use sequence-based representations of the
molecules, instead relying on RDKit chemical descriptors (Landrum, 2016) and BioPython sequence descriptors (Cock
et al., 2009) to generate continuous feature representations of the small and large molecules, respectively.

Starting with the 32 worst entries in our labeled dataset, we selected 128 candidates sequentially (q = 1), revealing the
corresponding label and retraining the surrogate after each new selection. We share our results in Figure 13. Because
selection is restricted to a prespecified candidate set, the coverage is less consistent than the black-box optimization setting,
however we find that conformal UCB still selects queries with better coverage overall, without sacrificing sample-efficiency
(measured by cumulative regret, i.e. the difference between the selected candidate label and the best possible label of the
remaining candidates).
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C.4 Comparing Bayesian Credible Sets and Conformal Bayes Prediction Sets in the Well-Specified Regime
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Figure 14: A qualitative example of the difference between conformal Bayes prediction sets and Bayes credible sets in
the well-specified regime (f∗ generated with a Matérn-5/2 kernel with lengthscale ` = 0.1 and n = 16 basis points). In
regions with plentiful training data conformal and credible predictions sets are essentially indistinguishable. In regions
where training data is sparse, conformal prediction sets are underconfident and much wider than credible sets. The credible
sets are well-calibrated across the full domain regardless of the amount of training data because the GP prior is highly
concordant with the actual target function.

In Appendix B.8 we discussed a method for generating target functions from a pre-specified RKHS. Not only do target
functions generated in this way have a computable RKHS norm, they also allow us to compare the behavior of conformal
Bayes prediction sets and Bayes credible sets in the well-specified regime. Since we know the kernel we used to generate
the target function, we can use the same kernel during inference, eliminating one of the possible causes of poor coverage.

As we noted in Section 2.3, conformal Bayes produces the most efficient (i.e. the smallest by volume in expectation under
p(f)) prediction sets among all prediction rules which are guaranteed to be valid at the 1−α level. Nevertheless the validity
guarantee does come with a price. In Figure 14 we show that in the well-specified regime conformal Bayes tends to be
underconfident where training data is sparse, whereas Bayes credible sets are well-calibrated across the whole domain.
This result is expected and typical of Bayesian methods. If we have very good knowledge of the nature of f∗ we are better
off fully exploiting that knowledge than relying solely on vague assumptions (e.g. pseudo-exchangeability). The choice
between conformal Bayes and conventional Bayesian methods is inherently context-dependent, a function of the available
data, the user’s confidence in their prior and the cost of miscalibration if that confidence is misplaced.

In Figure 15 we repeat the experiment in Section 5.3 using the same procedure as above to generate f∗, increasing the input
dimension to 5 and the number of basis points to 128. We report the query and holdout coverage, along with the simple
regret, f∗(x∗) − maxxi∈D f

∗(xi). Although there is no advantage to using conformal prediction in the well-specified
regime, we find the performance to be comparable.
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Figure 15: In this experiment we examine the coverage and simple regret of BayesOpt in the well-specified regime. We plot
the mean and the standard error estimated from 25 trials. Here f∗ is generated with a Matérn-5/2 kernel with lengthscale
` = 0.1 and n = 128 basis points in [0, 1]5. As expected, Bayesian credible sets (indicated by the UCB curve) are fairly
well-calibrated. The coverage of conformal prediction sets is less satisfactory (the CUCB curve), due in part to the fact that
the training data is not IID, and in part to density ratio approximation error.
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D IMPLEMENTATION DETAILS

D.1 Bringing Everything Together

Algorithm 4 Pseudocode for the conformal BayesOpt inner loop

Input: train data D = {(xi, yi)}n−1
i=0 , initial solution xn, score function s, miscoverage tolerance α, sigmoid temperature

τσ , SGLD learning rate ηx, # SGLD steps tmax, SGLD temperature τSGLD, classifier learning rate ηθ, EMA parameter γ.
Initialize classifier qθ, set weight average θ̄ = 0.
Initialize classifier dataset D′ = {(xi, 0)}n−1

i=0

for t = 0, . . . , tmax − 1 do
Estimate r̂t(xi),∀i ∈ {0, . . . , n} with qθ̄. (Eq. 8)
(wt)i = r̂t(xi)/

∑
k r̂t(xk),∀i ∈ {0, . . . , n}.

Ycand ← {ŷj}m−1
j=0 s.t. ŷj ∼ p̂(y|x′t,D).

m = outcome_mask(D,xn,wt, Ycand, s, α, τσ). (Algorithm 1)
Estimate acquisition value a(xn). (Eq. (7))
Update xn ← sgld_step(xn, a(xn), ηx, τSGLD).
Update D′ ← D′ ∪ {(xn, 1)}.
Update θ ← θ − ηθ∇θ`(θ,D′)
Update θ̄ ← (1− γ)θ̄ + γθ.

end for
Return: xn

In Algorithm 4 we summarize the entire conformal BayesOpt inner loop used to select new queries.

D.2 Stable Predictions on the Training Set

We found that computing the GP posterior negative log-likelihood (and its gradients) on training data to be numerically
unstable and so used stochastic diagonal estimation to estimate the posterior variances. Plugging in K = κ(X,X) into
that posterior mean and variance, we get that the posterior mean is K(K + σ2)−1y and the posterior covariance is
Σ = σ2I + K − K(K + σ2I)−1K. Unfortunately, the second term ends up being unstable as it requires solving (and
then subtracting) a (batched) system of size n× n. To see the reason for instability, note that as σ2I → 0 then the entire
covariance matrix tends to zero.

We originally tried backpropagating through an eigendecomposition; however, this produced ill-defined gradients, see the
explanation in Ionescu et al. (2015). Instead we computed a stochastic diagonal estimate, using the identities

Σ = σ2I + σ2K(K + σ2I)−1, (17)

diag(Σ)i ≈ σ2

1 +

 J∑
j=1

z(j) �K(K + σ2I)−1z(j)


i

 J∑
j=1

z(j) � z(j)

−1

i

 , (18)

where the probe vector z(j) has i.i.d Bernoulli entries and � is the Hadamard product. This estimator comes from Bekas
et al. (2007) and is in spirit quite similar to Hutchinson’s trace estimator for the log determinant. We used J = 10 probe
vectors.

D.3 Hyperparameters

For all GP models in this paper, we used the default single task GP (SingleTaskGP) model from BoTorch, which uses
a scaled Matern-5/2 kernel with automatic relevance determination and a Gamma(3, 6) prior over the lengthscales and
a Gamma(2, 0.15) prior over the outputscales. We used constant prior mean functions. For the likelihood, we used a
softplus transformation to optimize the raw noise, constraining the noise to be between 5 × 10−4 and 0.5. To fit the GP
kernel hyperparameters φ, we used BoTorch’s default fitting utility, fit_gpytorch_model, which uses L-BFGS-B to
maximize the log-marginal likelihood log p(D|φ).

For the miscoverage tolerance we used a simple schedule α = max(0.05, 1/
√
n). Note if α < 1/n then Cα(x) = Y, ∀x ∈

X .



We initialized D0 with 10 Sobol points drawn from a random orthant of the normalized input space. The input normalization
was computed from known bounds of the black-box functions.

Black-Box Optimization Hyperparameters
Name Value
# Optimization rounds 50
q (query batch size) {1, 3}
|D0| 10
σ (normalized measurement noise scale) 0.1
τσ (sigmoid temp.) 1e-2
k (i.e. |Ycand|) 256
# SGLD chains 5
tmax (# SGLD total steps) 100
tburn (# SGLD burn-in steps) 25
ηx (SGLD learning rate) 1e-3
τSGLD (SGLD temp.) 1e-3
ηθ (classifier learning rate) 1e-3
γ (classifier EMA weight) 2e-2
λ (classifier weight decay) 1e-4
Random seeds {0, . . . , 24}

Tabular Ranking Hyperparameters
Name Value
# Optimization rounds 128
q (query batch size) 1
|D0| 32
σ (normalized measurement noise scale) n/a
τσ (sigmoid temp.) 1e-6
k (i.e. |Ycand|) 64
# number classifier gradient updates 256
ηθ (classifier learning rate) 1e-3
γ (classifier EMA weight) 1
λ (classifier weight decay) 1e-4
Random seeds {0, . . . , 3}

D.4 Computational Complexity

The cost of training the surrogate GP regression model is the same in our case as conventional BayesOpt, namely O(n3) if
exact GP inference is used without any approximations.

The cost of retraining the surrogate GP on a single new example (xn, ŷj) is O(n), since one can make use of efficient
low-rank updates to the root decomposition of (KXX + σ2I)−1 (Gardner et al., 2018). The surrogate GP can be retrained
on all k candidate labels in parallel on a GPU, which keeps the wall-clock cost of retraining to O(n) but increases the
memory footprint by a factor of k. The increased memory footprint persists for the duration of the selection phase, during
which the acquisition function is optimized to select the next query.

The cost of drawing a sample function f (j) ∼ pα(f |D̂j) is the same as drawing a sample from p(f |D), and whereas
conventional BayesOpt methods typically draw multiple samples from p(f |D), we find that drawing a single sample from
each pα(f |D̂j) is sufficient since pα(f(xn)|D̂j) tends to concentrate near ŷj .

Therefore the complexity of each acquisition function gradient evaluation is dominated by the same O(qn2) cost of exact
GP test-time inference with q test examples as conventional BayesOpt, at the cost of a k-factor increase in memory usage.

Although this analysis would seem to indicate that conformal BayesOpt should run in similar wall-clock time to conventional
BayesOpt, in practice it is considerably slower because the SGLD chains in conformal BayesOpt must be allowed to burn in,
and then the bootstrapped ratio estimator must be given time to converge, which requires many more gradient evaluations
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than optimizing a conventional BayesOpt acquisition function with L-BFGS. In our experiments we found conformal
BayesOpt to be around an order of magnitude slower in terms of wall-clock time than conventional BayesOpt. This increase
in runtime is a considerable drawback and merits further investigation in future work.

D.5 Compute Resources

Our experiments were conducted on a range of NVIDIA GPUs, including RTX 2080 Tis, Titan RTXs, V100s, and A100s in
high-performance computing clusters. All experiments used a single GPU at a time. It would require approximately 250
GPU hours to reproduce the experiments in this paper by our estimate,

1 GPU hr/seed× 25 seeds per variant× 1 variant per experiment× 10 experiments = 250 hrs.

Other experimental runs, e.g. development and debugging, probably consumed an order of magnitude more GPU hours.

D.6 Software Packages

• Python 3, PSF License Agreement (Van Rossum and Drake, 2009).

• Matplotlib, Matplotlib License Agreement.

• Seaborn, BSD License.

• NumPy, BSD License (Harris et al., 2020).

• PyTorch, BSD License (Paszke et al., 2019).

• GPyTorch, MIT License (Gardner et al., 2018).

• BoTorch, MIT License (Balandat et al., 2020).
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