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A B S T R A C T   

Biological invasions are considerably altering ecosystem structure and functions, especially in coastal ecosystems 
that are subject to intensive anthropogenic disturbances. Spartina alterniflora has been recognized as the most 
serious invasive species in coastal China, which has received considerable attention from the government and the 
public. There is urgent need to control this invasive species at regional and national scales, but such efforts were 
impeded by lack of time-series data of Spartina spread. Here, we assessed the pixel- and phenology-based al
gorithm for mapping Spartina saltmarshes, and applied this algorithm to generate annual Spartina saltmarsh maps 
(30-m spatial resolution) from 1985 to 2020 by using time series Landsat 5/7/8 images. The resulting maps 
suggest that Spartina has been expanding since 1990 in coastal China, with three noticeable phases (rapid, 
moderate, and rapid). Along the latitudinal gradient, Spartina exhibited a longer invasion history and more 
frequent changes at low latitudes. Although human interventions caused the decline of Spartina in certain areas, 
rapid natural spread was primarily responsible for its extensive and continual invasion. These results provide 
insights for efficiently managing this invasive species, enhancing the conservation of coastal wetlands, and 
promoting the sustainability of coastal wetlands.   

1. Introduction 

Invasive plant species threaten native ecosystems and biodiversity 
over islands and coastal regions (Dawson et al., 2017). The perennial 
grass Spartina alterniflora (hereafter, Spartina), a species native to 
Atlantic coastal America, has invaded wetlands worldwide from equa
torial regions to coastal Scotland (~57◦N) over the past two centuries 
(Civille et al., 2005). Spartina was first introduced to China in 1979 for 
the purposes of seashore stabilization, tideland reclamation, and soil 
amelioration (Chung, 2006; Li et al., 2009). Owing to its great adapt
ability and high reproductive capacity, introduced Spartina has exten
sively invaded coastal China (Chen et al., 2020; Liu et al., 2018; Zuo 
et al., 2012) and imposed serious negative impacts on coastal wetlands 
(Xie et al., 2019). In early 2003, the State Environmental Protection 

Administration of China listed Spartina as one of the first 16 invasive 
species. Some local governments recognized the serious problems 
caused by overwhelming Spartina invasion and initiated several projects 
to control its expansion at local scale (Li et al., 2022; Yan et al., 2021). 
Over the recent years, the Chinese government has also recognized the 
importance and urgency of further controlling Spartina expansion and 
restore native coastal wetlands at regional and national scales (Li et al., 
2022). These efforts require data and information on both the present 
and historical distributions of Spartina saltmarshes. Continual records of 
Spartina encroachment at high spatial resolution can help better un
derstand the invasion processes and develop effective management 
practices, however, such datasets are not readily available for most 
coastal zones of China. 

Over the recent years, satellite remote sensing has been widely used 
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to classify and map Spartina saltmarshes, and many researchers have 
used free satellite images such as Landsat images (Mao et al., 2019; Sun 
et al., 2016; Wang et al., 2021a; Zeng et al., 2022). We did a literature 
review on the image data, in-situ reference data, and classification 
methods used in remote sensing of Spartina saltmarshes (Zhang et al., 
2020b). To date, the Spartina saltmarsh maps have been mostly pro
duced either for specific year(s) or certain small region(s). The data and 
information about the spatiotemporal changes of Spartina saltmarshes at 
the temporal resolution of one year or multi-year and at large spatial 
scale remain limited. In an effort to address this data and information 
gap, our previous work developed and reported a pixel- and phenology- 
based mapping algorithm, and the results showed that the algorithm 
performed well when tracking the expansion and removal of Spartina 
during 1995–2018 on Chongming island, Shanghai (Zhang et al., 
2020b). There is a need to apply and assess this pixel- and phenology- 
based algorithm to identify and map Spartina saltmarshes on large scale. 

The invasion, expansion, and reduction of Spartina saltmarshes in 
coastal China are associated with several factors, and comprehensively 
understanding these factors is important for understanding the biology 
and ecology of invasive species. On the one hand, many environmental 
factors have been found to affect the Spartina invasions. For example, 
inundation and salinity are two critical environmental factors that affect 
the growth potential and spatial distribution of Spartina along the 
intertidal elevation gradient (Li et al., 2018; Xie et al., 2021). On the 
other hand, human activities exert both positive and negative effects on 
the spatial distribution of Spartina saltmarshes. The intentional in
troductions of Spartina occurred in many coastal provinces of China 
during the 1980s and 1990s, which initiated Spartina expansion (Ren 
et al., 2021a). Recently, land reclamation and geomorphological mod
ifications driven by human activities have promoted the spread of 
Spartina (Kirwan and Megonigal, 2013; Xie et al., 2021; Zhu et al., 
2022). Human-induced land use and land cover changes for economic 
development (e.g., aquaculture and agriculture) as well as ecological 
engineering projects for restoring coastal wetlands have largely reduced 
the extent of Spartina saltmarshes in certain areas (Mao et al., 2019). 
Although some attempts have been made to investigate the relationships 
between Spartina expansion and potential driving factors (Zhang et al., 
2020a; Zhu et al., 2019), previous studies have mostly focused on how 
environmental factors affect Spartina saltmarsh dynamics. The roles of 
past and current human activities in shaping the expansion and 
contraction of Spartina saltmarshes remain largely unexplored. 

Here, we focused on three questions: (1) How well does the pixel- 
and phenology-based algorithm perform when mapping Spartina salt
marshes over temperate and subtropical coastal China? (2) How do 
Spartina saltmarshes temporally change at the provincial scale and 
spatially vary at the pixel scale? (3) What major factors are responsible 
for the changes in Spartina saltmarshes? First, based on our previous 
work on Chongming island, Shanghai, China (Zhang et al., 2020b), we 
extended the pixel- and phenology-based Spartina saltmarsh mapping 
algorithm to temperate and subtropical coastal China, and generated 
annual Spartina saltmarsh maps from 1985 to 2020. Taking the Spartina 
saltmarsh map produced for 2015 as a reference, we assessed the ac
curacy of the derived maps. Second, we quantified the spatiotemporal 
dynamics of Spartina saltmarshes at different spatial scales, analyzed the 
areal changes, and investigated the latitudinal variations. Third, we 
identified the major factors driving Spartina saltmarsh gains and losses 
and evaluated the effect of human activities. The results from this study 
could provide more comprehensive and accurate information on the 
spatiotemporal dynamics of Spartina saltmarshes over temperate and 
subtropical coastal China during 1985–2020, which can be used to 
support invasion ecology, biodiversity protection, and wetland 
conservation. 

2. Materials and methods 

2.1. Study area 

The native range of Spartina in North America varies from ~27◦N to 
45◦N (Kirwan et al., 2009), and the area invaded by Spartina in China 
ranges from ~20◦N to 40◦N (Zuo et al., 2012). Our early work studied 
the phenology of Spartina saltmarshes with time series Landsat and 
Sentinel images along the latitudinal gradient in China and found that 
the phenological discrepancy of Spartina and other native saltmarshes 
was more discernible in temperate and subtropical zones than in tropical 
zone (Zhang et al., 2022). The subtropical climate is not a well-defined 
term but is generally delineated over the latitudinal range between 
23.5◦N/S and 35◦N/S. Previous studies (Gu et al., 2021; Zhang et al., 
2017) have reported that more than 90% of Spartina saltmarshes are 
distributed within the temperate and subtropical zones of coastal China. 
In this study, we therefore chose the coastal zone of China spanning from 
23◦26′N to 40◦0′N (Fig. 1), which included eight provinces and mu
nicipalities: Liaoning (LN), Hebei (HB), Tianjin (TJ), Shandong (SD), 
Jiangsu (JS), Shanghai (SH), Zhejiang (ZJ), and Fujian (FJ). A total of 21 
National Nature Reserves (NNRs) are located within the study area 
(Wang et al., 2021b) and some of them are rampantly invaded by 
Spartina, including the Yellow River Delta NNR (YRDNNR) in Shandong, 
Yancheng NNR (YNNR) in Jiangsu, Dafeng Milu NNR (DMNNR) in 
Jiangsu, Chongming Dongtan NNR (CDNNR) in Shanghai, Jiuduansha 
Wetland NNR (JWNNR) in Shanghai, Minjiang River Estuary NNR 
(MRENNR) in Fujian, and Zhangjiangkou Mangrove NNR (ZMNNR) in 
Fujian. 

2.2. Data 

2.2.1. Landsat data 
The Google Earth Engine (GEE), a cloud computing platform, hosts 

several Landsat data products (Gorelick et al., 2017). We used the United 
States Geological Survey (USGS) Landsat 5/7/8 surface reflectance (SR) 
data during the period between 1985 (1985/1/1) and 2020 (2021/1/1), 
and processed them in the GEE platform. Landsat provides multispectral 
images with a 30-m spatial resolution and a 16-day revisit period. The 
atmospheric correction for Landsat SR data was conducted through the 
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
algorithm and Landsat Surface Reflectance Code (LaSRC) algorithm 
(Masek et al., 2006; Vermote et al., 2016). Bad-quality observations, 
including clouds, cloud shadows, and cirrus, were identified and 
removed according to the pixel quality attributes in the data files (Zhu 
and Woodcock, 2012). The study area covered 30 paths/rows (tiles) of 
the Landsat Worldwide Reference System (WRS-2) (Fig. 1). 

We used the good-quality time series Landsat SR data to calculate 
four vegetation indices (VIs) (see Eqs. (1)–(4)): Normalized Difference 
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Land Sur
face Water Index (LSWI), and modified Normalized Difference Water 
Index (mNDWI) (Huete et al., 2002; Tucker, 1979; Xiao et al., 2005; Xu, 
2006). These four VIs have been widely used for coastal wetland clas
sification (Chen et al., 2017; Wang et al., 2018; Wang et al., 2020; Zhang 
et al., 2020b). Both NDVI and EVI are good indicators of vegetation 
greenness and have been widely used in vegetation canopy and 
phenology studies (Zhang et al., 2003). LSWI is related to canopy and 
soil moisture, and a change from positive LSWI values to negative LSWI 
values represents a state change from green leaves to senescent leaves 
(Xiao et al., 2009). mNDWI is sensitive to surface water and is one of the 
most widely used index for identifying surface water bodies (Zhou et al., 
2017). 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1)  
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EVI = 2.5 ×
ρNIR − ρRed

ρNIR + 6 × ρRed − 7.5 × ρBlue + 1
(2)  

LSWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(3)  

mNDWI =
ρGreen − ρSWIR

ρGreen + ρSWIR
(4)  

where ρBlue, ρGreen, ρRed, ρNIR, ρSWIR are the surface reflectance values of 
the blue, green, red, near-infrared, and shortwave-infrared (1550–1750 
nm for Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) 
imagery and 1570–1650 nm for Operational Land Imager (OLI) imag
ery) bands in Landsat images, respectively. 

2.2.2. Ground reference data 
The ground reference data of Spartina saltmarshes and other native 

saltmarshes (hereafter, non-Spartina) came from two sources: (1) 
georeferenced photos taken during field surveys and (2) geographic 

coordinates published in previous studies or by data centers. First, a 
large-scale field survey was conducted in August and September in 
2015, and another field survey was conducted in July and September in 
2020. During the field survey, we took geo-referenced photos using 
digital single-lens reflex (DSLR) camera and collected optical images 
using DJI Phantom 4 Pro unmanned aerial vehicle (UAV). Based on the 
field photos, UAV data, and very high spatial resolution (VHSR) images 
from Google Earth, we constructed the ground reference datasets circa 
2015. Second, we collected geographic coordinates of Spartina salt
marshes published in previous studies (Liu et al., 2018; Zhang et al., 
2020a) and those of non-Spartina saltmarshes provided by the National 
Earth System Science Data Center, National Science & Technology 
Infrastructure of China (http://www.geodata.cn). We organized these 
data into a database and used them as references to supplement the 
ground reference datasets. As the published geo-location information 
(latitude and longitude) was mostly recorded from field surveys during 
2013–2017, we visually inspected individual data points and removed 
those inappropriate points. Finally, a total of 174 Spartina saltmarsh 

Fig. 1. The spatial distributions of the study area (a) and good-quality Landsat observations at individual pixels in the temperate and subtropical coastal zones of 
China during 1985–2020 (b), and the annual distributions of Landsat images from 1985 to 2020 divided by sensor (c) and month (d). 
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ground reference points and 163 non-Spartina saltmarsh ground refer
ence points were obtained. 

How to select and partition sample data for training and validation is 
important for reducing sampling bias and ensuring representativeness of 
the results. To reduce the bias that might arise from spatial autocorre
lation, we first divided the whole study area into 50 nonoverlapping 
grids (1◦ latitude by 1◦ longitude). We then randomly selected 40% of 
these grids (~13% in each subregion referring to section 2.3.1), and in 
these grids randomly selected 40% of the Spartina and non-Spartina 
saltmarsh ground reference points as training points. Note that for the 
training datasets, we used only the data points collected from field 
surveys, and ensured that each point covered patches larger than 60 m 
× 60 m. Each training point was then used to delineate the training 
regions of interest (ROIs) as circle buffers of the points (15-m radius). 
Finally, 41 Spartina ROIs containing a total of 453 pixels and 29 non- 
Spartina ROIs containing a total of 319 pixels were obtained, which were 
constructed as the training dataset (Tabs. S1–S2). As we used 
knowledge-based algorithm to identify and map land cover types, we 
also considered the training dataset as the learning dataset. For the 
pixels in the learning dataset (or training dataset), we analyze time se
ries image data to learn and gain knowledge of land cover types in the 
pixels. 

2.3. Mapping algorithm 

2.3.1. Subregions of the study area 
In our previous study conducted on Chongming island, Shanghai, 

two phenological features of Spartina saltmarshes were identified, and 
these features were used to differentiate Spartina saltmarshes from other 
types of saltmarshes and to develop a pixel- and phenology-based 
Spartina saltmarsh mapping algorithm (Zhang et al., 2020b). It should 
be noted that Spartina saltmarsh and other saltmarshes vary latitudinally 
in phenological characteristics (Zhang et al., 2022), especially under the 
background of high dynamic and heterogeneous coastal environments. 
Therefore, the classification strategy should also be adapted from region 
to region. The reasonable regional divisions can improve the efficiency 
of mapping algorithm and the accuracy of resulting maps (Hu et al., 
2021). 

The phenological traits of Spartina and the local tidal dynamics were 
considered in this study when delineating the study area. An early work 
(Zhang et al., 2022) investigated the latitudinal changes in Spartina 
saltmarsh phenology and found a significantly linear latitudinal trend in 
the start of growing season (SOS). We first divided the study area into 
two subregions based on the SOS ranges: (1) high-latitude (HL) region 
(35◦N − 40◦N, DOY 150–180), corresponding to the temperate zone and 
(2) middle-latitude region (23.5◦N − 35◦N, DOY 120–150), corre
sponding to the subtropical zone. This division could facilitate the 
definition of regional spring temporal windows. In addition, according 
to the mean tidal range (MTR) calculated using the vertical height dif
ferences between high and low water levels published by the National 
Marine Data Center (http://mds.nmdis.org.cn/), we further partitioned 
the middle-latitude region into the middle-latitude-north region (MLN; 
30◦N − 35◦N, MTR < 5 m) and the middle-latitude-south region (MLS; 
23.5◦N − 30◦N, MTR > 5 m). Therefore, three subregions (i.e., the HL, 
MLN, and MLS regions) were defined (Table 1). 

2.3.2. Phenology-based Spartina saltmarsh mapping 
The seasonal dynamics of three vegetation indices (NDVI, EVI, and 

LSWI) calculated at selected Spartina and non-Spartina sites (one species 
by one site) in three subregions were compared (Fig. 2). It was clear that 
spring and winter were the good seasons for discriminating Spartina 
saltmarshes from non-Spartina saltmarshes. In early spring, other salt
marshes start to green up, having positive LSWI values (>0), while 
Spartina saltmarshes do not start to green up, having negative LSWI 
values (<0). The frequency histograms derived from training ROIs 
(Fig. 3) indicated that the mean LSWI values from May to June 

(LSWImean(May-June)) and from April to May (LSWImean(April-May)) could 
discriminate Spartina saltmarshes from non-Spartina saltmarshes in 
high-latitude and middle-latitude regions, respectively; and the corre
sponding LSWImean thresholds were determined to be 0 and 0.4, 
respectively, by assessing the proportions of Spartina saltmarsh pixels. In 
winter, Spartina saltmarshes have high NDVI (>0.2), EVI (>0.1), and 
LSWI (>0) values, which can be regarded as green vegetation signals 
(Eq. (5)). The period from December to January was found to be a good 
time to discriminate Spartina saltmarshes from non-Spartina saltmarshes 
in both high-latitude and middle-latitude regions. We calculated the 
green vegetation frequencies (VFs) for individual pixels using Eq. (6), 
and the resulting frequency histogram showed that VF(Dec-Jan) values 
greater than 0 could differentiate Spartina saltmarshes from non-Spartina 
saltmarshes in this period (Fig. 3). In summary, the decision rules 
established for identifying Spartina saltmarshes in the HL, MLN, and MLS 
regions are shown in Eqs. (7) –(9). 

Vegetation = NDVI ≥ 0.2 ∩ EVI ≥ 0.1 ∩ LSWI > 0 (5)  

VF =
NVegetation

NGood
(6)  

Spartina saltmarshesHL region = LSWImean(May−Jun) ≤ 0 ∩ VF(Dec−Jan) > 0 (7)  

Spartina saltmarshesMLN region = LSWImean(Apr−May) ≤ 0 ∩ VF(Dec−Jan) > 0
(8)  

Spartina saltmarshesMLS region = LSWImean(Apr−May) ≤ 0.4 ∩ VF(Dec−Jan) > 0
(9)  

where VF is the vegetation frequency scaled between 0 and 1 in a year, 
NVegetation corresponds to the number of observations determined as 
green vegetation in a year, and NGood corresponds to the number of good- 
quality observations in a year. 

2.3.3. Regional implementation of the mapping algorithm 
The delineation of coastal zones and identification of coastal vege

tation areas can help reduce commission errors when generating Spar
tina saltmarsh maps. We visually interpreted VHSR images on Google 
Earth at a scale of 1:24,000 to delineate the coastline each year (Wang 
et al., 2020). A 20-km seaward buffer was created as potential coastal 
zones. Next, we generated coastal vegetation maps using the decision 
tree classification scheme developed in previous studies (Wang et al., 
2018; Wang et al., 2020). For each pixel, all good-quality observations 
within a year were determined as green vegetation or non-green vege
tation using Eq. (5) and were similarly determined as water or non-water 
using Eq. (10). The vegetation frequency (VF) and water frequency (WF) 
of each pixel were then calculated using Eqs. (6) and (11). We used a VF 
threshold of 0.15 (VF ≥ 0.15) and a WF threshold of 0.95 (WF ≤ 0.95) to 
delineate coastal vegetation. Furthermore, we produced annual 
mangrove maps, following the algorithms proposed by Chen et al. 
(2017) and refined by Wang et al. (2021b), as mask layers to delineate 

Table 1 
Characteristics of the three subregions in the temperate and subtropical coastal 
zones of China.  

Subregion Latitude 
range 

SOS 
range 
(DOY) 

Mean tidal 
range 
(m) 

Provinces/ 
municipalities 

HL region 35◦N-40◦N 150–180 <5 Liaoning, Hebei, Tianjin, 
Shandong 

MLN 
region 

30◦N-35◦N 120–150 <5 Jiangsu, Shanghai 

MLS 
region 

23.5◦N- 
30◦N 

120–150 >5 Zhejiang, Fujian 

Note: The abbreviations HL, MLN, and MLS denote the high-latitude, middle- 
latitude-north, and middle-latitude-south regions, respectively. 
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saltmarshes. The decision rules of DEM ≤ 6 m and slope ≤ 6◦ were used 
as supplementary criteria to limit the potential distributions Spartina 
saltmarshes (Fig. S1). The detailed workflow is shown in Fig. 4. 

Water = (mNDWI > EVI or mNDWI > NDVI) ∩ EVI < 0.1 (10)  

WF =
NWater

NGood
(11) 

Because of the frequent presence of clouds in coastal regions, many 
pixels often had small number of good-quality observations within a 

Fig. 2. Seasonal dynamics of three vegetation indices in three subregions during 2015–2016. The dominant saltmarsh species in each region are presented.  

Fig. 3. Frequency histograms of Spartina and non-Spartina saltmarshes among LSWImean and VF values in the HL region (a-b), MLN region (c-d), and MLS region (e-f) 
in 2015. The dashed lines indicate the corresponding cumulative frequencies. 
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year and thus, Spartina saltmarsh maps resulting from analyses of images 
within a year might have been subject to large underestimation. To 
address this data issue, we also generated Spartina saltmarsh maps using 
satellite images acquired within 3-year (y-1, y, and y+1) and 5-year (y- 
2, y-1, y, y+1, and y+2) windows. Specifically, we combined 3-year or 
5-year satellite data to generate 1-year data, organized by day of year 
(DOY), and used these data to generate one Spartina saltmarsh map. For 
example, we produced the map of Spartina saltmarshes in 2018 within 3- 
year window by using satellite images from 2017 (2017/1/1) to 2019 
(2019/12/31). We ended up with three sets of annual Spartina saltmarsh 
maps using 1-year satellite images (1-yr maps), 3-year satellite images 
(3-yr maps), and 5-year satellite images (5-yr maps). 

2.4. Accuracy assessment of Spartina saltmarsh maps 

Assessing the accuracy of Spartina saltmarsh maps was conducted 
through two approaches: (1) using reference data collected during in- 
situ surveys (RDground) and (2) using reference data obtained from vi
sual interpretations of Google Earth VHSR images (RDimage) over pixels 
selected by the stratified random sampling method to assess the classi
fied maps. With respect to the first validation approach, we overlaid the 
remaining 133 Spartina saltmarsh points and 134 non-Spartina saltmarsh 
points from the ground reference datasets on the classified map to check 
whether each point belonged to the corresponding category. Second, we 
generated random points in each stratum on the classified map by using 
a stratified random sample function in the GEE platform. As an early 
study (Hu et al., 2021) has reported that Spartina saltmarshes (48.3%) 
and non-Spartina saltmarshes (51.7%) existed in comparatively similarly 
sized areas along coastal China in 2019, the same number of points were 
therefore generated for each stratum. Specifically, for each grid over 
temperate and subtropical coastal China, 10 points were randomly 
generated on the Spartina and non-Spartina saltmarsh maps. The points 
lacking clear land cover information due to unavailable Google Earth 
VHSR images were excluded. To ensure the same number of validation 
points obtained in each map (i.e., 1-yr, 3-yr, and 5-yr maps), we further 
randomly selected points among the generated points. In total, 356 
Spartina points and 355 non-Spartina points in each map were used to 
construct the validation dataset (Tabs. S1–S2). Each point was inter
preted visually on Google Earth to determine the land cover type in the 

image pixel. We calculated the confusion matrix to estimate the accu
racy of the resulting maps. 

2.5. Statistical analysis 

2.5.1. Analysis of spatiotemporal dynamics of Spartina saltmarshes 
At the pixel scale, there were three scenarios for one single pixel in a 

year: identified as Spartina saltmarshes (value as 1), identified as non- 
Spartina saltmarshes (value as 0), or not enough data to be classified 
(value as −1) (Fig. 5). Some pixels previously identified as Spartina 
saltmarshes might not recognize Spartina saltmarshes for one or two 
years due to missing satellite imagery data. Therefore, we used the 
annual Spartina saltmarsh maps generated from 5-year satellite data to 
delineate the changes in Spartina saltmarshes from 1990 to 2018. 

We quantified the spatial variations of Spartina saltmarshes by 
calculating the differences in pixel values between the previous-year 
map and the current-year map. Three types of results were obtained 
by referencing Eq. (12): pixels labeled as having gain of Spartina salt
marshes (when value as 1), pixels labeled as having loss of Spartina 
saltmarshes (when value as −1), or pixels labeled as having no change 
(when value as 0). Both the frequency and period of gains and losses 
were extracted. In addition, we analyzed the first year in which a pixel 
was identified as Spartina saltmarshes during 1985–2020 by employing 
Eq. (13). The invasion history of Spartina was also analyzed by counting 
the number of times that a pixel was identified as Spartina saltmarshes 
using Eq. (14). To understand the latitudinal variations in Spartina 
saltmarshes, we aggregated the four indicators (gain frequency, loss 
frequency, first-time detection, and invasion history) at 0.1◦ latitudinal 
intervals. 

Dynamics =

⎧
⎨

⎩

Gain(i)
Loss(i)

No change(i)

(
Map(i) − Map(i−1) = 1

)

(
Map(i) − Map(i−1) = −1

)

(
Map(i) − Map(i−1) = 0

)
(12)  

First(i) = Map(i) − Map(i−1) − Map(i−2) − ⋯ − Map1990 (13)  

Fig. 4. Workflow for mapping Spartina saltmarshes in the temperate and subtropical coastal zones of China.  
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Age =
∑2018

i=1990
Mapi (14)  

2.5.2. Analysis of driving factors of Spartina saltmarsh gains and losses 
To analyze the driving factors of the observed Spartina saltmarsh 

gains and losses, we disaggregated and quantified the relative contri
butions of direct and indirect drivers. Direct drivers were defined as 
changes resulting from land conversion processes such as agriculture, 
aquaculture, urban and industrial development, lawns, riverways, 
coastal infrastructure, and other ecological engineering measures, most 
of which were related to human activities and could be observed from 
the Google Earth VHSR images (Fig. S2). Indirect drivers included the 
effects of natural coastal processes, climate change, vegetation dieback, 
erosion, and other remote drivers of land use changes, which were not 
directly observable on Google Earth VHSR images (Fig. S2). We 
mosaicked all the Spartina saltmarsh gain maps by choosing the earliest 
year in which Spartina was identified in overlapping areas and all the 
Spartina saltmarsh loss maps by choosing the latest year in which 
Spartina was identified in overlapping areas in ArcGIS software, as the 
earliest gain period could be connected to the artificial introduction 
history of Spartina and the latest loss period could rescue from lacking 
available images to interpret in the early years. On these two maps, we 
randomly sampled 5 gain or loss points in each grid of the 50 
nonoverlapping grids described in section 2.2.2. We removed sample 
points at which the drivers were not clear when visually interpreted on 
Google Earth. Each sample point was labeled with a gain or loss year and 
the corresponding driver category. 

3. Results 

3.1. Accuracy assessment of annual Spartina saltmarsh maps 

The accuracies of three Spartina saltmarsh maps in 2015 were 
assessed and compared, and the results indicated that all the maps had 

high accuracies (Table 2). The overall accuracies (OA) of 1-yr, 3-yr, and 
5-yr Spartina saltmarsh maps were 83.0%, 88.2%, and 88.8%, respec
tively. The accuracy of 1-yr map was the lowest, with kappa coefficient 
of 0.66, and the accuracy of 5-yr map was the highest, with kappa co
efficient of 0.77. The user’s accuracy (UA) and producer’s accuracy (PA) 
were improved by 4% − 8% when 3-year or 5-year satellite data were 
incorporated to generate the maps. The UAs were generally higher than 
the PAs in these three Spartina saltmarsh maps, indicating that the maps 
had higher omission errors than commission errors. We also compared 
the accuracy assessment results at the provincial scale and found that the 
OAs of all provinces were over 75% (Fig. S3). The UAs corresponding to 
low-latitude provinces were lower than those corresponding to other 
regions, indicating that misclassification was a major concern at rela
tively low latitudes. Moreover, relatively low PAs occurred in middle- 
latitude provinces, indicating that potential underestimation should be 
considered in these regions. 

3.2. Interannual changes in Spartina saltmarsh areas from 1990 to 2018 

Spartina spread over temperate and subtropical coastal China un
derwent continual expansion between 1990 and 2018. In 1990, there 
were 89.04 km2 of Spartina saltmarshes, while the Spartina saltmarsh 
extent reached 517.89 km2 in 2018, showing a significantly increasing 
trend (slope of 14.21 km2 yr−1). The Spartina saltmarsh areas started to 
increase in 1990 but stagnated or even slightly decreased during 
2000–2005 and then substantially increased after 2010 (Fig. 6a). As 
such, the interannual trend of Spartina saltmarsh areas could be divided 
into three phases: a rapidly increasing phase between 1990 and 2000 
(slope of 14.75 km2 yr−1), a moderately increasing phase between 2000 
and 2010 (slope of 10.48 km2 yr−1), and a rapidly increasing phase 
between 2010 and 2018 (slope of 27.09 km2 yr−1) (Fig. 6d). 

Spartina saltmarshes were distributed unevenly among provinces and 
mainly occurred in Zhejiang (201.11 km2), Jiangsu (136.34 km2), Fujian 
(94.24 km2), and Shanghai (54.12 km2), which together accounted for 
93.8% of the total Spartina saltmarsh area over temperate and sub
tropical coastal China in 2018. In Zhejiang, Jiangsu, and Fujian, Spartina 
saltmarshes experienced a rapidly increasing phase from 1990 to 2000, a 
slightly increasing phase from 2000 to 2010 and another rapidly 
increasing phase from 2010 to 2018 (Fig. 6d). In contrast, Spartina 
saltmarshes in Shanghai started to significantly increase in 2005 and 
exhibited the largest increasing trend (slope of 4.91 km2 yr−1) during 
2000–2010. 

Spartina also rampantly invaded the seven national nature reserves 
(NNRs), and they could be divided into two groups. The first group 
included YRDNNR and ZMNNR and they had continually increasing 
trends after 2010. For example, the area of Spartina saltmarshes in 

Fig. 5. Schematic diagram for identifying Spartina saltmarshes at the pixel level over a year.  

Table 2 
Accuracy assessment results of Spartina saltmarsh and non-Spartina saltmarsh 
maps (1-yr map, 3-yr map, and 5-yr map) in 2015.   

1-yr map 3-yr map 5-yr map  

Spartina non- 
Spartina 

Spartina non- 
Spartina 

Spartina non- 
Spartina 

UA  83.0%  83.1%  87.1%  89.3%  88.3%  89.2% 
PA  80.4%  85.3%  88.1%  88.4%  88.3%  89.2% 
OA  83.0%  88.2%  88.8% 
Kappa  0.66  0.76  0.77  
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YRDNNR increased from 0.57 km2 in 2012 to 27.69 km2 in 2018. The 
second group was composed of the other five NNRs and they experi
enced two distinct phases: a significantly increasing phase between 1990 

and 2010 and a stagnant or significantly decreasing phase between 2010 
and 2018. The area of Spartina saltmarshes in JWNNR had the largest 
increasing trend (slope of 2.91 km2 yr−1) from 1990 to 2010, but this 

Fig. 6. The temporal dynamics of Spartina saltmarsh areas during 1990–2018 in the temperate and subtropical coastal zones of China (a), eight provinces/mu
nicipalities (b), and in seven national nature reserves (NNRs) (c). The black solid and dashed lines indicate Spartina saltmarsh trends in different periods. The linear 
trends and their significance levels in different periods in the temperate and subtropical coastal zones of China (TSC) and eight provinces/municipalities are also 
shown (d). * p < 0.05; ** p < 0.01. 

Fig. 7. The distribution of Spartina saltmarshes (a) and their latitudinal variations over temperate and subtropical coastal China during 1990–2018 (f-i). (b-e) 
Zoomed-in view of the four regions marked in (a). The shaded areas show the 95% confidence intervals. 
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area stagnated at approximately 38 km2 after 2013. The most obvious 
decreasing trend occurred in CDNNR, where the Spartina saltmarsh 
extent decreased from 14.42 km2 in 2013 to 3.08 km2 in 2014 and then 
to 0.04 km2 in 2018. 

3.3. Spatial variations in Spartina saltmarshes during 1990–2018 

The resulting maps showed that Spartina extensively invaded estu
aries, bays, and deltas, such as Yellow River delta (Fig. 7b), Yangtze 
estuary (Fig. 7c), Hangzhou bay (Fig. 7d), and Minjiang estuary 
(Fig. 7e). Apart from the frequency spike observed in Fujian (~25◦N), 
the gain and loss frequencies of Spartina saltmarshes were higher at low 
latitudes and lower at high latitudes (Fig. 7f-g). The years in which 
Spartina saltmarshes were first detected by Landsat images were earlier 
at low latitudes and later at high latitudes (Fig. 7h). Spartina saltmarshes 
occurred especially earlier in some estuaries, a finding connected to 
intentional introduction in the early years in these regions. Corre
spondingly, the invasion history of Spartina was longer at low latitudes 
and shorter at high latitudes (Fig. 7i). Moreover, the spatial variations in 
Spartina saltmarshes were quite different among seven NNRs (Fig. 8). In 
one case, Spartina rampantly replaced native plants and occupied more 
niches without human interventions. In another case, extensive Spartina 
saltmarshes were lost due to control and removal. 

3.4. The effect of human activities on Spartina saltmarsh dynamics 

Analyses of the random Spartina saltmarsh dynamic samples derived 
in the temperate and subtropical coastal zones of China suggested that 
6% of gains and 75% of losses were attributed to human activities (as 
direct drivers) (Fig. 9). Among the eight provinces and municipalities, 
the Spartina saltmarsh dynamics was most driven by human activities in 
Shanghai, where 56% of gains and 86% of losses in Spartina saltmarshes 
were associated with intentional introductions in early years and 
human-induced land use conversions in recent years. Compared to 
Spartina saltmarsh gains, human activities played a more important role 
in Spartina saltmarsh losses. More than 60% of Spartina saltmarsh losses 
observed in Liaoning (97%), Hebei (86%), Tianjin (92%), Shandong 
(68%), Jiangsu (93%), Shanghai (86%), Zhejiang (100%), and Fujian 
(64%) were attributed to human activities. In contrast, most Spartina 
saltmarsh gains (94%) were caused by indirect drivers, highlighting that 
rapid natural spread was the prominent reason such extensive Spartina 
saltmarshes existed in the temperate and subtropical coastal zones of 
China. 

4. Discussion 

Many factors might affect the accuracy of the resulting Spartina 
saltmarsh maps from the analyses of satellite images, for example, 
saltmarsh definition, classification scheme, input imagery, training 

Fig. 8. The pixel-level dynamics of Spartina saltmarshes from 1990 to 2018 in seven NNRs. The earliest period of Spartina saltmarsh gains, the latest period of 
Spartina saltmarsh losses, the first year in which Spartina saltmarshes were identified, and the invasion ages of Spartina saltmarshes are shown with spatial details (a) 
and summarized by the cumulative pixel frequency (b-e). The white polygons indicate the boundaries of NNRs. 
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sample, and mapping algorithm. First, the applicability of the pixel- and 
phenology-based algorithm was subject to image quality in specific 
temporal windows during spring and winter. Based on our assessments, 
using satellite images from a single year was prone to omit some Spartina 
saltmarshes (Table 1). In addition, as Landsat images have 30-m spatial 
resolution, the algorithm did not identify those pixels with small pro
portions of Spartina, mostly at the early Spartina invasion stage. Second, 
the pixel- and phenology-based algorithm depends on our knowledge of 
phenology of various saltmarsh species, which may vary across the 
latitudes (Zhang et al., 2022). An early study reported that the difference 
in the start of growing season (SOS) between Spartina and Phragmites 
tended to decrease as the study sites moved to south (low latitudes) (Sun 
et al., 2021), making it difficult to apply SOS-based rules at relatively 
low latitudes. Third, the accurate location of the shoreline is a non- 
negligible factor affecting areal estimates, because we chose the 20- 
km seaward buffer as the potential Spartina distribution areas. Despite 
these concerns, the algorithm developed in this study could produce 
promising results that potentially enhance our understanding of the 
spatial and temporal dynamics of Spartina saltmarshes. 

Our results showed that Spartina sustained a serious invasion trend 
over the period of 1985–2020 and linear increases in many coastal re
gions (Fig. 6). To conserve the native ecosystems, many nature reserves 
have been established and several prevention measures have been taken 
in coastal China (An et al., 2007; Yuan et al., 2011). For example, a 
large-scale ecological restoration project was carried out in CDNNR, 
Shanghai in 2013 to eradicate invasive Spartina within an area of 24.19 
km2 and investment of $186 million (Zhang et al., 2020b). However, the 
rampant expansion of Spartina has not been effectively reversed. The 
habitats for native saltmarshes over nature reserves have been largely 
invaded by Spartina (Fig. 8), including a world heritage site of the 
Migratory Bird Sanctuaries along the coast of Yellow Sea-Bohai Gulf of 
China. A recent study found that plant invasions in the protected areas 
were even more extensive and faster than those outside the protected 
areas (Ren et al., 2021b). Even for those regions that have undergone 
control programs, the subsequent Spartina reinvasion is frequent, mak
ing the restoration of native saltmarshes difficult (Zhang et al., 2020b; 
Zhao et al., 2020). 

Considering the proximity of saltmarshes to human-related activ
ities, the spatiotemporal dynamics of Spartina saltmarshes are inevitably 
influenced by human activities. On the one hand, the intentional 

introductions of Spartina have been deemed the most important factor 
for its invasion success (Meng et al., 2020). The Spartina saltmarsh gains 
observed in many coastal regions are inseparable from the planting of 
Spartina at the early stages, followed by the spread of seeds by the tide. 
On the other hand, the coastal reclamation is known to be a prominent 
anthropogenic factor affecting the distribution of saltmarshes in China 
(Chen et al., 2022). Specifically, reclamations can accelerate Spartina’s 
seaward expansion by changing the sedimentary environment of mud
flats in front of dikes and causing extensive fine-particle sedimentation, 
which provides a suitable environment for Spartina colonization and 
growth (Zhu et al., 2022). However, land cover changes induced by 
human activities caused Spartina saltmarsh losses more frequently than 
gains. For example, although Spartina has a high expansion capability, 
the coastal reclamation pace being faster than the Spartina growth rate 
would lead to Spartina saltmarsh losses, not to mention destroying the 
habitats of Spartina and reducing Spartina seed yields. Our sample-based 
driving factor analysis showed that compared to ~5% of Spartina salt
marsh gains, more than 70% of Spartina saltmarsh losses could be 
attributed to human activities. Interestingly, the continual natural 
spread and expansion of Spartina offset the Spartina saltmarsh losses 
caused by human activities and resulted in net Spartina saltmarsh in
creases in the temperate and subtropical coastal zones of China over the 
past decades. 

In an early literature review paper (Vaz et al., 2018), the authors 
have summarized that remote sensing technology has been applied for 
identification of invasive species since the late 1970s, for prediction of 
potential distributions of invasive species later, and recently for as
sessments of impacts of invasive species on ecosystems. Research on 
invasion dynamics of individual invasive species and their impacts on 
local environments can provide more information to manage Spartina 
invasions in an efficient and integrated manner. It has been reported that 
approximately 803 km2 of mudflats and 29 km2 of saltmarshes have 
been converted to Spartina saltmarshes in coastal China during 
1990–2015 (Mao et al., 2019), which directly changes the composition 
and distribution of coastal wetlands. As a valuable resource for people to 
combat global warming, conserving the integrity of ecosystem structure 
and functions of coastal wetlands is critical for achieving the carbon 
neutrality in China by 2060. In summary, the identification of invasive 
Spartina is the first and crucial step; however, how to adapt, mitigate, 
and reduce its extensive invasion is still a topic that needs to be explored. 

Fig. 9. The contributions of direct and indirect drivers to Spartina saltmarsh gains and losses during 1990–2018 in the temperate and subtropical coastal zones of 
China (TSC) and eight provinces/municipalities. 
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5. Conclusion 

Overwhelming Spartina alterniflora invasions have seriously threat
ened the structure and functions of coastal ecosystems in China, which is 
widely recognized as a major ecological and environmental issue. This 
study improved the pixel- and phenology-based Spartina saltmarsh 
mapping algorithm and provided a new dataset of Spartina saltmarshes 
in the temperate and subtropical coastal zones of China over the past 
three decades. The resulting Spartina saltmarsh maps have reasonably 
high accuracy. Relatively higher omission errors than commission errors 
indicates that more high-quality time series observations are needed, 
which can be achieved by incorporating Landsat 9 and Sentinel-1 im
ages. Although considerable efforts have been made to control Spartina 
invasions and various human interventions have reduced Spartina salt
marshes in some parts of the coastal China, the resulting maps reveal 
that Spartina saltmarshes have been continually expanding at high rates 
in many parts of coastal China. Our work also reveals the spatial vari
ations in Spartina invasion over the latitudinal gradient from the 
temperate zone to the subtropical zone. The annual Spartina saltmarsh 
maps during 1985–2020 can be used to support future work that aims to 
select hot-spots for Spartina control, predict potential regions for Spar
tina expansion, and assess the impacts of Spartina invasion and expan
sion on coastal wetland biodiversity and ecosystem services. To achieve 
ecological security and the sustainability of coastal wetlands in China 
remains to be a grand challenge for the years to come, and remote 
sensing of coastal wetlands can play an increasingly important role for 
decision makers, stakeholders and the public. 
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