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We review recent results that apply a reduced phase space quantization of loop quantum

cosmology (LQC) for a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universe filled with reference fields and an inflaton field in a Starobinsky inflationary
potential. All three models that we consider are two-fluid models and they differ by their
choice of global clock which are chosen to be either Gaussian dust, Brown-Kuchař dust
or a massless Klein-Gordon scalar field. Although two-fluid models are more complicated
than models involving the inflaton only, it turns out that some of the technical hurdles
in conventional quantum cosmological models can be bypassed in these models. Using

the effective dynamics resulting from the reduced phase space quantization we discuss
some phenomenological implications of these models including the resolution of the big

bang singularity via a quantum bounce and in addition address the question whether
different choices of clocks can leave an imprint on the inflationary dynamics.

Keywords: Loop quantum cosmology, reduced phase space quantization, effective tech-
niques.

1. Introduction

Within the last decade in the framework of loop quantum gravity new models have

been introduced that apply the technique of reduced phase space quantization to

construct the physical Hilbert space and thus the physical sector of the theory.1–9

This requires to construct Dirac observables at the classical level and derive their

corresponding algebra. For this purpose all models have in common that they couple

some kind of additional matter to gravity. In the context of the relational formal-

ism, introduced in Refs. 10, 11 and further developed and applied in Refs. 12–17,

these additional degrees of freedom are used as reference matter to construct Dirac

observables and their corresponding dynamics. The latter is encoded in a so called

physical Hamiltonian that becomes a non-vanishing Hamiltonian operator in the

physical Hilbert space involved either in a Schrödinger-like or Heisenberg-like equa-

tions. For the reason that these reference fields are dynamically coupled to general

relativity an interesting question in this context is how a given choice of reference

fields influences the physical properties of the model. In full loop quantum gravity
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these dynamical equations have a complicated structure and an analysis for individ-

ual models as well as a comparison between different models is a non-trivial task.

Therefore, the work in Ref. 18 focus on a simplified setting in the framework of loop

quantum cosmology where techniques are already available to analyze such ques-

tions. The relational formalism has been applied in the context of loop quantum

cosmology for instance in Refs. 18–33. The main difference to former models in loop

quantum cosmology with reference matter, often also called clocks in cosmology, is

that the work in Ref. 18 considers two-fluid models because the clock is coupled in

addition to an inflaton. One of the main questions that one is interested in is how

the inflationary scenario is affected by the presence of the additional clock degree

of freedom and how the imprint of the clock compares for different models. Such

questions will be investigated using effective techniques that in LQC have in former

work mainly be applied to one-fluid models.

1.1. Dust and scalar field clock models in loop quantum cosmology

All three models in the analysis in Ref. 18 are based on models in general relativity

coupled to an inflaton field and an additional coupling of 8 and 7 respectively

additional dust and scalar fields respectively yielding to a system with second class

constraints. After the reduction with respect to the second class constraints one

ends up with first class systems with four additional reference fields, that can be

used as reference matter for the Hamiltonian and spatial diffeomorphism constraint.

The details about the Brown-Kuchař dust model can be found in Ref. 34 and its

quantization using LQG techniques has been performed in Ref. 1. For the classical

Gaussian dust model we refer the reader to Ref. 35 and its LQG implementation

has been discussed in Ref. 36. The four scalar field model in Refs. 5, 6 can be

understood as a modification of the model in Ref. 37, that, as shown in Ref. 5

cannot be quantized in the framework of LQG. For flat FLRW spacetimes where the

spatial diffeomorphism constraint vanishes identically, the corresponding symmetry

reduced models involve one temporal reference field, the clock, only. A reduced

phase space quantization for all three symmetry reduced models has been derived

in Ref. 18. There it is shown that in all three models the quantum dynamics is

encoded in a Schrödinger-like equation in the physical Hilbert space. The explicit

form of the physical Hamiltonian differs for the dust and scalar field models where

the latter involves a square root. Although the model involve an inflaton with a

generic potential due to the fact that clock is coupled additionally and one does not

use the inflaton as the clock, as it has for instance be done in the APS-model in

Ref. 21, all models possess physical Hamiltonians that are time-independent. This

is of advantage for the construction of the physical inner product of the individual

models. In this review we will focus on the effective dynamics of these models that

were used in Ref. 18 to investigate the above mentioned questions. The quantum

dynamics is formulated in the volume representation in Ref. 18 and thus the set

of elementary variables in the dynamical equations are Ob,OV ,Oϕ,Oπϕ
, where Of
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denotes the Dirac observable of quantity f . As shown in Ref. 18 the effective physical

Hamiltonians of the dust and scalar field model take the form

H
FLRW, dust
eff = − 3OV

8πGλ2γ2
sin2 (λOb) +

O2
πϕ

2OV

+OV U (Oϕ) (1)

H
FLRW, scalar
eff =

√

−2OV

(

− 3OV

8πGλ2γ2
sin2 (λOb) +

O2
πϕ

2OV

+OV U (Oϕ)

)

, (2)

where λ =
√
∆ =

√

4
√
3πγℓ2p denotes the polymerization parameter. Taking into

account that the elementary Dirac observables satisfy the following standard Pois-

son brackets {Ob,OV } = 4πGγ and
{

Oϕ,Oπϕ

}

= 1 with γ denoting the Immirzi

parameter and where all remaining Poisson brackets vanish, the system of equations

of motion for the Dirac observables in the individual models has been been derived

in Ref. 18 and they provide the basis for the results discussed in the next section.

Note that although in the case of flat FLRW spacetimes the physical Hamiltonian

of the Brown-Kuchař model and the Gaussian dust model agree, these model are

still not identical because within the Brown-Kuchař model the dust energy density

can be chosen to be either positive or negative and the effect of these two different

choices has also been analyzed in Ref. 18.

2. The effect of choosing different clocks on inflation

Similar to the one-fluid models that are obtained via Dirac quantization as for

instance the APS-model in Ref. 21, the effective dynamics in the scalar field and

dust models can be rewritten in terms of a modified Friedmann equations of the

form

O2
H =

Ȯ2
V

9O2
V

=
8πG

3
Oρ

(

1− Oρ

ρmax

)

(3)

with ρmax = 3
8πGγ2λ2 . The maximal density ρmax is the same as in Refs. 21–23 but

here Oρ does not only depend on the inflaton but also on the clock energy density.

Furthermore, the temporal coordinate with respect to which the Hubble parameter

is determined is given by either the dust and scalar field clock respectively.

In order to analyze how a given choice of clock might affect inflation in Ref. 18

a Starobinsky potential

U =
3m2

16πG

(

1− e−
√

16π
3

Oϕ

)2

with m = 2.44× 10−6 (4)

was considered. The choice of initial conditions, set at the bounce, was guided by

former results in LQC models38 and chosen to be Obi = π/2λ and OVi
= 103

in Planck units. Fixing further values for Oϕi
,Oπϕ

determines H
FLRW, dust
eff from

which one can obtain Oρclock . Therefore in Ref. 18 the initial values are parametrized

by
(

Oϕ,Oρclock

)

. In the case of the dust models a choice of initial conditions given

by Oϕi
= −1.45, Oρclock = 10−8 yields to a quantum model with a pre-inflationary
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phase, often being present in LQC models after the bounce, and an inflationary

phase where the number of inflationary e-foldings for the latter is 63.1. For a similar

choice of initial conditions the one-fluid models without an additional clock degree

of freedom yield 63.9 inflationary e-foldings, see Ref. 38. This shows that for these

choice of initial conditions the dust clock plays only a subdominant role for inflation.

This is exactly what one expects from a good clock because such a clock should not

have a dominant imprint on the dynamics of the model. A similar analysis for the

scalar field model leads to 63.8 inflationary e-foldings being closer to the value

obtained in the one-fluid models and showing that the effect of the scalar field clock

is weaker compared to the dust clock. However, this is also expected from the fact

that the energy density of the scalar field comes with a higher inverse power of the

scale factor than the dust contribution and thus decaying faster in the evolution.

In a further investigation to better understand the influence of the clock energy

density on inflation in Ref. 18 for the same set of initial conditions for the inflaton

a varying dust energy density ranging from 10−8 up to 10−4 was considered. The

results show that the number of inflationary e-foldings decrease with increasing

dust energy density. The explanation given in Ref. 18 is that this results from the

fact that Oϕon
, the value of scalar field’s Dirac observable at the onset of inflation,

decreases due to a larger Hubble friction when the dust energy density is increased.

For an initial dust energy of Oρclock = 1.38 × 10−4 in Planck units one reaches an

upper bound for this set of initial conditions where inflation no longer occurs. The

same analysis for the scalar field clock shows that also in this model the number of

inflationary e-foldings decreases with higher clock energy density but the effect is

less strong here. One sees a significant effect only if Oρclock ≥ 0.001 in Planck units.

As far as the number of pre-inflationary e-foldings is concerned the results from

Ref. 18 demonstrate that the increase of the clock energy density has the opposite

effect, namely that the number of pre-inflationary e-foldings increase.

3. Conclusions

As a first step towards an investigation how choices of different reference fields affect

the physical properties of models the work in Ref. 18 considers different symmetry

reduced reference matter models choosing either dust or a massless scalar field as the

clock in addition to gravity and the inflaton leading to two-fluid LQC models. For

the choice of a Starobinsky potential the fingerprint of the clock on the inflationary

dynamics was analyzed in the framework of effective techniques. The analysis shows

that initial conditions can be chosen such that the clock has no significant effect on

the dynamics. Both models with dust and the scalar field clock respectively show

a qualitatively similar behavior and can serve as good clocks. Some difference in

the two models are found such as that the model with the scalar field clock has a

larger number of inflationary e-foldings compared to the dust model. Furthermore,

the scalar field model serves in larger parameter space as a good clock since it is

less sensitive to the initial conditions of the clock energy density. Going beyond
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the first steps investigated in Ref. 18 and reviewed here requires a more detailed

understanding on the physical solutions in these models at the level of the quantum

theory. For this purpose the already existing numerical techniques23,39 need to be

generalized to the two-fluid case. Next to the question of singularity resolution at

the level of the physical Hilbert space, such kind of generalization will be important

because it will also allow to test the validity of effective techniques for two-fluid

models.
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